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Abstract

This paper presents a formal characterization of a two stage decision rule,
a version of which is presented by Isaac Levi in his book, Hard Choices. This
characterization involves three conditions which, together, are satisfied by any
choice function that can be represented as a two-tier choice function. And any
choice function that satisfies these three conditions can be represented as a two-
tier choice function. The first condition – TTα – identifies particular features
of two-tier choice functions when they violate Property α. The other two
conditions – TTIC(1) and TTIC(2) – are essentially existence claims, required
to ensure that the two tiers of a choice function can be represented without the
use of cyclic orderings. My aim is to offer a formal result that provides insight
into the nature of two-tier decisions. The more we understand how a particular
decision procedure operates, the more we should expect to predict its results
accurately, and the more we should be able to understand the circumstances
under which its use is (and is not) appropriate.

1 Introduction

In Hard Choices, Isaac Levi presents a straightforward decision rule that runs as
follows: First, narrow your choices down by choosing options that are best (i.e. max-
imal) according to a particular set of values. Then, assuming there is still more than
one option on the table, choose from the smaller set by choosing the option that is
best (i.e. maximal) according to a secondary value. Conceivably, any number of sim-
ilar steps can be taken in order to reach a decision, with the range of viable options
shrinking at each stage. With this process, an agent can utilize a hierarchy of values,
rather than being forced to satisfy every competing constraint in one shot.
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It is reasonable to expect that a good decision rule can be characterized in terms
of two types of consistency conditions: contraction and expansion. A contraction
condition tells you that if you select an option x from a particular set, then it should
not drop out of the choice set simply because some other elements are dropped from
the set. An expansion condition works in the opposite direction: if a choice rule
directs you to choose an option x from a particular set, then this decision should not
arbitrarily change when new elements are added to the choice set. In general, the idea
is that an ordering of options should not be upset simply by the addition or removal
of options to or from the original set.

Interestingly, Levi’s multi-tier decision rule does not satisfy the normal contraction
and expansion conditions that are used to characterize rational decision making. And
yet Levi’s multi-tier decision rule seems like a perfectly rational sort of way to proceed.

The main purpose of this paper is to present three conditions that, taken together,
characterize (a simplified version of) Levi’s decision rule. It turns out that contraction
and expansion consistency is not at the center of this characterization. Rather, the
key to understanding the formalized nature of two-tiered decision rules lies in the
interaction between the tiers, as sets of options change.

In Sections 2 and 3 below I introduce the version of Levi’s multi-tier decision procedure
that I aim to characterize in this paper. In Section 4 I present typical contraction and
expansion conditions, and I briefly discuss how they are (and are not) relevant for
two-tier choice functions. As it turns out, contraction inconsistency, not consistency,
plays a role in my characterization of two-tier choice functions. The main result of my
paper is in Section 5. There I provide a characterization of two-tier choice functions
in terms of three conditions, which I call TTα, TTIC(1), and TTIC(2).

My aim is not to provide an argument for the rational nature of multi-tier decisions
(although I think one can be made), nor to defend a particular approach to the
representation of preferences. Rather, I offer a formal result that provides insight into
the nature of two-tier decisions. The more we understand how a particular decision
procedure operates, the more we should expect to predict its results accurately, and
the more we should be able to understand the circumstances under which its use is
(and is not) appropriate.

2 Multi-Tiered Decisions

The prototypical example of a multi-tier decision process is that of hiring an individual
to fill a job. In the first tier of the decision, the pool of applicants is narrowed down
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by considering a variety of factors: previous work experience, specific skills, reports
from references, and so on. Each of these factors can be treated as a value, and the
candidates can be ranked against one another with respect to each of these values.
The candidates who make it past the first tier of this decision process will be those
who are thought to be ‘best, all things considered’.

Exactly what it means to be ‘best, all things considered’ can vary from situation to
situation. One option is to select any candidate who is better than all the rest with
respect to at least one of the preference relations: she is optimal (or maximal, if the
rankings are not complete) with respect to at least one value. Alternatively, if we
take the cardinal approach, one might aggregate various scores (according to some
acceptable scoring method), and select any candidate whose aggregate score is above
a certain threshold. Some versions of this approach will make way for a candidate
who is never best, but always second best, to be included in the set of candidates
who are ‘best, all things considered’.

Either way, the first tier of the decision procedure involves several preference relations,
and will likely leave the decision-making agent with a variety of candidates to choose
between.

As you might suspect, the second tier of the decision procedure will involve more
preference rankings. And again, the number of candidates who might be hired will
(hopefully) decrease. If more than one candidate remains, yet another tier will be
added to the mix, and yet more values will be considered. And we can continue this
procedure until a single candidate remains, and a hiring decision is made.

Formally, we can model this decision procedure by defining a choice function for each
tier. C1 chooses from among a set of candidates according to some set of preference
relations (either ordinal or cardinal) that represent the decision agent’s preferences
over the first-tier values. C2 is defined in a similar fashion, but the relevant preference
rankings are those that represent second-tier values. And so on, up through the tiers.

Suppose there are three tiers to the decision. Then we define the choice function C,
for a set S of candidates, as

C(S) = C3(C2(C1(S)))

3 Two-Tier Admissibility

The version of Levi’s multi-tier decision procedure being considered in this paper
is comparatively modest: I am limiting my investigation to two-tier decisions where
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there is a collection of ordinal preference rankings in the first tier, and a single, ordinal
preference ranking in the second tier.

The main reason for these limitations is simplicity: This paper is a first step toward
modelling multi-tiered decisions with multiple cardinal preference rankings in each
tier. Identifying the details for the simple case should provide some of the machinery
and insight required to model the more complex versions of multi-tiered decisions.

That said, let U be a finite set of live options for a given decision problem.

Let V1(U) be the first-tier value structure for that decision problem. V1(U) consists
in a series of preference relations, each of which is meant to be transitive, acyclic and
complete with respect to the elements of U .

Let V2(U) be the second-tier value structure for a given decision problem. V2(U) con-
sists in a single preference relation. That preference relation is meant to be transitive,
acyclic and complete with respect to the elements of U .

Let C1 be a choice function that picks out first-tier admissible elements by choosing
any and all elements that are optimal in a set S ⊆ U according to at least one first-tier
ordering.

C1(S) = {x ∈ S | ∃ �i∈ V1(U) ∀y ∈ S : x �i y}

Let C2 be a choice function that picks out second-tier admissible elements by choosing
elements that are optimal in a set S ⊆ U according to the second-tier ordering �2.

C2(S) = {x ∈ S | ∀y ∈ S : x �2 y}

Let C be a choice function defined over U . If C is two-tier rationalizable then, ∀S ⊆ U :

C(S) = C2(C1(S))

We say that an element x is first-tier admissible in S if x ∈ C1(S). We say that x is
second-tier admissible in S if x ∈ C2(C1(S)).

The purpose of this paper is to investigate the nature of two-tier rationalizable choice
functions, and to offer a characterization of such functions in terms of three conditions
– which I call TTα, TTIC(1), and TTIC(2).

But before I get to that, some more background is in order.
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4 Consistency Conditions: α, β, γ

Entrenched in the literature on rational decision procedures are a series of consistency
conditions that seem to capture at least part of what we are aiming for in any attempt
to model rational decisions.

For instance, Properties α, β and γ are oft-cited conditions of rationality. Property
α, also known as Chernoff 1, is a contraction consistency condition. The main idea
is that if an alternative is removed from a set S of live options, its removal should not
upset the manner in which the other alternatives are ordered. Perhaps more precisely,
Property α states that if an option is removed from a set S, the output of the choice
function should not be radically altered. At worst, the removal of a ‘best’ option
should simply elevate the ‘second best’ option to first place.

Formally we can define Property α as follows:

Definition 1. Property α

If x ∈ C(S) and x ∈ T ⊆ S [for some S ⊆ U ] then x ∈ C(T ).

An expansion consistency condition works in the opposite direction: when a new
option is introduced into a set, the choice function and the orderings underlying it
should not be radically altered.

Property β is a basic expansion condition:2

Definition 2. Property β

If x, y ∈ C(T ), T ⊆ S and x ∈ C(S) [for some S ⊆ U ] then y ∈ C(S)

That is, if two options are chosen from among the elements of T , then the addition of
new options to the mix should not cause C to treat the original two options differently.

Another common expansion condition is Property γ,3 put here in its finite form:

Definition 3. Property γ

For any S, T ⊆ U , if x ∈ C(S) ∩ C(T ) then x ∈ C(S ∪ T ).

1So-called because it originated with Chernoff (1954)
2For an early use of Property β see Sen (1969)
3cf. Sen (1971)
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4.1 Characterizing Single-Tiered Decisions

Moulin (1985) draws together a number of results regarding consistency conditions
for choice functions. Of particular relevance for this paper are his second and fifth
theorems, which characterize choice functions that select the maximal option(s) in a
set, according to some ordinal preference ranking(s).

Clearly, if we have a well-defined preference relation, we can pick the element that
is maximal according to that relation. Moulin (1985) asks the converse question:
“can we detect [the] existence of an underlying preference relation from which our
choice function is derived”? (p. 147) That is, given an agent’s choice function, can
we determine the structure behind her choice? If an underlying preference ranking
exists, we say that it rationalizes her choice function: we say that a choice function is
rationalizable if it is characterized in terms of a single binary relation – like �i – such
that it admits only the maximal elements (according to �i) from a set of options.

The main result reported by Moulin regarding rationalizable choice functions is his
Theorem 2:4

Moulin’s Theorem 2: A choice function is rationalizable if and only if
it satisfies Chernoff and Expansion.

Chernoff is just the contraction consistency condition α presented earlier in this paper,
and Expansion is the expansion consistency condition γ, also presented earlier.

A more interesting notion is that of pseudo-rationalizability. A choice function is
pseudo-rationalizable if it selects those options that are maximal according to at least
one preference relation, from a set of options. That is, we say that a choice function is
pseudo-rationalizable if it is characterized in terms of one or more preference relations
and admits only the elements that are maximal according to at least one of those
relations.

