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Pathological tremor is a common but highly complexmovement disorder, affecting∼5% of population older than 65 years. Different
methodologies have been proposed for its quantification. Nevertheless, the discrimination between Parkinson’s disease tremor and
essential tremor remains a daunting clinical challenge, greatly impacting patient treatment and basic research. Here, we propose
and compare several movement-based and electromyography-based tremor quantification metrics. For the latter, we identified
individual motor unit discharge patterns from high-density surface electromyograms and characterized the neural drive to a single
muscle and how it relates to other affected muscles in 27 Parkinson’s disease and 27 essential tremor patients. We also computed
several metrics from the literature. The most discriminative metrics were the symmetry of the neural drive to muscles, motor
unit synchronization, and the mean log power of the tremor harmonics in movement recordings. Noteworthily, the first two
most discriminative metrics were proposed in this study. We then used decision tree modelling to find the most discriminative
combinations of individual metrics, which increased the accuracy of tremor type discrimination to 94%. In summary, the proposed
neural drive-basedmetrics were themost accurate at discriminating and characterizing the twomost common pathological tremor
types.

1. Introduction

Pathological tremor is themost commonmovement disorder
and is strongly increasing in incidence and prevalence with
ageing. About ∼4% of the elderly (>65 years) suffer from
essential tremor (ET), whereas ∼1% of the population of age
>50 years suffer from Parkinson’s disease (PD) [1].

The central origin of ET and PD tremor is widely accepted
but not fully understood. ET is believed to originate at
the cerebellothalamocortical pathways [2, 3], although the

involvement of the inferior olive has also been suggested due
to its rhythmic properties [4, 5]. In PD patients, the loss
of dopaminergic nigrostriatal neurons is believed to cause
abnormal oscillations in the loop linking the cortex, basal
ganglia, and thalamus [6]. Despite their potentially different
origins, ET andPD frequently demonstrate similar symptoms
and are often difficult to discriminate, especially at early
stages. Up to 20%of patients with ETdevelop the signs typical
for PD, whereas 30 to 50% of patients diagnosed with ET do
not have ET [2, 7, 8].
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Current methods for clinical tremor diagnosis and quan-
tification are based on the mechanical demonstration of
tremor (the tremulous movement), mainly with the help of
movement disorder scales, such as the Fahn-Tolosa-Marin [9]
and the UPDRSIII scale [10]. Some of the key clinical features
for diagnosing ET and PD are that ET tends to increase in
postural and kinetic tasks, whereas PD tremor is frequently
present at rest. However, 20–30% of the ET patients also
have clinically noticeable rest tremor [11], an observation that
highlights the complexity of diagnosing these two tremor
types. As to the tremors themselves, the mechanisms behind
the observed differences (and similarities) between ET and
PD are not well understood. In addition, tremor diagnosis
is mainly based on the subjective clinical assessment of the
tremulous movement (i.e., without quantifying its character-
istics), whereas the pathophysiology of the underlying tremor
is not fully understood, mainly due to the highly complex
interactions between the central and peripheral structures of
the nervous system [12].

Different computer-aided methods for tremor diagno-
sis have already been proposed [13–18]. Among them, the
difference in the energy of the higher tremor harmonics
in movement recordings, typically performed with inertial
sensors, best discriminates ET and PD patients [17, 18].These
harmonics are usually computed after using relatively simple
frequency filtering techniques which separate the higher
tremor frequencies from the relatively low frequencies of
voluntary movement [14, 15, 17, 19]. However, the tremulous
movement is nonlinearly related to the underlying muscle
activation and results from complicated interactions among
the many muscles that control the same joint. These inter-
actions between muscles are also yet not fully understood.
For example, it has been recently demonstrated that not all
the muscles are equally affected by ET [20] and that the
interaction between antagonist muscles is different across
conditions and patients, and intrinsically nonstationary [21].

