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Abstract

In a companion paper (Pooley & Brown 2001) it is argued that Julian
Barbour’s Machian approach to dynamics provides a genuinely relational
interpretation of Newtonian dynamics and that it is more explanatory than
the conventional, substantival interpretation. In this paper the extension of
the approach to relativistic physics is considered. General relativity, it turns
out, can be reinterpreted as a perfectly Machian theory. However, there are
difficulties with viewing the Machian interpretation as more fundamental
than the conventional, spacetime interpretation. Moreover, this state of
affairs provides little solace for the relationist for, even when interpreted
along Machian lines, general relativity is a substantival theory although the
basic entity is space, not spacetime.

1 Introduction

When a position finally starts to be described as orthodoxy, it is normally a
sure sign that the consensus has started to fracture. The current state of the
substantivalist–relationist debate proves no exception. The belief that substan-
tivalism has the upper hand is still, surely, the orthodox opinion. But there is
also a growing awareness that the relationist can respond to apparently strong
substantivalist arguments.

Some of the most important recent insights into what a relationist position
might involve have been provided by Julian Barbour who, together with various
collaborators, has pursued an approach to the foundations of dynamics inspired
by Ernst Mach. The significance of this work has yet to be fully appreciated
by philosophers with an interest in interpretative questions concerning spacetime
physics. In a companion paper (Pooley & Brown 2001), the implications of Bar-
bour’s approach for pre-relativistic physics are explored. There it is argued that
Barbour’s Machian programme provides an as yet unique relational alternative
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to standard Newtonian mechanics, namely Barbour and Bertotti’s intrinsic par-
ticle dynamics (first described in Barbour & Bertotti 1982). This theory exactly
matches the zero angular momentum fragment of standard Newtonian theory. Al-
though alternative formulations of this fragment of Newtonian theory are possible
(see, especially, Belot 1999, Belot 2000), only Barbour’s notion of “best match-
ing” provides a relational understanding of the inertial structure that must be a
component of any such formulation.1

This paper is ultimately concerned with the various surprises that are in store
when one adopts the Machian approach in the context of the variable geometry of
general relativity (GR). If cast in its 3+1, dynamical form, it turn out that GR can
already be viewed as a perfectly Machian theory.2 But even from the Machian per-
spective, it is a theory about substantival space (rather than spacetime). Further,
although such a Machian interpretation of GR naturally suggests a “sophisticated”
substantivalist attitude to space, it nevertheless involves an indeterminism more
pernicious than that familiar from discussions of the Hole Argument.

Before turning to Barbour’s interpretation of GR in Section 3, I first consider
the extension of the Machian programme to special relativistic theories. This will
serve as a useful introduction to some of the interpretative issues.

2 Special Relativity

The most influential anti-relationist arguments concern the scientific treatment of
motion. In a nutshell, the arguments are that dynamics requires the use of inertial
structure and that this structure is prima facie non-relational. The arguments are
summarized in Pooley & Brown (2001, §4) where Barbour and Bertotti’s relational
reduction of inertial structure in the context of Newtonian mechanics—effectively
a Machian refutation of the substantivalist arguments—is described in some detail.

Now the relationist must confront two further issues, both concerning the via-
bility of his point of view in the specific context of relativistic physics. One concerns
the apparent tension between relativity’s denial of a preferred foliation of space-
time, and the basic ontological ingredients of Barbour and Bertotti’s relational
alternative to standard physics, namely instantaneous relative configurations of
the entire universe. DiSalle (1994, 275), for example, suggests that this tension
strips relationism of the philosophical attractiveness it might have enjoyed prior
to relativity. Its true significance is explored below (Sections 2.2 and 3.2). The

1As described in, e.g., Earman (1989, Ch. 5), Pooley & Brown (2001, §6) and Barbour (1999a),
intrinsic particle dynamics is not the only genuinely relational non-relativistic theory. The prob-
lem is that these alternatives, in one way or another, fail to be empirically adequate. Of course, in
failing to be a relativistic theory, intrinsic particle dynamics itself is not, ultimately, empirically
adequate. This paper is primarily concerned with the interpretation of the theories one obtains
when one extends the basic principles of intrinsic particle dynamics to the relativistic domain.

2The claim that GR can be viewed as a fully Machian theory is controversial. In endorsing
it I am not claiming that the geometry of spacetime is fully determined by the matter content
of the universe. That claim is generally acknowledged to be false (see Barbour & Pfister 1995).
The sense in which GR is perfectly Machian is explained in Section 3.
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other issue, which I address first, concerns a popular substantivalist conception of
fields.

2.1 Fields

The question of whether an ontology of fields, rather than of Newtonian point
particles, has any implications for the substantivalist–relationist debate is one
that commands little consensus. In his World Enough and Space-time, Earman
endorses the following argument of Hartry Field:

From the platonistic point of view, a field is usually described as an
assignment of some property, or some number or tensor, to each point
of space-time; obviously this assumes that there are space-time points,
so a relationist is going to have to either avoid postulating fields (a
hard road to take in modern physics, I believe) or else come up with
some very different way of describing them. (Field 1980, 35)

Earman claims that “in postrelativity theory, it seems that the electromagnetic
field, and indeed all physical fields, must be construed as states of M [the spacetime
manifold]” (1989, 155). The standard characterization of a field in spacetime
involves assigning, for each coordinate system, a set of numbers to each point
p of M . These are the components (in each coordinate system) of the field at
each point p. Earman claims that while “the antisubstantivalist can, of course,
attempt to dispense with some or all of this apparatus in favor of another means
of specifying a relationally pure state of affairs. . . the burden of proof rests with
the antisubstantivalist” (1989, 159).

How persuasive is the argument? Certainly a number of philosophers have felt
that an alternative conception of fields is readily to hand. Belot urges that one
can think of fields as being “extended non-material objects possessing infinitely
many degrees of freedom” rather than as assignments of properties to space or
spacetime: “neither option appears mandated by physical considerations” (1999,
45).3 Substantivalists have responded that “dispensing with space-time regions
in favor of “parts of a field” is possible. . . However. . . this “saves” relationism
only by trivializing it” (Field 1980, 41). And Rynasiewicz, observing the debate,
concludes that this is all grist to his sceptical mill: it merely emphasizes that what
one counts as “space” and what one counts as “physical object” is really no more
than a matter of linguistic choice (Rynasiewicz 1996, 300–1).

To note these moves is only to begin to engage with the real issues. Earman
points out that the standard specification of fields invokes spacetime points. Even
if it is claimed that fields are extended objects in spacetime rather than properties
of spacetime, it might seem that an alternative way of specifying them is needed
if a commitment to the existence of spacetime points is to be avoided. Field’s
charge of trivialisation is off-target too. Suppose an alternative to a substantival

3Brown (1997) makes a similar point. I endorse Belot’s intuition but since ordinary matter
receives a field-theoretic treatment in modern physics (in the context of GR and quantum field
theory, one standardly talks of “matter fields”) I would question the qualification “non-material.”
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conception of fields is viable. For relationism to be vindicated, an empirically
adequate dynamical theory of such entities which does not involve primitive inertial
or temporal structure is still needed. Otherwise the anti-relationist arguments
mentioned above are effective. Point particle theories which eschew such structure
are possible. But are there field analogues? And if there are, are they empirically
adequate?

