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1. Introduction

Consider models of general relativity M = (", 601) and M̃ = (", 6̃01) ,1 both
foliable into spacelike hypersurfaces, identical up to some such hypersurface Σ,
but differing by a diffeomorphism (such that 6̃01 = 3∗601, where 3∗ represents the
push-forward map) which acts non-trivially to the future of Σ. Naïvely, if M is
interpreted as representing some possible world , , then M̃ is to be interpreted
as representing a distinct possible world ,̃ , in which (the images of—that is, the

1In order to guard against conflating such models with the possibilities they represent (a
distinction that is vital when discussing the hole argument), we do not refer to the models as
‘spacetimes’.
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physical correlates of) both the metric field 601 and material fields are distributed
differently (but isomorphically) on (the image of) " . The following problem now
arises: given (the history associated with) these solutions of general relativity up
to Σ, the theory (it seems) simply does not determine which of , or ,̃ will be
realized. Thus, the theory appears to be radically indeterministic.

The foregoing is a version of the hole argument, first presented by Einstein in
1913 as a means of excluding from consideration any diffeomorphism invariant
theory of gravitation2—an argument that he would later reject. The argument was
revived by Earman and Norton ([1987]) as a means of rejecting substantivalism
about the manifold " of general relativity—for, as they elaborate, the above problem
can be avoided if the independent reality of (the physical correlate of) " is rejected,
so that one can no longer articulate the difference between , and ,̃ , and so cannot
articulate the distinction that gives rise to the apparent indeterminism. Earman
and Norton’s paper spawned a sizeable literature, including several defences of the
viability of substantivalism.3

In a recent paper, Weatherall has questioned whether this second, philosophical
wave of writing on the hole argument is well-motivated. His central thesis is
articulated at the beginning of his article:

Einstein and the generations of physicists and mathematicians after
him were right to reject the hole argument. It is based on a misleading
use of the mathematical formalism of general relativity. If one is
attentive to mathematical practice, I will argue, the hole argument is
blocked. (Weatherall [2018], p. 330)

Later, Weatherall extols an apparent virtue of his approach: ‘This particular option
is distinctive—and, I think, attractive—because it is essentially neutral on the
metaphysics of space and time.’ (Weatherall [2018], p. 330)

Our purpose in this article is to make some constructive remarks on the role
of mathematics and metaphysics in the context of the hole argument. Broadly
speaking, these lead us to reject Weatherall’s approach: a proper understanding of
the mathematics of general relativity does not suffice to block the hole argument.

2. Indeterminism versus Underdetermination

In the guise presented above, the hole argument raises the spectre of indetermin-
ism: given initial data on and prior to Σ, general relativity is silent on whether

2We understand the notion of ‘diffeomorphism invariance’ to be distinct from that of ‘general
covariance’—see Pooley [2017].

3For more on contemporary philosophy of physics discussion of the hole argument, see Norton
[2019], Pooley [2013], Pooley [2021], Roberts and Weatherall [2020] and references therein.
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the world will evolve as per M, or as per M̃. This is, indeed, the version of the
argument most often discussed in the literature. One may also, however, use the
hole construction to generate (what we call for the purposes of this paper) a problem
of underdetermination.4

Suppose that model M is a candidate to represent the actual world. Now
consider the model M̃, generated from M via a hole diffeomorphism 3. Since all
relational quantities (Einstein’s ‘point coincidences’—cf. (Norton [2019], §8.2)) are
preserved under such a diffeomorphism, it appears that the empirical data available
to any observer within a world represented by either M or M̃ will fail to determine
which model represents that observer’s world.

In particular, suppose that, according to M, the observer at the salient stage
of their trajectory is located at (the spacetime point represented by) ? and that
3 maps ? to a distinct point @. According to M̃, therefore, the relevant stage of
the observer’s trajectory is located at @. It follows that no measurement that the
observer might perform at that point along their trajectory can determine whether
they are located at (the point represented by) ? or at (the point represented by) @,
for the outcomes of any measurements are the same according to M and M̃.

When Weatherall presents the hole argument at (Weatherall [2018], §3), he
does not distinguish clearly this underdetermination version of the argument from
the indeterminism version. As we show in what follows, some of Weatherall’s
criticisms of the hole argument do not survive proper attention to this distinction.

3. Weatherall’s Arguments

Weatherall can be read as providing two distinct lines of criticism of the hole
argument, although they are not individuated explicitly as such in his paper. (We
recognize that by regimenting Weatherall’s criticism in this way, we may thereby
fail to represent it completely faithfully; nevertheless, we believe that this is a
productive way to proceed.)

Central to both arguments is a distinction that Weatherall draws between 1"

and k̃, two maps between M and M̃, which he introduces as follows:

Assertions concerning point ? in the context of both (", 601) and
(", 6̃01) are implicitly made relative to the identity map on this
manifold, 1" : " → ". Meanwhile, we have the map k : " → ",
which is a diffeomorphism. It is k that gives rise to the isometry
k̃ : (", 601) → (", 6̃01) , where I have again used a [tilde] to be

4The distinction between the indeterminism and underdetermination versions of the hole
arguments is closely related to Earman and Norton’s ([1987]) distinction between the ‘indeterminism
dilemma’ and the ‘verificationist dilemma’. Our thanks to John Norton and Neil Dewar for discussion
of how best to understand the underdetermination version of the argument.
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clear that k and k̃ are different maps—k is an automorphism of ",
whereas k̃ is an isomorphism, but not an automorphism, between
the Lorentizan manifolds (", 601) and (", 6̃01) . (Weatherall [2018],
p. 336)

After introducing the distinction, Weatherall goes on to consider the comparisons
of two hole-diffeomorphic models under each of the maps:

When we say that (", 601) and (", 6̃01) are isometric spacetimes,
and thus that they have all of the same invariant, observable structure,
we are comparing them relative to k̃. Indeed, we must be because [. . .]
there is no sense in which 1" either is or gives rise to an isometry. In
other words, relative to 1" , (", 601) and (", 6̃01) are not equivalent,
physically or otherwise. The reason is that there exist points ? ∈ $

[the region on which the diffeomorphism 3 acts non-trivially] at which
(601) |? ≠ ( 6̃01) |1" ( ?) . Consider an observer sitting at a point of
spacetime represented by the point ? ∈ $ of (", 601) . If one were
to attempt to represent that same observer’s location by the point
1" ( ?) = ? of (", 6̃01) , one would conclude that the observer would
see measurably different metrical properties, different curvature, and
so on. In general, only one of these assignments can be correct.
Meanwhile, if one only considers k̃, no disagreement arises regarding
the value of the metric at any given point, since for any point ? ∈ " ,
(601) |? = ( 6̃01) |k( ?) by construction. (Weatherall [2018], p. 336)

Weatherall’s reasoning in this passage can be summarized as follows: when M
and M̃ are compared using 1" (that is, when one’s interpretation of these models
is sensitive to differences captured by 1" and so to questions concerning the field
values at any given ? ∈ "), they should be taken to represent observationally
distinguishable situations. On the other hand, when M and M̃ are compared using
k̃ (that is, when one’s interpretation of these models is sensitive only to differences
captured by k̃ and so not sensitive to questions concerning the field values at
any given ? ∈ "), then the models are to be taken to be physically and not just
empirically equivalent.