In this study, we applied a sophisticated blind source
separation algorithm [22–24] to the surface electromyograms
(EMG) of PD and ET patients to estimate the neural drive
that reflects the net input from the nervous system [25] to the
wrist flexors and extensors. Our rationale was that by using a
more detailed measurement of nervous system function than
the classically used rectified EMG or resultant movement,
we could develop better metrics for tremor characterization
and discrimination. We systematically analyzed the prop-
erties of the neural drive in these two groups of patients,
proposed novel pathological tremor characterizationmetrics,
and analyzed their power to discriminate between ET and
PD tremor. Finally, we compared the discriminative power of
the proposed methodologies to that of previously proposed
methods and demonstrated that our new metrics largely
outperform them.

Themanuscript is organized as follows. Section 2 justifies
multichannel EMG recordings and the estimation of the
neural drive to muscle using blind source separation of
these signals in pathological tremor. Section 3 describes the
experimental protocol and our novel methodology for quan-
tifying and classifying pathological tremor types. Section 4
systematically analyzes the statistical power of the described

metrics in discrimination of ET and PD patients. Section 5
discusses the main results and limitations and concludes the
manuscript.

2. Neural Drive to Skeletal
Muscles and Tremor Demonstration in
Surface Electromyograms

The central nervous system causes movement by modulating
the firing patterns of the motoneurons that innervate task-
relevant muscles. The net output from all the motoneurons is
referred to as neural drive to the muscle [26] and is the ulti-
mate control signal mediating movement generation [27]. In
heathy muscles, each motoneuron firing causes a motor unit
action potential (MUAP) that makes the innervated fibers
contract. MUAPs can be measured by surface EMG [28].
Subcutaneous tissue progressively filters electrical potentials
with increasing distance from the muscle fibers, inducing
spatial variability of MUAPs across the skin surface [28].

In pathological tremor, the neural drive to muscle
has classically been estimated from bipolar surface EMG
recordings [14, 15, 17]. In this procedure, the EMG signals
are first rectified and their power spectrum is calculated
to estimate the power at the main tremor frequency and
its higher harmonics. While appropriate for coarse tremor
assessment and for many pioneering tremor studies (e.g.,
[29]), this procedure of computing the power spectrum of
the rectified EMG did not provide the most accurate insight
into the complex and nonstationary neural drive underlying
tremulous muscle dynamics in our study (see Results in
Section 4). There are a number of reasons that support this
statement as well as our results. First, not all the motor
units are active during pathological tremor, and the muscle
activation pattern, estimated from bipolar EMG recordings,
depends significantly on the electrode position (Figure 1) and
on motor unit distribution within the muscle tissue [27].
Second, in dynamic conditions as tremor, muscle fibers move
relative to the skin, causing unpredictable changes in the
detectedMUAPs [25, 27, 28].Third, the spatial distribution of
themotor units varies significantly among subjects, and there
is no universally optimal position for bipolar EMGrecordings
[28]. Fourth, the algebraic summation of biphasic MUAP
trains causes EMG amplitude cancellation, which leads to an
unpredictable underestimation of the effective neural drive
[30–32]. For these reasons, the neural drive to muscle is
better characterized using two-dimensional high-density (2D
hdEMG) arrays of surface EMG electrodes, with several tens
of surface electrodes placed over a substantial portion of the
skin above the investigated muscle [25, 27]. This, however,
generates large quantities of recorded data.

Different methodologies have been proposed to cope
with this challenge [28]. Given that the neural drive to
muscle is the net activity of all the innervating motoneurons,
the best estimate of the neural drive is derived from the
motoneuron (and, consequently, motor unit) spike trains
themselves [25]. For this purpose, the highly variableMUAPs
thatmask the changes in the neural drive need to be separated
from the motor unit spike trains. This is accomplished by
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Figure 1: Surface EMG amplitude of the wrist extensors in a PD patient during rest condition. Electrode location greatly influences the EMG
characterization of tremor. Tremor amplitude computed from the surface EMG using standardmethods was highly variable across 60 bipolar
channels of single-differential EMG (recorded with an array of 5 × 13 electrodes with interelectrode distance of 8mm); for example, it ranged
from severe tremor in channel 25 to no tremor in channel 59.

using advanced signal decomposition algorithms [23, 24,
32–34]. However, not all of these algorithms are applicable
to hdEMG data in pathological tremor; in pathological
tremor, motor unit firings tend to be significantly more
synchronized than in healthy conditions [21, 23], causing
bursts of EMG activity (Figure 2) that are very difficult to
decompose into the contributions of individual motor units.
TheConvolutionKernel Compensation (CKC) technique has
been recently demonstrated to successfully solve this problem
[23], providing a solid ground for fully automatic and
highly accurate assessment of the tremulous neural drive to
muscles.