Moulin characterizes pseudo-rationalizability in terms of the contraction condition
Chernoff (α), and an expansion condition that gained prominence in the literature
due to work by Mark Aizerman:5

Definition 4. Aizerman:

If C(S) ⊆ T ⊆ S [for some S ⊆ U ] then C(T ) ⊆ C(S)

4credited to Sen (1971)
5cf. Aizerman & Malishevsky (1981)
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Moulin’s Theorem 5 reads as follows:

Moulin’s Theorem 5: A choice function is pseudo-rationalizable if and
only if it satisfies Chernoff and Aizerman.

The relevance of these results to the current project is relatively straightforward:
in the version of two-tier admissibility being considered in this paper, the first tier
choice function C1 is pseudo-rationalizable, and the second tier choice function C2

is rationalizable. In other words, the individual tiers of multi-tiered decisions are
well-behaved.

4.2 Consistency Conditions and Two-Tier Admissibility

One of the interesting features of Levi’s two-tier decision rule is that, even in the
simple form under consideration in this paper, it does not satisfy Property α, Property
β, or Property γ. Each of these properties seems, on the face of it, like the sort of
property that should characterize rational decision procedures. And Amartya Sen,
among others, has gone to great lengths to characterize choice functions, revealed
preference, and rationality in terms of adherence to Properties α, β and γ.

But Levi’s multi-tier decision rule is also, on the face of it, a rational decision pro-
cedure. One might want to debate the variety of approaches taken to representing
preferences within the tiers, and the consequences each has for a multi-tiered decision
rule, but the fact that Levi’s rule does not satisfy standard properties like α, β, and
γ is not fodder for its immediate dismissal. The general idea of decision-making in
distinct stages is, at least on the face of it, a rational way to proceed.

A natural question arising from this failure of α, β and γ is as to what sorts of
conditions Levi’s multi-tier decision rule does adhere to. What happens, for instance,
when elements are added to or removed from a set? How does a multi-tier choice
function behave?

A further question to ask is about what conditions characterize multi-tier decisions.
Is there some condition, or some set of conditions, that fully characterizes multi-tier
choice functions? That is, is there any (set of) condition(s) such that a choice function
is a multi-tier choice function if and only if it satisfies that (set of) condition(s)?

The main purpose of this paper is to provide a window into the characterization of my
two-tier version of the rule by way of three conditions. The first condition identifies
some of the consequences for two-tier choice functions when Property α is violated.
The other two are closely related to one another and turn on the interplay between
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the two tiers – on the specifics of the orderings as they must be set up if a given
choice function is to be represented in two tiers.

Each tier contains preference rankings over the elements of a set U . As a choice
function operates over larger or smaller sets of options, different sets of elements are
promoted from the first stage of the decision procedure to the second. So while each
tier satisfies Property α, the combined decision procedure does not. When the set of
options is changed, C1 generates a new set, and C2 operates on that new set. How
these two tiers interact – how the changes in the set generated by C1 affect the results
of applying C2 – is at the center of the conditions required to characterize two-tier
choice functions.

The conditions that characterize two-tier choice functions are not particularly intu-
itive, nor do they immediately make you believe that the decision procedure being
characterized must be rational (in some sense of that word). In this way they differ
radically from properties like α, β and γ. Nevertheless, they are satisfied by two-tier
choice functions, and any choice function that satisfies the conditions can be repre-
sented as a two-tier choice function. And while the failure of contraction consistency
plays a role in the characterization of two-tier admissibility, the main issue is not
contraction or expansion consistency, but the interaction between the two tiers.

5 Characterizing Two-Tier Admissibility

As mentioned above, the purpose of this paper is to offer a characterization of two-tier
admissibility: to characterize two-tier rationalizable choice functions. In what follows
I offer a proof of the following theorem (with details of its content to be filled in as
we proceed):

Theorem 1. C is two-tier rationalizable if and only if C satisfies conditions TTα,
TTIC(1), and TTIC(2).

In the forward direction, the proof is relatively straightforward. However, I will leave
this part of the proof until later in order to present the conditions in a context that
may reveal some of the motivation behind their use.

In the reverse direction, I will first detail a principled method of construction for two
tiers – V1(U) and V2(U) – given a choice function C that is defined over U . There
are eight construction rules in total, each of which addresses a particular feature of
two-tier admissibility. When applied, one after the other, these rules can produce
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V1(U) and V2(U) in such a way that the original choice function can be recovered
from the constructed orderings.

It turns out that three conditions are required for successful application of the seven
construction rules: a condition surrounding the failure of Property α, called TTα,
and two iterating conditions that I call TTIC(1) and TTIC(2). I will present these
conditions in the context of my construction rules, and I will show that if these
construction rules are successfully applied to a choice function C, then C is two-tier
rationalizable. That is, ∀S ⊆ U : C(S) = C2(C1(S)).

5.1 Properties of Two-Tier Choice Functions

There are several properties of two-tier choice functions that are particularly relevant
to the project at hand. These properties will guide the two-tier construction method
presented below, and therefore deserve some discussion here.

Two-Tier Properties

TTP 1. ∀x, y ∈ U : If I({x, y}) then x ∼2 y.6

TTP 2. ∀T ⊆ U : If x ∈ T and ∀y ∈ C(T ) x ∈ C({x, y}), then x �2 C(T ).

TTP 3. ∀x ∈ U : If T ⊆ S [for some T, S ⊆ U ] and x ∈ C(S) ∩ T \ C(T ), then
C(T ) �2 x.

TTP 4. C(S) ⊆ C1(S) [for all S ⊆ U ].

TTP 5. ∀T ⊆ U : If x ∈ T \ C(T ) and x �2 C(T ), then x /∈ C1(T ).

TTP 6. The orderings are transitive.

TTP 7. The orderings are complete.

Two-Tier Property 1

To understand TTP1 some explanation is required. First, a definition of I(·) is in
order:

Definition 5. I({x, y}) holds if and only if there is a series of sets T1, ..., Tn ⊆ U
[n ≥ 2] such that {x, z1} ⊆ C(T1), {z1, z2} ⊆ C(T2), ..., {zn−2, zn−1} ⊆ C(Tn−1), and
{zn−1, y} ⊆ C(Tn) [for some x, y, z1, ..., zn−1 ∈ U ].

6I(·) is defined below.
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This relation is reflexive and transitive.

Definition 6. I(T ) holds if and only if I({x, y}) holds for every {x, y} ⊆ T .

TTP1 amounts to a claim that the following lemma is true:

Lemma 1. If C is a two-tier choice function defined over U and I({x, y}) holds [for
some x, y ∈ U ], then x ∼2 y.

Proof. Let C be a two-tier choice function defined over U , let a, b ∈ U , and suppose
I({a, b}). Then there is a series of sets T1, ..., Tn ⊆ U and a series of elements
z1, ..., zn−1 ∈ U such that {a, z1} ⊆ C(T1), {z1, z2} ⊆ C(T2), ..., {zn−1, b} ⊆ C(Tn).
Now for any two elements, {x, y} ⊆ C(Ti), it is also the case the {x, y} ⊆ C1(Ti);
and if {x, y} ⊆ C1(Ti) and x �2 y, then y /∈ C2(C1(Ti)). So, if {x, y} ⊆ C(Ti)
then ¬(x �2 y) and ¬(y �2 x). That is, y �2 x and x �2 y (since the ordering is
complete). Which is just to say that x ∼2 y. And so, since I({a, b}) holds we know
that a ∼2 z1, z1 ∼2 z2, ..., zn−1 ∼2 b. And by the transitivity of ∼2 it follows that
a ∼2 b.

Two-Tier Property 2

The second property is slightly less obvious, and a quick lemma is in order to show
that it is true:

Lemma 2. If C is a two-tier choice function, x ∈ T ⊆ U , and ∀y ∈ C(T ) x ∈
C({x, y}), then x �2 C(T ).

Proof. Suppose C is a two-tier choice function defined over U , let a ∈ T ⊆ U , and
suppose that ∀x ∈ C(T ) a ∈ C({a, x}). If a ∈ C(T ) then a ∼2 C(T ), and hence
a �2 C(T ). Suppose instead that a /∈ C(T ) and, without loss of generality, let
b ∈ C(T ). Then, since ∀x ∈ C(T )a ∈ C({a, x}), it follows that a ∈ C({a, b}). So
either a �2 b or b is not first-tier admissible in {a, b} (otherwise, a /∈ C2(C1({a, b}))).
If b /∈ C1({a, b}) then, for every first-tier ordering �i, a �i b. But a ∈ T , so this would
mean that b /∈ C1(T ), and hence b /∈ C(T ), contrary to supposition. So b ∈ C1({a, b})
and hence a �2 b. Now since b ∈ C(T ) we have that b ∼2 C(T ). By the transitivity
of �2, then, a �2 C(T ). And so, if C is a two-tier choice function, a ∈ T ⊆ U , and
∀x ∈ C(T ) a ∈ C({a, x}), then a �2 C(T ).

Two-Tier Property 3

Notice that TTP3 is relevant any time C violates Property α.
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Lemma 3. If C is a two-tier choice function, T ⊆ S [for some S ⊆ U ] and x ∈
C(S) ∩ T \ C(T ), then C(T ) �2 x.

The proof of this lemma is quick and easy:

Proof. Suppose C is a two-tier choice function, T ⊆ S ⊆ U and a ∈ C(S)∩T \C(T ).
Then a ∈ C1(S). And since C1 satisfies Property α and T ⊆ S, then a ∈ C1(T ). But
a /∈ C(T ) so it must be the case that C(T ) �2 a.

These three two-tier properties are the main features of two-tier choice functions
that are necessary for the construction of V2(U), according to my set-up below. I
will expand on this claim later, but first let us continue to examine the proposed
properties of two-tier choice functions.

Two-Tier Property 4

The fourth property, TTP4, is straightforward. For any well-formed choice function
C, C(S) ⊆ S: the set of selected elements is a subset of the set from which it is
selecting. And since C is a two-tier choice function if and only if C(S) = C2(C1(S)),
and C1 is a well-formed choice function, it naturally follows that C(S) ⊆ C1(S).

Two-Tier Property 5

This property states that if some element x of T is not in C(T ) then either the elements
of C(T ) strictly dominate x in the second tier, or x is not first-tier admissible in T .