As already anticipated, such theories do in fact exist. One of Barbour and
Bertotti’s motivations for constructing intrinsic particle dynamics (for a descrip-
tion of the theory, see Pooley & Brown 2001, §7) was to find a framework that
could also deal with fields. To get a flavour of such a field theory, consider the
simplest case, that of a scalar field φ. Imagine a configuration of such a field that
is non-zero only in some finite region. According to the relationist, φ does not
represent an assignment of properties to space; it is an extended, material thing.
But equally, since space itself is supposed not to exist, this extended object should
not be characterised in terms of the spatial locations of the various field intensities.
Rather it is to be characterised by the relative dispositions of the field intensities:
the infinite number of facts about the relative distances and angles between par-
ticular values of φ that fully capture the pattern of field intensities. Facts, for
example, of the form “an instance of φ = a is b metres from an instance of φ = c”.
Together, these specify the relative field configuration. As in the case of a relative
configuration of point particles, a very economical way of capturing these rela-
tional facts is to refer the field to a Cartesian coordinate system, φ = φ(x). But to
stress a point made in Pooley & Brown (2001, §7), these coordinates are not to be
understood as ‘names’ for the points of space. Rather one should imagine laying
a coordinate grid onto the field itself.

There is one important difference between the field case and the particle case. It
is a difference that surely is in part responsible for Earman’s belief that the way in
which fields are standardly specified lends prima facie support to substantivalism.
In the particle case, while one can choose to capture the relative distances in terms
of a coordinate system, one does not have to do so. The alternative, of course, is
to state explicitly a sufficient number of the relative distances rij. In the field case
there are an infinite number of such distances to catalogue—fields have infinitely
many degrees of freedom.

The correct relationist response to this observation is to note that one nonethe-
less can have a clear understanding of what a relational specification of the field
would consist in, even if such a specification is not possible in practice. After all,
specification of a substantivalist field configuration will also, in general, not be
possible in practice. In principle, Earman’s challenge to the relationist to provide
a “direct characterisation” of the reality underlying the substantivalist’s descrip-
tion of a field is easily met, at least in the case of fields ‘in’ flat space(time) (cf.
Earman 1989, 171).

The route to a relational field theory parallels exactly the route to a relational
particle theory. Consider two patterns of field intensities φ and φ′ which differ
intrinsically. One can describe each with the help of Cartesian coordinate sys-
tems. In doing so, how the coordinate systems are ‘placed’ relative to the field
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configurations is entirely arbitrary. This allows the construction of a trial measure,
ds, of the difference between them, for example via ds2 =

∫
d3x(φ′(x) − φ(x))2.

The coordinatization of φ′ can now be varied: coordinate systems related to each
other by Euclidean transformations capture the same relative dispositions of field
intensities. This variation will affect our trial value of ds and the minimum value
resulting from such variation will constitute a measure of the intrinsic difference
between φ and φ′. Barbour calls this variation “best matching” for rather than
describing the process in terms of the recoordinatisation of one of the field configu-
rations, one could imagine the two 3-dimensional field configurations being rigidly
shifted with respect to each other to obtain the ‘best fit’ relative placement. The
measure of intrinsic difference between relative field configurations it provides gives
us a metric on the field’s relative configuration space, Q0. This in turn can be used
to construct a geodesic variational principle on the relative configuration space,
yielding a preferred class of curves as representative of physically possible histories:
relational histories will be sequences of relative field configurations.4

2.2 Simultaneity

The problem is that this notion of a possible history embodies absolute simultane-
ity, something which the abundant empirical evidence supporting special relativity
militates against. Nonetheless, there are two senses in which relational field theo-
ries of the type just described can be said to be Lorentz-covariant.

In Barbour and Bertotti’s intrinsic particle dynamics one has a uniquely favoured
time parameter and best matching provides an equilocality relation between suc-
cessive configurations. These surrogates for Newton’s absolute time and space
allow one to transform a sequence of 3-dimensional relative particle configurations
into a 4-dimensional configuration of particle trajectories in Newtonian spacetime.
Similarly, for a given relational field theory, the best-matching minimization of
relative field configurations and the simplifying time parameter associated with
the action principle (if it is of Jacobi type) will allow the construction of an effec-
tive spacetime; i.e. it will transform physically possible sequences of 3-dimensional
relative field configurations into a 4-dimensional field configuration.

We can now ask a number of questions. First, is this 4-dimensional field con-
figuration a solution of a special relativistic field theory formulated in Minkowski
spacetime? The answer will be yes if the relational theory bears a certain re-
lationship to some Lorentz-covariant field theory.5 Such theories can be said to
Lorentz-covariant in a weak sense.

So far this 4-dimensional field configuration is described with respect to a par-
ticular inertial frame (that obtained from the best matching of the 3-dimensional
relative configurations). To set the scene for the second question, imagine per-

4For further details of how best matching provides a metric on the relative configuration
space of point particles and for why a geodesic principle on this configuration space constitutes
a genuinely relational theory, see Pooley & Brown (2001, §§6–7). A complementary discussion
can also be found in Butterfield (2001, XXX) which contains a very clear description of best
matching in the point particle case employing rather different notation.

5Details are given in the appendix.
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forming a Lorentz transformation. The result will be a new description of the
same 4-dimensional configuration which can be reinterpreted as a sequence of in-
stantaneous 3-dimensional relative configurations. In general this sequence will
be different from the original one—it will be represented by a different curve in
the field’s Q0—for by describing things from the perspective of a different inertial
frame, we have sliced spacetime by different hyperplanes of simultaneity. The sec-
ond question is: is this new sequence also a solution of a relational field theory?
Finally, if it is, one can ask: is it a solution of the same relational field theory?

As explained in the appendix, the two parts of the second question must re-
ceive the same answer: either yes or no. The answer is yes only if the field’s
energy-momentum 4-vector vanishes.6 In this case, the relational theory is Lorentz-
covariant in a strong sense: the dynamical law describing the universe (the geodesic
principle on the universe’s relative configuration space) takes the same form no
matter from which inertial frame one chooses to obtain a sequence of 3-dimensional
relative configurations.

One might be tempted to see the need for a restriction on the value of energy-
momentum in order to achieve strong Lorentz-covariance as a bonus. If, for some
reason, one believes the theory should be Lorentz-covariant in this sense, then the
value of the energy is fixed to be identically zero. It is arguably a weakness of the
point particle theory that, although E is a fundamental constant, it is arbitrary.
Although the particle theory is particularly elegant when E = 0, nothing mandates
this value.

