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Harmful and dangerous language is frequent in social media, in particular in spaces which 

are considered anonymous and/or allow free participation. In this paper, we analyse the 

language in a Telegram channel populated by followers of Donald Trump, in order to 

identify the ways in which harmful language is used to create a specific narrative in a 

group of mostly like-minded discussants. Our research has several aims. First, we create 

an extended taxonomy of potentially harmful language that includes not only hate speech 

and direct insults, but also more indirect ways of poisoning online discourse, such as 

divisive speech and the glorification of violence. We apply this taxonomy to a large 

portion of the corpus. Our data gives empirical evidence for harmful speech such as 

in/out-group divisive language and the use of codes within certain communities which 

have not often been investigated before. Second, we compare our manual annotations to 

several automatic methods of classifying hate speech and offensive language, namely list 

based and machine learning based approaches. We find that the Telegram data set still 

poses particular challenges for these automatic methods. Finally, we argue for the value 

of studying such naturally occurring, coherent data sets for research on online harm and 

how to address it in linguistics and philosophy.  
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(1) Introduction 

Digital media can cause harm in different ways. In addition to language that directly 

causes harm, such as bullying, hate speech attacks, and trolling, there are many more 

implicit avenues for online harm. These can include the spread of disinformation and the 

use of dehumanising, offensive, and incendiary language. Such language causes harm 

even when not directed at or read by individuals of target groups. It does so by poisoning 

public discourse, facilitating a networking platform for individuals with extreme views 

and thus creating a climate for normalising harmful practices with consequences beyond 

the online forums where they are primarily trafficked (Popa-Wyatt, forth.).  

In this paper, we analyse a public channel from the direct messaging platform 

Telegram, which is rife with such indirect forms of offensive language. The channel is a 

platform where right-wing views are exchanged among like-minded people, expressing 

harmful views both explicitly and implicitly. Our data shows how extreme online 

discussions may lead to extreme actions, as the users of this channel gradually went from 

discussing governmental overthrow as a theoretical possibility to planning the January 6, 

2021, Capitol riot by sharing information on hotels and transportation in Washington, 

DC, and to finally discussing the aftermath of the event. We argue that the use of harmful 

language on this channel can serve to enable the feeling of group membership and thus 

facilitate the incitement of violent actions. 

Our paper makes the following contributions: First, we apply several automatic 

annotations of hate speech and offensive language to our data, chronicling the prevalence 

of hateful language in this Telegram corpus. Second, we define a taxonomy of harmful 

expressions in online discussions which includes both direct and indirect forms. Third, 

we manually annotate a subset of the corpus with our taxonomy. Finally, we evaluate the 

currently available automatic methods of hate speech detection by comparing them with 

our manual annotations, giving pointers for future work.1 

 

 
1 For illustration of our taxonomy and in order to understand the nature of the platform channel we are 
analysing, this paper contains examples of harmful language. We cite these examples as sparingly as 
possible, and all are attested in the corpus. 
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(2) Online harm and social media 

Online hate has become a central research focus in several fields, including 

computational linguistics, social and political philosophy, communication science, as 

well as in discussions about policy and regulation in the context of free speech debates 

(Brison & Gelber, 2019). One approach to analysing hate speech is by studying text 

corpora containing such language; either general corpora from websites, online forums 

or social media, or specific corpora collected around an event of interest (such as 

discussions of the European refugee crisis in 2015, which triggered large amounts of 

xenophobic and racist hate speech on the internet). The public repository hatespeechdata2 

has already collected several dozen text corpora with hate speech in different languages 

(Vidgen & Derczynski, 2020). 

We see two challenges with the existing datasets: (i) diversity of topics, platforms, 

and collection methods; and (ii) a lack of agreement of what constitutes “hate speech”. 

We aim to address both in this contribution. As to (i), most existing corpora of hate speech 

were collected opportunistically from easily accessible media, mainly Twitter. For 

practical reasons, many datasets further are restricted to certain specific domains (sexism, 

anti-immigrant rhetoric). Finally, many corpora and annotations concentrate on quite 

overt forms of hate speech and offensive language. In contrast, we are interested in 

studying how even very indirect forms of harmful language in an online community can 

influence members’ thinking and over time lead to concrete harms in society. In this 

paper, we are trying to establish an empirical basis for such implicit expressions of online 

harm in the context of supporters of former US president Donald Trump.  