Lemma 4. If C is a two-tier choice function, x ∈ T \C(T ) and x �2 C(T ) [for some
T ⊆ U ] then x /∈ C1(T ).

The proof is straightforward, but is included here for completeness’ sake.

Proof. Suppose C is a two-tier choice function defined over U , let a ∈ T\C(T ) [T ⊆ U ]
and suppose a �2 C(T ). If a ∈ C1(T ) then either a ∈ C2(C1(T )) or there is some
x ∈ C1(T ) such that x �2 a. Suppose the latter: let b ∈ C1(T ) and suppose b �2 a.
So, by the transitivity of �2, b �2 C(T ); and hence ∀x ∈ C(T ), x /∈ C2(C1(T )). So if
a ∈ C1(T ) then either a ∈ C2(C1(T )) \C(T ) or ∀x ∈ C(T ), x /∈ C2(C1(T )). But C is
a two-tier choice function, so C(T ) = C2(C1(T )). And hence a /∈ C1(T ).

This property turns out to be the key to unlocking a characterization of two-tier
admissibility. The distinctive feature of a two-tier choice function is not its failure
of Properties α, β and γ, but the manner in which C selects over successive tiers.
TTP5 gets at the interaction between the tiers for a two-tier choice function, and it
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will play a crucial role in the construction of V1(U) and V2(U) from a choice function
C.

Notice, however, that this property of choice functions can be addressed in either the
construction of V1(U) or the construction of V2(U). If the latter approach is taken,
then the first-tier orderings will need to be completed first, and then the second-tier
orderings can be constructed such that if x ∈ T \C(T ) and x ∈ C1(T ) then C(T ) �2 x.
Alternatively, we can construct V2(U) first, and then, if x ∈ T \C(T ) and x �2 C(T ),
we can construct V1(U) such that x /∈ C1(T ). For reasons discussed below, I will
incorporate TTP5 into my construction method by first (partially) constructing �2,
and then constraining the orderings in V1(U) to ensure that if x ∈ T \ C(T ) and
x �2 C(T ), then x /∈ C1(T ).

Transitivity and Completeness

The final two properties – TTP6 (transitivity) and TTP7 (completeness) – are really
just reminders of what it means to be a well-formed ordering. In the version of two-tier
admissibility being considered in this paper, every ordering is meant to be transitive
– in both its strict and its weak parts. The construction rules detailed below will
incorporate this property into the orderings that are built.

The orderings associated with a two-tier choice function need not be complete, but
it simplifies matters considerably if they are. Without completeness it could turn
out that C(S) is undefined for some sets S ⊆ U . Dealing with this complication
goes beyond the scope of this paper, and so I will incorporate completeness into my
construction of the orderings V1(U) and V2(U).

5.2 Constructing the Second Tier

The first step in our construction is to establish a basic framework for V2(U). Specif-
ically, we need to ensure that TTP1, TTP2, and TTP3 are satisfied by V2(U). To
this end, the following definition will be useful:

Definition 7. G(x, y) if and only if

(1) I({x, y}), or

(2) ∃T ⊆ U such that x ∈ T , ∀z ∈ C(T ) x ∈ C({x, z}), and I({y} ∪ C(T )).

For any two-tier choice function, if G(x, y) holds then – by Lemmas 1 and 2 and
the transitivity of �2 – x �2 y. Notice also that G(x, x) holds, for any x, because
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I({x, x}) always holds.7 Since �2 is transitive, it will also be helpful to have the
following:

Definition 8. GT (x, y) if and only if ∃z1, ..., zn [n ≥ 1] such that G(x, z1), G(z1, z2),
..., G(zn−1, zn), and G(zn, y).

Since G(x, x) holds for all x, then G(x, y) implies GT (x, y). In addition, we say that
GT (x, T ) holds if and only if there is some y such that GT (x, y) and I({y} ∪ T ); and
GT (T, x) holds if and only if GT (y, x) and I({y} ∪ T ).

With this machinery in hand, our first construction rule is straightforward:

CR 1. ∀ < x, y >∈ U2: If GT (x, y) then set x �2 y.

This rule ensures that TTP1 and TTP2 are satisfied by our constructed orderings.

To deal with TTP3 a second family of relations should be defined:

Definition 9. S(C(T ), x) if and only if ∃S such that T ⊆ S and x ∈ C(S)∩T \C(T ).

By Lemma 3, if C is a two-tier choice function and S(C(T ), x) then C(T ) �2 x. And
again, since �2 is transitive, the following will be helpful:

Definition 10. ST (C(T ), x) if and only if ∃y such that S(C(T ), y) and GT (y, x).

If C is a two-tier choice function and ST (C(T ), x) holds then, by Lemmas 1-3 and
the transitivity of �2, there is some y ∈ U such that C(T ) �2 y and y �2 x. Since
�2 is transitive, it follows that C(T ) �2 x.

With this in hand, our second construction rule is:

CR 2. ∀x ∈ U , ∀T ⊆ U : If ST (C(T ), x) then set C(T ) �2 x.

Notice that GT is transitive: if GT (x, y) and GT (y, z) hold then so does GT (x, z).
Also, if ST (C(T ), x) and GT (x, y) hold then so does ST (C(T ), y).8 Regardless, it will
be useful to close the ordering, as so far constructed, under transitivity:

CR 3. ∀x, y, z ∈ U :

If x �2 y and y �2 z then set x �2 z.
If x �2 y and y �2 z then set x �2 z.
If x �2 y and y �2 z then set x �2 z.

7Here we need to be a little generous with the notation, but the idea is that I({x, x}) holds
because x ∈ C({x}) ≡ C({x, x}).

8Suppose ST (C(T ), a) and GT (a, b). Then there is some c such that S(C(T ), c) and GT (c, a).
SinceGT is transitive then ST (C(T ), a) andGT (a, b) implies that there is some c such that S(C(T ), c)
and GT (c, b). And hence, by definition, ST (C(T ), b).
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5.2.1 Guarding Against Cycles

Also notice that CR1-CR3 might produce strict cycles in the ordering if they can
conspire to set either x �2 x or C(T ) �2 C(T ) [for some element x or set T ]. The
following condition, if satisfied by C, will prevent such problems:

Proposed Condition 1. TTα For any x, y ∈ U and T, S ⊆ U :

(a) If ST (C(T ), x) then ¬GT (x,C(T )).

(b) If ST (C(T ), x), ST (C(S), y), and GT (x,C(S)) then ¬GT (y, C(T )).

This condition is called ‘TTα’ because of its relation to Property α in two tiers.
Specifically, TTα identifies certain consequences that arise for two-tier choice func-
tions when Property α is violated. A full proof of this will be given later, but for the
moment recall the definition of ST (C(T ), x): ST (C(T ), x) if and only if, for some T ′

and y, S(C(T ′), y) and GT (y, x). And, more importantly, S(C(T ′), y) holds if and
only if y ∈ C(S) ∩ T \ C(T ), where T ⊆ S. So when ST (C(T ), x) holds, Property α
has been violated.

In terms of TTα’s connection to the construction of acyclic orderings, the following
lemma is in order:

Lemma 5. If CR1-CR3 are used to construct �2 and C satisfies TTα, then �2 will
be acyclic.

Proof. Suppose CR1-CR3 are used to construct �2. We can think of the potential
cycles as taking the form x �2 x for some x ∈ U , or C(T ) �2 C(T ) for some
T ⊆ U . Give the nature of the three construction rules, x �2 x will be constructed
by CR1-CR3 if and only if x �2 C(T ) and C(T ) �2 x are constructed. That is, strict
relations arise with CR2, so it must be part of the equation; and the route to seeing
an element dominate a choice set must involve CR1. Which is just to say that x �2 x
will occur if and only if GT (x,C(T )) and ST (C(T ), x) (recall that GT is transitive and
if ST (C(T ), y) and GT (y, x) hold, then so does ST (C(T ), x)). By TTα, if ST (C(T ), x)
then ¬GT (x,C(T )). So if TTα is satisfied by C then CR1-CR3 will not construct �2

such that x �2 x (for any x ∈ U).

Notice also that if x �2 C(T ) and C(T ) �2 x are constructed then, by CR3, C(T ) �2

C(T ). But once again this is prevented by TTα. Alternatively, C(T ) �2 C(T ) will be
constructed if we first construct C(T ) �2 y �2 C(T ′) �2 z �2 C(T ) [for some y, z ∈ U
and T ′ ⊆ U ]. Again taking into account the nature of the construction rules and the
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various transitivity relations, this will occur if and only if GT (C(T ), y), GT (y, C(T ′)),
ST (C(T ′), z), and GT (z, C(T )). Now ST (C(T ′), z) holds if and only if, for some
w, S(C(T ′), w) – which implies ST (C(T ′), w) – and GT (w, z). So C(T ) �2 y �2

C(T ′) �2 z �2 C(T ) will occur if and only if ST (C(T ′), w) and (by the transitivity of
GT ) GT (w,C(T ′)). Which is a violation of TTα.

Given the transitivity relations for GT and ST , as well as the manner in which CR1
and CR2 establish �2, we can conclude that all potential cycles produced by CR1-
CR3 can be reduced to the situations described above. And so we conclude: If
CR1-CR3 are used to construct �2 and C satisfies TTα, then the constructed �2 will
be acyclic.

5.2.2 Dealing with TTP5

So CR1-CR3 set up a framework for V2(U). However, this is not the end of the
story. Obviously, we need a construction rule to complete the ordering. This is non-
problematic and will come later. But recall the fifth property on our list of important
two-tier properties:

TTP 5. ∀T ⊆ U : If x ∈ T \ C(T ) and x �2 C(T ) then x /∈ C1(T ).

Somehow, our construction rules need to ensure that TTP5 is satisfied by our con-
structed orderings. We might begin by constructing V1(U) and then suggesting the
following second-tier construction rule:

∀T ⊆ U : If x ∈ C1(T ) \ C(T ) then set C(T ) �2 x.

Unfortunately, in the presence of CR1 this will not do.

