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An information-based multiasset artificial stock market characterized by different types of stocks and populated by heterogeneous
agents is presented and studied so as to determine the influences of agents’ networks on themarket’s structure. Agents are organized
in networks that are responsible for the formation of the sentiments of the agents. In themarket, agents trade risky assets in exchange
for cash and share their sentiments by means of interactions that are determined by sparsely connected graphs. A central market
maker (clearing house mechanism) determines the price process for each stock at the intersection of the demand and the supply
curves. A set of market’s structure indicators based on the main single-assets and multiassets stylized facts have been defined, in
order to study the effects of the agents’ networks. Results point out an intrinsic structural resilience of the stock market. In fact, the
network is necessary in order to archive the ability to reproduce themain stylized facts, but also themarket has some characteristics
that are independent from the network and depend on the finiteness of traders’ wealth.

1. Introduction

The large availability of financial data has allowed the
study of financial markets by means of the cooperation of
different fields such as engineering, physics, mathematics,
and economics [1–5]. This new multidisciplinary approach
overcomes the limits of the classical approach and improves
the knowledge about the price processes, discovering the so
called stylized facts, that is, the main statistical properties of
financial markets. In particular, focusing on the distribution
of intertrade time between different financial transactions,
previous works have demonstrated the presence of Weibull
distribution [6].Moreover, empirical study has demonstrated
that the dynamics of price and volume of transactions,
including the volatility over different time horizons, are
influenced by the correlations and temporal patterns of the
intertrade times. Furthermore, the rules that regulate the
interactions among agents strongly depend on the regula-
tory mechanisms of each individual market [7]. In order
to evaluate the correlations and to identify and quantify
integrations among dynamical entities, such as agents on

the stock market, special methods have been developed [8,
9]. Generally speaking, according to the classical approach,
simple analytically tractable models with a representative,
perfectly rational agent have been themain corner stones and
mathematics has been the main tool of analysis. Conversely,
the complexity science approach considers financial markets
as complex systems where a large number of heterogeneous
agents interact. In particular, the markets are populated
by boundedly rational, heterogeneous agents using rule of
thumb strategies. This approach fits much better with agent-
based simulation models and computational and numerical
methods have become an important tool of analysis [10].
Thus, a number of computer-simulated, artificial financial
markets have been born with the aim of becoming a frame-
work to perform computational experiments. Following the
pioneering work done at the Santa Fe Institute [11–13], a large
number of researchers have proposed model for artificial
markets populated by heterogeneous agents endowed with
learning and optimization capabilities [14, 15]. Moreover,
the artificial financial markets are a useful framework to
study the role of fraudulent agents and the corruption in
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financial markets, that is, how the fraudulent agents impact
on the markets [16]. In particular, empirical analysis shows
that corruption influences the economic growth rate and
foreign investment [17]. For a detailed review onmicroscopic
(“agent-based”) models of financial markets see [18, 19].

In this paper, using the Genoa Artificial Stock Market
(GASM) developed in Genoa, the impact of the structural
properties of traders’ networks of interaction on the emergent
outcome in financial markets has been studied. In particular,
starting from the information-based single-assets artificial
market, a multiassets artificial stock market version of the
GASM has been used [20–23]. In order to investigate this
relationship, themarket is populated by heterogeneous agents
that are seen as nodes of sparsely connected graphs. The
market is characterized by different types of stocks and agents
trade risky assets in exchange for cash. Agents share their
information by means of interactions that are determined by
the graphs. Besides the amount of cash and assets owned,
each agent is characterized by sentiments that summarize
the agent’s information about the market and agent world.
The sentiments include in one element the influence of the
market trend, the influence of the neighbours agents, and the
propensity for the market. Agents are subject to a portfolio
choice on number and type of risky securities. The allocation
strategy is based on sentiments and wealth. A central market
maker (clearing house mechanism) determines the price
process for each stock at the intersection of the demand and
the supply curves.