Challenge (ii) is the lack of a common definition of “hate speech”, which is reflected 

in the various uses of terms such as “dangerous speech”, “offensive language”, 

“assaultive language”, “poisonous language”, “discriminatory verbal harassment”, 

“incitement”, etc. (Matsuda et al., 1993;  Haraszti, 2012; Benesch et al., 2018; Brison & 

Gelber, 2019). Here we shall adopt a broader umbrella term of ‘online harm’. Secondly, 

not all datasets provide clear definitions for what kind of language is considered offensive 

(Vidgen & Derczynski, 2020), and where definitions are provided, they often contradict 

each other. Here, we aim to give a taxonomy of the language of online harm as applies to 

our type of online (in-group) discussion. 

 
2 http://ckan.hatespeechdata.com/  
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(2.1) Telegram 

Telegram is an encrypted mobile messaging platform which is popular as an 

alternative to less secure messengers such as What’sApp in person-to-person 

communication. In addition, it offers private and public “channels” for one-to-many 

interactions. These channels can be created by any user and are often employed to share 

information or news; but they also serve as discussion forums by allowing responses. Due 

to the encryption features, Telegram has been used by extremist groups to spread their 

ideology and recruit users (Prucha, 2016; Yayla & Speckhardt, 2017; Shehabat, Mitew, 

& Alzoubi, 2017). As an additional feature to protect users, many channels regularly 

delete all posted content (for example, performing daily purges) to make them unavailable 

(Baumgartner et al., 2020). Baumgartner et al. (2020) provide a large snapshot of raw 

data from public channels on Telegram, collected by bootstrapping from a seed list of 

channels. However, they do not specifically analyse the language included in this large 

sample. We are not aware of any previous Telegram corpora addressing offensive 

language or online harm. Following the recommendations by Vigden & Derczynski 

(2020), we create a new dataset from a Telegram channel for which we expect that it 

contains a significant amount of harmful and dangerous language. In the following 

subsection, we introduce our working definition and taxonomy for analysis. 

(2.2) Online harm and hate speech  

“Hate speech” and “dangerous speech” are two key terms in the legal context of 

regulating discrimination. This is particularly important when it comes to regulating 

online content. There are two challenges to this project. One is a definitional problem: we 

lack a univocal definition of what forms of speech count as hate/dangerous speech 

(Brown, 2017; Benesch et al., 2918; Gelber, 2019), which is to serve as a guiding policy 

for detection of online harmful content. The other challenge is a legal problem of 

establishing under what conditions the harm achieved is subject to legal protection 

(Bleich, 2011; Waldron, 2014; Oster, 2015; Heinze, 2016; Howard 2019). Here we focus 

on the first problem, though our goal is not to settle a definition of hate/dangerous speech. 

Our goal is more modest: we shall provide a classification of various forms of 

hate/dangerous speech and illustrate them empirically with a corpus from a Telegram 

channel. The qualitative and quantitative analysis we provide below will help towards 

developing and improving tools for automatic detection of online harm.  
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It is difficult to define and circumscribe hate/dangerous speech because it includes a 

host of heterogeneous phenomena that share a certain number of common features. We 

follow Brown (2017) in taking hate speech to function more like a “family resemblance” 

rather than unified by a single essential feature common to all discursive phenomena 

typically labelled as hate speech. Among these features, we discern five: 

(1) Hate speech disproportionately harms vulnerable target groups, e.g. (historically) 

oppressed, disadvantaged, marginalised, victimised members of society and groups of 

persons identified by certain characteristics that make them vulnerable and thus in need 

of protection (e.g. based on race, religion, ethnicity, sexual orientation, gender identity or 

disability, etc.). It does so by facilitating and perpetuating acts of subordination and 

oppression (Matsuda et al., 1993, Langton, 2012; Maitra, 2012; McGowan, 2019; Popa-

Wyatt & Wyatt, 2018). 

(2) Hate speech incites to violence and hatred, serves to provoke, stir up hatred, 

harass, threaten and advocate discrimination, vilify, intimidate, defame, and acts that 

serve to justify and glorify violence against target groups. This often correlates with hate 

crimes (see the category of “fighting words” which is legally protected in the US) 

(Matsuda et al., 1993; Tirrell, 2012; Oster, 2015).  