3. Methodology

3.1. Experimental Protocol. Fifty-four subjects (27 ET and 27
PD patients), all suffering from mild to severe tremor, were
recruited at Hospital Universitario 12 de Octubre, Madrid,
Spain. The ET patients were 12 females and 15 males with
mean age of 70±9 years (range 43–80 years).The PD patients
were 10 females and 17 males with mean age of 66 ± 10 years
(range 44–80 years). Tremor severity in the most affected
limb ranged from 10 to 56 (mean ± SD: 31.6±11.3) according
to the Fahn-Tolosa-Marin scale in ET patients and from 5 to
51 (mean± SD: 14.9±9.1) according to theUPDRS scale in PD
patients. The mean disease duration was 19 ± 15 years (range
2–65 years) for the ET patients and 5 ± 3 years (range 1–13
years) for the PD patients. Seventeen ET patients were taking
antitremor drugs, which in all cases were withheld for at least
12 h before the recordings. Sixteen PD patients were taking
antitremor drugs and continued theirmedications during the
recordings. This is the group of patients that was included
into the induction of the decisionmodel and its tenfold cross-
validation.

Based on the method we devised to objectively identify
tremor, 27 ET and 27 PD patients exhibited tremor in both
rest and postural tasks studied, and 27 ET and 22 PD patients
exhibited bilateral tremor. Our tremor identification method
consisted in computing the power spectrum of the signal of
interest (the summed motor unit spike trains, the rectified
surface EMG, or wrist movement) and summing the peaks at
the basic tremor frequency and its first two higher harmonics.

If this sum was ≥50% of the total power of the signal, we
considered that recording to exhibit tremor.

To further test the performance of our decision tree
model, we recruited six additional ET and PD patients,
which were blindly diagnosed by the proposed model and
three expert clinicians. Importantly, both diagnoses were
completely independent, and no data from these six patients
were included into decisionmodel induction.TheETpatients
were 1 female and 2males, withmean age 65±17 years (range
47–80 years); their mean disease duration was 20 ± 9 years
(range 10–27 years). The PD patients were 2 females and 1
male, with mean age 68 ± 10 years (range 62–80 years); their
mean disease duration was 9 ± 5 years (range 5–14 years).
Tremor severity in the most affected limb ranged from 10 to
34 (mean ± SD: 25.3 ± 13.3) according to the Fahn-Tolosa-
Marin scale for the ET patients and from 15 to 23 (19.3 ± 4.0)
according to the UPDRS scale for the PD patients. These
patients formed the test group.

All patients received a detailed explanation of the study
and gave written informed consent prior to participation.
The study was conducted in accordance with the Declaration
of Helsinki and approved by the local ethics committee.
The experimental protocol comprised measuring the inertial
and EMG data from both forearms during standard tremor
triggering tasks (see, e.g., [2, 6, 11, 14, 16–18, 21]). Each
patient performed three repetitions of the following 30 s long
standard tasks:

(i) Rest task (RE): the patient was sitting relaxed, with
both arms supported in elbow and wrist region.
The patient’s wrists were relaxed with no noticeable
voluntary activity throughout the entire duration of
the task.

(ii) Arms outstretched against gravity (AO): after 5 seconds
of rest, the patient outstretched his/her arms and
maintained them parallel to the ground until the end
of the task. The fingers were separated and the hands
were held at the same height as the shoulders.