The paper presents a study on how the traders’ networks
and, thus, the sentiments’ components influence the market
structure. In particular, this paper investigates the effects of
changes in traders’ networks of interaction in the financial
market. In order to perform this investigation, five different
“market’s structure indicators” have been defined. The indi-
cators have been defined considering themain univariate and
multivariate stylized facts. Concerning univariate processes,
the threemain stylized facts taken as reference are the unitary
root of price processes, the fat tails distribution of returns,
and the volatility clustering. Concerning the multiassets
environment the set of stylized facts consists in the statistical
properties of the cross-correlation matrices of returns [24–
26] and of the variance-covariancematrices of prices [27] that
make reference to static and dynamic factors, respectively.

Thus, the indicators defined are the number of I(1)
processes, the number of heteroscedastic processes, the
number of processes with fat tails, the number of sector
presented in the market, and the number of common trends.
The computational experiments show an intrinsic structural
resilience of the stock market. In fact, some characteristics of
the market are “structural” and depend on the agents’ budget
constraint, whereas others are an emerging properties of the
traders’ network of interactions.

The paper is organized as follows: Section 2 presents
the model and Section 3 the “market’s structure indicators”
and Section 4 shows the computational experiments and
Section 5 the discussion of results. Finally, Section 6 provides
the conclusion of the study.

2. The GASM Model

2.1. Overview of the GASM Model. The model presented in
this paper is an enrichment of the Genoa Artificial Stock
Market (GASM) developed at the University of Genoa [20,
28]. The GASM is an agent-based artificial stock market
whose baseline originally includes heterogeneous agents that
trade risky assets in exchange for cash [29].They aremodeled
as liquidity traders; that is, decision making process is
constrained by the finite amount of financial resources (cash
+ stocks) they own. At the beginning of the simulation, cash
and stocks are distributed randomly among agents.

2.2. Agents’ Networks. In order to investigate the effects
of agents’ networks in financial markets, for each stock
presented in the market, the heterogeneous agents have been
organized in graphs, and in particular, according to a directed
random graph, where the agents are the nodes and the
branches represent the interactions among agents.The graphs
are responsible for the changes in agent’s sentiments. The
graphs are directed; that is, the interactions are assumed
unidirectional (i.e., if agent 𝑗-th influences agent 𝑖-th not
necessarily agent 𝑖-th influences agent 𝑗-th) and characterized
by a strength 𝑔𝑘𝑗𝑖, assuming a positive real number. Generally
speaking, due to the presence of a directed graph, both an
output node degree, related to the output branches of a given
node, and an input node degree, related to the input branches,
should be defined.

The agents are organized according to a Zipf law. For
each stock an agent is randomly connected to a set of other
agents whose number and strength (of the connection)𝑔𝑘𝑖𝑗 are
inversely proportional to his/her rank, that is, richer agents
influence a larger number of agents with a higher strength.
Consequently, the output degree distributions over the nodes
are set to power laws and the input degree distributions result
in power laws too. Each agent has a different belief about the𝐾 assets depending on his/her rank. Agent 𝑖 is characterized
by a sentiment 𝑆𝑘𝑖 (i.e., real number in the interval [−1, 1]) that
represents a propensity to invest in asset 𝑘. A positive average
sentiment denotes a propensity to buy, whereas a negative
average sentiment corresponds to a propensity to sell. The
graphs are responsible for the changes in agent’s sentiments.
At each time step ℎ, information is propagated through the
market and sentiments 𝑆𝑘𝑖 of agent 𝑖 are updated.

Let I𝑘𝑖 be the set of agents that influences the behavior
of trader i-th for the asset 𝑘 and 𝑝𝑘 the market price of the
risky asset 𝑘.Thenew sentiments 𝑆𝑘𝑖 of agent i-th for each asset𝑘 are functions of the previous sentiments, of the log return
(market feedback), of the influence of interacting agents and
of average sentiment of the agent about the market behavior.
The expression is

𝑆𝑘𝑖 (ℎ) = 𝐹 (𝛼𝑆,𝑖𝑆𝑘𝑖 (ℎ − 1) + 𝛼𝑀,𝑖𝑟𝑘 (ℎ − 1)
+ 𝛼𝑁,𝑖𝑆𝑘𝑖 (ℎ − 1) + 𝛼𝑃,𝑖𝑆𝑖 (ℎ − 1)) , (1)

where

𝐹 (𝑥) = tanh (𝑥) (2)
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is a smooth function that constrains agent sentiments in the
range [−1, 1].