(3) Hate speech recruits, encourages and enables by-standers, e.g. in the form of racist 

propaganda espousing the inferiority of certain races, which also may lead to promoting 

racial discrimination, hatred, violence, and persecution (Langton, 2012; Tirrell, 2012; 

Stanley, 2015). 

(4) Hate speech is socially divisive and destructive of social cohesion in diverse 

societies, thus reinforcing in-group vs. out-group views. This may be seen to (likely to) 

cause a breach of peace, leading to conflict or even genocide (Brown, 2017; Tirrell, 2012) 

(5) Hate speech undermines people’s reputation and assurance that they are members 

of society in good standing and who deserve to be treated as equal citizens (Waldron, 

2014). 

The difficulty with operationalising the category of hate/dangerous speech is that 

various forms of speech may fall into more than one of the types above. So it will be a 

matter of context which functions are performed at any one time. Recent efforts of finding 

a consensual definition of hate speech come from the Council of Europe. In the context 

of hate speech disseminated through the media, the European Commission against 

Racism and Intolerance has updated an internationally adopted definition: 
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 “Hate speech entails the advocacy, promotion or incitement to denigration, hatred or 

vilification of a person or group of persons, as well as any harassment, insult, negative 

stereotyping, stigmatization or threat to such persons on the basis of a non-exhaustive list 

of personal characteristics or status that includes race, colour, language, religion or belief, 

nationality or national or ethnic origin, as well as descent, age, disability, sex, gender, 

gender identity and sexual orientation.” (ECRI, 2016) 

Clearly, the list of harms and wrongs caused by hate/dangerous speech is much wider 

than the features included in the above definition. We could add to this acts of 

disempowering, marginalising, silencing, insulting, disparaging, degrading, humiliating, 

disheartening, harassing, persecuting, threatening, provoking, inciting hatred, 

discrimination, violence, misrecognising, etc. Also, offensive acts of expressing 

(awakening) emotions and attitudes such as hate, contempt, dislike, disgust, despisement, 

aversion, loathing, antipathy, enmity, hostility, etc. may play a role in spilling over into 

acts of discrimination or violence. Note also acts of putting down, ranking targets as 

inferior, outcast and unwelcome. These might range as offensive and insulting acts rather 

than the more restricted category of hate/dangerous speech. Though clearly not 

everything that is offensive counts as hate/dangerous speech, it’s important to keep these 

in mind because they all together contribute to poisoning the discourse in various 

communities, and further legitimate discriminatory speech and conduct. When anchored 

in a discourse of power, dominance and control, and incubated in like-minded 

communities particularly as in online echo-chambers, this may be the imperceptible 

beginning that leads from speech to action.  

We are interested in describing and classifying the varied forms of expression used to 

cause harm as outlined above (see Jeshion, 2021, for a recent taxonomy of pejoratives). 

In working with the data in our corpus, we have identified the following 5 major 

categories of such expressions. The full taxonomy, including subcategories, is listed in 

Table 1. 

Category I includes expressions of extreme or dangerous speech, assaultive speech, 

and language which glorifies or incites violence (“just burn in the sun”, “DEATH TO 

CHINA”). 

Category II is used for pejorative expressions. These are words or phrases that are 

inherently insulting, derogative, etc. All of these forms are primarily evaluative in that 

they serve to express a speaker’s feelings or attitudes towards the target. Subtypes include 

different types of slurs, which are meant to harm individuals simply because of their 
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group membership, pejoratives (e.g., “scum”, “idiots”), expletives (e.g., “damn”), swear 

words (e.g., “fuck”, “shit”), and others. 

In contrast, category III is reserved for expressions that are being used derogatively, 

but are not inherently pejorative in their conventional meaning. This category includes 

jokes and inventive uses of language meant to put down other individuals (“DemoRATS”, 

“Commiefornia”), insulting metaphors (“they are a sickness”), as well as non-pejorative 

words when used pejoratively in context (e.g., “commie”, “Jews”).  

Category IV is used for expressions which cause harm more implicitly by “othering” 

(Culpeper, 1996; Palmer et al., 2020) another group and covers general divisive language 

creating distinctions between an in- and an out-group (“The Chinese”, “Are women 

banned from this chat? If not, why the fuck not?”).  

Finally, category V is used for coded expressions that can harm the discourse by 

communicating different messages to a like-minded in-group who is able to decode the 

expression than to others (“Trump train”, “GIVE THAT MAN A BRICK”). Notably, this 

category includes dog whistles which may seem innocuous to outsiders (“Patriot”).  