However, strong Lorentz-covariance has some rather unwelcome consequences
for the relationist. From the relationist perspective, 3-dimensional relative config-
urations are ontologically primary. This is certainly Barbour’s view:

The world is to be understood, not in the dualistic terms of atoms
(things of one kind) that move in a framework and container of space
and time (another quite different kind of thing), but it terms of more
fundamental entities that fuse space and matter into a single notion of
a possible arrangement, or configuration, of the entire universe. Such
configurations. . . are the ultimate things. There are infinitely many
of them; they are all different instances of a common principle of con-
struction; and they are all, in my view, the different instants of time. . .
The world is made of Nows. (Barbour 1999b, 16)

The 4-dimensional spatio-temporal framework of an inertial frame, and every-
thing properly described with respect to it, are to be understood as emerging from
the dynamics of these truly fundamental “ultimate things”. This itself makes the
very formulation of the invariance requirement—that the laws of nature take the
same form in every inertial frame—rather odd. That aside, the real problem comes
when one asks, of any particular possible universe, which sequence of 3-dimensional

6The 4-dimensional angular momentum tensor about every point will also vanish. I put aside
the question of whether there exist physically interesting field theories which have non-trivial
solutions of this form.
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configurations represents the genuine ontology; for in general, the sequence of rel-
ative configurations associated with each inertial frame will be different. They will
correspond to different curves in the appropriate relative configuration space, even
though each curve is a geodesic of the dynamical variational principle.

Suppose the actual universe could be modelled as the solution of such a theory.
Each member of an infinite family of curves in Q0 would be equally adequate
to the observable phenomena. But surely, if one wishes to adopt the relationist
perspective, one must hold that our universe is one particular sequence of relative
configurations. All the others represent physically distinct yet observationally
indistinguishable worlds.7 The alternative—to admit that each curve is a different
representation of the same reality—reintroduces a 4-dimensional perspective and
with it, arguably, the fundamental reality of spacetime. The situation is ironically
close to that faced by the naive Newtonian substantivalist who insists that one
particular set of inertial trajectories are the world lines of the points of absolute
space, but who has to admit that no empirical evidence can tell him which set it
is.

If, on the other hand, the world could be modelled by a relational field theory
which was Lorentz-covariant only in the weak sense then the problem does not
arise. The apparent absence of a standard of absolute simultaneity is taken care of
by the fact that the theory is weakly Lorentz-covariant. But it is only apparent;
the genuine simultaneity surfaces are those of the inertial frame for which P =
0. Moreover, the relational theory predicts that in this frame the 3-dimensional
angular momentum with respect to the centre of mass coordinate will be zero.

As we are about to see, this story comes close to being repeated in the context
of GR, but in rather an unexpected fashion.

3 Geometrodynamics

So far the spatial relations between the material parts of possible instantaneous
configurations of the universe have been assumed to be Euclidean. Can the frame-
work be further generalized to arbitrary Riemannian spatial relations? What are
the analogues, in the context of GR, of the instantaneous relative configurations
of the universe so far considered? An answer is only forthcoming for general rel-
ativistic spacetimes that admit a global foliation into a family of 3-dimensional
spacelike hypersurfaces. (For simplicity, suppose such hypersurfaces are compact
and of fixed topology.) Each such hypersurface has a certain matter content (fields
with various patterns of intensities) with definite spatial relations (no longer nec-
essarily Euclidean) holding between the various field values. Such data can be
specified in terms of a 3-dimensional differentiable manifold, Σ, with a Rieman-
nian metric hij and matter fields defined on it. Consider shifting the matter and

7Each sequence of relative configurations corresponds to the same spacetime and they are
thus “observationally indistinguishable worlds” in the following sense: in principle, inhabitants
of such worlds could discover through observations which spacetime allowed by the theory they
were part of. But no observation could reveal to them which particular sequence of relative
configurations constituted the building blocks of their spacetime.
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metric fields with respect to the base manifold Σ by an active diffeomorphism. The
result involves exactly the same pattern of field intensities with the same spatial re-
lations holding between them. The relationist will thus identify them. The space
of all possible 3-dimensional entities of this type appears to be the appropriate
relative configuration space for a relational analogue of GR.

For the moment, overlook the fact that, as traditionally conceived, the relation-
ist–substantivalist debate is about the reality of space or spacetime and consider
the matter-free case. The space of all Riemannian metrics defined on Σ is normally
denoted Riem(Σ). The relationist will wish to identify as physical spaces points of
Riem(Σ) that differ solely in how the metric field is ‘placed’ on Σ. He will identify
points of Riem(Σ) that are related by a diffeomorphism of Σ. The resulting rela-
tive configuration space is the space of all possible intrinsic 3-geometries (of fixed
topology), denoted Geom(Σ) = Riem(Σ)/Diff(Σ), where Diff(Σ) is the group of all
diffeomorphisms of Σ. Following John Wheeler, Geom(Σ) is known as superspace.

Once the details of the relative configuration space have been fixed, the broad
outlines of a Machian dynamical theory are easy to state. One wants to define
a best-matching based metric on the relative configuration space and then use
this to construct a geodesic principle to single out a preferred class of curves as
representative of physically possible histories. The generalization from Euclidean
to Riemannian geometry requires a generalization of the best-matching procedure.
In effect all possible coordinatizations of two 3-geometries which differ intrinsically
must now be considered in the minimization of some quantity chosen to represent
a trial difference between them. It was Barbour and Bertotti’s hope to construct
a Machian alternative to GR along these lines. It came as quite a surprise to them
(and an initially unwelcome one!) when, following discussions with Karel Kuchař,
they realised that the “geometrodynamical” formulation of GR was already a theory
of exactly this type.8

To get an idea of how this can be, it is instructive to compare Barbour and
Bertotti’s action principle for Machian non-relativistic particle dynamics (equa-
tion 3.1) with the “BSW” action (equation 3.2): the action principle for GR found
by Baierlein, Sharp and Wheeler (1962):9

δSBB2 = 0, SBB2 =

∫
dλ
√

FETBB2 ,

TBB2 =
1

2

n∑
i=1

mi

(
dxi

dλ
−
∑

αaα(λ) Oαxi

)
·
(

dxi

dλ
−
∑

αaα(λ) Oαxi

)
;

(3.1)

δIbsw = 0, Ibsw =

∫
dλ

∫
d3x
√

RTbsw ,

Tbsw = Gijkl

[
dhij

dλ
− 2N(i;j)

] [
dhkl

dλ
− 2N(k;l)

]
.

(3.2)

8For more details see (Barbour 1999b, 167–177).
9(3.2) is taken from Barbour (1994, 2868, equation 35). It is not given in exactly this form

in Baierlein, Sharp & Wheeler (1962). For an extensive discussion of the interpretation of (3.1),
see Pooley & Brown (2001, §7).
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In (3.2), the 3-dimensional metric hij (describing the intrinsic geometry of space
at an instant with respect to some arbitrary coordinate system) is the dynamical
variable, analogous to the various particle coordinates, xi, in (3.1). The shift
vector N i is the generator of 3-dimensional diffeomorphisms and, according to
the Machian point of view being expounded, appears in the action to effect the
generalized best-matching mentioned in the paragraph above.10 The 3-dimensional
curvature scalar R is a conformal factor analogous to FE. Gijkl, a functional of
hij, is the DeWitt supermetric. It is needed to define a metric on Riem(Σ) which
in turn defines a metric on superspace after minimization with respect to the N i.