We will call Weatherall’s two arguments against the hole argument ‘the
equivocation argument’ and ‘the argument from mathematical structuralism’.
According to the equivocation argument, while comparisons of models either
via 1" or via k̃ might be legitimate, the hole argument rests on an illegitimate
equivocation between the two. According to the argument from mathematical
structuralism, models should be compared via k̃, but the hole argument requires an
(illegitimate) comparison of models via 1" .
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We are not persuaded by either argument. For convenience, we summarize
here the three central threads of our critique, which are covered in detail in the
following sections. The first two strands focus on the equivocation argument. The
third addresses the argument from mathematical structuralism.

1. Weatherall’s claim that the hole argument involves an equivocation leaves
the indeterminism version of the argument completely untouched. This
is because 1" alone is used to articulate this version of the argument.
Comparisons via k̃, and the related claim that models so compared are
observationally equivalent, play no role in the indeterminism version of the
hole argument. The charge of equivocation is therefore at best relevant to the
underdetermination version of the hole argument.

2. Weatherall’s suggestion that hole-diffeomorphic models are observationally
inequivalent when compared using 1" is questionable. His position is either
a close cousin of Maudlin’s response to the static shift argument against
Newtonian absolute space or it presupposes a controversial conception of
empirical equivalence. Either way, Weatherall’s alleged dissolution of the
underdetermination problem is contentious.

3. Weatherall’s claim that the hole argument is blocked when models are
compared using k̃ is also questionable, for the interpretation of models that
such a comparison might mandate does nothing, by itself, to eliminate the
relevant space of metaphysical possibilities.

4. The Equivocation Argument

According to Weatherall, in order to generate the hole argument, one has to compare
M and M̃ using 1" , insofar as one regards them as representing physically distinct
states of affairs, but also—in an (allegedly) illegitimate manner—compare them
using k̃, insofar as one wishes to regard the worlds represented by those models as
observationally indistinguishable. He thus maintains that the argument rests on an
equivocation:

There is a sense in which (", 601) and (", 6̃01) are the same, and
there is a sense in which they are different [. . . ] But—and this is the
central point—one cannot have it both ways. Insofar as one wants to
claim that these Lorentzian manifolds are physically equivalent, or
agree on all observable/physical structure, one has to use k̃ to establish
a standard of comparison between points. And relative to this standard,
the two Lorentzian manifolds agree on the metric at every point—there
is no ambiguity, and no indeterminism. (This is just what it means
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to say that they are isometric.) Meanwhile, insofar as one wants to
claim that these Lorentzian manifolds assign different values of the
metric to each point, one must use a different standard of comparison.
And relative to this standard—that given by 1"—the two Lorentzian
manifolds are not equivalent. One way or the other, the hole argument
seems to be blocked. (Weatherall [2018], pp. 338–39)

Let us assess this equivocation argument. Recall Weatherall’s central con-
tentions concerning comparisons of models via 1" :

[R]elative to 1" , (", 601) and (", 6̃01) are not equivalent, physically
or otherwise. The reason is that there exist points ? ∈ $ at which
(601) |? ≠ ( 6̃01) |1" ( ?) .

So far, this observation is as much an elaboration of the hole argument as a response
to it. Regarding M and M̃ as physically inequivalent (that is, as representing
distinct possibilities) when compared via 1" is central to both arguments. On
the indeterminism argument, the claim is that the laws together with the state of
spacetime outside of $ (that is, outside of the ‘hole’) fail to fix whether the state
of $ is as described by M or by M̃. On the underdetermination argument, the
claim is that no observation could tell us whether the state of $ is as described by
M or by M̃. That (601) |? ≠ ( 6̃01) |1" ( ?) is precisely the point of both arguments:
amongst the things that the laws do not fix, or that observations cannot disclose,
are, inter alia, which particular geometrical properties get to be instantiated by (the
spacetime point represented by) ?.

Weatherall, however, goes on:

Consider an observer sitting at a point of spacetime represented by the
point ? ∈ $ of (", 601) . If one were to attempt to represent that same
observer’s location by the point 1" ( ?) = ? of (", 6̃01) , one would
conclude that the observer would see measurably different metrical
properties, different curvature, and so on. In general, only one of these
assignments can be correct.

At this point Weatherall’s failure to distinguish clearly between the indeterminism
and underdetermination versions of the hole argument becomes significant. His
claim that at most one of M and M̃ correctly characterizes the observations made
by an observer inside the hole, far from blocking the indeterminism version of
the argument, in fact makes it more acute! For, if Weatherall is to be believed,
what the matching regions of the two models and laws fail to fix are not merely (i)
metaphysical but physically undetectable facts concerning which spacetime points
have which properties (as many have thought), but rather (ii) states of affairs that
are observationally distinguishable.
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In light of Weatherall’s apparent failure to spot this problem, a few features of
the indeterminism version of the hole argument are worth re-emphasizing. Precisely
because the diffeomorphism 3 acts trivially outside of $, it is uncontroversial
that spacetimes represented by M and M̃ are to be regarded as completely—not
just empirically—identical in the region outside of $.5 Regarding M and M̃
as equivalent outside of $, but as differing within $, therefore does not involve
any allegedly illegitimate equivocation between 1" and k̃, for 1" and k̃ agree
completely outside of $; only comparisons via 1" ever need be considered.
Weatherall, moreover, appears to concede, at least for the sake of argument, that
comparisons via 1" are legitimate in themselves and agrees that, so compared, the
models are not physically equivalent, because of their different attributions to the
points in $. He therefore seems to walk headlong into the indeterminism version
of the hole argument.

To the extent that comparisons via k̃ are sometimes invoked in the context of
the indeterminism argument, it is after the event, in order to downplay the apparent
problem: perhaps the theory is, strictly speaking, indeterministic but the facts not
fixed are esoteric metaphysical matters concerning point identities; they are not
facts that affect the theory’s observable predictions (for consider k̃!). Weatherall,
however, appears to view M and M̃ as not even empirically equivalent if compared
via 1" . It is this claim, and the underdetermination version of the hole argument,
to which we now turn.