Table 1: Taxonomy of online harm used in manual annotation. 

I. incendiary speech (assaultive speech, extreme speech, dangerous speech, the 
glorification of violence) 

II. pejorative words and expressions 
- dehumanising 
- canonical slurs 
- descriptive slurs 
- gendered slurs and expressions 
- pejorative nicknames 
- stereotyping expressions 
- pejorative words used pejoratively 
- expletives 
- swear words 
- generic pejoratives 

III. insulting / abusive / offensive uses 
- jokes 
- rhetorical questions 
- insulting metaphors 
- inventive 
- non-pejorative words used pejoratively 

IV. in/out-group (divisive speech) 

V. codes 
- dog whistles 
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(3) Methods and data 

For our study, we created a new corpus from one Telegram channel used by 

supporters of former US President Donald Trump Jr., which covers the period from 

December 11, 2016, to January 18, 2021 (Solopova, Scheffler, & Popa-Wyatt, 2021). 

After removing empty messages, the dataset consists of 26,431 messages, produced by 

521 distinct users.  

(3.1) Messages and user activity 

We start our analysis by providing surface statistics on the vocabulary composing the 

dataset. We measured the average length of the message in tokens and characters (12.65 

and 76.11, respectively). This means that Telegram messages are on average comparable 

to tweets, given that tweets average 11-14 tokens and 70-84 characters each (Boot et al., 

2019).  

Reflecting Telegram’s status as a news sharing platform, we note a number of 

messages containing links (454), many of whom consist of only the link without any other 

textual content (333). Similarly to Twitter, Telegram allows user referencing with the 

help of the ‘@’ sign (699), but these mentions for the most part appear in reposted tweets 

and are not used much for communication among the channel participants, probably due 

to the higher level of anonymity this social network provides3. However, @ is used more 

frequently than hashtags (only 209), which are an integral part of Twitter. 

As we can observe in Table 3, the number of messages is not homogeneous 

throughout the 4.5 years. Although this data set only covers 18 days of 2021, this is the 

most active period, recording 15,603 messages. This sudden spike in new users on 

Telegram supports the idea of a migrating effect, following the temporary closure of 

Parler, the ban on Reddit’s r/The_Donald, and the introduction of new Discord policies. 

We can observe this trend in Figure 1, where 2021 records the highest number of new 

users, and also the highest number of old users being ‘revived’ and maintaining their 

activity. It is difficult to assess the activity during 2016 and 2018, first because we only 

cover December of 2016 following the creation of the channel. The second reason is that 

 
3 In contrast, over 20% of tweets are replies in some Twitter corpora (Scheffler, 2014).  
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the channel saw massive message deletion in 2018, which is reflected in a small number 

of overall messages posted that year and also no new users being added to the channel in 

2018 (Figure 1). However, we observe interesting trends in 2019 and 2020. In particular, 

2019 is more active in the number of messages, but less so in the number of users added 

(see Figure 1). This can be explained by the fact that 2019 was full of events worth 

discussing, such as the US government shutdown and state of national emergency being 

introduced in order to secure sufficient funds for the Southern border construction. During 

2020, we can see a gradual increase in activity up to 2021 (see Figure 2), which is mainly 

concerned with the pandemic, though this is not a general topic of interest for this group.  

In 2020, we see the highest activity on December 23 in relation to Donald Trump 

issuing a flurry of pardons and commutations, and also tweeting about the “stolen 

election”: “This was the most corrupt election in the history of our Country, and it must 

be closely examined!” — Donald J. Trump (@realDonaldTrump). Interestingly, during 

this period there is first evidence of planning an assembly on January 6, 2021. The activity 

on the 27th of June 2019 is associated with the r/The_Donald subreddit being quarantined 

by Reddit admins due to excessive reports and threatening of the public figures in the 

context of the 2019 Oregon Senate Republican walkouts. The subreddit also lost revenue 

opportunities and was removed from feeds and search, leading to outrage from its users. 

The most active days in 2018, 2017 and 2016 seem to be reactions to other provocative 

tweets posted by the @realDonaldTrump account. 

January 9, 2021, is the day with the highest number of messages overall (3,696), 

which reflects discussions in the aftermath of January 6, the Capitol Hill insurrection. 