The principal conceptual difference between the action principles (3.1) and (3.2)
is the positioning of the integration over 3-space outside the square root in (3.2):
the sum over particle coordinates appears within the square root in (3.1). In both
cases time does not appear in the kinematics: λ is an arbitrary parameter labelling
consecutive 3-geometries. But in GR, the time defined by the dynamics is defined
locally. By setting the conformal factor (R) equal to the kinetic term (Tbsw) at
each point of space one obtains a different time parameter corresponding to the
local proper time along the time-like trajectories joining best-matched points of
successive 3-geometries.11

At this point it might be helpful to mention the Hamiltonian formulation of
GR, an alternative but related formulation of geometrodynamics more familiar in
the canonical quantum gravity literature. When cast in Hamiltonian form, GR
turns out to be a gauge theory in a technical sense; it is a constrained Hamilto-
nian system.12 Central to this formulation is a subspace, often denoted Γ, of the
cotangent bundle T ∗Riem(Σ). It is a constraint surface defined by a set of four
constraint functions, the three momentum or vector constraints and the Hamilto-
nian or scalar constraint.

Every point of Γ is a possible spacelike hypersurface of some general relativistic
spacetime. Points of T ∗Riem(Σ) that do not lie on Γ are 3-manifolds equipped
with a combination of metric and extrinsic curvature tensors that is incompatible
with that 3-space being embeddable in any general relativistic spacetime. Asso-
ciated with the constraint functions are a set of transformations Γ → Γ which
partition the constraint surface itself into subspaces. These are the so-called gauge
transformations and the subspaces are known as gauge orbits. It turns out that the
gauge orbits are in one-one correspondence with equivalence classes of isometric
general relativistic spacetime models.

Most philosophical discussion of canonical quantum gravity takes the Hamil-

10Under an infinitesimal diffeomorphism generated by N i, hij → hij − (Ni;j + Nj;i) = hij −
2N(i;j). The raising and lowering of indices and covariant differentiation are defined with respect
to the 3-metric hij . The Oα in (3.1) are the infinitesimal generators of the Euclidean group and
occur in the action to effect a ‘rigid’ best matching of relative particle configurations analogous
to that described for fields in the previous section (see page 4).

11The position of the square root in (3.2) may be extremely significant. Barbour, Foster
& Ó Murchadha (2000) claim that the BSW action principle (i.e., GR) is the only consistent
theory of this type and, further, that when matter is coupled to the theory one can derive local
Lorentz-covariance, Maxwellian electrodynamics and the gauge principle.

12For an excellent discussion of GR as a gauge theory in this sense, see Belot & Earman (2001).
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tonian formulation of GR, rather than a Lagrangian formulation, as its starting
point. When interpreting the Hamiltonian formalism, the basic decision one faces
is whether to regard the transformations generated by the constraints as ‘genuine’
gauge transformations indicating that the formalism contains non-physical degrees
of freedom. If one does interpret them in this way, points of Γ related by the gauge
transformations are held to represent the same state of affairs.

If one takes the BSW Lagrangian formulation as fundamental, however, then
the momentum constraints on the one hand and the Hamiltonian constraint on the
other are seen to be quite different in nature. The momentum constraints arise as
a result of the generalized best matching and hence Barbour views the transforma-
tions generated by them as arising from a genuine redundancy in the formalism:
one can represent one and the same 3-geometry by way of many nominally different
metric tensors defined on Σ. The Hamiltonian constraint, however, is analogous
to identities that hold between the canonical momenta of the standard Newto-
nian Jacobi principle action (discussed in Pooley & Brown 2001, §6) and those
of its Machian analogue (3.1). The identities arise in these cases case because
the momenta are not independent; for example, there are 3N canonical momenta
associated with the standard Jacobi principle action for N gravitating particles
yet one needs to specify only 3N − 1 numbers to define a direction (as opposed
to a direction and a speed) in the 3N -dimensional configuration space Q. The
identities correspond to the reparameterization invariance of the actions; they do
not arise due to a redundancy in the way the configuration data are represented.13

To summarize, it is clear why Barbour concludes that GR is Machian: only
global relative 3-dimensional configurations count in the dynamics. The local
inertial frames and local proper time do not feature in the kinematical foundations
of the theory. Rather they are determined dynamically via a generalized best-
matching and a localized version of the dynamical temporal metric.14

3.1 Sophisticated substantivalism

The immediate question one now faces is: what is the theory just described a
theory of? After all, the relative configurations are intrinsic 3-geometries: they
are ‘relational’ specifications of the geometrical properties of space. Even when
cast as a dynamical theory concerning the evolution of 3-dimensional entities, GR
turns out to be a theory involving substantival space if not substantival spacetime.

Two rather desperate strategies of retreat for the relationist should be consid-
ered.15 In the first, which can be disposed of rather quickly, one simply stipulates
that the vacuum solutions of pure geometrodynamics are unphysical, insisting that
there must be matter fields present. The 3-metric field is then to be seen merely as

13For a very clear discussion of the analogy between the constraints of Hamiltonian GR and
those of Barbour and Bertotti’s 1982 theory, see Barbour (1994), especially §§6 and 12. For the
relation between the BSW action for GR and the Hamiltonian formulation, see Barbour et al.
(2000, sec. III).

14For discussion of these aspects of Barbour and Bertotti’s non-relativistic relational theory,
see Pooley & Brown (2001, §§7–8).

15Note that neither is advocated by Barbour.
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encoding the distances between the various values of these other fields. This seems
a hopeless position for two reasons. First, the precise form of the geometry of any
Einstein-style “holes” in the matter fields of an initial data hypersurface will affect
the solution. It seems contrived at best to say that the geometrical features of
such empty spaces—which can be as convoluted as one likes—are manifestations
of the spatial relations between parts of the surrounding matter fields. Second,
and far more damaging, the specific way in which the metric field occurs in the
action principle makes it appear a player very much on equal footing with any
matter fields present.16

The second strategy is well illustrated in the following quote from Carlo Rovelli:

Einstein’s identification between gravitational field and geometry can
be read in two alternative ways:

i. as the discovery that the gravitational field is nothing but a local
distortion of spacetime geometry; or

ii. as the discovery that spacetime geometry is nothing but a mani-
festation of a particular physical field, the gravitational field.

The choice between these two points of view is a matter of taste, at least
as long as we remain within the realm of nonquantistic and nonthermal
general relativity. I believe, however, that the first view, which is
perhaps more traditional, tends to obscure, rather than enlighten, the
profound shift in the view of spacetime produced by general relativity.
(Rovelli 1997, 193–194)

Exact analogues for views (i) and (ii) (now reading “spatial” for “spacetime”)
exist for the 3-metric field of geometrodynamics. The claim that it is a matter of
taste which perspective one adopts is reminiscent of Rynasiewicz’s view mentioned
in Section 2.1. Rovelli goes on to suggest that in light of view (ii) “it is perhaps
more appropriate to reserve the expression spacetime [“space” if we are considering
the 3-dimensional Σ] for the differential manifold, and to use the expression matter
for everything dynamical. . . including the gravitational field.” Once the identifi-
cation of diffeomorphic entities (whether 3- or 4-dimensional) has convinced us to
jettison the bare manifold, “physical reality is now described as a complex inter-
acting ensemble of entities (fields), the location of which is only meaningful with
respect to one another” (1997, 194).