(iii) Arms outstretched against gravity with weight (WE):
it is the same as the AO task with additional weight
load of 1 kg applied to both hands.The patient had the
fingers outstretched.
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Figure 2: Experimental methods and estimation of the neural drive to muscle. Left: schematic of two 64-channel electrode arrays placed on
the wrist flexors and extensors. Right: multichannel surface EMG in pathological tremor (upper panel) and its decomposition into constituent
motor unit spike trains (lower panel). Decomposition allows for the identification of motor unit firing patterns and thus of the neural drive
to muscles. Each vertical line in the lower right panel denotes an individual motor unit firing, whereas different motor units are depicted by
different colors. Motor unit firing patterns are highly synchronized and have been identified using the Convolution Kernel Compensation
(CKC) method [24]. Summed MU spike trains form cumulative spike train (CST; bottom-most panel).

(iv) Arms supported + postural tremor elicited (PO): it
is the same as RE task, but with both wrists held
extended against gravity.

Wrist movement was assessed as the difference between
the measured acceleration values in the axis parallel to the
forearm [19]. Accelerometers (Tech MCS, Technaid S.L.,
Madrid, Spain) were fixed with surgical tape over the hand
dorsum and the distal third of the forearm (on the dorsal
side, close to the wrist) on each hand. Data were sampled at
100Hz by a 12-bit A/D converter and low-pass filter (cut-off
frequency of 20Hz).

Surface hdEMG signals were recorded from the wrist
flexors and extensors with 5 × 13 electrode arrays (LISiN–OT
Bioelettronica, Torino, Italy, 8mm interelectrode distance).
The electrode arrays were centred over flexor carpi radi-
alis and extensor digitorum communis, respectively. Before
electrode placement, the skin was lightly abraded using
abrasive paste (Meditec–Every, Parma, Italy) and cleaned.
In order to improve the electrode-skin contact, each of

the electrode cavities in the array was filled with conduc-
tive gel (Meditec–Every, Parma, Italy). A soaked bracelet
placed around one of the wrists was used as reference. The
surface EMG signals were amplified as bipolar recordings
along the direction of the fibers, band-pass filtered (3 dB
bandwidth, 10–750Hz), and sampled at 2048Hz and 12-bit
resolution (LISiN–OT Bioelettronica, Torino, Italy). EMG
and movement recordings were resampled to 2048Hz and
synchronized offline, using a common clock signal.

The hdEMG signals were decomposed into motor unit
spike trains using the CKC algorithm [24]. The pulse-to-
noise ratio (PNR) metric [23] was used to assess motor
unit identification accuracy and all the motor units with
PNR < 30 dB (corresponding to accuracy <∼90% [24]) were
discarded.

3.2. Assessment of the Tremor in the Neural Drive to Muscles.
As mentioned above, tremor results from the pathological
activation of several synergistic muscles, and oftentimes, of
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antagonists as well. Due to the central origin of tremor, the
descending drives to nearby muscles will possibly exhibit
a similar tremor component [35], or at least its delayed
reflection via afferent feedback loops [20, 21]. However, the
characteristics of the neural drive to different muscles have
been rarely studied in pathological tremor [23].

In this study, the neural drive to muscle was assessed
by summing up individual motor unit spike trains into
cumulative spike train (CST) (see, e.g., [20, 21, 35]). After-
wards, the CSTs of the different muscles were low-pass
filtered (cut-off frequency of 20Hz). In order to emphasize
the rhythmic motor unit activity related to tremor and
minimize the asynchronous motor unit activity caused by
the concurrent voluntary contraction, we calculated the auto-
and cross-correlation functions among all pairs of filtered
CSTs. Representative results from one ET patient and one
PD patient are depicted in Figures 3 and 4. Note that, in
Figure 3(a), the neural drive to the extensors of the right wrist
exhibited both tremulous and voluntary motor unit activity.
The proposed auto- and cross-correlation functions filtered
out the voluntary activity and emphasized the tremulous
neural drive (Figure 3(b)). Moreover, usage of the auto- and
cross-correlation functions of the neural drive also circum-
vented the ambiguity of our hdEMG decomposition method
when estimating the amplitude of the neural drive.This well-
known ambiguity is common to all blind source separation
algorithms [22, 24] and implies that the amplitude of the
neural drive can only be determined up to an unknown scalar
factor (Figures 3, 4, and 6). This prevents the assessment
of the absolute tremor power in the neural drive; however
its relative power (with respect to the voluntary drive) can
be easily assessed. The cross-correlation functions assess the
interactions between the neural drives to different muscles
and are, thus, insensitive to this amplitude ambiguity [25].