Figure 3 shows that this activity starts on January 7, gradually grows to the 9th and then 

decreases to its usual average on the 16th. 

Table 2. Annual message statistics 

 2016 2017 2018 2019 2020 2021 

Number of 
messages 410 2601 1456 5865 4059 15,603 

Max. daily 
messages 75 49 22 449 663 3,696 

Most active 
day Dec. 14 Feb. 8 Sep. 16 Jun. 27 Dec. 23 Jan. 9 
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Figure 1. User statistics per year: newly added users and users active the previous year. 

 
Figure 2. Messages per day in 2020. 
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Figure 3. Messages per day in 2021. 

 

(3.2) Offensive language over time 

As described in (Solopova, Scheffler, & Popa-Wyatt, 2021), we automatically 

annotated the entire corpus by surface matching to the offensive language lists by Anger 

(2017) and Shutterstock (2020), and also by applying the open-source automated hate-

speech/offensive language detection library HateSonar (Nakayama, 2017). We then 

measured the attributed tags quantitatively for each year. Interestingly, the messages 

labelled by the slur lists and by the automatic hate speech detection method are 

completely distinct; i.e., no message was tagged both using the offensive word 

dictionaries and by the machine learning based method. In parallel with the 

aforementioned trend on user activity in 2019, 2020, and especially 2021, we can see an 

increase in offensive language (Figure 4), although the overall fraction of these kinds of 

speech stays the same for all three years, at around 17% of messages. We can also see 

that we captured more messages using list matching than using the automated classifier. 

For the automated tool, the offensive tag is attributed almost 3 times more frequently than 

the hate speech category, because hate speech indicates a higher level of intensity of 

“offensiveness” (Davidson et al., 2017). We also have to note that the tool was trained on 

Twitter data, which, as we have seen above, differs in many ways from Telegram 

messages. These differences can influence its performance on our data negatively.  
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Figure 4. Automatically predicted offensive language labels over time. White numbers 

show the fraction of the ‘neither’ tag. 
 

(3.3) Manual annotation 

One of the authors manually annotated about one fifth of the data according to the 

taxonomy established in Section (2.2). We chose the time period from November 1, 2020 

to January 7, 2021, to cover the time from the US election up to and including the January 

6 Capitol riot. We added part of January 9, to represent the most active day of our corpus. 

This resulted in 4,505 messages to annotate. We chose Brat (Stenetorp et al., 2012), which 

also permitted us to annotate token-level instances and not only on the sentence level.  

In order to validate the annotation schema and determine the difficulty of the task, we 

chose a continuous thread of 711 messages from January 9, 2021, the most active day, to 

be reannotated by another linguist. This second annotator was provided with the 

taxonomy and examples for the individual categories. After annotation of 200 instances, 

we discussed the taxonomy and several difficult cases with both annotators, before the 

reannotation was completed. We computed inter-annotator agreement between the two 

independent annotations on a message level, first on the binary decision task (= “Should 

the message be flagged as containing harmful language?”), and then taking our 5 top-

level categories into account. The annotators show substantial agreement (Cohen’s 

κ=0.70) on the binary harmful/neutral distinction. When evaluating the 6-way 

classification, we counted any overlap in categories of harmful language between the two 
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annotators as agreement (i.e., if one annotator found only category II, pejoratives, while 

the other found both II and III, we counted the message as an agreement between 

annotators). The fine grained distinction leads to overall lower agreement (κ=0.65), 

reflecting the difficulty of the task. We find these scores promising for such a difficult 

and potentially subjective task and believe that more comprehensive annotation 

guidelines and in particular a dedicated adjudication process between annotators will be 

able to further raise the inter-annotator stability of our taxonomy categories. We leave 

this, as well as a fine-grained token-level agreement evaluation, for future work. 

(4) Results and discussion 

Overall, out of the chosen 4,505 messages we manually identified harmful language 

in 787 messages and 831 instances, meaning that 44 messages had more than one tag 

associated with it. ‘II. Pejorative words and expressions’ is the most represented category 

with 273 messages. The second-largest category is ‘V. code words’ (261). ‘III. 

Insulting/offensive/abusive uses’ and ‘I. incendiary speech’ are similar in size with 115 

and 98 messages, respectively. The least represented class, ‘IV. in/out-group’ (40), is also 

the most complicated by definition and can often coincide with other classes. The 

distribution is shown in Table 3. As for the instance level, there are 310 (37 instances are 

found more than once in one message) instances annotated as ‘pejorative words and 

expressions’ and 121 (only six times in the same message) annotated as 

‘insulting/offensive/abusive uses’, while statistics on the other categories coincide with 

those on the message level. 