Furthermore,

𝑟𝑘 (ℎ − 1) = log [𝑝𝑘 (ℎ − 1)] − log [𝑝𝑘 (ℎ − 2)] (3)

represents the market feedback,

𝑆𝑘𝑖 (ℎ − 1) = ∑𝑗∈I𝑘
𝑖

𝑔𝑘𝑗𝑖𝑆𝑘𝑗 (ℎ − 1)
∑𝑗∈I𝑘

𝑖

𝑔𝑘𝑗𝑖 (4)

represents the influence of interacting agents, and

𝑆𝑖 (ℎ − 1) = ∑𝑘 𝑆𝑘𝑖𝐾 (5)

models the global vision of agent 𝑖-th for the market trend.
The 𝛼𝑆,𝑖 coefficients in (1) are inversely proportional to agent’s
rank; that is, richer agents have stronger beliefs. Moreover a
constraint on graph intersection is considered

󵄨󵄨󵄨󵄨𝛼𝑁,𝑖󵄨󵄨󵄨󵄨 = (𝜂 − 󵄨󵄨󵄨󵄨𝛼𝑆,𝑖󵄨󵄨󵄨󵄨) ; (6)

that is, self-interaction is a counterpart of graph interactions,
with random (i.e., uniform distribution) changes in sign at
each time step. Eq. (6) models a specific behavior of agents,
that is, the fact that sometimes an agent changes idea about
the sentiments of neighbour, and so he changes his reaction.
In fact, (6) points out that agent that are strongly influenced
by their previous sentiment (big traders, bank, mutual funds,
etc.) and are poorly influenced by the neighbouring agents’
sentiment (e.g., small single investors) and 𝜂 represents the
self-neighbouring sentiment balance coefficient [20].

Moreover, the amplitude of market feedback depends on
rank, so that the coefficients𝛼𝑀,𝑖 are inversely proportional to
agent ranks; that is, agents with higher ranks are less sensitive
to the single asset trends. Finally, the 𝑆𝑖(ℎ − 1) term is a
stabilizing element for the sentiment, so that the coefficient𝛼𝑃,𝑖 in (1) is always negative.

Agent’s trading decision is based on cash and stocks
owned and on sentiment. In particular, the stock price
process depends on the propagation of information among
the interacting agents, on budget constraints and on market
feedback. In this respect, also the 𝛼𝑆,𝑖 coefficients in (1)
are proportional to agent’s rank; that is, richer agents have
stronger beliefs.

2.3. Allocation Strategy. At each time step ℎ, a subset of agents
is randomly chosen from a uniform distribution to operate as
traders on the market. Let 𝑆𝑘𝑖 (ℎ) be the sentiment, 𝐶𝑖(ℎ) the
amount of cash, and 𝑞𝑘𝑖 (ℎ) the amount of asset 𝑘 owned by the𝑖-th trader at time ℎ.

If 𝑝𝑘(ℎ − 1) is the market price of the risky asset 𝑘 at time
step ℎ−1, the risky wealth𝑊𝑟𝑖 (ℎ−1) owned by trader 𝑖 at time
step ℎ is

𝑊𝑟𝑖 (ℎ − 1) = ∑
𝑘

𝑞𝑘𝑖 (ℎ − 1) 𝑝𝑘 (ℎ − 1) (7)

whereas 𝑊𝑖(ℎ − 1) = 𝑐𝑖(ℎ − 1) + 𝑊𝑟𝑖 (ℎ − 1) represents the total
wealth of agent 𝑖-th.

At each simulation step, trader 𝑖-th tries to allocate in
risky assets a fraction 𝛾𝑟 of his total wealth related to his vision
of the market trend; that is,

𝑊̂𝑟𝑖 (ℎ) = 𝛾𝑟 (ℎ − 1) 𝑊𝑖 (ℎ − 1) , (8)

where 𝛾𝑟 = (1 + 𝑆𝑖(ℎ − 1))/2.𝑆𝑖 is the average sentiments of all assets described by (5).
The symbol ⋅̂ denotes that 𝑊̂𝑟𝑖 (ℎ) is the amount that agent i-
th is willing to allocate in the risky investment, whereas the
real amount 𝑊𝑖(ℎ) effectively allocated in stocks will depend
on the trading process with the other agents. For each asset 𝑘,
a positive sentiment denotes a propensity to allocate, while a
negative sentiment denotes a propensity to sell all the assets 𝑘
in the portfolio. In thismodel only long positions are allowed.
Thus, if 𝑆𝑘𝑖 (ℎ) > 0, the quantity desired by agent 𝑖 of risky asset𝑘 is given by