Example 1. Suppose a ∈ U , b ∈ T ⊆ U , and GT (a, C(T )). By CR1 we construct
�2 such that a �2 C(T ). But suppose x ∈ C1(T ) \ C(T ) – perhaps because x ∈ C(S)
and T ⊆ S.9 Then, by the suggested construction rule, we are also to set C(T ) �2 a.
And hence we will have C(T ) �2 a �2 C(T ), which is clearly undesirable.

And CR1 is required. By Lemmas 1 and 2 and the transitivity of �2, if C is a two-tier
choice function and GT (x, y), then x �2 y. Our constructed �2 must adhere to this
feature if we are to have any hope of recovering C from the construction. So the
solution is not to give up some or all of CR1.

9Our first-tier construction must ensure that if x ∈ C(S) then x ∈ C1(S) – to satisfy TTP4 from
above. But since C1 satisfies Property α, x ∈ C1(S) implies x ∈ C1(T ) for any T ⊆ S.
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In other words, TTP5 must be addressed in the construction of our first tier. The
general idea behind the relevant construction rule will be that if x ∈ T \ C(T ) and
x �2 C(T ) then we should ensure that x /∈ C1(T ) – by picking some appropriate
y ∈ T \ {x} (for each first-tier ordering �S) and setting y �S x.

These details will be provided below, but the important point at this juncture is
that we will need to know exactly when it might be the case that x ∈ T \ C(T ) and
x �2 C(T ) if we are to have any hope of proving that the construction method works.

It would be ideal to have a proposition of the form If C is a two-tier choice function
and x ∈ T \ C(T ), then x �2 C(T ) if and only if .... We do not have this at our
disposal, but we do have the following, starting with yet another definition:

Definition 11. ST (x,C(T )) if and only if,

(1) GT (x,C(T ′)), ST (C(T ′), y), and GT (y, C(T )) [for some y, T ′], or

(2) for some y1, ..., yn, T1, ..., Tn:

(a) GT (x,C(T1)), and

(b) ST (C(Ti), yi) and GT (yi, C(Ti+1)) [for all i = 1, ..., n− 1], and

(c) ST (C(Tn), yn) and GT (yn, C(T )).

The idea here is straightforward: if C is a two-tier choice function and (1) holds then,
by Lemmas 1-3 and the transitivity of �2, we have that x �2 C(T ′) �2 y �2 C(T ),
or x �2 C(T ). Similarly for (2): if (2) holds and C is a two-tier choice function then
we have a chain of the following form:

x �2 C(T1) �2 y1 �2 C(T2) �2 y2 �2 ... �2 C(Tn) �2 yn �2 C(T )

And since �2 is transitive, this leaves us with x �2 C(T ).

In other words, the definition of ST (x,C(T )) has been designed to capture certain
situations where, if C is a two-tier choice function, then x �2 C(T ). Further, the
definition has been designed to capture all cases where the use of CR1-CR3 will
produce an ordering �2 such that x �2 C(T ).

Lemma 6. If CR1-CR3 are used to construct �2 from C, then x �2 C(T ) if and
only if either GT (x,C(T )) or ST (x,C(T )).
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Proof. Suppose CR1-CR3 are used to construct �2 from a choice function, C. Let
x ∈ U and T ⊆ U .

We can think of the construction process of CR1-CR3 as a process of building chains
of elements and choice sets, where CR3 ensures that the relation is transitive, and
the appropriate preference relations hold for each pair of items along that chain. For
instance, if GT (x,C(T )) and ST (C(T ), y) hold then, by CR1 and CR2, we have the
chain x �2 C(T ) �2 y; and by CR3 it is also the case that x �2 y. In this chain, x is
the maximal item and y is the minimal item.

Notice also that CR1 produces orderings of the form x �2 y – and x �2 C(T ) if
I({y} ∪ C(T )) holds – and CR2 produces orderings of the form C(T ) �2 x. Here
we are interested in situations where CR1-CR3 can be used to build the preference
relation x �2 C(T ), for some x ∈ U and T ⊆ U . This will be done only if CR1
and CR2 combine to produce a chain where x is the maximal item and C(T ) is the
minimal item. Given the form of the orderings produced by CR1 and CR2, this can
only occur if GT (x,C(T1)) and GT (yn, C(T )) hold for some set T1 and element yn.
Now if T1 ≡ T and/or yn ≡ x then we have a straightforward case: x �2 C(T ) is
built, by CR1, from GT (x,C(T )).

But suppose GT (x,C(T )) does not hold. Then, by CR1, we have x �2 C(T1) and
yn �2 C(T ), but we do not yet have the desired chain. What remains is to build a
chain where the maximal item is C(T1) and the minimal item is yn. Here it is rele-
vant to notice the transitivity of GT : if GT (C(T1), yn) holds then so does GT (x,C(T )).
So, supposing that GT (x,C(T )) does not hold, the desired chain will only result if
ST (C(T1), y1) and ST (C(Tn), yn) hold, for some element y1 and set Tn. This, in
combination with GT (x,C(T1)) and GT (yn, C(T )) gives us x �2 C(T1) �2 y1 and
C(Tn) �2 yn �2 C(T ). Of course, if T1 ≡ Tn and/or y1 ≡ yn then we are done. Oth-
erwise, to compete the chain and end up with the desired result that x �2 C(T ), we
must build a chain with y1 as the maximal item and C(Tn) as the minimal item. This
effectively returns us to the beginning of the process: such a chain will require, since
CR1-CR3 are the construction rules in use, that GT (y1, C(T2)) and GT (yn−1, C(Tn))
hold for some set T2 and element yn−1. And again, if T2 ≡ Tn and/or y1 ≡ yn−1 then
GT (y1, C(Tn)) holds and we are done. Otherwise, GT (y1, C(Tn)) does not hold, and
we need to build a chain from C(T2) to yn−1.

And we can continue iterating this procedure until a chain of the following form is
built:

x �2 C(T1) �2 y1 �2 ... �2 C(Tn) �2 yn �2 C(T )

When this is built then, by CR3, we have that x �2 C(T ), as desired. And if such a
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chain cannot be built then it will never be the case that x �2 C(T ).

With this in hand we can conclude that CR1-CR3 will conspire to produce x �2 C(T )
[for some element x and set T ] in exactly three ways. First, if GT (x,C(T )) holds
then, by CR1, x �2 C(T ). Second, if GT (x,C(T ′)), ST (C(T ′), y) and GT (y, C(T ))
hold [for some y, T ′], then by CR1 and CR2 x �2 C(T ′) �2 y �2 C(T ); and by
CR3 x �2 C(T ). And third, for some y1, ..., yn and T1, ..., Tn [n ≥ 2], if GT (x,C(T1))
holds, ST (C(Ti), yi) and GT (yi, C(Ti+1)) hold for i = 1, ..., n − 1, and ST (C(Tn), yn)
and GT (yn, C(T )) hold, then CR1-CR3 entail that x �2 C(T ). And the second and
third cases are exactly those cases for which ST (x,C(T )) holds.

So, if CR1-CR3 are used to construct the partial order �2 from C, then x �2 C(T )
exactly when either GT (x,C(T )) holds or ST (x,C(T )) holds.

These feature will help our cause considerably. In order to proceed with the first-tier
construction – in order to deal with TTP5 – we will need to know exactly when it
is the case that x �2 C(T ), if x ∈ T \ C(T ). To this end, our next construction
rule ensures that, for any x ∈ T \ C(T ), C(T ) �2 x unless CR1-CR3 have already
established that x �2 C(T ).

CR 4. ∀x ∈ U , ∀T ⊆ U : If x ∈ T \ C(T ), ¬GT (x,C(T )), and ¬ST (x,C(T )), then
set C(T ) �2 x.

In other words, if x ∈ T \ C(T ) and CR1-CR3 have not established that x �2 C(T ),
then set C(T ) �2 x.

This fourth construction rule completes the framework for V2(U). We still need to
ensure that the ordering is complete, but these first four rules are all that is required
to set the stage. In addition, we know from Lemma 6 and the corresponding nature
of CR4 that, for any x ∈ T \ C(T ), x �2 C(T ) if and only if either GT (x,C(T )) or
ST (x,C(T )).

5.3 First Tier Construction

The first step in constructing V1(U) is to ensure that TTP4 is satisfied: to ensure that
C1(S) ⊆ C(S) for all S ⊆ U . We can do this by constructing one first-tier ordering
�S for each S ⊆ U that has at least two elements,10 and setting C(S) �S S. That is,

10The task is trivial for |S| = 1 because C({x}) = C1({x}) = C2(C1({x})) = {x}, provided the
orderings are complete.

18



CR 5. For each S ⊆ U where |S| > 1, construct �S such that: For any x, y ∈ U
where x ∈ C(S) and y ∈ S, set x �S y.

The second step in constructing V1(U) is far more complicated. Recall our fifth two-
tier property:

TTP 5. ∀T ⊆ U : If x ∈ T \ C(T ) and x �2 C(T ), then x /∈ C1(T ).

From above we know that x ∈ T \C(T ) and x �2 C(T ) (when CR1-CR4 are used) if
and only if GT (x,C(T )) or ST (x,C(T )). So the general idea for the next construction
rule is this:

CR 6. (general) For each �S∈ V1(U): ∀x ∈ U , ∀T ⊆ U such that x ∈ T \ C(T )
and either GT (x,C(T )) or ST (x,C(T )), pick some appropriate y ∈ T \ {x} and set
y �S x.

To move from this general version to a more helpful construction rule we first need
to unpack this notion of ‘appropriateness’. Most straightforwardly, an element y ∈
T \ {x} is ‘appropriate’ if setting y �S x will not produce any cycles in �S, given the
rest of the construction procedure.

For example, if x ∈ C(S) then x �S S; and so, if x ∈ T \ C(T ) and x �2 C(T ) we
will need a y ∈ T \ S. Further, suppose we set y �S x but it also turns out that
y ∈ T ′\C(T ′) and y �2 C(T ′) [for some T ′ ⊆ U ]. Then we need some z ∈ T ′\(S∪{y})
if we are to set z �S y �S x. And if z ∈ T ′′ \ C(T ′′) and z �2 C(T ′′) then we need
some appropriate w. And so the pattern continues.

But before we get too complicated, a simpler example is in order.

Example 2. Let U = {a, b, c} and define C such that C({a, b, c}) = C({a, c}) =
{a, c} and C({a, b}) = C({b, c}) = {b}.