Table 3. Statistics on 5 main categories: incendiary speech, pejorative words and 

expressions, insulting/offensive/abusive uses, in/out-group, code words. 

Tag I. 
incendiary 

II. 
pejorative 

III. offen- 
sive uses 

IV. in/out- 
group V. codes All 

Number of 
messages 98 273 115 40 261 787 

Fraction  12% 35% 15% 5% 33% 100% 
 

Looking closely at the sub-categories in Figure 5, we can also observe that they are 

not evenly distributed. Let us start with pejoratives, as the biggest category, with its most 

frequent sub-categories being pejorative words used pejoratively (85 messages, 88 

instances) and pejorative nicknames (90 messages, 97 instances), while swear words in 
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an offensive context account for 56 messages and 60 instances. There are also 27 

canonical slurs, 12 generic pejoratives, 9 descriptive slurs, and only 6 gendered slurs and 

expressions, as well as stereotyping expressions and 2 expletives, while we found no 

examples of dehumanising speech in the manually annotated subcorpus. Within 

‘insulting/offensive/abusive uses’ we found that the largest categories are non-pejorative 

words used pejoratively (39) and insulting metaphors (38). There are also 21 offensive 

jokes, 21 inventive-creative offensive instances, and 6 rhetorical questions.  

 
Figure 5. Sub-category statistics for pejorative words and expression and 

insulting/offensive/abusive uses categories. 

(4.1) Comparison of manual and automated annotations  

We performed a binary and multi-class comparison of the manual and automated 

annotations. The binary comparison (see Figure 6) shows how many potentially harmful 

messages (annotated manually) are also identified by either word list based or machine 

learning based automated methods. Out of the 4,505 messages in the doubly annotated 

subcorpus, 3,395 are tagged neither by the manual annotation nor by the automated one 

(true negatives), while only 275 were correctly found by the automated systems as either 

offensive or hate speech (true positives). Consequently, we have 835 messages annotated 

differently, where the HateSonar classifier or offensive word lists falsely attributed some 

messages as offensive/hate speech (432 false positives) or did not find a manually 

identified harmful message offensive (403 false negatives). Using these numbers, we 

calculated the balanced F-measure for the binary classification for the joined 
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list+HateSonar performance as 40% (with 39% precision and 41% recall). These low 

scores confirm the low generalizability of solutions for offensive language detection 

when switching to a new dataset (Yin & Zubiaga, 2021), an effect exacerbated by the fact 

that our data originates from a different platform than the training data and contains many 

different types of more complex and implicit harmful language.  

 
Figure 6. Binary confusion matrix for manual and automated annotation. 

The results demonstrate a need for additional corpora of harmful language and in 

particular for more diverse and fine-grained annotations, as the multi-class confusion 

matrix shows (Table 4). Considering the main categories of harmful language, we note 

that the slur lists overall captured more harmful messages, and mostly overlap with 

category II, pejorative words and expressions. However, list-based detection also flagged 

many neutral messages as harmful (317), indicating low precision. At the same time, the 

machine learning-based system HateSonar has a low recall in our data while in particular 

its hate speech tag exhibits better precision. Overall we can see that the automated tools 

are generally better at finding neutral messages, an effect caused by the prevalence of this 

category in the data. 

On the other hand, we can study our taxonomy using the automatically assigned tags 

as comparison. We see that recall is much higher across the automatic methods (again, 

the automatic tags do not overlap in any messages) for our categories II, III, and IV - 

pejorative expressions, offensive uses of not exclusively derogatory words, and in/out-
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group divisive speech. Incendiary language calling to violence as well as, particularly, 

veiled codes are in contrast harder to detect by current automatic methods.  

