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1 Introduction

I’m going to talk about the dynamical approach to relativity, Harvey Brown’s
view about how we should understand the geometry of relativity theory.

∗This paper is a (lightly edited) transcript of a talk given at the conference
“The Foundation of Reality: Fundamentality, Space and Time.” I am very grate-
ful to Anna Marmodoro, David Glick and the other organisers of the conference
for the invitation, and to Patrick Dürr for preparing a draft transcript. At the
time of writing these notes (28 June 2023), the audio of the talk is available at:
http://media.philosophy.ox.ac.uk/metaphysics/FUND Pooley.mp3.
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This topic turns out to be an ideal case study for questions concerning how
fundamentality and explanation interact.

Let me start with two slogans.

(1) Rods and clocks do what they do because spacetime’s geometry is what
it is.

(2) The geometry of spacetime is what it is because rods and clocks do
what they do.

You’ll notice that in these slogans there is this key word “because”. How
we should think about this key word in these two slogans is not entirely
straightforward. Roughly speaking, in the first slogan the “because” is some-
thing like a causal explanation “because”. In the second one, it’s something
like a metaphysical or perhaps a logical explanation “because”.

The view to be defended in this talk is: Rods and clocks do what they
do because spacetime’s geometry is what it is.

Let me say a bit more about the two views that these slogans are meant
to encapsulate.

The first one is what Harvey Brown calls the geometrical approach. Ac-
cording to the geometrical approach, the geometry of spacetime’s being what
it is in part explains why (amongst other things) rods and clocks do what
they do. The view is completely compatible with the geometry of spacetime
not itself being fundamental. But it’s certainly not the case, unless you are
going to be caught in some vicious explanatory circularity, that the geometry
of spacetime is not only not fundamental but also grounded in the behaviour
of rods and clocks, or in the symmetries of the dynamical theories in terms of
which the behaviour of familiar rods and clocks might otherwise be modelled
and explained.

Contrast this view with the dynamical approach. I won’t say much about
it now. Part of the purpose of this talk is to push a bit further than is
sometimes pushed what the approach might actually commit one to. But
the key commitment is that the geometry of spacetime is what it is in virtue
of the behaviour of rods and clocks. Here is a quotation from Harvey Brown
illustrating this thought:

The Minkowskian metric is no more than a codification of the
behaviour of rods and clocks, or equivalently, it is no more than
the Kleinian geometry associated with the symmetry group of
the quantum physics of the non-gravitational interactions in the
theory of matter. (Brown, 2005, 9)
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The structure of what I’m going to say has four parts. I’m going to
start by covering common ground. I take this common ground to be a whole
bunch of commitments that Harvey Brown has pressed that we should accept.
But they are commitments that the substantivalist, or the advocate of the
geometrical approach, should have no problem accepting too. It’s important
to cover those in order to clear them away, so as not to get distracted by
thinking that that’s where the action is.

We’ll then move on to look in turn at these key explanatory claims, the
first that spacetime symmetries and the geometry of spacetime can explain
the behaviour of rods and clocks in particular by explaining dynamical sym-
metries. We’ll see why that’s the thing to look at after we’ve covered the
common ground. Then, we’ll turn to what the dynamical approach advo-
cate wants to say: that you can explain geometry in terms of dynamical
symmetries. Finally, I will comment on the status of the metric in general
relativity.

2 Common Ground

Here are four things that, I think, will not distinguish between someone
who believes in the dynamical approach and an advocate of the geometrical
approach.

The first is the claim that the principles of principle theories are not
explanatory. (I had originally intended to say that principle theories are
not explanatory but I became aware that exactly what one might mean by
“principle theories” is ambiguous.)

Secondly, everyone should recognize that explanation is context depen-
dent and in that sense pluralistic.1

The third area of common ground concerns particular explanations of
characteristically relativistic phenomena and in particular explaining why, for
example, a rod contracts when set into motion. Everyone should concede that
explaining why a material rod of some specific type exhibits characteristically
relativistic behaviour need not, and in some sense should not, appeal to the
details of the dynamics. This means that the advocate of the dynamical
approach is not saying that you have to appeal to details of the dynamical
rod to explain this contraction.

Finally, everyone should acknowledge that, if you want to explain why

1Note added after talk: I now think that calling the phenomenon I’m interested in
“context dependence” misrepresents it. The issue is that different albeit closely related
explananda can call for very different explanations. Pseudo-debates can arise when the
different explananda are not recognised as distinct.
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such a rod functions as a rod in the first place, you will have to say something
about the details of its dynamics. The advocate of the geometrical approach,
in particular, certainly shouldn’t disagree with that.

We are quickly going to review why all these things are true.

2.1 Principle versus Constructive Theories

Let me start by reminding you of the distinction between principle theories
and constructive theories and point out the sense in which the principles in
principle theories are not themselves explanatory.

According to Einstein, principle theories involve finding certain regulari-
ties in the phenomena from which you can go on to derive “a theory which
will apply in every case” (Einstein, 1919). The idea is: Wherever these regu-
larities in the phenomena hold, the thing that you can derive via the principle
theory approach is guaranteed to hold and be true as well.