𝑞𝑘𝑖 (ℎ) = ⌊ 𝛾𝑘𝑎𝑊̂𝑟𝑖 (ℎ)
𝑝𝑘 (ℎ − 1) ⌋ , (9)

where 𝛾𝑎 is given by

𝛾𝑘𝑎 = 𝑆𝑘𝑖∑𝑘∈𝐴𝑖 𝑆𝑘𝑖 . (10)

𝐴 𝑖 is the set of assets with positive sentiment. The symbol ⌊⋅⌋
in (9) denotes the integer part. Conversely, if 𝑆𝑘𝑖 (ℎ) < 0, asset𝑘 is characterized by a desired quantity 𝑞𝑘𝑖 (ℎ) = 0.

The amount Δ𝑘𝑖(ℎ) of the order issued by trader 𝑖-th at
time step ℎ relative to stock 𝑘 is

Δ𝑘𝑖 (ℎ) = 𝑞𝑘𝑖 (ℎ) − 𝑞𝑘𝑖 (ℎ − 1) . (11)

Δ𝑘𝑖 is the difference between the desired amount of stock 𝑘 at
time step ℎ and the real amount held in the portfolio by agent𝑖-th. If Δ𝑘𝑖 > 0 the order is a buy order. Conversely, if Δ𝑘𝑖 < 0
the agent issues a sell order. Every order is associated with a
limit price. Each limit price𝑑𝑘𝑖 is determined according to (12)

𝑑𝑘𝑖 (ℎ) = 𝑝𝑘 (ℎ − 1) ⋅ 𝑁𝑖 (𝜇𝑘𝑖 , 𝜎𝑘𝑖 ) , (12)

where 𝑁𝑖(𝜇𝑘𝑖 , 𝜎𝑘𝑖 ) is a random draw from a Gaussian distribu-
tion with average

𝜇𝑘𝑖 = (1 + sgn (Δ𝑘𝑖) 󵄨󵄨󵄨󵄨󵄨𝑆𝑘𝑖 󵄨󵄨󵄨󵄨󵄨) . (13)

According to previous models [20, 30], we assume that buy
(sell) orders cannot be executed at prices above (below) their
limit price 𝑑𝑘𝑖 . It is worth noting that for a buy order (i.e.,Δ𝑘𝑖 > 0) in average 𝑑𝑘𝑖 (ℎ) > 𝑝𝑘(ℎ − 1). Conversely, for a sell
order (i.e.,Δ𝑘𝑖 < 0) in average 𝑑𝑘𝑖 (ℎ) < 𝑝𝑘(ℎ−1). Furthermore,
the standard deviation 𝜎𝑘𝑖 is proportional to the historical
volatility 𝜎𝑘(𝑇𝑖) of the price 𝑝𝑘(ℎ − 1) of stock 𝑘 through the
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Figure 1: Price process (a) and return process (b) for a reference asset of the GASM.

equation 𝜎𝑘𝑖 = 𝜉𝜎𝑘(𝑇𝑖). Linking limit orders to volatility takes
into account a realistic aspect of trading psychology: when
volatility is high, uncertainty on the “true” price of a stock
grows and traders place orders with a broader distribution
of limit prices. In our model, 𝜉 is a constant for all agents,
whereas 𝜎𝑘(𝑇𝑖) is the standard deviation of log-price returns
of asset 𝑘, computed in a timewindow𝑇𝑖 proper for agent 𝑖-th
randomly associated with the agent [20, 28].

All buy and sell orders issued at time step ℎ are collected
and the demand and supply curves are consequently com-
puted.The intersection of the two curves determines the new
price (clearing price) 𝑝𝑘(ℎ) of stock 𝑘 (see [20, 28] for more
details on market clearing).

Buy and sell orders with limit prices compatible with𝑝𝑘(ℎ) are executed. After any transactions, traders’ cash,
portfolio, and sentiments are updated. Orders that do not
match the clearing price are discarded.