We start by noting one sense in which Weatherall’s critique fails to engage
directly with what we take to be the natural way to pose the underdetermination
problem. When introducing the problem above, we considered (like Weatherall)
an observer located within the region $ where the hole diffeomorphism acts non-
trivially. Idealizing somewhat, suppose once again that, as it occurs in model M,
? ∈ " represents the observer’s location at the moment of the relevant observation
event. Our contention is that in model M̃ it is then 3 (?) = @ ≠ ? that represents
the same observer’s location at the same moment of their trajectory. To assert this is
not to switch illegitimately from comparing the models via 1" to comparing them
via k̃. It is simply to recognize that the relevant fields representing the observer’s
trajectory, their measuring instruments and the results of the measurements have
been dragged by 3 from ? in M to @ in M̃. 1" remains the official map by which
we identify points across models. That does not by itself imply, however, that it can
also be used to identify the perspectives of observers across models.

As Weatherall notes in a footnote to the passage quoted (Weatherall [2018],
p. 336, fn. 20), his suggestion that, when compared via 1" , M and M̃ should
count as representing observationally discernible states of affairs echoes claims

5This is not to deny that one could concoct contexts where M and M̃ are deployed to represent
spacetimes that differ on " \$. The hole argument, however, is clearly not such a context.
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made by Tim Maudlin, in the context of the static shift argument against absolute
space. (Recall that static shifts of a Newtonian world are time-independent rigid
translations of the entire material content of the universe.) It is worth briefly
reviewing Maudlin’s position, for it involves two distinct claims. The first, though
controversial, is one that we are inclined to accept; the second we reject. An
analogue of the first claim can be used to block the underdetermination argument in
the context of general relativity; the second claim, however, is no more defensible
in the context of general relativity than it is in the context of Newtonian physics.

What, then, is Maudlin’s position regarding static shifts? The claim with which
we are sympathetic is that, even if one acknowledges that possible Newtonian worlds
can differ merely by static shifts, the existence of this plurality of possibilities does
not pose an epistemological challenge.6 To paraphrase Maudlin, my acknowledging
that there is a genuine distinction between a world in which my desk7 is here and a
world in which it is three metres north of here (but in which all spatial relations
between bodies remain just the same) does not mean that there are any positional
facts of which I am ignorant. I cannot contemplate these two possibilities without
knowing full well that the possibility corresponding to the actual world is the first.
To make a closely related point in terms of a class of statically-shifted models apt
to represent these possibilities: given an arbitrary choice of one of the models from
this class to represent the actual world, I know that the worlds represented by the
other models are not my own. (We stress that the claim that static shifts pose no
epistemological problem has not gone unchallenged—see (Dasgupta [2015]) for
recent discussion.)

A sympathetic reading of Weatherall interprets him as making an analogous
point in the context of the underdetermination argument. Suppose that we stipulate
that ? is to be the point of " that represents our observer at the relevant observation
event. Then, relative to that stipulation, it will be determined that it is M (say) and
not M̃ that correctly assigns to ? the geometrical properties that the observer detects.
To put the point another way, there is, on reflection, something suspect about a claim
that we made when originally framing the underdetermination problem, namely,
that no measurement that an observer might perform at the relevant moment could
determine whether they are located at (the point represented by) ? or at (the point
represented by) @. For what determines which spacetime points are represented by
? and @? Plausibly, the only way that this reference relation can be tied down is
for the observer (or us) to choose arbitrarily one such model as representing their
world. Relative that choice, the other models will represent possibilities that the

6In contrast, as Maudlin emphasizes, the case of worlds differing by kinematic shifts, that is,
differing by a time-independent and uniform change in the absolute velocities of all material bodies,
does pose an epistemological challenge. Prior to Maudlin, variants of the same point were made by
Horwich ([1978]), Field ([1985]), and Teller ([1987]).

7That is, the desk belonging to the coauthor currently typing.
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observer knows to be (for them) counterfactual.
As noted, we are sympathetic to this response to the underdetermination

argument.8 On our understanding of this response, although one is not ignorant of
which possibility represented by the models is one’s own, the possibilities are not
observationally distinguishable. Maudlin, however, does claim that they are and, as
we have seen, Weatherall follows his lead. We think that this is a mistake.

In arguing his case, Maudlin switches from the example of static spatial shifts
to time translations. In order to catalogue efficiently our points of disagreement,
we quote him at length:

A universe created 15 billion years ago is observationally distinguish-
able from one just like it (that is, having a qualitatively identical total
history) which began within the last four minutes. Things would look
awfully different if the big bang had occurred in the last half hour.
Of course, if the big bang had occurred four minutes ago then in
another 15 billion years there might be someone who looks just like
me writing a sentence that looks just like this. But that person would
have no difficulty determining that he is not alive now, just as I have
no difficulty knowing that I will not be alive then. (Maudlin [1993],
p. 190)

We respond: would things look awfully different if the big bang had occurred in the
last half hour? To whom? Things would look different to someone located, in this
counterfactual universe, at the very time we find ourselves at right now, but there is
no one in this world located at that time (since the world is hypothesized to have a
qualitatively identical total history to that of the actual world and no observer was
around four minutes after the big bang).

Maudlin concedes that, if the big bang had occurred four minutes ago then,
in another 15 billion years, there might be someone who looks just like him
writing a sentence just like the one quoted. But first note that, since this universe is
qualitatively identical, it is not merely the case that there might be such a person—in
fact, of course, there will be such a person. Secondly, and crucially, this person who
looks just like Maudlin is none other than Maudlin himself, occupying a moment
in time in this counterfactual possibility different to his actual temporal location.9

8It is worth stressing that this Maudlin-style move is ineffective against the hole argument in its
indeterminism form. Even if one can know by stipulation which model represents my actual future,
it remains the case that the past and the laws do not determine that the future is as represented in
this model rather than as represented, counterfactually, in hole-diffeomorphic models.

9At least, this is what haecceitists like Maudlin should say. Even a counterpart theorist will agree
that the Maudlin-like individual of this counterfactual possibility underwrites de re truths about
what Maudlin himself would have observed had the universe been created only four minutes ago. In
other words, the counterpart theorist agrees that, had things been as envisaged in the counterfactual
scenario, Maudlin’s experiences would have been qualitatively identical to his actual experiences.
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So in this counterfactual world his observations, moment by moment, throughout
his illustrious career, are qualitatively identical to his actual observations. The
same goes for every other observer. In this sense, the worlds are observationally
indistinguishable. Maudlin may know that the world described is not the actual
world, but this is not empirical knowledge; he did not come by this knowledge
by checking experimentally in 1993 that the big bang had not happened only four
minutes previously.