Table 4. Confusion matrix of multi-class annotation. 

manual \ auto slur lists hate speech offensive neither recall 

I incendiary 29 0 8 61 0.378 

II pejorative 85 13 30 89 0.590 

III offensive uses 44 3 10 54 0.514 

IV in-/out-group 12 5 4 18 0.538 

V codes 24 0 8 181 0.150 

neither 317 11 104 3395 0.887 

precision 0.380 0.656 0.366 0.894  

 

(4.2) Exploratory analyses 

Drawing on the hypothesis that harmful language poisons online discourse by further 

normalising hate speech, we expect that messages will be prone to contain more offensive 

language when they respond to already offending messages. We found that 24,629 

message-response pairs, which is 93% of all messages, are both neutral. There are also 

836 (3%) neutral responses to offensive messages, 585 (2.2%) offensive responses to a 

neutral message, and only 327 (1.2%) are both offensive. This means that while neutral 

messages receive an offensive response in about 2.3% of cases, this chance increases in 

offensive messages by more than a factor of 10, to 28.1%. Due to the large number of 

messages, this is a highly significant result with a moderate effect size (ꭓ2=2208.64, 

Cramér’s V=0.28). However, as noted above, the automated detection methods for 

offensive language have low accuracy, so this research shall be repeated after a revision 

of the automated tags in order to confirm the results. 

We also explored the idea of Trump’s narrative being reflected in his supporters’ 

language. We analysed quantitative and semantic similarities between our Telegram 

corpus and the Trump Twitter Archive (Brown, 2016), containing all tweets posted by 

Donald Trump since 2016. However, we only found a negative correlation (Spearman’s 

ρ=-0.098) for overall activity, thus our expectation that more tweets would lead to more 

Telegram messages was not confirmed. At the same time, we think that this measurement 
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is inherently difficult as, on the one hand, the discussion can follow tweets with at least a 

day delay, as shown in the case of 27 June 2019, discussing the r/The_Donald ban of June 

26, and on the activity of January 7-9, discussing the Capitol riot on the 6th. On the other 

hand, some days are lacking channel activity completely, so our data set does not always 

have the next day’s data to measure this kind of delayed response.  

We also started analysing the semantic similarity of our corpus and Trump’s tweets 

using contextual embeddings (word2vec, Mikolov, et al., 2013; and Fasttext, Bojanowski, 

et al., 2016). We compared semantically similar words for keywords of Republican 

narrative (“guns”, “China”, “immigrants”, etc) for a vector model trained on Trump 

tweets and another on our Telegram corpus. We only found a semantic similarity for 

“Antifa”, “socialist”, “communist”, and “masks”. The latter is qualified by both as 

“illegal” and “leftists”. The first three are related to “funded” and “criminal”, with 

interchangeable usage of all three and also in strong relation to the Democratic party. We 

believe that building on this preliminary method will allow us to measure how message 

embedding vectors annotated according to our taxonomy differ from the neutral 

vocabulary. 

(5) Summary 

We presented a new corpus of a channel of the instant messaging platform Telegram, 

selected for its large potential for harmful language. The corpus consists of over 25,000 

messages spanning a period of over 4 years and including discussion leading up to and in 

particular following the January 6, 2021, US Capitol riot. We argued for a broad notion 

of harmful language online, which includes not only direct attacks on persons and 

pejorative expressions, but also divisive language and statements meant to poison public 

discourse. To this end, we introduced a broad taxonomy of this type of online harm and 

provide manual annotations on a subset of our corpus. Comparing these annotations with 

automatically obtained labels of hate speech and offensive language, we showed that both 

lexicon-based methods and machine learning algorithms trained on other datasets and 

platforms are unable to detect the various subtle and implicit types of harmful language 

we encounter in our Telegram channel. We therefore believe, along with other authors, 

that much more research is needed in the philosophical foundations of online harm and 

their possible linguistic expressions. We attempt to contribute to this research by 

diversifying the available empirical foundation for these types of investigations in terms 
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of the platform, content, and the kinds of annotations we cover. In contrast to previous 

work, which often focussed on personal derogation, we specifically distinguish between 

pejoratives, which conventionally denote offensive attitudes, and offensive or derogatory 

uses, where non-pejorative expressions are used to attack or put down a person or group. 

These uses, as well as group-internal codes (which are not intended to be addressed to or 

understood by outsiders) and divisive language focussing in in-/out-group distinctions, 

can not easily be identified with lexical items and thus pose additional challenges for 

detection. Finally, the inclusion of language glorifying or inciting violence is important 

in our opinion, as we argue that such speech can lead to corresponding action, but cannot 

itself be easily identified by list based or state of the art machine learning based means. 

We invite researchers from related fields to use our data to further address the question 

of what constitutes online harm, how to detect it, and how to mitigate it. 
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