When you apply this to Einstein’s 1905 derivation of the Lorentz transfor-
mations, the principles he has in mind as the regularities in the phenomena
on which everything rests are, in addition to the isotropy of space and the
homogeneity of space and time, the Relativity Principle and the Light Pos-
tulate. And the question then is: What is the best way of conceiving of “the
theory which will apply in every case” that is derived from those principles?
Although it may not have been exactly how Einstein originally would have
presented it, now the best thing to say is: What one derives—the result
of Einstein’s 1905 derivation—is that all the fundamental laws are Lorentz
covariant.

It’s tempting to think that Einstein has a kind of shift of view between
his 1905 position and later on, when he says: Here is what special relativity
is all about – it’s the Lorentz invariance of the fundamental laws. There is
a sense in which, as he presents it, it’s true that there is a shift. But there’s
a sense in which, materially, this doesn’t represent a shift at all, because
Lorentz invariance just is the main conclusion of the 1905 derivation.

Now contrast principle theories with constructive theories. In a construc-
tive theory one builds a picture of complex phenomena out of some relatively
simple postulates. Einstein went on to say that it’s really constructive theo-
ries that provide you with the understanding of the phenomena in question.
Of course, this is where you might mistakenly think that you need to provide
a constructive theory of length contraction, if you’re really to understand it.
I’m going to claim that this is not the case, and that Brown agrees (or, at
least, we’ve said things in the past that mean that).

Why should we say that the principles of principle theories are not ex-
planatory? Let’s consider length contraction. Figure 1 reproduces a slide
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that Minkowski used in his 1908 lecture. It depicts a now very familiar story.
1.5. MINKOWSKI AND THE REALITY OF SPACETIME 33

The transparency which Minkowski used at his lecture in Cologne on September
21, 1908. It shows Fig. 1 in his paper (this volume). Source: Cover of The
Mathematical Intelligencer, Volume 31, Number 2 (2009).

that through the phenomena only the four-dimensional world in space and
time is given, but the projection in space and in time can still be made with
certain freedom, I want to give this a�rmation rather the name the postulate
of the absolute world” (this volume).

To see why Minkowski’s absolute four-dimensional world adequately rep-
resents the dimensionality of the real world, assume the opposite – that the
real world is three-dimensional and time really flows (as our everyday ex-
perience so convincingly appears to suggest). Then there would exist just
one space, which as such would be absolute (i.e. it would be the same
for all observers since only a single space would exist). This would imply
that absolute motion should exist and therefore there would be no relativity
principle.

Another example of why special relativity (as we now call the physics
of flat spacetime) would be impossible in a three-dimensional world is con-
tained in Minkowski’s four-dimensional explanation of the physical mean-
ing of length contraction, which is shown in the above figure (displaying
the transparency Minkowski used in 1908). Consider only the vertical (red)
strip which represents a body at rest with respect to an observer. The proper
length of the body is the cross section PP of the observer’s space, represented
by the horizontal (red) line, and the body’s strip. The relativistically con-
tracted length of the body measured by an observer in relative motion with

Figure 1: Minkowski’s diagram

We are considering two rods, the red rod and the green rod, in relative mo-
tion. We are noticing that, according to Minkowski geometry, the length QQ
is shorter than the length PP . This fact follows, according to Minkowksi
geometry, if Q′Q′ is the same length as PP , which is just to say: the two
rods are identical except for their relative motion.

Let’s think about this from the perspective of deriving that this is how
things look, having first derived the Lorentz transformations from Einstein’s
principles. In the context of thinking about relativity as a principle theory,
you might ask: What explains what? In particular, I suggest, it would clearly
be a mistake to think that the principles from which you derive something in
the 1905 derivation are explanatory of what you go on to derive, in particular
length contraction. To say they were, would be to say that the Relativity
Principle (this phenomenological fact that you can’t perform an experiment
to detect your state of motion) and the phenomenological fact that whenever
you measure the speed of light you find that it’s independent of the speed
of the source, that those two facts explain why rods contract. Surely, if
anything, it’s the other way around. It’s the fact that rods contract that
explains why what you measure about light in one frame is the very same as
what you measure in a frame that is moving uniformly with respect to the
first frame.
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However, if one turns to what was derived from the principles, namely
the Lorentz covariance of the laws, it does seem that you can appeal to this
to explain certain facts about length contraction.

2.2 Context Dependence

On to the contextual nature of explanation. Here is a quote from Yuri Bal-
ashov and Michel Janssen about what it takes to explain length contraction:

Length contraction is explained by showing that two observers
who are in relative motion to one another and therefore use dif-
ferent sets of space-time axes disagree about which cross-sections
of the ‘world-tube’ of a physical system give the length of the
system. (Balashov and Janssen, 2003, 331)

This is really just Minkowski’s explanation. Take the green rod. Someone at
rest with respect to the green rod is using Q′Q′ as its cross-section. Someone
at rest with respect to the red rod and using that system of coordinates is
going to take QQ to be the length of the rod. These are different lengths in
Minkowski geometry. Therefore, the observers disagree about the length of
the rod.