We observed different neural drive patterns for the two
groups, with the ET patients exhibiting a larger degree of
shared neural drive across muscles than the PD patients.
To quantify this phenomenon, we considered the following
neural drive-based metrics for ET and PD discrimination:

(N1) Tremor amplitude in the neural drive: average dif-
ference between the maxima and minima of the
autocorrelation function of the neural drive to each
individual muscle, calculated over correlation lags
from −1 to +1 s.

(N2) Tremor frequency in neural drive: dominant frequency
in the power spectrum of the neural drive to each
individual muscle.

(N3) Dominant hand tremor symmetry: absolute values
of cross-correlation coefficients between the neural
drive to the wrist extensors and the neural drive to the
wrist flexors in the dominant tremor hand, averaged
over correlation lags from −1 to +1 s (Figure 3(b),
panel N3).

(N4) Interlimb tremor symmetry in extensors: absolute val-
ues of the cross-correlation coefficients between the
neural drive to the extensors of the left and the right

wrist, averaged over correlation lags from −1 to +1 s
(Figure 3(b), panel N4).

(N5) Interlimb tremor symmetry in flexors: absolute val-
ues of the cross-correlation coefficients between the
neural drive to the flexors of the left and the right
wrist, averaged over correlation lags from −1 to +1 s
(Figure 3(b), panel N5).

(N6) Global tremor symmetry: absolute values of the cross-
correlation coefficients between the neural drives
correlation lags, averaged over all the muscle pairs
and over correlation lags from −1 to +1 s (all panels
in Figures 3(b) and 4(b)).

(N7) Normalized global tremor symmetry: the global tremor
symmetry for the postural task (AO, WE, or PO),
divided by the global tremor symmetry for the RE
task.

3.3. Assessment of the Spatial Distribution of the Neural Drive
to a Muscle. CST captures the temporal variability of neural
drive to a muscle, while averaging out the differences among
identified motor units [36]. Thus, the CST ignores how the
tremor input is distributed across the motoneurons innervat-
ing the muscle. The distribution of the tremor input across
motor units may be studied by quantifying the pairwise
motor unit synchronization. During voluntary contractions,
motor units discharge asynchronously, supporting smooth
modulation of force [28]. In contrast, during pathological
tremor, the level of motor unit synchronization increases
significantly [20, 21, 23]. This can be quantified by assessing
the distribution of backward and forward motor unit recur-
rence times in pairs of simultaneously active motor units
[37]. The forward (backward) recurrence time is defined as
the distance from the current motor unit discharge to the
first next (closest previous) discharge of another motor unit
(Figure 5(a)). In normal conditions, the recurrence times
are uniformly distributed over the observed time support,
indicating low motor unit synchronization. In pathological
tremor, themotor unit recurrence times are grouped together
(Figure 5(b)), reflecting highly synchronousmotor unit activ-
ity.

We analyzed the distributions of motor unit recurrence
times by calculating their histogram. We computed the 99%
confidence limit assuming a uniform distribution and then
identified the peaks exceeding this limit [37].We then defined
the pairwise motor unit synchronization index as the ratio
between the peak area and the sum of all the histogram
bins (Figure 5(b)). Finally, we used this index to define the
following metrics of spatial tremor variability:

(N8) Coefficient of variation for the pairwise motor unit
synchronization: the standard deviation of the dis-
tribution of pairwise motor unit synchronization
indexes divided by their mean value, calculated over
all the pairs of identified motor units per muscle and
per task.