The parallel between Maudlin’s position and Weatherall’s is clear. Just as
Maudlin contrasts the goings on at a fixed time to argue that his two worlds are
observationally distinguishable, so Weatherall contrasts the field values at a fixed
manifold point in the two models to argue that at most one of the worlds they
represent correctly captures what an observer at that point would measure. There
is also, however, an important difference between Maudlin’s and Weatherall’s
positions that is worth dwelling on.

Maudlin’s worlds—the actual world and its rigidly shifted counterparts—include
all relevant observers. They do so because they are complete universes. Similarly,
any mathematical models apt to represent such worlds will model all observers,
and not just the content of their observations. In general, explicit representation, at
least in an idealized manner, of the observer, as a physical system within spacetime,
naturally leads to what one might call an ‘immanent’ conception of empirical
(in)equivalence:

Two models are empirically distinct just in case there are relevant
relational differences between the field configurations in each.10

In our view, this is the notion of empirical equivalence most relevant to discussions
of the hole argument. It is the notion of empirical equivalence presupposed in
(Earman and Norton [1987], pp. 521–22). It is in accord with Stein’s call to
‘schematize the observer’ ([1995]).11 On the immanent conception of empirical
equivalence, hole-diffeomorphic models are empirically equivalent, even when 1"

is taken as the standard of cross-model point identity. To insist on this is not, pace
Weatherall, to engage in an illegitimate equivocation between 1" and k̃.

10Of course, identifying the ‘relevant relational differences’ which contribute to such empirical
differences is a non-trivial matter. See for example (Read and Møller-Nielsen [2020]) for discussion.

11As Curiel writes (in the context of an extended discussion of Stein), ‘At bottom, then, what
secure epistemic content a scientific theory has must rest in large part on the meanings expressed
in the sound articulation of experimental knowledge, for that is the final arbiter of empirical
success. This requires at a minimum that we be able, at least in principle, to construct appropriate
and adequate representations of actual experiments and observations in the frameworks of our
best scientific theories, that is, representations of physical systems and experimental apparatus in
relation to each other as required by actual experiments, not just representations of physical systems
simpliciter, in abstraction from experimental practice’ (Curiel [unpublished], p. 10).
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When models are compared via 1" , Weatherall implicitly rejects the immanent
conception in favour of the following criterion:

Two models are empirically distinct just in case they assign different
field values to the same manifold points.

(We are here assuming that there is no ‘internal’ gauge redundancy in how field
values represent physical quantities.) Given this assumption, if 601 ( ?) ≠ 6̃01 ( ?) ,
then M and M̃ are empirically distinct.

One way in which one might seek to justify this criterion is via (what we will
call) the ‘transcendental’ conception of empirical (in)equivalence, according to
which the ‘observer’ is explicitly recognized to be omitted from the models. This
conception is arguably implicit in Weatherall’s discussion of what an observer at ?
would measure according to the different models.12

Are hole-diffeomorphic models compared using 1" to be regarded as not
empirically equivalent according to a transcendental conception of empirical
equivalence? Does this conception licence letting spacetime points or regions
go proxy for the fixed perspective of a potential observer across a class of hole-
diffeomorphic models? It is not clear to us that it does.

According to the interpretation of models that underwrites the transcendental
conception of empirical equivalence, a model represents only a proper subsystem
of the universe; the observer, in particular, is omitted from the model. It has
recently been recognized that this way of thinking about models promises to provide
a systematic way to adjudicate when symmetry-related models are empirically
equivalent or, more generally, cannot be interpreted as representing distinct physical
situations.13 For example, returning to the static shift case, it is notoriously
controversial whether a substantivalist can always regard statically-shifted models
of a Newtonian theory as physically equivalent. But all hands should agree that the
models can be thought of as empirically distinct when taken to model a subsystem
of the universe that can stand in different spatial relations to an external observer,
who can detect those spatial differences using physical means (such as light)
that fall outside of the physics represented in the models. A similar story can
underwrite the physical inequivalence of certain models of general relativity related
by diffeomorphisms that satisfy certain non-trivial boundary conditions.14

12As we have effectively already noted, this conception is not compatible with the completeness
of the worlds featuring in Maudlin’s discussion. It is therefore not available to Maudlin as a defence
of his claims concerning observational (in)equivalence.

13Our thinking here has in large part been influenced by Wallace ([forthcoming]), whose position
we take ourselves to be endorsing.

14That such models should be regarded as physically inequivalent has been urged, in particular,
by Belot ([2018]), albeit not for reasons to do with empirical (in)equivalence, but rather for reasons
to do with the construction of conserved quantities in general relativity. Note that Belot (in contrast
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Does thinking of models related by a hole diffeomorphism as representing only
subsystems of the universe allow one to regard them as empirically inequivalent?
We do not see how it can. Following Wallace ([forthcoming]), the question to
ask is how the symmetry relating the models extends to a set of more inclusive
models that include the observer and their detection of the relevant differences.
Recall that, according to Weatherall’s account of the models’ empirical distinctness,
the unmodelled observer is imagined to be located at a spacetime ? on which the
diffeomorphism acts non-trivially. If we now imagine including fields representing
the observer and their ability to detect differences in the values of the originally
modelled fields, it seems there are two possibilities: either the diffeomorphisms are
symmetries only when acting on all the fields in the expanded model, including
those representing the observer and their measurements, or the diffeomorphisms
are ‘subsystem-local’ in Wallace’s terminology, and remain symmetries even when
acting only on the originally modelled fields.

In the latter case, one might try to argue that the original models should be treated
as physically inequivalent (after all, the expanded models differ over the relative
location of physical fields, for example, those representing spacetime curvature and
those representing an observer and their material measuring devices). However,
precisely because the fields representing an observer are left untransformed when
the diffeomorphism acts on the fields of the original model, the differences are
unobservable (so the models remain observationally equivalent) and, moreover,
any theory governing the expanded models will, very obviously, be viciously
indeterministic.

It is far more plausible, therefore, to suppose that any theory governing the
extended models that represent the observer will be invariant under diffeomorphisms
only if they act on all the fields. But now we no longer have any basis to follow
Weatherall in interpreting the map 1" as identifying the fixed perspectives of
potential observers across models, for in the extended models such observers are
dragged along together with the fields that they are observing by any diffeomorphism
that is a symmetry of the theory.