At this stage one risks getting mired in terminological niceties, but it is possible
to be clear about what is at stake. At the beginning of this subsection I claimed
that geometrodynamics is naturally interpreted as a dynamical theory about space
(coupled to matter, if any is present). I then considered and rejected the relationist
strategy which denies the primitive reality of the 3-metric field. What is now under
consideration is whether one can admit the concrete reality of the 3-metric field
and yet deny the reality of space. I maintain that to call the 3-metric “matter” is

16For similar problems, in a context other than geometrodynamics, confronting a reductive
understanding of the 4-dimensional metric of GR, see Brown & Pooley (2001).
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strained and misleading. The same point in the context of the 4-metric is forcibly
put by Hoefer (1998, 459–460) who stresses the differences between the metric field
and other fields, in particular that one can imagine space without matter fields
but that there can be no space without the metric field. Rovelli himself admits
that the ‘gravitational field’ is unlike any other field, in particular in the way that
it couples to every other field. In addition to these features I would also stress the
indispensability of the metric field: it is not just another field which one may or
may not include in a model of a dynamically possible world as one chooses. One
cannot formulate a theory of the other physical fields without the metric field.

Note, also, that one cannot apply the relationist conception of fields discussed
in Section 2.1 directly to the metric field. There one used the brute spatial re-
lations between the various intensities of matter fields to specify a relative field
configuration. Here the field itself defines such distances. Although one can talk,
for example, about varying values of curvature and the distances between them,
a catalogue of all the shortest distance relations between points suffices to define
the values of the curvature at them and anything else there is to define. In a sense
there really is nothing other than the distance relations and their relata. Relata
that are most simply and naturally interpreted as the the points of substantival
space.

One of Rovelli’s primary concerns is to stress that determination of location
becomes ‘relational’: all that matters is contiguity between fields. But this one
can readily admit while maintaining that one of these fields represents nothing
other than space or spacetime itself. For although geometrodynamics is naturally
interpreted as a theory about the evolution of the geometrical properties of sub-
stantival space, it equally suggests a sophisticated form of substantivalism; i.e.,
that isometric 3-spaces should be identified.17 This is because the role of the shift
vector in (3.2) precisely parallels that of the generators of the Euclidean group in
(3.1).

Geometrodynamics can be regarded as a degenerate18 geodesic principle on
superspace: putatively distinct 3-spaces with the same geometry but which differ
solely in terms of which points of the manifold instantiate which geometric proper-
ties are stipulated to represent the same physical possibility. Just as the Cartesian
coordinate system of intrinsic particle dynamics is a convenient way to represent
the relative distances between particles and does not name the points of an inertial
frame, so the coordinate systems of geometrodynamics are not to be thought of as
naming the points of a bare 3-manifold, points that possess primitive thisness.19 In

17Sophisticated substantivalism can be defined as the combination of two doctrines: (1) that
isometric spaces (whether they be 3- 4- or n-dimensional) should be identified (hence the “so-
phisticated”) and, (2), that such spaces are to be thought of as primitive entities (as ‘substances’,
hence “substantivalism”)—in particular, they are not ontologically reducible to the network of
actual or possible relations holding between their material contents. The phrase is due to Belot
& Earman (2001, 228) who, as we are about to see, use “sophisticated” in a rather a pejorative
sense.

18I return to the significance of this degeneracy in the next section
19The terminology is due to Adams (1979). Very roughly, an individual possess primitive

thisness if its being the very thing it is does not supervene on purely qualitative facts. The claim
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the generic, asymmetrical case, the points of space can be individuated directly in
terms of their geometric properties.20 The coordinate charts of the differentiable
manifold are simply a vastly more convenient way of doing so.

Belot and Earman reject this form of substantivalism. Their reasons for do-
ing so concern the links (as they see them) between the different interpretations
of classical GR and different approaches to quantizing the theory. I briefly men-
tioned the Hamiltonian formulation of GR and its status as a gauge theory (see
above, page 9). A gauge-invariant interpretation of this formalism asserts that
only quantities that are invariant under the transformations generated by the con-
straints (the gauge transformations) are physically real.

Belot and Earman equate gauge-invariant interpretations of the classical theory
with relationist interpretations and thus see relationism as underwriting gauge-
invariant approaches to quantizing the theory. They also claim that “straightfor-
ward substantivalism” can be understood as underwriting particular non gauge-
invariant approaches.21 Sophisticated substantivalism, on the other hand, is in
trouble:

there is one sort of response to the hole argument which is clearly
undesirable: the sort of sophisticated substantivalism which mimics
relationism’s denial of the Leibniz-Clarke counterfactuals. It would re-
quire considerable ingenuity to construct an (intrinsic) gauge-invariant
substantivalist interpretation of general relativity. And if one were to
accomplish this, one’s reward would be to occupy a conceptual space al-
ready occupied by relationism. Meanwhile, one would forego the most
exciting aspect of substantivalism: its link to approaches to quantum
gravity. . . To the extent that such links depend on the traditional sub-
stantivalists’ commitment to the existence of physically real quantities
which do not commute with the constraints, such approaches are clearly
unavailable to the relationist. Seen in this light, sophisticated substan-
tivalism, far from being the savior of substantivalism, is in fact a pallid
imitation of relationism, fit only for those substantivalists who are un-
willing to let their beliefs about the existence of space and time face
the challenges posed by contemporary physics. (Belot & Earman 2001,
248–9)

that spacetime points possess primitive thisness is very closely related to the claim that the
identity relation between spacetime points of different possible worlds is primitive. The route to
sophisticated substantivalism by way of a denial of such a primitive identity relation is advocated
by Hoefer (1996). Hoefer himself does not endorse substantivalism (he is a relationist); he merely
argues that the most defensible form of substantivalism is a sophisticated one.

20For issues relating to the symmetrical cases, see Butterfield (1989, 27) and Saunders (forth-
coming).

21‘Gauge-invariant’ approaches to quantizing the theory require that all observables commute
with quantum-operator versions of the constraint functions. Straightforward substantivalism is
the obvious alternative to sophisticated substantivalism. The straightforward substantivalist
believes in qualitatively identical yet distinct physically possible worlds, differing solely in terms
of which points of space or spacetime instantiate which geometric properties.
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Their claim that the sophisticated substantivalist is required to provide an in-
trinsic gauge-invariant interpretation of GR needs to be motivated. Consider, for
a moment, the spacetime formulation of the theory. The sophisticated substanti-
valist urges that a single physical possibility corresponds to an equivalence class
of isometric spacetime models. At a mathematical level he has not provided an
intrinsic description of the possibility; there is redundancy in his description cor-
responding to the freedom one has in choosing how to paint the particular metric
and other fields onto the base manifold. But despite this, surely one has a very
clear idea of the reality underlying the equivalence class, viz. a spacetime of a
particular geometry whose points’ identities depend on their particular geometric
properties and relations. There is no obscurity either in how each member of the
equivalence class can represent this single entity or in why the model–possibility
representation relation is many to one. To demand an intrinsic gauge-invariant
interpretation is to demand that one devise a mathematical formalism in which
the relation becomes one to one. But Belot and Earman do not give any reason
why the sophisticated substantivalist (or the relationist) needs to provide such a
formalism or why he should be troubled by the prospect that providing such a
formalism might prove to be an intractable problem.