(N9) Normalized coefficient of variation for the pairwise
motor unit synchronization: the N8 metric in the
AO task, divided by the N8 metric in RE task. The
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Figure 3: Neural drive to left and right wrist flexors and extensors in a representative ET patient during the arms outstretched task. (a) Neural
drive as estimated by low-pass filtering of the cumulative motor unit spike train. All muscles exhibit tremulous drive, whereas voluntary drive
is also present in the right extensor muscle. (b) Cross-correlations (CC) of neural drives; EXT L: left wrist extensors, FLE L: left wrist flexors,
EXT R: right wrist extensors, and FLE R: right wrist flexors. The 𝑥-axis denotes the correlation lag in seconds. Voluntary drive is filtered out,
whereas the tremulous drive is enhanced by the correlation function. Data from panels N1, N3, N4, and N5 are included into the calculation
of the N1, N3, N4, and N5 tremor symmetry metrics (see text for details).

normalized coefficient of variability was averaged
over all four investigated muscles for each patient.

3.4. Assessment of Tremor inWrist Movements. Tremor char-
acterization with inertial sensor recordings is very appealing
due to the simplicity, robustness, and cost-effectiveness of
these sensors [38]. Inertial sensor data have been used in
many tremor diagnosis studies, demonstrating promising
results in terms of ET and PD discrimination [13, 16, 18].

However, movement data reveal very limited information on
the underlying tremor mechanisms. It then follows that the
ability to discriminate between complicated ET and PD cases
with metrics extracted from movement data is likely to be
limited. To verify this hypothesis, we computed, separately
for the dominant and nondominant tremor hands in each
recorded task, the following metrics [18]: the basic tremor
frequency and its power, the number of spectral peaks at
the higher harmonics of the basic tremor frequency, and
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Figure 4: Neural drive to left and right wrist flexors and extensors in representative PD patient during arms outstretched task. (a) Neural
drive as estimated by low-pass filtering of cumulative motor unit spike train. Left wrist extensors and flexors exhibit voluntary drive; right
wrist extensors and flexors exhibit tremulous drive; (b) cross-correlations (CC) of neural drives; EXT L: left wrist extensors, FLE L: left wrist
flexors, EXT R: right wrist extensors, and FLE R: right wrist flexors. The 𝑥-axis denotes the correlation lag in seconds.

their mean power. We also computed the asymmetry of the
autocorrelation function [13], along with the statistical signal
characterization (SSC) metric proposed in [16].

We also defined the following new movement-related
metrics, calculated using the base 10 logarithm of the har-
monic peak powers in the data from the dominant and
nondominant tremor hand, respectively:

(M1) Mean log power of all harmonics: the mean of the
logarithmic power of all the tremor harmonic peaks
in the power spectrum of the movement recordings
during a single task.

(M2) Average of mean log power of all the harmonics: the
average of the mean of the logarithmic power of all
the harmonic peaks across different tasks.

In order to make the differences between ET and PD patients
most evident, and to further improve the patient classification
performance, the values of all the movement metrics in the
postural tasks (AO, WE, and PO) of individual patient were
normalized by their corresponding values during the RE task.
In this normalization, we subtracted themetric in the RE task
from the corresponding values in the AO,WE, and PO tasks,
respectively. We chose the repetition with the highest tremor
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Figure 5: Definition of backward and forward motor unit (MU) recurrence times (a) and representative histograms of recurrence times in a
healthy young control ((b), left panel) and a patient with pathological tremor ((b), right panel). The 99% confidence limit is depicted by red
dashed line. For the peaks exceeding the 99% confidence limit, the peak area (red filling in (b), right panel) was calculated. 𝑁
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number of motor unit discharges.

amplitude for each of the AO,WE, and PO tasks, respectively,
and the repetition with the lowest tremor amplitude for the
RE task.This yielded one value for each type of task (AO,WE,
and PO) for each patient.