3. Market’s Structure Indicators

As discussed in the previous Sections, we aim to investigate
how the structural properties of traders’ networks of inter-
actions affect the emergent outcome of financial markets. In
order to measure the influence of the traders’ networks on
financial markets, five different indicators have been defined,
that is,

(a) The number of prices processes that are integrated
I(1) processes

(b) Thenumber of returns processes that exhibit volatility
clustering (heteroscedastic processes)

(c) The number of returns processes whose distribution
shows fat tails (power law distributions)

(d) The number of static factors
(e) The number of dynamic factors

These indicatorsmake reference to themain stylized facts,
empirically derived by the international literature on stock
markets. In fact, the large availability of financial data has
allowed both qualitative and quantitative investigations of
financial markets by means of stylized facts. In particular,
the indicators (a), (b), and (c) referred to the single asset
statistical properties [31–35], whereas indicators (d) and (e)
referred to the multiassets statistical properties [24–27].

The first indicator chosen is the number of prices pro-
cesses that are integrated I(1) processes and is indicated with𝐼𝑎 [31]. In order to verify if a time series is integrated I(1)
process, the Augmented Dickey-Fuller and the Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) tests at the significance
level of 5% are employed. It is worth remembering that the
null hypothesis of the ADF test is that a univariate time series
presents a unit root, whereas the null hypothesis of the KPSS
test is that the time series is stationary [36, 37]. Figure 1(a)
shows an I(1) price process for a typical asset generated by
the artificial stock market (GASM) presented in this paper.

The second indicator chosen is the number of returns
processes that present volatility clustering and is indicated
with 𝐼𝑏 [33]. In order to test the presence of heteroscedas-
tic effect, Engle’s autoregressive conditional heteroscedastic
(ARCH) test and the Ljung-Box 𝑄-test (LBQ test) at the
significance level of 5% are employed. It is worth noting
that the null hypothesis of the ARCH test is no conditional
heteroscedasticity, whereas the null hypothesis of the LBQ
test is that the residuals of the absolute value of returns
are autocorrelated [38–40]. Figure 1(b) shows the volatility
clustering of the return process for the price process shown
in Figure 1(a).

The third indicator chosen is the number of returns pro-
cesses whose distribution presents “fat tails” and is indicated
with 𝐼𝑐 [35]. It is worth remembering that the expression
“fat tails” means that the distribution of the analyzed data
decays with a power law; that is, if compared with a Gaussian
distribution, it decays slowly compared to the Gaussian
distribution. The Gaussian distribution has kurtosis equal to
3; that is, if the data’s kurtosis is larger than 3, the data exhibits
“fat tails” and the distribution is leptokurtic. Figure 2 shows
the “fat tails” of returns for asset shown in Figure 1 compared
with a Gaussian distribution. Moreover, the presence of “fat
tails” is checked by means of the Jarque-Bera (JB) test. It is
worth remembering that the null hypothesis of JB test is that
the data comes from a normal distribution with an unknown
mean and variance [41].

The fourth and fifth indicators are focused on the
statistical properties of the multivariate process of prices
and returns and deal with the definition and analysis of
factor models. In the context of factor models, two main
classes can be identified, that is, static and dynamic factors.
Concerning the former class, attention is paid to returns
as the return processes result (in the first approximation)
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Figure 2: Probability density function (PDF) for returns’ process for
a reference asset of GASM data shown in Figure 1 (blue) compared
with a Gaussian distribution (red).

in quasi-stationary. In particular, the risk of a security can
be described as superposition of different source of risks
(also described by stationary processes) and this general
formulation is basic for classical portfolio theory and risk
management, CAPM, multifactors CAPM, APT, and so on
[42–45].

Conversely, in the case of dynamic factors attention is
paid to asset prices and the main employed concept is
cointegration. In particular, statistical analysis on empirical
data points out that in financial markets it is not possible to
reject the hypothesis of integrated univariate price processes,
but at the aggregate level the price processes are not inde-
pendent. Indeed, only few independent integrated processes
can be identified, whereas all the others price processes are
cointegrated with them; that is, it is possible to identify linear
combinations of I(1) price processes that result in stationary
I(0) processes (so called cointegration equations) [42–45].