Now the advocate of the dynamical approach says: Of course, this is a
perfectly fine explanation. No one thinks you can’t appeal to Minkowski
geometry to explain things.2 But, of course, in doing that, one is taking it
for granted that those material systems conform to and obey and exhibit and
manifest Minkowski geometry. You might ask: What explains that? How
come these material systems do that?

Going back to Einstein’s thought that, in order to understand a phe-
nomenon one has got to come up with a constructive theory of it, you might
be tempted to go down the following route. You might think that what you
need to do is to provide, in the style of Bell (1976), a constructive derivation
of the behaviour of the particular system you are considering in terms of that
system’s detailed dynamics.

Here is what Brown and I said in a paper a while ago:

The truly constructive explanation of length contraction involves
solving the dynamics governing the structure of the complex ma-
terial body that undergoes contraction. (Brown and Pooley, 2006,
82)

2For example, exactly this was said by advocates of the dynamical approach in Brown
and Pooley (2006, 79).
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I stand by this. If you want to explain length contraction constructively, i.e.,
if you want to provide a constructive theory, this is what you will end up do-
ing. In the paper just cited, immediately after the passage just quoted, we go
on to concede that “there are, of course, many contexts in which such an ex-
planation may not be appropriate, contexts that call for a purely geometrical
explanation.” What we were concerned to stress was that such geometrical
explanations are not constructive theory explanations in Einstein’s sense.

Let’s consider the type of derivation that Bell gestures at. Suppose that,
given the exact equations that describe the system, one could derive that
it behaves in a particular way and, in particular, length-contracts when you
boost it in a particular way. I would claim that such a derivation is genuinely
explanatory. It’s a canonical example of the kind of thing that is done in
physics all the time to explain stuff in a constructive context.

However, this isn’t to concede something that goes against the geometri-
cal approach because, according to someone who thinks that fundamentally
geometrical structure is not to be derived in terms of dynamical symmetries—
that it’s some primitive part of the structure of the world—this kind of story,
the Bell-type story, is appealing implicitly to geometrical structure.

I’ll leave it as an exercise for you to think through how that works in
the case of something like Bell’s story about length contraction. Consider
instead Newton’s Bucket and the way in which inertial structure figures in
a causal explanation of why the water becomes concave when the bucket
is spinning. It’s not the fact that somehow there is a mysterious law that,
when things spin, there is some inertial force that pushes water up the sides.
(Nick Huggett (1999, 135–6) makes this point nicely.) We’ve got the stan-
dard physical story about why the water becomes concave if the bucket is
spinning: if it’s absolutely spinning—a fact that, according to the advocate
of the geometrical approach, we understand in terms of primitive inertial
structure—there must be net accelerative forces towards the centre of the
bucket. To get those, you need the right kind of pressure gradient, and the
equilibrium configuration would have to involve the concave surface.

What this illustrates is that, in order to be sympathetic to the advocate
of the geometrical approach, you have to think through the standard story,
typically given in standard inertial coordinates, and recognize all the places
where, if you were an advocate of the geometrical approach, geometrical facts,
or facts that are defined in terms of geometrical structure, are featuring in
your constructive explanation.
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2.3 Symmetries as Explanans

There is an obvious sense in which the constructive explanation is not very
good because, when I have given this complex derivation in terms of, say,
electromagnetism, that my particular system will Lorentz-contract, I haven’t
given myself any reason to think that another body will Lorentz-contract in
exactly the same way, even if it’s described by the very same laws, because
maybe it involves a different equilibrium configuration of a different state
of material. But of course, Lorentz contraction is a universal phenomenon.
So, this kind of explanation, although I think it’s genuinely explanatory, is
missing out something big.

Here is how Brown and I made this point in 2006:

[I]n many contexts, perhaps in most contexts, one should not ap-
peal to the details of the dynamics governing the microstructure
of bodies exemplifying relativistic effects when one is giving a
constructive explanation of them. Granted that there are stable
bodies, it is sufficient for these bodies to undergo Lorentz contrac-
tion that the laws (whatever they are) that govern the behaviour
of their microphysical constituents are Lorentz covariant. It is
the fact that the laws are Lorentz covariant, one might say, that
explains why the bodies Lorentz contract. To appeal to any fur-
ther details of the laws that govern the cohesion of these bodies
would be a mistake. (loc. cit., 82, emphasis in the original)

In fact, it isn’t right to call such explanations “constructive explanations.”3

The basic point made in this passage is correct, however: Assume that there
are stable bodies, bodies that function like rods. It is the fact that the laws
governing their constitution (whatever they are) are Lorentz covariant that
explains why the bodies contract. (We’ll see in a moment exactly how that
explanation goes.) It would be a mistake to think that you actually have
to appeal to the dynamical details if you are in the business of explaining
Lorentz contraction as a universal phenomenon.