Returning to geometrodynamics, although 3-space is described in terms of a
coordinate-dependent metric tensor, the machinery of best-matching, and the anal-
ogy with non-relativistic Machian theories, strongly support identifying isometric
3-spaces. Again, there is no difficulty in grasping the nature of the entities under-
lying such equivalence classes; they are 3-spaces of a particular geometry. Note too
that if one does not equate isometric 3-spaces in the way suggested, then consis-
tency would seem to require that one regard Barbour and Bertotti’s intrinsic par-
ticle dynamics as an indeterministic theory formulated in absolute space, surely an
absurd position. The description of geometrodynamics expounded in this section is
thus both substantivalist and partially gauge-invariant (the demand for an intrin-
sic description of a 3-geometry is simply to be rejected). The gauge-invariance is
only partial because of the foliation invariance of the theory, something addressed
in the next section.

What would be much harder to provide—both because of the existence of non-
trivial vacuum solutions and because of the non-reducibility of metrical relations to
structural properties of matter fields—is a relationist gauge-invariant description
of GR in either its spacetime or its geometrodynamical formulation. Initially Belot
and Earman characterize the opposition between relationism and substantivalism
in terms of the ontological status of space and spacetime:

substantivalists understand the existence of spacetime in terms of the
existence of its pointlike parts, and gloss spatiotemporal relations be-
tween material events in terms of the spatiotemporal relations between
points at which the events occur. Relationists will deny that spacetime
points enjoy this robust sort of existence, and will accept spatiotem-
poral relations between events as primitive. (Belot & Earman 2001,
227)

But in pure geometrodynamics without matter fields what are the material events
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meant to be? It seems that there are only the points of space and their spatial
relations. What is to be decided is how the physics treats these: whether it is
in what might be called absolutist (or haecceitist) terms, by assigning primitive
thisness to the points of the bare spatial manifold, or whether it is in ‘relational’
terms in that the individuality of a point of space is held to be settled by the
sum total of its geometrical properties and relations. The appearance of the shift
vector in the BSW action (equivalently the momentum or vector constraint of
the Hamiltonian formulation of geometrodynamics) strongly suggests the latter
position. After all, a geodesic principle on Riem(Σ) which did not implement
generalized best-matching is conceptually possible. Such a theory would recognise
a physical distinction between two spaces with the same geometry that differed
solely in terms of which points instantiated which properties.22

Thus a preferable point of view to that of Belot and Earman is to see the ques-
tion of whether there exist physically real quantities which do not commute with all
the constraints of the Hamiltonian formulation of GR as being decisive in deciding
between straightforward substantivalism on the one hand and the disjunctive set
of sophisticated substantivalism and antisubstantivalist relationism on the other.
If the second of these options is vindicated (say, for example, by all the observables
of an empirically successful, but as yet unknown, quantum theory of gravity com-
muting with the constraints) then there will remain a further interpretative task.
One will need to decide whether the resulting theory is a quantum theory about
(intrinsically described) regions of space or spacetime, or whether quantum space-
time is reducible to something else, as the traditional antisubstantivalist relationist
(such as Hoefer) desires.23

This shows that one needs to distinguish carefully between two uses of the term
“relationism”. One brand of relationism (antisubstantivalism) involves denying the
fundamental existence of space or spacetime. But anti-haecceitism—the claim that
a possibility is fully specified by a complete description of the qualitative proper-
ties of, and the relations holding between, its parts—is also called “relationism” by
some. Saunders (forthcoming) is an example of a relationist (“sophisticated sub-

22Elsewhere Belot reports favouring a reading of the substantivalist–relationist debate “accord-
ing to which relationism and its denial (substantivalism) are theses concerning the ontological
instantiation of a given physical geometry” (Belot 2000, 575). However he goes on to “stipulate”
that the substantivalist should side with Clarke in his dispute with Leibniz and regard, e.g., two
possible worlds differing solely in terms of where qualitatively identical matter distributions are
situated in space as genuinely distinct possibilities. Failure to grant relationism the sole right
to identify such situations is meant to risk restricting it to “some other, typically quite barren,
demesne” (Belot 2000, 576–7). I hope to have made it clear both why I see no principled reason
for such a restriction on how the substantivalist can count possibilities and why I see no such
threat to the vitality of relationism lurking on the horizon.

23Belot and Earman claim that Kuchař’s internal time approach to quantum gravity is allied
to a ‘straightforward’ substantivalist interpretation of GR. But while Kuchař believes that the
observables of GR need not commute with the Hamiltonian constraint, he does believe that they
should commute with the vector constraint. In classical terms this amounts to regarding all
3-spaces which instantiate the same 3-geometry as physically indentical but regarding different
3-geometries which nonetheless can form (different) spacelike hypersurfaces of the same general
relativistic spacetime as physically distinct. Such a position seems perfectly compatible with
sophisticated substantivalism (about space).
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stantivalist”) in this latter sense. He reserves the phrase “reductive relationism”
for antisubstantivalism. I have already quoted Carlo Rovelli, who is taken by Belot
and Earman as a paradigm relationist in the field of canonical quantum gravity.
His prime concern as a relationist is that it is only relations of contiguity between
the various dynamical fields that are physically meaningful (though this itself is
a problematic claim when there is only one field) and elsewhere his descriptions
of loop quantum gravity suggest a point of view which sounds suspiciously like
sophisticated substantivalism:

Loop quantum gravity is a rather straightforward application of
quantum mechanics to Hamiltonian general relativity. . . In conventional
QFT, states are quantum excitations of a field over Minkowski (or over
a curved) spacetime. In loop quantum gravity, the quantum states
turn out to be represented by (suitable linear combinations of) spin
networks. A spin network is an abstract graph with links labeled by
half-integers. . .

Intuitively, we can view each node of the graph as an elementary
‘quantum chunk of space’; the links represent (transverse) surfaces
separating quanta of space. . . The spin network[s] represent relational
quantum states: they are not located in a space. Localization must be
defined in relation to them. (Rovelli 2001, 110, my emphasis)

3.2 Indeterminism and conformal superspace

One reason why Belot believes that the substantivalist should resist the temptation
to regard diffeomorphically related spacetime models as physically equivalent is
that the indeterminism he is thereby committed to is of only a “strangely mild
variety” (1999, 47). And certainly if, in the context of geometrodynamics, one
insists on regarding diffeomorphically related 3-spaces as physically distinct, then
the theory is beset by a mild form of indeterminism: for a given 3-geometry,
the dynamical equations determine everything except which points of 3-space will
instantiate which geometrical properties. Adopting such an interpretative stance,
one can perhaps regard the points of Σ as heirs to the persisting points of Newton’s
absolute space, though now stripped of their inertial significance (the local inertial
frames are determined by the best-matching dynamics).