To sum up the conclusions of this section: Weatherall’s claim that when models
are compared using 1" they count as empirically distinct, and that therefore the
hole argument is blocked, fails because: (1) the claim leaves entirely untouched the
indeterminism version of the hole argument (which does not presuppose the models
are empirically equivalent, only that they are equivalent in regions outside of the
hole); and (2) the claim that models count as empirically distinct is anyway suspect,
even when assuming a transcendental conception of empirical equivalence.

By considering the indeterminism and underdetermination versions in turn, we

to Wallace) does not believe that recognizing the models’ physical inequivalence requires that they
be regarded as modelling proper subsystems of the universe.
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take ourselves to have shown that neither version of the hole argument involves an
illegitimate equivocation between 1" and k̃. For anyone who remains unconvinced,
however, we close this section by offering the following simple analogy.

Suppose that two identical twins, Alice and Barbara, cannot be told apart by
visual inspection. Now consider the following two situations, both involving the
twins standing in front of you in plain sight. In the first, Alice stands to the left
of Barbara and wears a red hat, while Barbara wears a blue hat. In the second,
Barbara stands to the left of Alice and wears the red hat, while Alice wears the blue
hat. The twins contrive to look otherwise identical in the two situations.

We think that the following two claims about this setup are obvious and
uncontroversial. The two situations are observationally indistinguishable, at least by
sight: one cannot tell, as the onlooker, which of the two situations one is confronted
with. Nonetheless, there is a (physical) difference between the two situations: in
one it is Alice in the red hat; in the other it is Barbara.

Now consider the simple analogues of Weatherall’s 1" and k̃. 1" corresponds
to a map between the two situations that maps Alice to Alice and Barbara to Barbara.
It does not preserve all qualitative (visually inspectable) features of the situation.
In particular it maps someone wearing a red hat to someone wearing a blue hat. k̃
corresponds to a map between the two situations that maps Alice to Barbara and
Barbara to Alice. It preserves all qualitative features but does not map each twin,
as she is in one situation, to herself, as she is in the other.

According to Weatherall, the two claims that we asserted above to be obvious
and uncontroversial can only be jointly accepted if one engages in an illegitimate
equivocation between the two maps. If one says that the situations are observationally
indistinguishable, one must be comparing them via the analogue of k̃ and so cannot,
in the same breath, also say that they differ because different twins wear the two
hats. If one focuses on the fact that different twins wear different hats, one is
comparing them via the analogue of 1" , in which case one cannot at the same time
recognize that the situations are observationally indistinguishable.

We hope that the unreasonableness of this position is clear without our needing
to labour the point further. It may be helpful to note that the observational
indistinguishability of the two situations is not a property that holds of the pair
of them only relative to, or when compared via, (the analogue of) k̃. Rather, the
existence of this map, which matches up without exception qualitatively identical
features, underwrites an absolute property possessed by the pair of situations—a
feature that holds full stop. This is why there is no equivocation involved in jointly
attending to (i) the fact that k̃ preserves all qualitative features of the spacetime,
because it is an isomorphism, but also (ii) the fact that different points are assigned
different properties, precisely because 1" is not an isomorphism.
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5. The Argument from Mathematical Structuralism

Up to this point, we have assumed that comparing the models M and M̃ via
1" is legitimate. As the previous section has made clear, this is the comparison
presupposed in standard presentations of the hole argument, where 1" is assumed,
tacitly or otherwise, to track which manifold points represent the same spacetime
points across models. Claims of observational indistinguishability are either
irrelevant to the hole argument (when the issue is indeterminism) or do not require
a problematic switch from comparison via 1" to comparison via k̃. We turn now
to the question of whether it is indeed legitimate to compare models via 1" .

Weatherall’s considered view seems to be that such comparisons are not
legitimate. Towards the end of his article, he canvasses three possible views that
Earman and Norton might be taken to attribute to the spacetime substantivalist
concerning how mathematical models represent spacetime. According to the first,
the substantivalist takes spacetime to be represented by just the differentiable
manifold of the models, not by the manifold plus metric. According to the second,
the substantivalist takes spacetime to be represented by a structure richer than a
Lorentzian manifold. The third view, which is the one that Weatherall ultimately
attributes to Earman and Norton’s substantivalist, involves representing spacetime
by

a Lorentzian manifold (and no more), such that the manifold is
understood to represent spacetime points in some sense prior to, or
independently of, the value of the metric at those points [. . .] The
pushforward of the metric along an automorphism of the manifold
would represent different property assignments to the same spacetime
points, corresponding to prima facie different physical situations.
(Weatherall [2018], p. 345)

Of this third option, he writes:

this view, I take it, is incompatible with the background views on
mathematics described in Section 1. The problem is essentially the
same as for the hole argument itself: this view depends on taking
the identity map to provide a prior notion of when the points of two
Lorentzian manifolds are the same. (Weatherall [2018], p. 345)

More on the background views on mathematics that Weatherall describes in the
first section of his paper in a moment. First, a brief comment on whether Weatherall
is correct to attribute the third view to Earman and Norton’s substantivalist.

Notoriously, Earman and Norton argued that the metric field should count
as a field contained within spacetime, not as (part of) the characterisation of the
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spacetime container (Earman and Norton [1987], pp. 518–19). This suggests that
the first of the views that Weatherall surveys better matches Earman and Norton’s
intentions. Weatherall’s reasons for rejecting this possibility is that he believes it
would commit Earman and Norton’s substantivalist to ‘the radical view that any two
spacetimes are equivalent as long as their associated manifolds are diffeomorphic—
whether the two agree on other structure’ (Weatherall [2018], p. 344). But the view,
of course, has no such consequence. Earman and Norton’s substantivalist will regard
non-isometric models as representing obviously physically distinct possibilities, but
possibilities that differ in terms of their spacetimes’ having (qualitatively) different
content. This substantivalist will nonetheless regard these possibilities as involving
spacetimes that are, in terms of their intrinsic characters, qualitatively identical.15

In fact, in terms of Weatherall’s three-way classification, Earman and Norton
substantivalist’s position is best understood as a combination of views (1) and (3):
one represents spacetime itself as a differentiable manifold (‘and no more’) but
one also takes the manifold to represent spacetime points ‘in some sense prior to,
or independently of,’ the value of the metric (and that of any other field) at those
points.

Earman and Norton are in the minority in classifying the metric as content
rather than as an aspect of the spacetime container. A number of authors have
argued against this component of their position.16 The third of Weatherall’s options
is, therefore, a more faithful characterisation of an interpretative stance implicit or
(often) explicit in much of the philosophical literature that followed Earman and
Norton’s paper. What, according to Weatherall, is wrong with it?