I say that all this is (or should be) common ground between the advocate
and the dynamical approach and that of the geometrical approach. Here,
at least, is someone who seems to think exactly the same thing. I take the

3This is also something acknowledged in our 2006 paper, albeit with more caution than
I now think warranted: “[O]ne might be tempted to deny that explanations which appeal
to an explanans as non-concrete as the symmetries of the laws are genuinely constructive
explanations. In other words, it turns out that there are even fewer contexts than one
might have at first supposed in which length contraction stands in need of a constructive-
theory explanation” (Brown and Pooley, 2006, 83).
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following quotations (anonymous for now!) to be an illustration of the things
that I’ve just gone through.

Our anonymous author starts by noting that an appropriately accelerated
rod undergoes “a sort of real physical contraction, which is itself caused by
the interatomic forces binding the rod together into a rigid body.” Why does
this happen? Noting that one could explain this in terms of a Bell-style
analysis, case-by-case, the author stresses that one can also give a general
argument: “The key to a general analysis lies in the notion of a rigid body”
where by “rigid body” is just meant a body that has “an equilibrium state
that it tends to maintain in the face of (sufficiently small) external forces”
and to which it returns when the external forces have been removed.

Our author concedes that “complete physical understanding of an equi-
librium state would require a complete account of the internal structure of
the rigid system, both its composition and the forces among its parts” but
they maintain that “even absent such a detailed account, we can make some
general assertions about rigid bodies in any Special Relativistic theory” such
as, for example, that they will Lorentz-contract.

Here is how that story goes (I quote our author):

Suppose a system has an equilibrium state that it tends to main-
tain when it is free of external forces (and hence in inertial mo-
tion). Let’s call the equilibrium state SEQ. In a given Lorentz
coordinate system, such as the rest frame of the system, SEQ will
have a particular coordinate dependent description. . .

Now consider a different physical state S ′ related to SEQ as
follows: S ′ has the same coordinate-based description relative to
a different Lorentz coordinate system as SEQ has relative to its
rest frame.

Note that at this point it is not assumed that S ′ is physically possible: it’s
just a different kinematically possible state for this object that’s defined,
via its coordinate description with respect to a Lorentz-boosted coordinate
system, in the way described. As the author notes, SEQ and S ′ count as
“corresponding states” in Lorentz’s sense.

Back to the story:

It follows, for any relativistic force laws, that S ′ will also be an
equilibrium state, and that a system near the state S ′ and free
from external forces will tend to go into the state S ′. For. . . the
laws of physics take exactly the same coordinate-based form when
stated in a coordinate-based language in any Lorentz coordinate
system. . . So the behavior of S ′ described in terms of the new
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Lorentz coordinates will be identical to the behaviour of SEQ de-
scribed in terms of the old coordinates. . . . So, if initially the
system is disposed to return to SEQ, after the appropriate physi-
cal boost, it will be disposed to return to S ′. We don’t even need
to know the forces that bind the system together.

To recap: We have the state SEQ, an equilibrium state, and we are consid-
ering a particular coordinate system K, in which the system gets a particular
description. We then consider K ′, a Lorentz-boosted coordinate system, and
a different state S ′, which is defined as the state whose description with
respect to K ′ is exactly the same as SEQ’s description with respect to K.
The key claim was: If the fundamental laws are relativistic (i.e. if they are
Lorentz invariant and so take “exactly the same coordinate-based form when
stated in a coordinate-based language in any Lorentz coordinate system”),
then S ′ will be an equilibrium state, and if you perturb the system in the
right kind of way, it will end up in the state S ′, and because it’s exactly
like SEQ, but described with respect to a Lorentz boosted coordinate system,
that’s a Lorentz-contracted state.

This advocate of the dynamical approach is none other than Tim Maudlin,
who, you might think, is one of the clearest proponents of the geometrical
approach.4 So, what’s going on? Well, I’ve said that all these claims should
never have been controversial to either side. Of course, there is more to the
story and this now gets us to the second part of the talk: the spacetime
explanation of dynamical symmetries.

3 The Spacetime Explanation of Dynamical

Symmetries

Here is the key omission from the quotations from Tim Maudlin I was giving.
When I said “if the fundamental laws are relativistic. . . ”, we have a story that
Brown would be completely happy to embrace if we read that merely as the
claim that the laws are Lorentz invariant. That’s not how Tim Maudlin puts
it. So, here is his statement of what it is for a law to be relativistic: “The fun-
damental requirement of a relativistic theory is that the physical laws should
be specifiable using only the relativistic space-time geometry. For Special
Relativity, this means, in particular, Minkowski space-time” (Maudlin, 2012,
117).

Having said this, he goes on to say why the claim above about S ′ and SEQ

with respect to the Lorentz-boosted coordinates K and K ′, follows. Here is

4The quotations come from Maudlin (2012, 116–8).
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why it is true: The laws of physics take exactly the same coordinate-based
form, when stated in coordinate-based language in a Lorentz coordinate sys-
tem, because (1) according to the “fundamental requirement” the laws can
only “advert” to Minkowski geometry (which is just to say that there are no
other fixed structures other than Minkowski geometry that you might use to
define or express your laws). And (2) the Lorentz coordinate systems just
are the coordinate systems in which Minkowski geometry takes a particularly
simple form. The distance relationships of Minkowski geometry are encoded
in the coordinate system in just the way Euclidean distances are encoded
in Cartesian coordinates. So what Maudlin is saying is that the symmetries
of spacetime explain the symmetries of the laws, if the symmetries of the
laws are taken to be just the transformations between coordinate systems in
which the laws take an especially simple form.