The number of static factor, 𝐼𝑑, is evaluated using the
cross-correlation matrix of returns. In particular, following
the approach introduced in the econophysics literature [24–
26], the cross-correlations of returns are analyzed in the
framework of the random matrix theory (RMT). Thus, the
indicator 𝐼𝑑 is equal to the number of the eigenvalues of
the cross-correlation matrix that are larger than the largest
eigenvalue of the random matrix. It is worth noting that
the largest eigenvalue represents the market, whereas the
eigenvalues larger than the largest eigenvalue of the random
matrix represent the sectors. Figure 3 shows the probability
density function (PDF) of eigenvalues of the cross-correlation
matrix for the GASM data. Furthermore, for the sake of com-
parison, the theoretical PDF of a randommatrix (represented
by the continuous line) and the PDF of eigenvalues for the
100 stocks, randomly chosen, among the S&P 500 index are
also shown. The presence of outliers well above the bounds
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Figure 3: Probability density function (PDF) for eigenvalues cross-
correlation matrix of returns in the case of GASM data and S&P500
data.

determined according to RMT (i.e., eigenvalues larger than
the largest eigenvalue determined by theRMT) is highlighted.

Finally, the fifth indicator, the number of dynamic factors,𝐼𝑒, makes reference to assets prices and their cointegration.
This indicator has been defined by means of the variance-
covariance matrix of prices. According to empirical analysis,
only a reduced number of assets prices series in a large
market are independent integrated processes [27]. In fact,
the analysis of prices processes shows that financial assets
are random walk, that is, I(1) processes, but aggregate of
financial assets exhibits cointegration. The analysis of this
property is performed following the procedure described
by Stock and Watson [27]. In particular, the PCA analysis
on the variance-covariance matrix of prices allows one to
identify portfolios with minimum variance. Conversely to
price processes, these portfolios, that is, linear combination
of prices, generally accept the hypothesis of stationarity [27]
that is verified by the ADF and KPSS test at significance level
of 5%. Thus, the indicator 𝐼𝑒 is evaluated as the number of
portfolios that reject the hypothesis of stationarity. Figure 4
shows the results of the ADF test for the GASM data and for
100 stocks, randomly chosen, among the S&P 500 index. As
clearly stated in Figure 4, only a reduced number of portfolios
reject the hypothesis of stationarity. These series are the only
independent I(1) processes, that is, the common trends of the
aggregate.

4. Computational Experiments

All the computational experiments performed make refer-
ence to an artificial stock market with 100 different stocks
each of them related to a specific firm. The number of
agents is set to 2,278 that are initially endowed by a random
distribution of cash and number of stocks. Furthermore,
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time window 𝑇𝑖 for the calculation of the historical standard
deviation is randomly chosen from a uniform distribution in
the range (10, 100).

Furthermore, the influence of the traders’ networks on
the financial market has been investigated by varying the𝛼 coefficients in (1) and analyzing the behavior of the five
indicators defined in Section 3. In particular, the performed
analysis addresses the influence of the market return (𝛼𝑀), of
the neighbouring agents (𝛼𝑁) and of the agent global vision of
themarket sentiment (𝛼𝑃), respectively.The influence of each𝛼 varies among three values, none (N), average (A), or strong
(S). It is worth noting that, in the case of N, the corresponding
interaction is absent, in the case of A, the interaction is at
a reference value, and in the case of S the influence is an
order of magnitude larger than the reference value. Table 1
summarizes the all scenarios considered in the analysis.

5. Results and Discussion

The 27 scenarios have been considered and Table 2 shows the
market’ structure indicators for all cases.

The indicators 𝐼𝑎, 𝐼𝑏, and 𝐼𝑐 refer to the behavior of the
single asset whereas 𝐼𝑑 and 𝐼𝑒 refer to the behavior of the
multiasset market.