Notice first that I({a, c}) holds. So GT (a, c) and GT (c, a) hold: by CR1 we set
a �2 c �2 a, or a ∼2 c. Further, b ∈ {a, b, c} and C({a, b}) = C({b, c}) = {b},
so GT (b, a) and GT (b, c) hold: by CR1 we set b �2 a and b �2 c. And finally,
ST (C({a, b}), a) and ST (C({b, c}), c) hold – or a ∈ C({a, b, c})∩{a, b}\C({a, b}) and
c ∈ C({a, b, c}) ∩ {b, c} \ C({b, c}). So, by CR2, b �2 a and b �2 c. In other words,
CR1 and CR2 give us the transitive second-tier ordering b �2 a ∼2 c. In this case,
CR3 and CR4 do not add anything to the construction.

For the first tier construction let S1 = {a, b, c}, S2 = {a, b}, S3 = {a, c}, and
S4 = {b, c}. By CR5, then, we will construct four first-tier orderings. Based on
the definition of C, our starting point for each ordering is
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a ∼S1 c; a, c �S1 b
b �S2 a
a ∼S3 c
b �S4 c

To apply CR6 it is helpful to first identify the < x, T > pairs to which it applies. In
this case there is only one such < x, T > pair:

b ∈ {a, b, c} \ C({a, b, c}) but GT (b, C({a, b, c}))

So for each �S∈ V1(U) we must set either a �S b or c �S b.

Recall that S1 = {a, b, c}, a ∼S1 c and a, c �S1 b. To satisfy CR6 our only option is
to strengthen the weak preference to strict: �S1 becomes a ∼S1 c �S1 b. Similarly,
for S3 = {a, c} our only option is to set a ∼S3 c �S3 b.

11

For S2 = {a, b} we know that b �S2 a. So if we set a �S2 b then we will generate a
cycle. The element a is not an ‘appropriate’ choice. Rather, we set c �S2 b �S2 a.
Similarly for S4 = {b, c}: we set a �S4 b ∼S4 c.

So now we have constructed V1(U) and V2(U) for the given choice function:

a ∼S1,S3 c �S1,S3 b
c �S2 b �S2 a
a �S4 b �S4 c

b �2 a ∼2 c

A quick look verifies that, based on the constructed orderings, C2(C1(S)) = C(S) for
all S ⊆ U . This does not give us a proof of anything, but it should provide some
hope that we are on the right track.

Unfortunately, far more complicated examples abound and CR6 must be further
specified to deal with increasingly complex examples. This specification of CR6 is
rather tedious, but unless the procedure is laid out with particulars we cannot show
that our construction rules can be used to build V1(U) and V2(U) without producing
cycles. It is to this task that I now turn my attention.

11In fact we set either a �S b or c �S b. The ordering here assumes transitivity. I have been a
little lax in this example by assuming transitivity, but this will be included explicitly as Construction
Rule 7.
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5.3.1 Specifying CR6

To get an idea of the contents of our further specified CR6, first notice that if x ∈
T \ C(T ) [for some T ⊆ U ] then there is some y ∈ T \ {x}: because C(T ) 6= ∅ and
x /∈ C(T ). Without loss of generality, suppose we are building the first-tier ordering
�S, for some arbitrary S ⊆ U , and suppose x1 ∈ T1 \ C(T1) and x1 �2 C(T1). We
will select some x2 ∈ T1 \ {x1} and set x2 �S x1.

Suppose further that x2 ∈ T2 \ C(T2) and x2 �2 C(T2) [for some T2 ⊆ U ]. If there
is an x3 ∈ T2 \ {x1, x2} then we can straightforwardly set x3 �S x2 �S x1. If there
is no such element then we will need to select x3 ∈ T2 \ {x2} and x′3 ∈ T1 \ {x1},
and set x3 �S x2 and x′3 �S x1. It might turn out that x3 = x1, but this detail is
unimportant. The point here is just to sketch a procedure for an application of CR6.

Of course, if x3 ∈ T3 \C(T3) and x3 �2 C(T3) [for some T3 ⊆ U ] then we will need to
find x4 ∈ (T1 ∪ T2 ∪ T3) \ {x1, x2, x3} and re-set the order accordingly.

What follows is a preliminary specification of CR6. More detail needs to be added to
account for situations where x ∈ C(S)∩T \C(T ) and x �2 C(T ) [for some S, T ⊆ U ],
but these details will be easier to handle after we have a version of CR6 in hand, and
will only make our rule more tedious if we include them from the outset.

The specification of CR6 is presented next, followed immediately with an explanation
of its contents.

CR 6. (specific) For each �S∈ V1(U):

Let χ′ = {< x, T, Y > | T ⊆ U , x ∈ T \ C(T ), x �2 C(T ), and Y =
{y | y ∈ T \ {x} and, if x ∈ C(S), then y /∈ S}}.
Let χ = {< x, T, Y > | < x, T, Y >∈ χ′ and ¬∃T ′ ⊆ T s.t. <
x, T ′, Y ′ >∈ χ′}.
Step 1:

Start with an arbitrary < x1, T1, Y >∈ χ.
If ∃x2 ∈ Y1 where ¬∃T2, Y2 s.t. < x2, T2, Y2 >∈ χ, then set
x2 �S x1 and proceed to Step 1′.
Otherwise, pick x2 ∈ Y1, set x2 �S x1, and proceed to Step 2.

Step n: [n ≥ 2]

A chain of the following form, with < xn, Tn, Yn >∈ χ, has been
established:
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xn �S xn−1 �S ... �S x2 �S x1

If ∃xn+1 ∈ Yn \ {x1, ..., xn} where ¬∃Tn+1, Yn+1 such that <
xn+1, Tn+1, Yn+1 >∈ χ, then set xn+1 �S xn and proceed to
Step 1′.
Otherwise,

(1) If ∃xn+1 ∈ Yn \ {x1, ..., xn} then set that xn+1 �S xn and
proceed to Step (n+1). Otherwise, proceed to (2).

...

(i) If ¬∃xn+1 ∈ Yn−j \ {x1, ..., xn} [for all j = 0, ..., i − 2] but
∃xn+1 ∈ Yn−(i−1) \ {x1, ..., xn}, then pick that xn+1 and set
xn+1 �S xn−(i−1) �S xn−(i−2) �S ... �S x2 �S x1 �S xn �S

xn−1 �S ... �S xn−i

and proceed to Step (n+1). Otherwise, proceed to (i+1).

...

Step 1′:

At least one chain of the following form has been established:

xm �S xm−1 �S ... �S x2 �S x1

For all i = 1, ...,m−1 we have < xi, Ti, Yi >∈ χ. And ¬∃Tm, Ym

s.t. < xm, Tm, Ym >∈ χ.
Pick < y1, S1, Z1 >∈ χ such that < y1, S1, Z1 >6=< xi, Ti, Yi >
for any i = 1, ...,m − 1. If no such triplet exists, repeat the
entire process for the next �S∈ V1(U) [or proceed to CR7, if no
�S∈ V1(U) remains].

If y1 = xk for some k = 1, ...,m−1 then we already have a chain
of the form y1 ≡ xk �S xk−1 �S ... �S x2 �S x1. Proceed to
Step k and continue accordingly.
Otherwise, follow the pattern of Step 1: pick y2 ∈ Z1 \ {y1}, set
y2 �S y1, and proceed to either Step 2 or Step 1′.

5.3.2 An Explanation

To understand the rationale behind this more specified version of CR6, a few com-
ments are in order. First, notice that Y is just the set of elements that might be
used to prevent x from first-tier admissibility in T . If x ∈ C(S) then this set cannot
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include any y ∈ S. Second, consider the reduction of χ′ to χ. Let < x, T, Y >∈ χ and
< x, T ′, Y ′ >∈ χ′, with T ⊆ T ′. Suppose we pick some y ∈ T \ {x} and set y �S x
so that x /∈ C1(T ). C1 satisfies Property α, so this also means that x /∈ C1(T

′). Pro-
ceeding through the algorithm for the set χ instead of χ′ eliminates some redundancy.

In Step 1, we start with an arbitrary x1 ∈ T1 \ C(T1) and x1 �2 C(T1). Y1 is the
set of elements that we might use to prevent x1 from first-tier admissibility in T1.
Ideally, there is some x2 ∈ Y1 that we can use for this purpose, while not also having
x2 ∈ T2 \C(T2) and x2 �2 C(T2). If so, we can set x2 �S x1 and we have successfully
prevented x1 from first-tier admissibility in C(T1) (for this ordering, at least); and
we can turn our attention to some other < x, T, Y > triple in χ. If no such x2 exists,
then we are forced to construct a longer chain. We can pick x2 ∈ Y1 and set x2 �S x1,
but we still need to prevent x2 from first-tier admissibility in T2: so we proceed to
Step 2.

For Step 2 we follow the algorithm laid out by Step n, for n = 2. Once again, it
is most expedient to set x3 �S x2 �S x1 and solve all of our problems. But if no
appropriate x3 exists, then we must turn to a slightly more complicated algorithm.

If there is some x3 ∈ Y2 \ {x1, x2}, then we can straightforwardly set x3 �S x2 �S x1.
Since x3 has its own problems, we proceed to Step 3 and continue. If there is no
such x3 then we proceed to (2) – which is laid out by (i), with i = 2. There is
no x3 ∈ Y2 \ {x1, x2}, but perhaps there is some x3 ∈ Y1 \ {x1, x2}. If so, then
we can use that x3 and set x3 �S x1 �S x2. This blocks x1 from admissibility in
C1(T1), as desired. Also, since we are currently only considering situations where
x1, x2, x3 /∈ C(S), we know that x1 ∈ T2 \ {x2}. That is, Y2 6= ∅, x2 /∈ Y2, and there is
no x3 ∈ Y2 \ {x1, x2}; so x1 ∈ Y2. And hence setting x1 �S x2 successfully blocks x2

from first-tier admissibility. We are free to proceed to Step 3, which follows a pattern
that is identical to Step 2. And this pattern continues until we have an ordering of
the form identified in Step 1′.