3.5. Assessing the Discriminative Power of the Tremor Metrics.
The presented metrics were combined with metrics describ-
ing the patient’s demographics (age, gender) and tremor
etiology (tremor onset, tremor duration, tremor severity,
results on UPDRS/Fahn-Tolosa scale, family history, medica-
tions, and predominance). In total, 194 tremor metrics were
analyzed. The discriminatory power of each extracted metric
was evaluated using the receiver operating characteristics
(ROC) curve. In particular, we used the following metrics:
area under the ROC curve (AUC) with its corresponding
95% confidence interval (95% CI); specificity (Sp); sensitivity
(Se); positive predictive value (PPV); and negative predictive
value (NPV). The ROC curve describes the performance
of different models based on varying threshold values, and
thus allows selecting the optimal operating point [39]. In
our study, the optimal operating point was the best trade-
off between sensitivity and specificity. Sensitivity denotes the
ability of a prediction model to correctly classify all positive
cases and specificity is the ability to correctly classify negative
cases. In our study, ET patients were indicated as positive

cases and PD patients as negative cases. PPV and NPV values
provide additional insight into the robustness of the gener-
ated prediction models. PPV or precision is the proportion
of true positives (ETs) among all the patients classified as
positive. Analogously, NPV or false discovery rate is the
proportion of true negatives (PDs) among all the patients
classified as negatives. Additionally, a Mann–Whitney 𝑈 test
was used to compare the extracted metrics between PD and
ET patients. The basic level of statistical significance was set
at 𝑝 < 0.05.

Finally, the aforementioned movement and neural drive
metrics were tested against their discriminative power in
decision support systems.Wewere interested inmethods that
provide a symbolic representation of the extracted knowledge
and that implement a simple data mining model. Therefore,
we gave preference to binary logistic regression and decision
tree modeling algorithms instead of black-box approaches
(e.g., neural networks, support vector machines). However,
as in most of the statistical modeling methods, the drawback
of logistic regression is that all the observations that contain
missing values are ignored, resulting in a reduced data
set. This can substantially weaken the predictive power of
these models. This limitation is mitigated in decision tree
algorithms, where surrogate splitting rules enable the use of
other predictor variables to perform a split for observations
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Figure 6: (a) Average amplitude of the rest and postural tremor in 54 ET and PD patients, as computed from the following: top: the neural
drive (ND); middle: the spatial average of all the rectified EMG channels per muscle (EMG); and bottom: accelerometers (IMU). Tremor
amplitude was assessed from the most affected muscle (ND and EMG) and from dominant tremor site (IMU). Each dot in the scatter plots
represents one patient. The amplitude of the neural drive is expressed in arbitrary units (a.u.; see text). (b) Statistical comparison of the three
different tremor amplitude estimates across ET and PDpatients. ∗𝑝 < 0.05 and ∗∗𝑝 < 0.01 denote statistically significant difference as assessed
by Kruskal-Wallis test.

with themissing values.We thus chose four different decision
tree models, namely, CART [39], CHAID [40], C5.0 [41], and
QUEST [42]. These four different algorithms differ basically
in the splitting criteria.TheCART (Classification andRegres-
sion Tree) algorithm uses the Gini index as splitting crite-
rion [39]. The CHAID (Chi-Square Automatic Interaction
Detector) algorithm uses chi-square tests of independence
for evaluating an association between categorical variables
[40]. The C5.0 algorithm, which is an improved version of
the original Quinlan’s C4.5 algorithm [41], defines each split
based on the metric that provides the maximum information
gain. In the QUEST (Quick, Unbiased, Efficient Statistical
Tree) algorithm, the splits are determined by quadratic
discriminant analysis using the selected input features on
groups formed by the target categories [42].

The decision tree models were evaluated using tenfold
cross-validation (see details in [43]). In this method, the
original dataset is randomly partitioned into ten subsets.
Then, in each of ten runs, a single subset is retained as testing
set, while the remaining nine subsets are used as training data
for computing the prediction model. Using this method, all

the observations are used for both training and testing; each
observation is used once for testing. The results from all ten
models are then averaged to produce a single estimation of
model performance.