Ironically, however, taking the geometrodynamical formulation of GR seriously—
regarding the 3-geometries (Barbour’s “Nows”) as the “ultimate things”—implies
a thoroughly pernicious indeterminism, even when a sophisticated substantivalist
interpretation of them is adopted. The situation is vividly captured by DeWitt’s
characterization of general relativistic spacetimes as corresponding to sheaves of
geodesics in superspace. Recall the interpretational problems associated with the
E = 0 relativistic field theory discussed in Section 2.2. In that case, the sequences
of relative field configurations obtained from different inertial frames corresponded
to observationally indistinguishable yet distinct possible worlds. In GR the un-
countable number of possible foliations between two given space-like hypersurfaces

16



will (in general) correspond to distinct sequences of 3-geometries, all of which sat-
isfy the action principle of geometrodynamics. If the “Machian” geometrodynam-
ical ontology of 3-geometries is taken at face value, each sequence corresponds to
a physically distinct, though observationally indistinguishable, history. (As collec-
tions of individuals, the 3-geometries of two such sequences are qualitatively distin-
guishable from each other. However, each corresponds to the same spacetime and
hence they constitute observationally indistinguishable histories, cf. footnote 7.)

Moreover—and here is the real sting—two foliations of a given spacetime can
match up to a given hypersurface and diverge thereafter. The specification of an
initial sequence of 3-geometries is not sufficient to allow us to predict which con-
tinuation of the sequence will be actualized—a blatant case of indeterminism. And
this is not merely the indeterminism of the Hole Argument which only concerns
which objects (spacetime points) play which roles in two possible worlds, the set of
objects and the roles to be played being identical in the two cases (cf. Melia 1999).
The indeterminism afflicting the Machian interpretation of geometrodynamics con-
cerns which sequence of qualitatively distinguishable entities—3-geometries—will
exist. Distinct sequences of 3-geometries involve different roles being played by the
points of space at different times; thus, if one accepts the anti-haecceitist claim that
there is no individuation except by reference to the properties of the individuals
in question, they even involve different space points.

The easy moral to draw from this situation is that the spacetime formulation
of GR is more fundamental than geometrodynamics. An initial point and direc-
tion in superspace does suffice to determine a unique spacetime geometry. If we
regard the 3-geometries as arbitrary slicings through a fundamental spacetime,
the indeterminism is only apparent. In the spacetime context, the sophisticated
substantivalist urges us to identify models related by 4-dimensional spacetime
diffeomorphisms. By only identifying hypersurfaces related by 3-dimensional dif-
feomorphisms, we have failed to take into account one redundant degree of freedom
per spacetime point. No wonder indeterminism resulted.

There is perhaps one alternative that should be mentioned. One could at-
tempt to regard a spacetime as genuinely constructed from all possible compatible
sequences of 3-geometries. Note that these ‘basic entities’ would share parts. It is
not at all clear whether this rather subtle and nebulous form of Machianism could
offer a genuine reduction of spacetime to 3-dimensional entities and avoid collaps-
ing into a thoroughly 4-dimensional perspective. Consider, for example, Barbour’s
admission:

Machian relationships are manifestly part of the deep structure of gen-
eral relativity. But are they the essential part? If the world were
purely classical, I think we would have to say no, and that the unity
Minkowski proclaimed so confidently is the deepest truth of space-time.
(Barbour 1999b, 180)

He believes, however, that once quantum mechanics is taken into account, 3-dimen-
sional entities are finally seen as ultimate.24

24For reasons that lie far beyond the scope of this paper; they are to be found in, e.g., Barbour
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Before proclaiming the ascendancy of the spacetime representation of GR, at
the classical level at least, there is one further discovery of Barbour’s to con-
sider. What if the redundant degree of freedom was not ultimately connected to
spacetime diffeomorphism invariance? A conformal 3-geometry has only two true
degrees of freedom per space point. Any two metrics related to each other by a
space-dependent positive multiplicative factor correspond to the same conformal
geometry. In representing such a geometry by a Riemannian 3-metric hij defined
on a 3-dimensional differentiable manifold (six numbers per space point) there are
four redundant degrees of freedom: three associated with the arbitrary coordinate
system with respect to which hij is written, and one associated with the particular
choice of hij from the equivalence class {h′

ij : h′
ij = λ(x)hij}.

We could thus imagine a theory defined on conformal superspace, the space
obtained by identifying points of superspace that correspond to the same confor-
mal geometry. Technically, to define a metric on this new configuration space,
best-matching would need to be further generalized. In comparing two 3-metrics
corresponding to two intrinsically different conformal geometries one would need
not only to extremize with respect to 3-dimensional diffeomorphisms (in order to
take into account the arbitrariness of the coordinate system), one would also need
to extremize with respect to the conformal “coordinate” λ(x) at each space point.

Recently, Barbour and Ó Murchadha have pursued this idea (Barbour & Ó Mur-
chadha 1999). They show that one of a family of possible theories yields sequences
of conformal 3-geometries corresponding to the constant mean curvature hypersur-
faces of a restricted class of general relativistic spacetimes. As yet this line of work
is in its early stages; but if it proved fruitful, especially in the context of quantum
gravity research, it would clearly have a significant moral for the interpretative en-
terprise. For now a unique curve in the relative configuration space (which is now
conformal superspace) corresponds to each general relativistic spacetime. Thus
absolute simultaneity is regained: the ‘real’ Nows are the constant mean curvature
spacelike hypersurfaces. Foliating spacetime by other sequences of hypersurfaces
leads to different curves in conformal superspace, but not curves which satisfy
the dynamical action principle. Regarding 3-dimensional entities (described rela-
tionally, now even with respect to local scale) as fundamental becomes a viable
option once more. But these entities are nothing other than instantaneous states
of substantival space.

4 Some conclusions

I wish to conclude by summarizing the principal claims of the last few sections.
Barbour has argued that, when cast in the geometrodynamical form given by
Baierlein, Sharp and Wheeler, GR is naturally interpreted as a Machian theory.
I endorse this point of view but it does not then follow that GR can also be
viewed as a relational theory. On the contrary, the most natural interpretation
of geometrodynamics is as a theory about substantival space. (Spacetime is no

(1999b, Parts 4 and 5).
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longer seen as a fundamental entity and herein lies the Machian nature of the
interpretation: inertial structure is given a reductive, dynamical explanation.)