This commitment that the symmetries of spacetime explain the symme-
tries of the laws, is endorsed by Balashov and Janssen. They put the choice
to us:

Does the Minkowskian nature of spacetime explain why the forces
holding a rod together are Lorentz invariant or the other way
around? . . . Our intuition is that the geometrical structure of
space(-time) is the explanans here and the invariance of the forces
the explanandum. (Balashov and Janssen, 2003, 340)

They don’t say any more and they appeal to intuition, which is perhaps
unfortunate. But we’ve just seen there is much more one can say.

So, can we make sense of the claim that dynamical symmetries are what
they are because the symmetries of spacetime are what they are? Harvey
Brown’s reaction to the claim is: “Here we are the heart of the matter.
It is wholly unclear how this geometrical explanation is supposed to work”
(Brown, 2005, 134–5). I take it that the story we have looked at already in the
Maudlin quote gives us more than an indication of how it is supposed to work.
Before talking about it a bit more, let me give you some other quotations from
Brown which give voice to the intuition that appeal to spacetime structure
as explanatory is getting the cart before the horse, in particular with respect
to inertial structure.

Here is Brown on force-free motion:

Force-free. . . bodies conspire to move in straight lines at uniform
speeds while being unable, by fiat, to communicate with each
other. It is probably fair to say that anyone who is not amazed
by this conspiracy has not understood it.(Brown, 2005, 14–5)
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I agree that this ‘conspiracy’ is something that you might want to try to
explain. You might think you can explain it by postulating inertial structure
and then saying that it’s a law-like feature of the world that the motion
of bodies not under the action of forces has to be adapted to that inertial
structure in the right kind of way. Brown’s reaction to that proposal is:

To appeal. . . to the action of a background space-time connection
in which the particles are immersed. . . is arguably to enhance the
mystery, not to remove it. There is no dynamical coupling of the
connection with matter in the usual sense of the term. (loc. cit.,
142)

Now, it’s certainly true that if we were thinking that the explanation has
to go via some kind of ‘action’ of spacetime on the force-free bodies, then
that’s not something we’re familiar with from physics. But I take it that’s
not how the explanation goes. Brown’s conclusion is:

It is simply more natural and economical—better philosophy, in
short—to consider absolute space-time structure as a codification
of certain key aspects of the behavior of particles (and/or fields).
(loc. cit., p. 25)

Let’s just stick with pre-relativistic physics. The plots in Figure 2 below,
taken from Barbour (1999, 84), show the behaviour of three bodies moving
under the action of gravitation. Here, we see what work inertial structure is
doing in Newtonian theory, standardly understood.

All of these plots involve initial configurations that, with respect to rela-
tive distances and the rates of change of these relative distances, are identical.
So, in terms of what you might think the relational initial data should be,
they have the very same initial state. And yet you see that they evolve and
can evolve in all of these very different ways.

The Newtonian has a very neat and elegant explanation of that. In ad-
dition to the spacetime structure carried by the material bodies themselves
(i.e., the relative distances and the temporal separations between instan-
taneous configurations) there is additional structure in the world, namely
inertial structure, and it’s in terms of that structure that Newton’s laws ap-
pear to be formulated. We have a simple force law, only dependent on the
relative separation of the bodies, but what the forces determine is the ac-
celeration of the bodies. Prima facie, to understand what that means, we
need the inertial structure. Just by helping ourselves to that simple, elegant
extra bit of structure, we’ve got an elegant and simple explanation of all
these complicated differences between these cases. That’s the explanatory
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Figure 2: Different trajectories with identical relational initial data

work that inertial structure is doing for you. Just taking this at face value,
inertial structure is playing an explanatory role in explaining the differences
between these (initially) relationally identical configurations.

Let’s go back to the explanation of Lorentz invariance in terms of Minkowski
geometry. According to David Wallace in a recent paper (Wallace, 2019), the
explanatory story I’m about to run through is the consensus view in founda-
tional work on how the coordinate-based approach to representing physical
theories is to be understood.5 Wallace’s paper is concerned with defend-
ing the legitimacy and (for certain conceptual purposes) the preferability of
presenting theories in coordinate-based terms with respect to special coordi-
nates, rather than thinking that everything has to be shoe-horned into the
straightjacket of differential geometry.

Here is how the story goes: Suppose that we’ve got some fixed structure
and we identify spacetime symmetries as just those maps from spacetime to
itself that leave that structure invariant. One typically thinks that differen-
tial structure is part of spacetime structure, and that it’s absolute structure
– so, of course, these transformations will be diffeomorphisms – but we’re
considering the subgroup which leaves other richer structure, like Minkowski
distances, invariant.