Now consider what is being built. We begin with some < x, T, Y >∈ χ and we
proceed through a series of steps until we reach Step 1′. At this point we will have
defined �S such that C(S) �S S, and there is some chain of the form xm �S ... �S x1.
The spirit of Step 1′ is to pick some < x, T, Y > triplet in χ for which it might still
be the case that x ∈ C1(T ). x1 through xm are no longer a worry, so we turn our
attention elsewhere.

Suppose we arrive at Step 1′ and we pick < y1, S1, Z1 >∈ χ. One of four things might
happen as a result of this choice:

Scenario 1: New Chain
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If y1 /∈ {x1, ..., xm−1} then we pick y2 ∈ Z1 \ {y1}, set y2 �S y1, and
proceed with Step 2 (or Step 1′, if y2 is problem-free). Upon return to
Step 1′ we will have two chains:

xm �S ... �S x1

and
yp �S ... �S y1.

Scenario 2: Bottom Branching

In this case we start out just like Scenario 1, but we end up with some
yp ∈ {x2, ..., xm}. Upon return to Step 1′ we have two chains that share a
common part:

xm �S ... �S x1

and
xm �S ... �S xk ≡ yp �S ... �S y1

Scenario 3: Extended Chain

This case is identical to Scenario 2 except that we end up with yp = x1 or
x1 �S yp The result is a single, extended chain:

xm �S ... �S x1 ≡ yp �S ... �S y1

or
xm �S ... �S x1 �S yp �S ... �S y1

Scenario 4: Top Branching

Suppose y1 ∈ {x2, ..., xm−1}. Then we have y1 ≡ xk �S ... �S x1. We can
proceed to Step k, picking y ∈ T \ {x}. Upon return to Step 1′ we have
two chains that share a common part:

xm �S xm−1 �S ... �S x2 �S x1

and
yp �S ... �S y1 ≡ xk �S ... �S x1
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Whichever scenario obtains, Step 1′ should be altered accordingly. In most cases, we
end up with two chains after the second pass, not one. For the next < x, T, Y > we
choose, we can consider its relation to either chain. If x = xk for k = 1, ...m − 1 or
x = yk for k = 1, ..., p, then a branching chain is in order. Otherwise, we build the
new chain up until it meets one of the previously established chains, or until we can
return to Step 1′.

And our arrival at Step 1′ now includes one, two, or three chains.

5.3.3 What does CR6 Require?

All of this, of course, relies on the existence of the appropriate elements at each step
along the way. For Step 1, it need only be the case that Y1 6= ∅. If x1 ∈ T1 \ C(T1)
and x1 �2 C(T1) then there must be some x2 ∈ T1 \ {x1}.

In general, CR6 produces strict orderings of elements: chains of the form xn �S

xn−1 �S ... �S x2 �S x1. At each step along the way, if xn ∈ Tn \ C(Tn) and
xn �2 C(Tn) [for some Tn ⊆ U ], then we have more work to do. In the most basic
case, xi /∈ C(S) for any i = 1, ..., n.

To successfully complete Step n of CR6 there must be some xn+1 ∈ (T1 ∪ ... ∪ Tn) \
{x1, ..., xn}, and it must not be the case that Yi = ∅ for any i. That is to say, the
following condition must be satisfied if CR6 is to be successfully applied:

Proposed Condition 2. TTIC(1)

(a) For any x ∈ U , T ⊆ U : If x ∈ T \ C(T ) then ∃y ∈ C(T ) \ {x}.

(b) For any sequence of sets T1, ..., Tn ⊆ U , if there is a corresponding sequence of
elements x1, ..., xn ∈ U [n ≥ 2] such that:

x1 ∈ T1 \ C(T1), and
xi ∈ ((T1 ∪ ... ∪ Ti−1) ∩ Ti) \ (C(Ti) ∪ {x1, ..., xi−1}) [for i = 2, ..., n],
and
GT (xi, C(Ti)) or ST (xi, C(Ti)) [for i = 1, ..., n],

then ∃y ∈ (T1 ∪ ... ∪ Tn) \ {x1, ..., xn}.

Recall from Lemma 6 (and the related nature of CR4) that when CR1-CR4 are used
to construct �2, x �2 C(T ) if and only if GT (x,C(T )) or ST (x,C(T )). So the
antecedent of TTIC(1) lays out a scenario where xi ∈ Ti \C(Ti) and xi �2 C(Ti), for
each i = 1, ..., n (when CR1-CR4 are used to construct �2).
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Further, any chain of the form xn+1 �S xn �S ... �S x2 �S x1 produced by CR6
(in conjunction with CR1-CR4) will consist of elements x1, ..., xn that satisfy the
antecedent of TTIC(1).12 And, by (a), we know that Yi 6= ∅ for any i.

So if TTIC(1) is satisfied by a choice function C, then CR6 can be successfully
completed – in the most basic cases where xi /∈ C(S).

5.3.4 What if x ∈ C(S)?

But suppose xn �S ... �S x1 and x1 ∈ C(S). Then the antecedent of TTIC(1) holds,
but it also must be true that xi /∈ S, for each i = 2, ..., n. It is to this additional
feature that I now turn my attention.

The main thing to note is that if x ∈ C(S) then, by CR5, x �S S. So whichever
element we choose to use to block x from first-tier admissibility in T (where x ∈
T \C(T ) and x �2 C(T )), it cannot be an element of S. That is, if x ∈ C(S)∩T \C(T )
and x �2 C(T ) then we need to select y ∈ T \ S and set y �S x �S S.

All things considered, the use of CR6 might bring us to one of two relevant situations:
(1) We pick < x, T, Y > at Step 1 or Step 1′, and x ∈ C(S), or (2) We build a chain
of the form xn �S ... �S x1, < xn, Tn, Yn >∈ χ, and xn ∈ C(S).

In the first case we must select x2 ∈ T1\S and set x2 �S x1 �S S. If < x2, T2, Y2 >∈ χ
then we proceed to Step 2. If there is some x3 ∈ T2 \ (S ∪ {x1, x2}) then we can use
that x3 and set x3 �S x2 �S x1 �S S and move on to Step 3 (or Step 1’), following
the same pattern. If no such x3 exists then we know that T2\{x2} ⊆ S. So we instead
pick x3 ∈ T1 \ (S ∪ {x1, x2}) and x′3 ∈ T2 \ {x2}, and set x3 �S x1 �S x

′
3 �S x1 (with

x1 �S S and x′3 ∈ S).

This effectively gives us two chains to deal with: x3 �S x1 �S x
′
3 �S x2, and x′3 �S x1.

The second one is straightforward, and we can deal with it at Step 2 of CR6, as
specified above (if needed). For the first one, if x3 ∈ T3 \C(T3) and x3 �2 C(T3) then
we need some x4 ∈ T3 \ (S ∪ {x1, x2}). If some such x4 exists then we set x4 �S x3

and continue. If not, then we again split the ordering: pick x4 ∈ T1 \ (S ∪ {x2, x3})
and x′4 ∈ T3 \ {x3}, and set x4 �S x1 �S x′4 �S x3 (with x′3 �S x2, x1 �S S, and
x′4 ∈ S). And again we have two chains to deal with, and we can continue in the
manner just described.

Of course, all of this requires, once again, the existence of certain types of elements.
If we build a chain of the form xn �S ... �S x1 �S S, with xn ∈ Tn \ C(Tn) and

12That is, if xn+1 �S xn �S ... �S x2 �S x1, by CR6, then there is some sequence of sets
T1, ..., Tn ⊆ U such that the antecedent of TTIC(1) holds.
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xn �2 C(Tn) then there must be some y ∈ (T1∪ ...∪Tn)\ (S ∪{x1, ..., xn}) – if we are
to succeed in preventing each xi from first-tier admissibility in Ti (without producing
cycles in our ordering). The following condition guarantees that just such an element
will be available.

Proposed Condition 3. TTIC(2)

(a) For any S, T ⊆ U : if x ∈ C(S)∩T \C(T ) and either GT (x,C(T )) or ST (x,C(T )),
then ∃y ∈ T \ S.

(b) For any sequence of sets S, T1, ..., Tn ⊆ U [n ≥ 2], if there is a corresponding
sequence of elements x1, ..., xn such that

x1 ∈ C(S) ∩ T1 \ C(T1), and
xi ∈ ((T1 ∪ ... ∪ Ti−1) ∩ Ti) \ (C(Ti) ∪ S ∪ {x1, ..., xi−1}) [i = 2, ..., n],
and
GT (xi, C(Ti)) or ST (xi, C(Ti)) [i=1,...,n]

then ∃y ∈ (T1 ∪ ... ∪ Tn) \ (S ∪ {x2, ..., xn}).

In the chain under consideration, x1, ..., xn meet the conditions set out in the an-
tecedent, and hence we can conclude, with TTIC(2), that there is some y ∈ (T1∪ ...∪
Tn) \ (S ∪ {x1, ..., xn}). CR6 can be successfully applied.

5.3.5 Some Remaining Issues

A few issues remain before we can declare our discussion of CR6 complete. For
instance, suppose we begin with x1 ∈ C(S)∩T1 \C(T1) and x1 �2 C(T1), proceeding
as described above, and we build a chain of the form xn �S ... �S xj+1 �S x′j �S

xj �S ... �S x1 (with xj+1 �S S). What guarantee is there that, if needed, we can
reconfigure the ordering such that xn is not first-tier admissible in Tn? Or suppose we
end up in a ‘bottom branching’ scenario – where xn �S ... �S x1 and xj �S ym �S

... �S y1 (for some j = 2, ...m). What guarantee is there that the ordering can be
configured in such a way that cycles are avoided?

I will not belabour the explanation and proof here, but it turns out that TTIC(1)
and TTIC(2) are all that is needed to ensure that CR6 can be successfully completed
without producing untoward cycles in the constructed ordering �S. A full proof
requires spelling out CR6 in yet more detail, but hopefully you are beginning to see
the pattern – and the power that the existence claims in TTIC(1) and TTIC(2) bring
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with them. Provided a choice function, C, satisfies TTIC(1) and TTIC(2), CR6 can
be used, alongside CR1-CR5, to produce well-formed partial orderings in V1(U) – one
ordering for each S ⊆ U that has at least two elements.