Near the beginning of his article, Weatherall sets out the following two
interpretative principles:

(1) our interpretations of our physical theories should be guided by
the formalism of those theories; and (2) insofar as they are so guided,
we need to be sure that we are using the formalism correctly, consis-
tently, and according to our best understanding of the mathematics.
(Weatherall [2018], p. 330)

The application that Weatherall seeks to make of these principles focuses only on
matters of sameness and equivalence. Principle (2) enjoins us to attend to our

15Weatherall’s use of ‘spacetimes’ to refer to mathematical models is perhaps partly responsible
for generating the appearance of a problem. His allowing the stress-energy of matter to be implicitly
defined by 601 , via the Einstein field equations, also serves to blur the distinction between models
differing over their characterisation of spacetime per se and models that disagree only over its
content.

16Critics of this aspect of Earman and Norton’s position include Maudlin ([1990], pp. 545–49),
Hoefer ([1996], pp. 11–13) and Pooley ([2006], pp. 99–101). Part of Earman and Norton’s argument
rests on the claim that the metric carries (gravitational) energy and momentum. For recent discussion
of this vexed topic, see for example (Dürr [2019b]; Dürr [2019a]; Read [2020]).
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best understanding of the mathematics involved in a theory’s formalism. In this
connection, Weatherall endorses a view that he takes to be ‘a variety of mathematical
structuralism’ (Weatherall [2018], fn. 8): that isomorphism is the relevant standard
of sameness in mathematics.17 Applying this to the case at hand, if models of
general relativity are taken to be Lorentzian manifolds, isometry is the standard
of isomorphism. So, hole-diffeomorphic models such as M and M̃, which are
isometric, count as ‘mathematically equivalent’.

Turning to principle (1), what does the mathematical equivalence of such
models imply about their physical interpretation? Weatherall’s official answer
is that isomorphic models should be taken to have the same ‘representational
capacities [. . . ] if a particular mathematical model may be used to represent a
given physical situation, then any isomorphic model may be used to represent
that situation equally well’ (Weatherall [2018], p. 332). We take this thesis to
correspond precisely to the position that Fletcher—a self-declared ally of Weatherall
on these matters—labels REME (‘Representational Equivalence by Mathematical
Equivalence’ (Fletcher [2020], p. 233)).

We concur with Weatherall and Fletcher that REME is a legitimate principle of
mathematical representation. REME, however, very obviously fails, by itself, to
block the hole argument, or to rule out the allegedly problematic use of isomorphic
models deployed in standard presentations of the argument. All that this use
requires is that if model M (say) is taken to represent a particular possible world
, , then M̃ represents (or, better, may be taken to represent, perhaps by further
specifying the representational context) a distinct (but merely haecceitistically
distinct) possibility ,̃ . This is all completely compatible with M and M̃’s having
identical representational capacities. That merely requires that M̃ might equally
well have been chosen initially to represent , (in which case, some other hole-
diffeomorphic model, related to M̃ just as M̃ is related to M, could be taken to
represent ,̃).18

17Varieties of mathematical structuralism can differ over whether isomorphic models are
understood to be (a) numerically distinct but in some sense treated ‘as if’ identical, versus (b)
numerically identical. Weatherall clearly does not assume anything as strong as (b) (cf. Weatherall
[2018], p. 331, fn. 8). The ‘univalence axiom’ of homotopy type theory affords a natural means of
formalizing mathematical structuralism—see (Dougherty [2018], p. 104). Our concerns here also
speak against any appeal to homotopy type theory as a means of evading the hole argument. For
more on homotopy type theory and the hole argument, see (Dougherty [2020]) and (Ladyman and
Presnell [2020]).

18Roberts ([2020], p. 258) and Gryb and Thébault ([2016], pp 566–67) make essentially the
same point. There are also parallels here with the ‘semantic relationalism’ of Fine ([2003, 2007]),
according to which there is no semantic difference between variables such as G, H, as illustrated by
the fact that one’s choice of variable in formulae such as G > 0 or H > 0 is purely conventional;
however, there is a semantic difference between pairs of variables—as illustrated by the fact that
(G, G) is not semantically equivalent to (G, H) , for G > G may (after quantification) express a distinct
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REME, interpreted to the letter, therefore fails to block the hole argument.
Nevertheless, it is clear that both Weatherall and Fletcher believe that a proper
understanding of the mathematical formalism of general relativity does rule out the
use of models that the hole argument presupposes. What stronger constraint on
representation are they assuming?

A tempting thought might be that mathematical structuralism goes hand-in-
hand with taking isomorphism equivalence classes of models to be in one-to-one
correspondence with physical possibilities. This, however, is a position that
Weatherall ([2018], p. 332) explicitly rejects, and for good reason. To see the
problem, it is useful to break down this new thesis into two components: (i) that all
mathematically equivalent models represent the same, unique possibility, and (ii)
that any two mathematically inequivalent models represent distinct possibilities.

These two claims about representation correspond closely (but not exactly19) to
two other theses presented—and criticized—by Fletcher ([2020], pp. 231–33):

RUME: If two models of a physical theory are mathematically equivalent, then
there is a unique physical state of affairs that they represent equally well.

RDMI: If two models of a physical theory are not mathematically equivalent,
then its not the case that there is a unique physical state of affairs that they
represent equally well.20

One of Fletcher’s central illustrative examples in his case against RUME and
RDMI involves schwarzschild spacetimes—spherically symmetric solutions of
general relativity, differing by the so-called ‘schwarzschild radius’ '(, which can
be interpreted as representing appropriately isolated, non-rotating stellar bodies
(for example stars, black holes, et cetera). Against RUME, Fletcher notes that ‘each
mathematical Schwarzschild spacetime can represent any physical Schwarzschild
spacetime (that is, with any Schwarzschild radius) through an appropriate choice of
units’ (Fletcher [2020], p. 235). Conversely, non-isomorphic schwarzschild models
can represent one and the same black hole in different contexts, via a change of
units, undermining RDMI (Fletcher 2020, pp. 237-8).

We are happy to take Fletcher’s arguments against RUME and RDMI as decisive.
But we note that most of these arguments exploit the fact that representation is
a pragmatic matter, always involving some level of idealisation and abstraction,
as well as some more-or-less arbitrary conventions, which can shift from one

proposition from G > H. (For some critical comments on Fine’s work, see (Button and Walsh [2018],
pp. 13-4).)

19While (ii) requires that mathematically inequivalent models represent distinct possibilities,
Fletcher’s RDMI below requires only that they do not represent the same possibility (equally well).

20RUME abbreviates ‘Representational Uniqueness by Mathematical Equivalence’; RDMI stands
for ‘Representational Distinctness by Mathematical Inequivalence.’
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representational context to another. Fletcher correctly shows that RDMI and RUME
are implausible principles if taken to hold across representational contexts. But that
leaves open the question of whether they are legitimate principles when relativized
to a fixed representational context.