5My previous effort to articulate this explanation clearly can be found in Pooley (2013,
570–1).
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Now, if the equations defining our theory are expressed with respect to
coordinate systems related by an element of that symmetry group, then the
numerical values of the components of the objects describing spacetime struc-
ture will take the same values in each coordinate system. That’s true what-
ever the coordinates. We can pick an arbitrary coordinate system and then
consider another coordinate system related to it by such a symmetry. How-
ever, it may be that our spacetime structure is very symmetric. There may
be certain coordinate systems in which these components take very sim-
ple values. In particular, in the Minkowski spacetime case, we can make
all the off-diagonal elements vanish and choose our coordinates so that the
diagonal elements are either plus or minus one. In those coordinates, our
equations apparently simplify and we have the standard coordinate-based
way of writing the theory. Wallace’s way of putting it is: “the standard
coordinate-based way of writing a theory is to be understood simply as the
differential-geometric theory described with respect to one of these simple
coordinate systems” (Wallace, 2019, 126).

Here, I take it, is the geometrical advocate’s explanation, in terms of the
symmetries of spacetime structure, of why certain coordinate systems are
preferred and why the form of the equations with respect to those coordinates
will be invariant with respect to exactly the spacetime symmetry group.

3.1 Assessing the explanation

For the sake of the argument, let’s grant the advocate of the geometrical
approach, that there is in the world this structure that is not to be de-
fined in terms of or reduced to dynamical symmetries, somehow otherwise
understood. Let’s suppose also that the laws are to be understood as cer-
tain relations that hold between the dynamical stuff in the world and that
structure; that structure is being used to constrain what the dynamical pos-
sibilities are. If you grant that, then what we’ve just seen is that it follows
ineluctably that if that structure has symmetries, i.e., if there are adapted
coordinates in which it looks simple, then our coordinate-expression of the
laws, so understood, will look simple in those coordinates. Those coordinates
will be related exactly via the spacetime symmetries. So, in that sense, I take
it, we have an explanation.

It’s completely compatible with this way of deriving dynamical symme-
tries, so understood, that the dynamical symmetry group might in fact be a
proper supergroup of the group of transformations that preserve spacetime
structure, just if our laws use, in some intuitive sense, some but not all of the
structure we have postulated. But if that’s so, we are motivated to try to
reformulate our laws in a way that doesn’t involve postulating more structure

14



than we really need. This is what Earman calls Symmetry Principle (SP1)
(Earman, 1989, 46).

I’m not sure that advocates of the dynamical approach have directly en-
gaged with the explanatory story just told. They have various examples,
however, which are meant to give trouble for the general idea that you can
explain dynamical symmetries in terms of postulated structure that has cer-
tain symmetries. Here are two that illustrate different kinds of problems.

1. Jacobson-Mattingley Theory is a theory that looks a bit like elec-
tromagnetism in a dynamical Lorentzian spacetime but there is an extra
constraint which forces the vector field to be time-like (Jacobson and
Mattingly, 2001). Now, if I’ve got an object that is time-like, and given
that I’m in the context of a dynamical geometry, so that I’m only going
to have locally preferred coordinate systems, it may be, given the na-
ture of the dynamical object involved, that there are coordinates even
more special than those that (simply) diagonalise the metric. If I’ve
got a time-like vector field, at a point I can always choose a coordi-
nate system that has that has that vector field as (1, 0, 0, 0). But that’s
completely compatible with the story just told. We can imagine a theory
like this with a fixed Minkowski background, but a vector field that is
constrained to be time-like, but is dynamical. What we’d then have is
sets of global coordinates which are special and in which things look
simple (just standard Lorentz charts) but at any point we could always
choose a special coordinate system from amongst that set that makes
things look even more special by adapting our time unit and time-axis
to the value of Aµν at that point.

2. TeVeS: Here is a theory where we’ve got a primordial metric and other
(scalar and vector) fields, and, given the primordial metric and these
other fields, we can define an effective metric (Bekenstein, 2004). The
theory tells us that normal matter couples to the effective metric in
just the way matter couples to the primordial metric in GR. If that’s
the case, then it will be coordinate systems picked out in the way
we’ve just described by the effective, non-primordial metric that will be
special. But notice that the story about why those coordinate systems
are special is just the standard one that the advocate of the geometrical
approach is giving.

The key thing to focus on in these examples is that the kind of mathematical-
logical story that the advocate of the geometrical approach gives about spe-
cial coordinate systems has potential variations, which you can think through
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in these different theories. They show that different cases can differ inter-
estingly and significantly from each other. But I don’t take them to be
counterexamples to the basic idea. In particular, if we are in the nice simple
context of flat Minkowski spacetime, then things work out exactly as the
advocate of the geometrical approach says.