5.4 Completing the Orderings

At this point we have six construction rules in play. When used together these rules
will produce a single partial ordering in the second tier, and multiple partial orderings
in the first tier.

CR 1. ∀ < x, y >∈ U2: If GT (x, y) then set x �2 y.

CR 2. ∀x ∈ U , ∀T ⊆ U : If ST (C(T ), x) then set C(T ) �2 x.

CR 3. ∀x, y, z ∈ U :

If x �2 y and y �2 z then set x �2 z.
If x �2 y and y �2 z then set x �2 z.
If x �2 y and y �2 z then set x �2 z.

CR 4. ∀x ∈ U , ∀T ⊆ U : If x ∈ T \ C(T ), ¬GT (x,C(T )), and ¬ST (x,C(T )), then
set C(T ) �2 x.

CR 5. For each S ⊆ U where |S| > 1, construct �S such that: For any x, y ∈ U
where x ∈ C(S) and y ∈ S, set x �S y.

CR 6. (general) For each �S∈ V1(U): ∀x ∈ U , ∀T ⊆ U such that x ∈ T \ C(T ) and
GT (x,C(T )) or ST (x,C(T )), pick some appropriate y ∈ T \ {x} and set y �S x.

Part of the second tier ordering is already transitive, and while my discussion of CR6
proceeded as though the ordering was transitive, this feature needs to be explicitly
established.

CR 7. ∀ �i∈ V1(U) ∪ V2(U): ∀x, y, z ∈ U

If x �i y and y �i z then set x �i z.
If x �i y and y �i z then set x �i z.
If x �i y and y �i z then set x �i z.

Provided CR6 has been applied with an eye to the details, CR7 will not produce
any cycles in the orderings. So now we have transitive partial orderings; we need to
complete the orderings before we can declare the construction process finis.

28



CR 8. For each �i∈ V1(U) ∪ V2(U), complete �i as follows:

(a) Define C := {< x, y > | x, y ∈ U , ¬(x �i y), and ¬(y �i x)}.

(b) If C = ∅ then the process is complete for �i. Otherwise, pick some < x, y >∈ C
and set x ∼i y.

(c) Apply CR7 to �i (to maintain transitivity).

(d) Return to (a), re-defining C.

If no relationship has been established by CR1-CR7 between two elements, x and y,
for some ordering �i, then it does not matter what that relationship is. CR1-CR7
do the bulk of the work that is needed to ensure that C(·) = C2(C1(·)). CR8 simply
completes the picture to ensure that C2(C1(S)) is defined for all S ⊆ U .

5.5 The Success of CR1-CR8

Of course, it remains to be shown that CR1-CR8 do, in fact, ensure that C(·) =
C2(C1(·)). Without such a proof, we cannot say that CR1-CR8 are sufficient as
construction rules. It is to this issue that I now turn my attention.

Proposition 1. If CR1-CR8 are used to construct acyclic orderings in V1(U) and
V2(U), then x ∈ C(T ) if and only if x ∈ C2(C1(T )) [for all T ⊆ U ].

Proof. Suppose CR1-CR8 are used to construct acyclic orderings in V1(U) and V2(U).
In the forward direction, let a ∈ C(T ) for some T ⊆ U . Then, by CR5, a ∈ C1(T ).
If a /∈ C2(C1(T )) then there is some y ∈ C1(T ) such that y �2 a. Let b be a maximal
such y: b ∈ C1(T ), b �2 a, and for any z ∈ C1(T ) b �2 z. By CR1, a ∼2 C(T ), and by
CR7 we know that �2 is transitive, so b �2 C(T ). Now CR1-CR4 construct a partial
ordering �2 that is complete with respect to all x,C(T ) pairs where x ∈ T \ C(T ):
for all x, T such that x ∈ T \ C(T ), either x �2 C(T ) or C(T ) �2 x. Further, CR6
guarantees that if x ∈ T \C(T ) and x �2 C(T ) then x /∈ C1(T ). Now b ∈ C1(T ) and
b �2 C(T ) so, by CR6 (given the use of CR1-CR4), b ∈ C(T ). But if b ∈ C(T ) then,
by CR1, b ∼2 C(T ). But b �2 C(T ) and, by our initial supposition, the constructed
ordering �2 is acyclic. So it cannot be that b ∼2 C(T ). That is, b /∈ C(T ). More
importantly, there can be no maximal y such that y ∈ C1(T ) and y �2 a. But U is
finite,13 so it must instead be the case that, if a ∈ C1(T ), then a ∈ C2(C1(T )). And
hence if a ∈ C(T ) then a ∈ C2(C1(T )).

13This is assumed throughout this paper. cf. Section 3
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In the opposite direction suppose a /∈ C(T ). If a /∈ T or a /∈ C1(T ) then, trivially,
a /∈ C2(C1(T )). Suppose instead that a ∈ C1(T ). So a ∈ C1(T )\C(T ). As discussed in
the first part of this proof, CR1-CR4 construct a partial ordering �2 that is complete
with respect to all x,C(T ) pairs where x ∈ T \ C(T ). So when CR6 is used in
concert with CR1-CR4, CR6 guarantees that if x ∈ T \ C(T ) and x �2 C(T ) then
x /∈ C1(T ). This is just to say that we know, when CR1-CR6 are used to construct
�2, that if x ∈ T \ C(T ) and x ∈ C1(T ), then it is not the case that x �2 C(T ).
Now a ∈ C1(T ) \ C(T ) and CR1-CR6 are being used, so it cannot be the case that
a �2 C(T ). And so, by the completeness of �2 with respect to all x,C(T ) pairs where
x ∈ T \ C(T ), it must instead be the case that a ≺2 C(T ). But since C(T ) ⊆ C1(T )
(by CR5), it also follows that a /∈ C2(C1(T )).

So if CR1-CR8 are used to construct acyclic orderings, then x ∈ C(T ) if and only if
x ∈ C2(C1(T )), for all T ⊆ U . CR1-CR8 are a success.

5.6 Soundness for TTα, TTIC(1) and TTIC(2)

Recall the theorem we are trying to prove:

Theorem 1. C is two-tier rationalizable if and only if C satisfies condi-
tions TTα, TTIC(1) and TTIC(2).

So far we have all the pieces we need to show the theorem to be true in the backwards
direction. What remains is to put those pieces together, and to show that if C is two-
tier rationalizable then C will satisfy conditions TTα, TTIC(1) and TTIC(2). In this
section I provide proofs for this claim.

5.6.1 Property TTα

Proposed Condition 1: TTα
For any x, y ∈ U and T, S ⊆ U :

(a) If ST (C(T ), x) then ¬GT (x,C(T )).

(b) If ST (C(T ), x), ST (C(S), y), and GT (x,C(S)) then ¬GT (y, C(T )).

Proposition 2. If C is a two-tier choice function, then C will satisfy TTα.
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Proof. Suppose C is a two-tier choice function. For (a), let ST (C(T ), a). Then there
is some b ∈ U such that S(C(T ), b) and GT (b, a). That is, there is some b ∈ U and
S ⊆ U such that b ∈ C(S)∩T \C(T ), T ⊆ S, and GT (b, a). By Lemma 3, C(T ) �2 b.
By Lemmas 1 and 2 and the transitivity of �2, b �2 a. So, by the transitivity of
�2, C(T ) �2 a. If GT (a, C(T )) then, by Lemmas 1 and 2 and the transitivity of �2,
a �2 C(T ). But �2 is acyclic, so ¬GT (a, C(T )).

For Part (b), let ST (C(T ), a), ST (C(S), b), and GT (a, C(S)). Following the same
reasoning as for (a), this means that C(T ) �2 a, C(S) �2 b, and a �2 C(S). By the
transitivity of �2, then, C(T ) �2 b. If GT (b, C(T )) then, as above, b �2 C(T ). But
�2 is acyclic, so ¬GT (b, C(T )).

5.6.2 Property TTIC(1)

Proposed Condition 2: TTIC(1)

(a) For any x ∈ U , T ⊆ U : If x ∈ T \ C(T ) then ∃y ∈ C(T ) \ {x}.

(b) For any sequence of sets T1, ..., Tn ⊆ U , if there is a corresponding sequence of
elements x1, ..., xn ∈ U [n ≥ 2] such that:

x1 ∈ T1 \ C(T1), and
xi ∈ ((T1 ∪ ... ∪ Ti−1) ∩ Ti) \ (C(Ti) ∪ {x1, ..., xi−1}) [for i = 2, ..., n],
and
GT (xi, C(Ti)) or ST (xi, C(Ti)) [for i = 1, ..., n],

then ∃y ∈ (T1 ∪ ... ∪ Tn) \ {x1, ..., xn}.

Proposition 3. If C is a two-tier choice function then C will satisfy TTIC(1).

Proof. Part (a) is trivial: since C(T ) 6= ∅ and x /∈ C(T ), then ∃y ∈ C(T ) \ {x}. For
part (b) suppose that C is a two-tier choice function and T1, ..., Tn ⊆ U [n ≥ 2]. Let
a1, ..., an ∈ U be such that a1 ∈ T1 \ C(T1), ai ∈ ((T1 ∪ ... ∪ Ti−1) ∩ Ti) \ C(Ti) [for
i = 2, ..., n], and, for each i = 1, ..., n, either GT (ai, C(Ti)) or ST (ai, C(Ti)). We want
to show that there is some y ∈ (T1 ∪ ... ∪ Tn) \ {a1, ..., an}. Suppose to the contrary
that T1∪ ...∪Tn = {a1, ..., an}, and let aj ∈ C(T1∪ ...∪Tn) [for some j = 1, ..., n]. Now
aj ∈ C(T1 ∪ ...∪Tn) and C is two-tier, so aj ∈ C1(T1 ∪ ...∪Tn). By Property α, then,
aj ∈ C1(Tj). But aj /∈ C(Tj): aj ∈ C(T1∪ ...∪Tn)∩Tj \C(Tj) and Tj ⊆ (T1∪ ...∪Tn).
So it must be the case, by Lemma 3, that C(Tj) �2 aj. Now GT (aj, C(Tj)) if and
only if ∃bj ∈ U such that GT (aj, bj) and I({bj}∪C(Tj)). By Lemmas 1 and 2 and the
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transitivity of �2, then, GT (aj, C(Tj)) if and only if aj �2 C(Tj). But C(Tj) �2 aj,
so ¬GT (aj, C(Tj)). Rather, ST (aj, C(Tj)). But by the definition of ST (aj, C(Tj)),
Lemmas 1,2,& 3, and the transitivity of �2, ST (aj, C(Tj)) if and only if aj �2 C(Tj).
So it cannot be that C(Tj) �2 aj. And so it cannot be that aj ∈ C(T1 ∪ ... ∪ Tn),
for any j = 1, ..., n. That is, ∃y ∈ C(T1 ∪ ... ∪ Tn) \ {a1, ..., an}. More to the point,
∃y ∈ (T1 ∪ ... ∪ Tn) \ {a1, ..., an}.