In our view, the interesting questions have always been about the potential joint
representational uses of different mathematical models: whether two models can
be taken to be ‘co-representational’ and, if so, whether they represent, when so
taken, the same or different possibilities.

Occasionally, such questions have been raised explicitly in other discussions
of the hole argument. In assigning a central role to the question of when two
models can be understood as ‘co-intended’, Rynasiewicz ([1994], p. 423) is
investigating precisely the constraints on when two models can be understood as
co-representational. Gryb and Thébault ([2016], pp. 566-7) draw the distinction
between what models can represent ‘taken in isolation’ and what they can represent
‘taken together’. And Roberts homes in on a closely related question when he asks
whether two isomorphic structures can have co-representational capacity (whether
they can represent the same state of affairs ‘at once’—a thesis he dubs ‘strong
Leibniz equivalence’). He contrasts this question from the REME-like question of
whether they have ‘equal representational capacity’ (‘weak Leibniz equivalence’),
where here their ability to represent the same state of affairs need not be ‘at once’
(that is, it need not be relative to the same representational context) (Roberts [2020],
p. 252). Focusing, then, on the co-representational capacities of models, what
might plausible, context-relativized variants of RUME and RDMI look like? We
propose the following as natural emendations of Fletcher’s theses:

RUME∗: If two models of a physical theory are mathematically equivalent
and if one model is chosen to represent (to some degree of accuracy) a
particular physical possibility (thereby fixing the representational context),
then the other model, relative to that choice (that is, relative to the same
representational context), also represents that physical possibility (to the
same degree of accuracy).

RDMI∗: If two models of a physical theory are not mathematically equivalent and
if one model is chosen to represent (to some degree of accuracy) a particular
physical possibility, then the other model, relative to that choice, does not
represent that physical possibility (to the same degree of accuracy).

To these we add a third thesis—‘Mathematical Inequivalence follows from Repre-
sentational Distinctness’:

MIRD∗: If, relative to some representational context, two models of a physical the-
ory represent distinct physical possibilities, then they are not mathematically
equivalent.
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Before assessing these theses, the logical relationship between MIRD∗ and
RUME∗ should be noted. MIRD∗ is equivalent to the claim that if two models of a
physical theory are mathematically equivalent and one of the models represents a
particular physical possibility relative to some representational context, then the
other model, relative to that context, either represents the same possibility or fails to
represent a possibility. It therefore corresponds to a natural weakening of RUME∗,
where the original consequent is replaced by a disjunction of that original together
with an alternative whose salience only becomes apparent when one is considering
the context-relativized principles.

One consequence of this is that someone denying RUME∗ need not, thereby,
be committed to denying MIRD∗. One might deny RUME∗ and affirm MIRD∗

because one thinks that, if one of two isomorphic models is chosen to represent a
particular possibility then the other, though equally apt to represent that possibility
(as per REME), acquires the status of an ‘unintended interpretation’ (Rynasiewicz
[1994], p. 420). One is again reminded of lost insights from the discussion that
flourished in the immediate aftermath of Earman and Norton’s paper. Butterfield
([1989]) lays out essentially the same three options in the following terms. First
he asks of two isomorphic models: do they represent the same possibility? (This
is his question ‘(Same?)’ (Butterfield [1989], p. 12).) If the answer is No, one
option is that they represent distinct possibilities (Butterfield’s ‘(Each)’). But one
might also hold that only one model may represent a possibility relative to any
given representational context (cf. Butterfield’s ‘(One)’).

Fletcher, in motivating his discussion of RUME, RDMI and REME, seeks
to attribute to a number of authors a misguided commitment to RUME. In our
view, the more charitable reading of much of the literature to which Fletcher
adverts sees it as committed to the (weaker) starred variant (or to a close relative
thereof). In particular, Earman and Norton’s ‘Leibniz Equivalence’ states that
‘diffeomorphic models represent the same situation’ (Earman and Norton [1987],
p. 522). Surely, once the need to attend to the representational context is taken into
account, this is most plausibly interpreted as RUME∗, not as RUME. Such a reading
makes good sense of the alleged conflict with substantivalism. We have seen that
the interpretation of hole-diffeomorphic models to which the substantivalist is
allegedly committed to acknowledging as legitimate, that is, as jointly representing
possibilities that differ merely haecceitistically, is not in conflict with REME. It is
in conflict with RUME∗ because (and here we finally get the heart of the matter) it
directly conflicts with MIRD∗, which, as we noted, is entailed by RUME∗.

The starred theses might make better sense of much of the now-canonical
discussions, but do any of them plausibly follow from Weatherall’s two principles
concerning how mathematics should guide interpretation? RUME∗, or Leibniz
Equivalence, corresponds to the thesis which Roberts [2020] dubs ‘strong Leibniz
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equivalence’.21 As such, it is vulnerable to the telling criticisms to which he subjects
it. But, as we have seen, while RUME∗ entails MIRD∗, it is not equivalent to it.
Arguably it is this latter thesis that deserves to be the focus of attention and, indeed,
Fletcher comes close to giving an explicit argument for it. He writes:

Lorentzian manifolds may not exemplify [all the] properties of the
states of affairs they represent, but all the properties they do exemplify—
those not abstracted away—are the same for isomorphic manifolds.
This is precisely encoded in the mathematical models themselves with
the interpretation of isomorphic objects in a mathematical category as
being equivalent as objects in that category. (Fletcher [2020], p. 239)

Put slightly differently, two situations are distinct if one possesses a feature that the
other lacks. So for two models jointly to represent two distinct situations (and to
represent them as distinct) one model must represent one situation as possessing a
feature that the other model represents the other situation as lacking. But, if we
are treating the models as objects of a certain category, then this representational
difference has to correspond to a difference between them considered as objects
of that category. Since isomorphic models are precisely those models that do not
differ as objects of the category, such models cannot (if really being treated as
objects of that category) differ representationally in the manner required.

That, at any rate, is our best effort at reconstructing the argument from
mathematical structuralism. We finish with three critical observations concerning
where we think this leaves the debate.

First, it bears stressing how natural and apparently appropriate is the particular
use of isomorphic models that Weatherall and Fletcher criticize. A substantivalist
who believes that possible spacetimes can differ merely haecceitistically is after a
way to represent the structure of such a spacetime, which (let us suppose) really is
no richer than that of a Lorentzian manifold, and at the same time talk about two
possibilities that exemplify the very same structure but differ over which individuals
possess which particular properties. How better to do this than to use isomorphic
models of the appropriate structural type that differ merely over which of the
base elements of their sets are assigned the structural properties common to both
models?