4 The Dynamical Explanation of Spacetime

Geometry

What if we try to reverse the order of explanatory priority and take dy-
namical symmetries as explaining spacetime geometry? Let’s go back to
the quotation we had earlier: “The Minkowski metric is no more than the
Kleinian geometry associated with symmetry group of the quantum physics
of non-gravitational interactions in the theory of matter” (Brown, 2005, 9).
For that to be a way of giving us a metaphysical picture, according to which
spacetime geometry comes after symmetries, we’d better have an independent
handle on what we mean by “symmetry group of the . . . non-gravitational
interactions in the theory of matter.” We’ve reviewed what the geometrical
advocate thinks the symmetry group is. That way of thinking about it isn’t
open to the advocate of the dynamical approach; they need an alternative.

In the paper already mentioned, David Wallace characterizes what he
calls the coordinate-based approach. Here, to present a physical theory is
to “give the field’s equations in coordinates, and state that the theory is
defined on a structured space and that the structure group is the symmetry
group of the equations” (Wallace, 2019, 132). The basic idea is: You present
certain equations governing the field that it is a theory of in some coordinates,
and you say that this is a field on a space with a certain structure. What
structure? It’s the structure that is defined by a group of transformations.
Which group of transformations? Just the group of transformations that is
the symmetry group of the equations. So now we are taking the coordinate-
expression of the equations as basic. In the geometrical approach, we had
a kind of intrinsic characterization of the laws, expressed perhaps in terms
of equations that could be written in the language of differential geometry.
Note that one doesn’t need to do that. It’s important to separate the idea
that we’ve got some intrinsic characterization of the laws from the idea that
the right way to give that characterization is differential-geometric.

But here, in the coordinate-based approach, what we are doing is saying:
No! Our primary way of presenting a theory takes equations presented with
respect to a coordinate system as basic. Mathematically, this is perfectly
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legitimate and makes sense. You can consider, in particular, a space which
is otherwise unstructured, except for the fact that I give you a bunch of
preferred maps into RN that are related by a particular transformation group.
Then one asks: What are the structures one can define in ways using those
coordinates which are invariant under the coordinate transformations that I
have given you?

However, if I just give you just an equation and say it holds with respect to
a special coordinate system, it’s not completely straightforward to work out
exactly what the other special coordinates systems are. In particular, it was
a struggle over several decades to get to the fact, after Maxwell’s equations
were well-known, that their symmetry group was the Lorentz group. Perhaps
more tellingly, suppose I give you the laws of Newtonian Gravity expressed
in coordinate dependent form. We’ve got this potential field or maybe even
a gravitational force field. If we treat this potential field as a scalar, or
perhaps something that is defined up to an additive term, or if we take
the gravitational force field as a vector field, then the symmetry of these
equations is the Galilean group. But, if you think about those equations in
a different way, and if you think of this field, not as one of those objects, but
actually as the components of a connection in some special coordinates (or
if you allow it to transform in a particular way) then your set of coordinates
expands to the Maxwell group.

Here is another worry you might have about the coordinate-based ap-
proach. If we are identifying structure via coordinates, we are ruling out our
ability to discern interesting differences between elements of that structure.
Just take the Poincaré group plus scale transformations and ask: What is
the structure that is invariant under those transformations? We might say:
ratios of Minkowski distances. But we could instead have said: the non-
qualitative two-place causal connectability relation, because in terms of that
you can define everything else. Or you might take time-like straight lines,
and nothing else, as basic. The point is: There is an awful lot that might be
invariant but some subset of it might sufficient to define the others, and there
might be interesting metaphysical reasons for preferring one subset over the
others, exactly as those who advocate some causal theory of time believe
(see, e.g., Winnie, 1977) or as is suggested by Maudlin’s taking the structure
of time-like lines as more fundamental (Maudlin, 2010).

I now move on to a more serious objection. If you take this presentation
of the theory seriously, and you think of laws in a non-Humean way, then
the resulting view, I suggest, has some very unpleasant features. It suffers
from what Hartry Field calls “heavy duty Platonism”. We are effectively
saying: Here is how the world must be like; we’ve got some field, and it’s
constrained to evolve such that there is a map from it into the real numbers,
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such that under that description certain equations are satisfied. So, it looks
like the real numbers are entering into the statement of law in a way that is
unpleasant.

A way of doing it without numbers is to say: I’ll postulate some Minkowski
structure but, of course, we are then really back to the geometrical approach.
To adapt a quote from Frank Artzenius, we are doing something like this:
“Suppose I were to claim that the world is pretty much as you think it is,
except that [chairs] do not exist. I then go on to claim that the true theory
of the world is that there are no [chairs], and that the true theory of the
world merely says that the things and properties and relations that there are
(namely, everything other than [chairs] and their properties) are embeddable
in a non-existing make-belief world which includes [chairs] and in which your
favourite make-belief laws hold.” (Arntzenius, 2012, p. 170)

On the view Artzenius is criticising, we have, for example, the pattern
of people in the room, which we want to explain. Now the advocate of
the analogue of the geometrical approach says: there are these chairs, and
people can sit on them; the dynamically possible dispositions of people are
constrained by these real things, chairs. But not according to the analogue
of the coordinate-based approach. It says that ‘the true theory of the world
merely says that things and properties and relations other than chairs are
embeddable into a non-existing make-belief world that includes [chairs].’