Concerning the 𝐼𝑎 indicator, that is, the number of assets
that are I(1) processes, Table 2 shows the results of the
ADF and KPSS tests. It is worth noting that, from scenario
(i) to scenario (ix) and from scenario (xix) to scenario
(xxvii), that is, when 𝛼𝑁 is equal to zero or it is very large,
according to the ADF test, almost all the price processes
reject the null hypothesis of unitary root. Conversely, from
scenario (x) to scenario (xviii) the price processes do not
reject the hypothesis of unitary root. These results are also
confirmed by the KPSS test, for which the null hypothesis of
stationarity is rejected for every cases. Based on these results,
we can conclude that the influence of the neighbour is crucial

Table 1: Economic scenarios. In the case of N, the corresponding
interaction is absent, in the case of A, the interaction is at a reference
value, and in the case of S the influence is an order of magnitude
larger than the reference value.

Scenario 𝛼𝑁’s influence 𝛼𝑀,𝑖’s influence 𝛼𝐾,𝑖’s influence
(i) N N N
(ii) N N A
(iii) N N S
(iv) N A N
(v) N A A
(vi) N A S
(vii) N S N
(viii) N S A
(ix) N S S
(x) A N N
(xi) A N A
(xii) A N S
(xiii) A A N
(xiv) A A A
(xv) A A S
(xvi) A S N
(xvii) A S A
(xviii) A S S
(xix) S N N
(xx) S N A
(xxi) S N S
(xxii) S A N
(xxiii) S A A
(xxiv) S A S
(xxv) S S N
(xxvi) S S A
(xxvii) S S S

in order to reproduce the single asset stylized facts. The
indicator 𝐼𝑏, that is, the number of returns processes that are
heteroscedastic, shows that the volatility clustering is always
present for every scenario. In fact, Table 2 reports the results
of theARCH test, that is, the number of returns processes that
reject the null hypothesis of no conditional heteroscedasticity.
This result has been also verified performing the Ljung-Box
test on the absolute value of returns processes. It is worth
noting that indicator 𝐼𝑏 suggests that the heteroscedasticity
is a strong feature of financial markets not depending on the
traders’ networks of interaction.

The indicator 𝐼𝑐, that is, the number of returns process
with kurtosis larger than three, shows that if the 𝛼𝑁 is null
or average, that is, from scenario (i) to scenario (xviii), the
price processes exhibit fat tails, whereas if 𝛼𝑁 is strong, that
is, from scenario (xix) to scenario (xxvii), the 𝐼𝑐 indicator is
small and that the returns processes do not exhibit fat tails.
These results are further confirmed by the Jarque-Bera test.
Table 2 reports the number of assets that do not reject to
null hypothesis of normal distribution. It is worth noting
that from scenario (i) to scenario (xviii) almost all the price
processes reject the null hypothesis of normal distribution,
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Table 2: Markets’ structure indicators results for scenarios described in Table 1 and for 100 assets randomly chosen from the S&P500 index.
The ADF and KPSS and JB statistical tests report the number of assets that do not reject the null hypothesis, whereas the ARCH and LBQ
tests report the number of assets that reject the null hypothesis.

Indicators 𝐼𝑎 𝐼𝑏 𝐼𝑐 𝐼𝑑 𝐼𝑒
Scenario ADF KPSS ARCH LBQ LeptoK JB # Sectors ADF KPSS
(i) 1 0 99 100 100 0 9 1 56
(ii) 3 0 99 99 100 0 8 2 58
(iii) 5 0 99 100 100 0 8 2 74
(iv) 0 0 99 99 99 0 4 2 73
(v) 0 0 98 99 98 0 4 3 73
(vi) 0 0 98 99 95 0 4 3 70
(vii) 0 0 99 99 98 0 4 2 71
(viii) 1 0 97 99 100 0 4 2 72
(ix) 1 0 97 99 98 0 5 2 74
(x) 90 0 94 100 98 0 8 6 74
(xi) 90 0 93 100 100 0 7 8 73
(xii) 93 0 92 100 100 0 9 9 75
(xiii) 88 0 92 100 100 0 7 10 74
(xiv) 92 0 93 100 100 0 7 7 74
(xv) 93 0 96 100 100 0 7 8 76
(xvi) 90 0 94 100 100 1 8 13 75
(xvii) 90 0 95 100 100 0 6 14 75
(xviii) 91 0 93 100 100 1 7 15 74
(xix) 4 0 7 10 4 43 - 17 71
(xx) 6 0 5 3 3 33 - 14 73
(xxi) 7 0 5 5 3 43 - 17 70
(xxii) 5 0 10 2 3 46 - 14 70
(xxiii) 6 0 5 9 2 46 - 16 70
(xxiv) 6 0 4 4 1 38 - 16 67
(xxv) 5 0 6 7 4 40 - 16 68
(xxvi) 4 0 9 6 3 41 - 15 70
(xxvii) 7 0 2 7 2 44 - 18 69
S&P500 85 0 77 100 100 0 6 7 76

whereas from scenario (xix) to scenario (xxvii), the JB test
cannot reject the null hypothesis of Gaussian distribution.