The natural interpretation of geometrodynamics is also a sophisticated substan-
tivalism: putatively distinct spaces which differ solely in terms of which points of
space instantiate which geometrical properties are stipulated to be numerically
identical. Only if one takes this interpretative stance does one do justice both
to the close analogy between the BSW action and Barbour and Bertotti’s pre-
relativistic intrinsic particle dynamics and to the machinery of best-matching as
it occurs in the BSW action. Belot and Earman’s qualms about sophisticated
substantivalism seem ill-founded. In particular when two senses of “relationism”
are distinguished (anti-substantivalism and anti-haecceitism) it is possible to view
many self-proclaimed relationists in the field of canonical quantum gravity as so-
phisticated (i.e., anti-haecceitist) substantivalists.

However, the interpretation of geometrodynamics that I have advocated is only
sustainable as an interpretation of GR if the geometrodynamical formulation of the
theory can be taken to be more fundamental than the spacetime formulation. In
the final section I point to a severe problem with viewing it in this way: the theory
is radically indeterministic. One could view the indeterminism as merely apparent
if one was able to view different foliations of a given spacetime as corresponding
to a single reality. My claim is that to do so is to concede that the spacetime
viewpoint as fundamental.

If one wishes both to assert the primacy of 3-spaces over spacetime and to avoid
indeterminism, one’s theory cannot treat all foliations of spacetime on an equal
footing. Barbour and Ó Murchadha’s recent investigations into the possibility of
formulating geometrodynamics on conformal superspace suggest that such theories
are possible and that GR can be reinterpreted as just such a theory.

There are still many unsettled philosophical questions concerning the nature
and status of spacetime and the interpretation of GR. The most obvious relate to
the range of different formulations of the theory that are available, the connections
these have to different approaches to quantum gravity and the different interpre-
tative stances they suggest. But despite the range of live options, two tentative
conclusions can be reached. The most natural interpretations of the theory are sub-
stantivalist, whether the basic entity is taken to be space or spacetime. Moreover,
the most promising type of substantivalism would appear to be a sophisticated
one.
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A Appendix: relativistic relational field theory

In this appendix, I principally follow Barbour (forthcoming, chapter 7). Consider
the following Lorentz-invariant action principle for a scalar field φ:

δS = 0, S =

∫
d4xL (φ, φ,µ) =

∫
d4x (φ,νφ

,ν − U (φ, φ,µ)) . (A.1)

where U is a Lorentz scalar. A field will satisfy this action principle in some region
of spacetime if the value of S for this region is stationary under variations of the
field variables which vanish on the boundary of that region. Specializing to a
specific inertial frame and effecting a “3 + 1 decomposition” of (A.1), one writes:

S =

∫
dt

∫
d3x

(
(φ,t)

2 − (∇φ)2 − U (φ, φ,µ)
)
. (A.2)

t is now to be regarded as the sole independent variable and the field values
at each point of space are to be regarded as the dynamical degrees of freedom.
Treating the spatial and time coordinates differently in this manner means that
one really has chosen a specific inertial frame with respect to which the dynamics
is formulated. Clearly, however, the same expression is obtained no matter which
inertial frame is chosen.

One can now pass to a Jacobi form of (A.2). We are considering sequences
of 3-dimensional field configurations (defined with respect to some inertial frame)
labelled by t, the time of that inertial frame. One can relabel these curves by an
arbitrary monotonic parameter λ and regard t = t (λ) as a dependent variable.
Assuming U = U(φ), one obtains the following parameterized form (with respect
to time) of (A.2):

S =

∫
dλ

∫
d3x

(
φ̇2

ṫ
− ṫ
(
(∇φ)2 − U (φ)

))
, (A.3)

where the dots denote differentiation with respect to λ. Since only the derivative
of t occurs in (A.3), time can be completely eliminated to give the Jacobi type
action:

SφJac =

∫
dλ

√∫
d3x (E − (∇φ)2 − U (φ))

(
dφ

dλ

)2

, (A.4)

where E is the total energy (see Lanczos 1970, 125–129, 132–135).
(A.4) is formulated with respect to an inertial frame, but one obtains a related

relational field theory by replacing the kinetic term
∫

d3x (dφ/dλ)2 by the “best-
matching” relational analogue to obtain:

SφMach =

∫
dλ

√∫
d3x (E − (∇φ)2 − U (φ))

(
dφ

dλ
− aα(λ)Oαφ

)2

(A.5)

(A.5) yields a string of relative field configurations as solutions. One can
stack these according to the equilocality relation found by the best-matching
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minimization and then ‘space’ them according to the simplifying time parame-
ter to obtain a 4-dimensional field configuration. Just as in the particle case,
this will be a solution of the action principle (A.2) and hence represent a solu-
tion to a Lorentz-invariant field theory. However it will be a field configuration
of energy

∫
d3xT 00 = E for which the linear momentum and the intrinsic an-

gular momentum vector vanish, P = 0 = S. P i =
∫

d3xT i0 and Si is given

by εijkSk = Sij =
∫

d3x
(
(xi − xi

cm) T 0j −
(
xj − xj

cm

)
T 0i
)
. That these are con-

served quantities follows from the invariance of (A.1) under spacetime transla-
tions and spatial rotations respectively. The centre of mass coordinate is given by
xi

cm = (1/E)
∫

d3xT 00xi and the energy-momentum tensor is given by:

T µ
ν =

∂L
∂(φ,µ)

φ,ν − δµ
νL (A.6)

P µ transforms as a Lorentz 4-vector under Lorentz transformations. Hence if
P 0 = E 6= 0 and P i = 0 in some inertial frame F , then P 0 6= E and P i 6= 0 in
inertial frames moving relatively to F .

Consider the field’s total intrinsic angular momentum,

Sµν =

∫
d3x

(
(xµ − xµ

cm) T 0ν − (xν − xν
cm) T 0µ

)
, (A.7)

where the point xµ
cm can be anywhere on the centre of mass’s worldline. In the rest

frame (P i = 0), S0j = 0. Hence in the best-matched frame for which P i = 0 = Sij,
Sµν = 0.

The total angular momentum on an arbitrary hypersurface Σ about spacetime
point p, coordinates {aµ} is given by

Jµν(about p) =

∫
Σ

d3Σα ((xµ − aµ) T να − (xν − aν) T µα) (A.8)

and is independent of the hypersurface Σ on which it is calculated (Misner, Thorne
& Wheeler 1973, Box 5.6). The relation between the total angular momentum
calculated about two points p and q, coordinates {aµ} and {bµ}, is given by

Jµν(about p)− Jµν(about q) = −cµP ν + cνP µ, (A.9)

where cµ = aµ − bµ is the 4-vector from q to p.
Now if E = 0 in the best-matched inertial frame then P µ = 0, clearly a Lorentz-

invariant condition. Note that for the action principle we are considering, E can
vanish only if U can take negative values, for (∇φ)2 is always positive unless φ
vanishes everywhere. In this special case in which P µ = 0 it follows from (A.9) that
Jµν takes the same value about every point of spacetime. Although the expression
for Sµν given above ceases to be well defined when E = 0, we may suppose that,
by continuity, Jµν = 0. It follows that with respect to every inertial frame, E = 0,
P i = 0 and Si = 0. Therefore the sequences of relative field configurations obtained
from every inertial frame satisfy the relational variational principle (A.5).
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