How can this be made more palatable? Be a Super-Humean! That makes
it a little bit more palatable.

Minkowski can be considered as an advocate of something like this. Here
is how he describes what Lorentz invariance is:

From the totality of natural phenomena it is possible. . . to de-
rive. . . a system of reference x, y, z, t . . . by means of which
these phenomena then present themselves in agreement with def-
inite laws. But when this is done, this system of reference is by
no means unequivocally determined by the phenomena. It is still
possible to make any change in the system of reference that is in
conformity with the transformations of the group Gc, and leave
the expression of the laws of nature unaltered. (Minkowski, 1908,
79)

Imagine we’ve got this mosaic of the phenomena, not structured by the dis-
tance relations that the preferred coordinates define. We try out lots of
different coordinates – and with respect to some—wow!—we get a descrip-
tion that satisfy some nice equations. Of course, satisfying these equations
doesn’t fix the coordinates. If I’ve got one coordinate system that works,
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any coordinate systems related to it via Lorentz transformations will do the
same job.

Here, then, is the dynamical approach, described in a Humean way (see,Pooley,
2013, §6.3.2; Stevens, 2018):

• The basic ontology consists of some material fields. We imagine that
the ‘spatiotemporal’ structure they have is topological or topological-
differential.

• Then we only consider coordinate systems for that extended world that
respect this structure and ask: Is it the case that with respect to some
proper subset of these, the description we get of the material world looks
nice and simple in that it satisfies some maximally simple equations?

• If the Humean mosaic of the differentially structured stuff is such that
some nice simple equations that are Poincaré invariant are satisfied,
then we’ve got a way of getting hold of dynamical symmetries indepen-
dently of postulated spacetime symmetries.

5 Dynamical Geometry

We could pursue this super-Humean strategy in general relativity. Here is
how it might go. We could tell the same story but now about special local
coordinate systems: Local lorentz charts would be underpinned via patterns
in the distribution of fields other than gµν . That allows us to define at
each point a Minkowski metric. Now taken together they give us back the
Lorentzian metric field gµν . Now we look again at the mosaic and we see
that gµν satisfies Einstein’s field equations.

But that’s not the view advocates of the dynamical approach in fact take.
They typically take gµν to be ‘just another field’. If one does that, one ends
up saying things that, I claim, the advocate of the geometrical approach will
agree with (cf Pooley, 2013, 578).

References

Balashov, Y. and M. Janssen (2003). Presentism and relativity. The British
Journal for the Philosophy of Science 54 (2), 327–346.

Barbour, J. B. (1999). The End of Time: The Next Revolution in Our
Understanding of the Universe. London: Weidenfeld & Nicholson.

19



Bekenstein, J. D. (2004). Relativistic gravitation theory for the modified
newtonian dynamics paradigm. Phys. Rev. D 70, 083509.

Bell, J. S. (1976). How to teach special relativity. Progress in Scientific
Culture 1.

Brown, H. R. (2005). Physical Relativity: Space-time Structure from a Dy-
namical Perspective. Oxford: Oxford University Press.

Brown, H. R. and O. Pooley (2006). Minkowski space-time: A glorious non-
entity. Volume 1 of Philosophy and Foundations of Physics, pp. 67–88.
Amsterdam: Elsevier.

Earman, J. (1989). World Enough and Space-Time: Absolute versus Rela-
tional Theories of Space and Time. Cambridge, MA: MIT Press.

Einstein, A. (1919, 28 November). Time, space and gravitation. The Times
(London).

Huggett, N. (1999). Space from Zeno to Einstein: Classic Readings with a
Contemporary Commentary. Cambridge, MA: MIT Press.

Jacobson, T. and D. Mattingly (2001). Gravity with a dynamical preferred
frame. Physical Review D 64, 024028.

Maudlin, T. (2010). Time, topology and physical geometry. Aristotelian
Society Supplementary Volume 84, 63–78.

Maudlin, T. (2012). Philosophy of Physics: Space and Time. Princeton:
Princeton University Press.

Minkowski, H. (1908). Space and time. pp. 75–96. New York: Dover.

Pooley, O. (2013). Substantivalist and relationalist approaches to spacetime.
pp. 522–586. Oxford: Oxford University Press.

Stevens, S. (2018). Regularity relationalism and the constructivist project.
The British Journal for the Philosophy of Science, axx037.

Wallace, D. (2019). Who’s afraid of coordinate systems? An essay on rep-
resentation of spacetime structure. Studies In History and Philosophy of
Modern Physics 67, 125–136.

Winnie, J. A. (1977). The causal theory of space-time. Volume 8 of Minnesota
Studies in Philosophy of Science, pp. 134–205. Minneapolis: University of
Minnesota Press.

20


	Introduction
	Common Ground
	Principle versus Constructive Theories
	Context Dependence
	Symmetries as Explanans

	The Spacetime Explanation of Dynamical Symmetries
	Assessing the explanation

	The Dynamical Explanation of Spacetime Geometry
	Dynamical Geometry