5.6.3 Property TTIC(2)

Proposed Condition 3: TTIC(2)

(a) For any S, T ⊆ U : if x ∈ C(S)∩T \C(T ) and either GT (x,C(T )) or ST (x,C(T )),
then ∃y ∈ T \ S.

(b) For any sequence of sets S, T1, ..., Tn ⊆ U [n ≥ 2], if there is a corresponding
sequence of elements x1, ..., xn such that

x1 ∈ C(S) ∩ T1 \ C(T1), and
xi ∈ ((T1 ∪ ... ∪ Ti−1) ∩ Ti) \ (C(Ti) ∪ S ∪ {x1, ..., xi−1}) [i = 2, ..., n],
and
GT (xi, C(Ti)) or ST (xi, C(Ti)) [i=1,...,n]

then ∃y ∈ (T1 ∪ ... ∪ Tn) \ (S ∪ {x2, ..., xn}).

Proposition 4. If C is a two-tier choice function then C satisfies TTIC(2).

Proof. Let C be a two-tier choice function. For part (a), let a ∈ C(S) ∩ T \ C(T )
and suppose GT (a, C(T )) or ST (a, C(T )). By Lemmas 1,2 and 3 and the transitivity
of �2, this implies that a �2 C(T ). So a ∈ T \ C(T ) and a �2 C(T ); by Lemma 4,
a /∈ C1(T ). That is to say that for any first-tier ordering �, there is some y ∈ T \ {a}
such that y � a. Now a ∈ C(S), so a ∈ C1(S), and hence there is some first-tier
ordering �S such that ∀z ∈ S a �S z. And so it follows that there is a first-tier
ordering �S such that, for some y ∈ T \ {a}, y �S a �S S. Since �S is acyclic and
transitive it follows that y ∈ T \ S. And hence there is some y ∈ T \ S.

For part (b), let a1 ∈ C(S) ∩ T1 \ C(T1), ai ∈ ((T1 ∪ ... ∪ Ti−1) ∩ Ti) \ (C(Ti) ∩ S ∩
{a1, ..., ai−1}) [i = 2, ..., n], and GT (ai, C(Ti)) or ST (ai, C(Ti)) for all i = 1, ..., n. From
the proof of Proposition 3 above we know that C(T1 ∪ ...∪Tn)∩{a1, ..., an} = ∅. But
suppose (T1∪ ...∪Tn) ⊆ (S∪{a1, ..., an}). Then C(T1∪ ...∪Tn) ⊆ S. Now a1 ∈ C(S),
so a1 ∈ C1(S): Let�S be a first-tier ordering where a1 �S S. Since C(T1∪...∪Tn) ⊆ S
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and a1 �S S, then a1 �S C(T1 ∪ ... ∪ Tn). By (a) there is some y ∈ T1 \ S such that
y �S a1. Since (T1 ∪ ... ∪ Tn) ⊆ (S ∪ {a2, ..., an}) then there is some y ∈ {a2, ..., an}
such that y �S a1; and there is an optimal such y: there is a y ∈ {a2, ..., an} such that
y �S a1 and, for any ak ∈ {a2, ..., an}, y �S ak. Let aj be that element. So aj �S ak

for all ak ∈ {a2, ..., an} and aj �S a1 �S S. And hence aj ∈ C1(S ∪ {a2, ..., an}). By
Property α, then, since Tj ⊆ (T1 ∪ ... ∪ Tn) ⊆ (S ∪ {a2, ..., an}), aj ∈ C1(Tj). So aj ∈
C1(Tj) \C(Tj), and hence, by Lemma 4, C(Tj) �2 aj. That is to say, ¬GT (aj, C(Tj))
and ¬ST (aj, C(Tj)), contrary to supposition (this follows from Lemmas 1-3 and the
transitivity of �2). So it must not be the case that (T1 ∪ ...∪Tn) ⊆ (S ∪{a2, ..., an}).
That is, ∃y ∈ (T1 ∪ ... ∪ Tn) \ (S ∪ {a2, ..., an}).

5.7 Putting it All Together

And now we have all the pieces we need to prove our main theorem.

Theorem 1. C is two-tier rationalizable if and only if C satisfies condi-
tions TTα, TTIC(1) and TTIC(2).

Proof. The forward direction follows from Propositions 2, 3 and 4: If C is a two-
tier choice function then C satisfies TTα, TTIC(1), and TTIC(2). In the oppo-
site direction we know that if CR1-CR8 are used to produce acyclic orderings then
C(S) = C2(C1(S)) for all S ⊆ U (by Proposition 1). By Lemma 5, CR1-CR3 produce
an acyclic partial order �2 provided C satisfies TTα. By Lemma 6, x �2 C(T ) for
this order if and only if GT (x,C(T )) or ST (x,C(T )). CR4 sets C(T ) �2 x only when
¬GT (x,C(T )) and ¬ST (x,C(T )) (and x ∈ T \C(T )); and CR7 closes this revised �2

under transitivity. So CR4 and CR7 will not introduce cycles into the constructed
partial order. And finally, CR8 completes the ordering in such a way that nothing
untoward occurs: a relation between pairs of unrelated elements is established, and
then the relation is closed under transitivity before a second unrelated pair is iden-
tified. So, if C satisfies TTα and CR1-CR8 are used to construct V2(U), then the
constructed ordering �2 will be acyclic.

In the first tier, the potential for cycles arises with the use of CR6 (because that
is where strict relations are introduced). But if C satisfies TTIC(1) and TTIC(2),
as discussed at length above, then CR6 can be completed without producing cycles.
And, again, CR7 and CR8 will not introduce any cycles. So if a choice function C
satisfies TTα, TTIC(1) and TTIC(2) then CR1-CR8 can be used to produce acyclic
orderings such that C(S) = C2(C1(S)) for all S ⊆ U . That is, if C satisfies TTα,
TTIC(1) and TTIC(2), then C is two-tier rationalizable.
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6 Conclusion

At the beginning of this paper I set out to characterize a version of Isaac Levi’s multi-
tiered decision rule. The version in question involves two tiers, with a single ordering
in the second tier, and uses an ordinal framework instead of the cardinal one that
Levi would no doubt prefer.

These modifications were made in order to simplify the demands of the project: the
characterization in this paper can be understood as a first step toward characterizing
Levi’s full blown rule. It should also be noted that Levi works with convex sets of
(cardinal) utilities – an assumption that my result does not require. In this dimension
it might be argued that my result is more general than Levi’s full blown rule.14

Regardless, the main insight provided by the characterization of two-tier admissibility
in this paper has to do with the interplay between tiers for a two-tier choice function.
Additionally, when Property α is violated there are specific constraints on the second
tier ordering: If x ∈ C(S) ∩ T \ C(T ) and T ⊆ S, then C(T ) �2 x.

One weakness in this paper is that many of the proofs are in their ‘negative’ form,
utilizing the heuristic of proof by contradiction. This is due largely to the complexity
that would be required to spell out all possible configurations of V1(U) and V2(U)
associated with features of two-tier admissibility. But it also means that while some
insight has been gained into the nature of two-tier choice functions, there is more
insight to be had.

In line with this observation it should be noted that the current version of CR6 is
more complicated than one might like. Greater insight into the nature of two-tier
choice functions might make way for a simpler specification of CR6. However, at this
juncture no such simplification presents itself.

One suggestion for such a simplification is this:15

For each �S∈ V1(U): If x ∈ T \ C(T ) and x �2 C(T ) then, for all
y ∈ T \ {x} such that

(1) x ∈ C(S) if and only if y /∈ S, and

(2) x /∈ C(S ∪ {x, y}), and

(3) ¬∃T ′ such that y ∈ C(T ′) and y �2 C(T ′),

set y �S x.

14Thanks to Teddy Seidenfeld for pointing this out.
15Thanks to Horacio Arlo-Costa for this suggestion.
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This is an intriguing suggestion, and it will certainly not produce cyclic orderings,
but it will only suffice as CR6 if the following lemma is true:

Lemma 7. For every x ∈ T \ C(T ) [T ⊆ U ] where GT (x,C(T )) or ST (x,C(T ))
holds, there is some y ∈ T \ {x} such that

(1) x ∈ C(S) if and only if y /∈ S, and

(2) x /∈ C(S ∪ {x, y}), and

(3) ¬∃T ′ such that y ∈ C(T ′) and y �2 C(T ′).

If no such y ∈ T \ {x} exists, then CR6 will not pick some ‘appropriate’ y and set
y �S x, thereby blocking x from admissibility in C1(T ). That is, CR6 will not do the
job it is supposed to do.

But showing this lemma to be true – or cooking up a two-tier rationalizable counter-
example – is not straightforward. Part (1) follows from TTIC(1); but showing that
there is always some y ∈ T \ {x} that satisfies (1), (2) and (3) is more difficult. As a
result, a proof (or counter-example) for this proposal goes beyond the scope of this
paper.

An additional directive for future work is obvious: In order to do Levi’s proposal
justice we need to be able to characterize his multi-tier decision rule with the use
of cardinal preference relations instead of ordinal ones. The point of this paper was
simply to lay a foundation for that future work. By treating a limited version of
Levi’s rule I have taken the first step in what should be thought of as a much larger
project.

Nevertheless, that foundation has been laid: a choice function C is two-tier rational-
izable if and only if C satisfied TTα, TTIC(1), and TTIC(2).
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