The second of the three options Weatherall canvassed for Earman and Norton’s
substantivalist was to represent spacetime as having a structure richer than that of

21In fact, Roberts’ ‘strong Leibniz equivalence’ states only that isomorphic models can represent
the same physical state of affairs ‘at once’. While weakening ‘represent’ to ‘can represent’ is
well-motivated for a cross-context principle, favouring REME over RUME, it is less obviously
motivated when one is relativizing to a representational context. This is another reason to take
traditional (unmodalized) statements of Leibniz Equivalence to be implicitly context-relativized
and so akin to RUME∗ (rather than as expressing an obviously unmotivated principle like RUME).
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a Lorentzian manifold. Fletcher talks of including ‘spacetime point haecceities’
(Fletcher [2020], p. 239). But why should the substantivalist be saddled with such
baroque machinery in order to have two models that can stand for the different
possibilities that they acknowledge when these possibilities differ merely over
which individuals have which properties? Misleading terminological etymology
notwithstanding, haecceitists need not be committed to haecceities.

Our second observation is that Fletcher himself, in one of his arguments against
RUME, endorses exactly this type of co-representational use of isomorphic models
to represent distinct possibilities! His example involves a collection of structures
containing nothing but a Minkowski metric on a manifold diffeomorphic to R4,
together with an inextendable, ‘jointed’ timelike curve composed of an initial
geodesic segment followed by a segment exemplifying constant proper acceleration.
He holds that this collection of structures can represent a variety of possibilities
for a lone particle that ceases, at some moment, to move inertially and starts to
accelerate. The possibilities in question are supposed to differ merely over when
and in which direction the particle starts to accelerate. After taking a particular
model to represent one such a history, Fletcher writes:

Users of relativity theory, I claim, would intend for the theory to
endorse that the particle could have swerved (at the same acceleration)
in another direction, even at another time, than it did in the above
model. Such alternative states of affairs could be realized by a spatial
rotation or time translation acting on the above model. Yet the resulting
model is in fact isomorphic to the one above. (Fletcher [2020], p. 237)

In order for these models to (co-)represent states of affairs that differ only over
when and in which direction the particle swerves, a standard of cross-model point
identity needs to be assumed (as Fletcher himself spells out) which, although an
isometry of the metric substructure, is not, pace Fletcher ([2020], p. 240), an
isomorphism of the relevant category (that is, that of ‘Minkowski spacetimes with
distinguished worldlines’). Fletcher claims that the inclusion of a distinguished
worldline in the example serves to differentiate the case from that of the hole
argument. We, by contrast, take its inclusion to make the cases precisely analogous.
In both cases, the co-representational function of the models presupposes comparing
isomorphic models via a map that is not (or need not be) an isomorphism. And in
both cases the various physical states of affairs supposedly represented by different
isomorphic models differ merely haecceitistically. (Lone particle worlds that differ
only over when and in which direction the particle swerves are worlds that differ
only over which spacetime points have the property of being a location of the
particle.)

Our first two observations have questioned whether MIRD∗ should be accepted
on the basis of mathematical structuralism. Our third and final observation disputes
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that embracing MIRD∗ on that basis blocks the hole argument.
One theme of Weatherall’s paper is that the formalism of general relativity does

not generate a philosophical problem. We agree with this. One is not forced to
recognize a plurality of physical possibilities merely because a theory admits as
solutions a plurality of isomorphic models. But equally, one does not rule out the
existence of such a plurality merely by prohibiting a particular interpretation of the
formalism.

For Earman and Norton, and the literature they unleashed, the problem was not
the formalism of general relativity per se, but substantivalism.22 For those who
accept Earman and Norton’s ‘acid test’ of substantivalism, possibilities involving
a common pattern of geometrical properties and a common material content can
differ merely over which substantival points possess which properties.

Suppose that � is a class of qualitatively identical worlds—and make no
assumptions (Earman and Norton’s ‘acid test’ notwithstanding) about the cardinality
of �, which might perhaps contain only a single member. Let M and M̃ both be
members of a class of isometric spacetime models of a type and particular character
that makes them apt to represent members of �.23 Someone who embraces MIRD∗

for Weatherall’s and Fletcher’s reasons disavows being able to use M and M̃ to
jointly describe different members of � (if different members there are). But they
do not thereby save general relativity from indeterminism. If � really does contain
a plurality of members differing in the way envisaged by some substantivalists,
then general relativity according to Weatherall and Fletcher does not distinguish
between the possibilities even to the extent of not being able to refer differentially
to them. It therefore (implicitly) regards them as all equally possible, which is just
to say that, for the relevant type of substantivalist, the theory is indeterministic.

All hinges on whether, on the assumption of substantivalism, � does indeed
involve the relevant plurality. One cannot answer that question without engaging
with the themes laid bare in the orthodox philosophical literature.24 One could see
here a partial vindication of what Møller-Nielsen ([2017]) dubs the ‘motivational’
approach to symmetries over the ‘interpretational’ approach.25 In accepting MIRD∗

for formal reasons, Weatherall and Fletcher exemplify an ‘interpretational’ approach,
on which symmetry-related models of a given theory can be ruled out ab initio as
(co-)representing distinct physical states of affairs.26 In contrast, the ‘motivational’

22Which means that the formalism is responsible for the problem indirectly, to the extent that it
leads to the postulation of spacetime points.

23So, in line with REME, each model can serve equally well to represent any element of �,
however many there are. As we have seen, this does not block the hole argument.

24Cf. (Teitel [2019], pp. 388–89).
25See also (Martens and Read [2020]; Read and Møller-Nielsen [2018]; Read and Møller-Nielsen

[2020]).
26Indeed, they celebrate their lack of engagement with metaphysics: see (Weatherall [2018],
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approach would hold that MIRD∗ should only be adopted once it has been secured
by what Møller-Nielsen ([2017], p. 1256) calls a ‘metaphysically perspicuous
characterisation’ of the theory’s ontology. Only by engaging with the metaphysics
of space and time can one confront the question of whether there is or is not a
plurality � of worlds corresponding to an isomorphism class of models.

6. Conclusions

There is much in Weatherall’s paper with which we agree—in particular, the
claims that (i) hole-diffeomorphic models of general relativity have identical
representational capacities, and (ii) that mathematical structuralism can be taken
to show that the formalism of general relativity does not generate a philosophical
problem. This notwithstanding, these observations are insufficient to block the hole
argument—for the problem can be posed without equivocation on the use of 1"

versus k̃, and, ultimately, any serious attempt to grapple with this problem must
involve a careful engagement with metaphysics.
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