Summarizing the results of indicators 𝐼𝑎, 𝐼𝑏, and 𝐼𝑐, we
can conclude that the influence of the neighbour is crucial in
order to reproduce the single asset stylized facts. Moreover, if𝛼𝑁 influence is strong the 𝐼𝑏 and 𝐼𝑐 indicator are significantly
different from the reference values of S&P500, thus allowing
us to conclude that the presence of agents’ neighbour is
necessary but it should be not too large. Moreover, these
results are in good agreementwith the observations ofmarket
dynamics in historical and archeological data [46].

Once the impacts of the trader’ network of interactions
on single asset are addressed, the attention has been focused
on the indicators 𝐼𝑑 and 𝐼𝑒 that deal with the aggregate
behavior of the market, that is, the statistical properties of the
multivariate process of prices and returns.

In particular, the indicator 𝐼𝑑 shows the number of static
factor, that is, the number of sectors presented in the market.
First of all, it is worth noting that even for the case of
absence of interactions (i.e., 𝛼𝑁 = 𝛼𝑀 = 𝛼𝑃 = 0), at

least one sector is presented. It is worth remarking that this
is not a trivial outcome as it points out that the CAPM is
originated by the finiteness of trader’s wealth rather than
by trader’s interactions and strategies of portfolio allocation.
Furthermore, if the influence of 𝛼𝑃 (average sentiment) is
larger than the other 𝛼 the market shows an increasing
number of sectors.Moreover, if 𝛼𝑁 influence is strong, that is,
from scenario (xix) to scenario (xxvii), some price processes
are not traded. This result can be explained focusing on
the traders allocation’s choice. As 𝛼𝑁’s influence is strong,
each trader is extremely influenced by the neighbours agents
and thus, he/she makes the same portfolio allocation of
his/her neighbours. Thus the financial market is becoming
homogeneous and the heterogeneous agents start to act as in
the case of a representative agent.

Finally, the presence of the common trends of the aggre-
gate is a strong feature that is present for every scenario and
becomes stronger increasing the influence of traders’ network
of interactions. It is worth remarking that the number of
common trends is influenced by traders’ networks and by the
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market feedback as confirmed by the results in Table 1. From
scenario (i) to scenario (xxvii) the number of common trends
increases, thus showing that the presence of cointegrated
processes becomes larger as the 𝛼𝑁 and 𝛼𝑀 influence is
stronger.

In isworth noting that the traders’ network of interactions
influences positively the market but irrespective to such
positive outcome, the main statistical properties of financial
market are emergent features even in the case of absence
of any interactions among the traders. This allows us to
conclude that the multiassets stylized facts of the financial
market are a direct consequence of realistic mechanism for
portfolio allocation with budget constraint rather than of
traders’ interactions network. All these emergent properties
point out an intrinsic structural resilience of the stockmarket.

6. Conclusions

An analysis of the influences of agents’ networks on the
market structure has been presented using an information-
based multiasset artificial stock market characterized by
different types of stocks and populated by heterogeneous
agents. In this complex system, agents are characterized by
cash, stocks, and sentiments. Sentiments denote propensities
to buy or to sell. Agents are organized in networks modeled
as nodes of sparsely connected graph, so that each agent is
influenced by a subset of other agent, the only ones that are
“near” to him. Five network influence indicators, considering
the main single-assets and multiassets stylized facts have
been defined in order to investigate the effects of the agents
networks. Results have pointed out an intrinsic structural
resilience of the stockmarket. In fact the network is necessary
in order to archive the ability to reproduce the main stylized
facts, but also the market has some characteristics that are
independent from the network and depend on the finiteness
of traders’ wealth.
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