4. Results

In total,∼20,500motor units were identifiedwith an accuracy
above 90% according to the PNR metric [21]. The number
of identified motor units did not depend significantly on the
type of tremor triggering task (Kruskal-Wallis test, 𝑝 > 0.05).
A relatively large number ofmotor units was also identified in
the rest condition in ETpatients and during the postural tasks
in PD patients. Figure 6 depicts the average rest and postural
tremor amplitude in the 27 ET and 27 PD patients as derived
from the neural drive, the spatially averaged rectified EMG
and accelerometer data. Despite the statistically significant
differences in tremor amplitude between ET and PD patients,
none of these differences accurately discriminated ET and PD
patients.This observation demonstrates the complexity of ET
and PD tremor [2].
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First we assessed the discriminative power of each of
the metrics described above. Due to the large number of
tested metrics, we only present the results for the tasks and
metrics with highest discriminatory power (Tables 1 and 2).
Tremor amplitude (N1) and tremor frequency (N2) in the
neural drive did not significantly differ across ET and PD
patients (Table 1, Figure 6). However, tremor symmetry in
the dominant tremor hand (N3) was significantly different
between ET and PD patients, especially during the AO
and WE tasks. These differences further increased when we
normalized the dominant tremor hand symmetry for the AO
task with its corresponding value for the RE task (Table 1).
The neural drivemetric that best discriminated across tremor
types was the normalized global tremor symmetry (N7)
in the AO task (AUC = 0.94, Se = 85.2, Sp = 96.2),
followed by the same tremor symmetry metric during the
WE task (AUC = 0.90, Se = 85.2, Sp = 100.0). The second
most discriminative metric was the normalized coefficient of
variation of the pairwise motor unit synchronization (N9)
during the AO task (Table 1). Notably, neural drive metric N7
outperformed all movement-related metrics at tremor dis-
crimination (Table 2), as expected, because it captures more
subtle aspects of the neural mechanisms of each condition.
Figure 7 shows the N6, N7, N8, and N9 metrics for the AO
and RE tasks. Note that the normalization of metrics during
postural tremor triggering tasks with their values during the
RE task significantly increased the discriminative power.

To test the added value of analyzing the neural drive via
cumulative spike trains rather than EMG data, we compared
the discriminative power of the normalized global tremor
symmetry (N7) metric in the AO task as assessed from
(1) the neural drive (low-pass filtered cumulative MU spike
train); (2) a single rectified EMG channel (the channel with
the maximal EMG energy per muscle); and (3) the spatial
average of all the rectified EMG channels in the investigated
muscle. We employed the same exact methodology in all
three cases.The symmetry index computed from the channel
with maximum EMG energy misclassified 8 ET and 10 PD
patients (Se = 70.4, Sp = 63.0, PPV = 65.5, NPV = 68.0). The
symmetry index obtained from all rectified EMG channels
performed slightly better, but still misclassified 7 ET and 7
PD patients (Se = 74.1, Sp = 74.1, PPV = 74.1, NPV = 74.1). In
clear contrast, the symmetry index calculated from the neural
drive only misclassified 4 ET and 2 PD patients.These results
support our statement that characterizing the neural drive
to muscle based on the cumulative motor unit spike train
outperforms other tested measures, likely because it provides
themost precise characterization of the effective output of the
innervating motoneurons.

Among the movement metrics, the highest AUC (AUC =
0.83, Se = 88.9, Sp = 70.4) was obtained with the M2 metric
(mean log power of all the harmonics) of the nondominant
tremor hand, averaged over the AO, WE, and PO tasks and
normalized by the RE task (Table 2). The metric M1 during
the AO (for the nondominant tremor hand) and WE tasks
(for the dominant tremor hand) and normalized on RE
task also achieved good performance (Table 2). Overall, the
discriminative power of the movement metrics was slightly
lower in the dominant than in nondominant tremor hand.

After testing the discriminative power of individual met-
rics, we compared the performance of the different decision
tree algorithms. Among the tested decision tree algorithms
(Section 3.5), the best predictive power was obtained using
the CHAID algorithm (Figure 8). The overall accuracy of the
induced model on the whole dataset was 94.4%. All the PD
patients were correctly classified and only 3 ET patients were
misclassified (AUC = 0.99 (0.98, 1.00), Se = 88.5, Sp = 100.00,
PPV = 100.0, NPV = 90.0). The tenfold cross-validated risk
estimate for the final tree was calculated as the average of the
risks for all of the ten trees (Risk = 0.189, Std. Error = 0.054).

Only three metrics were automatically selected by the
final CHAID model:

(i) The normalized global tremor symmetry for the AO
task normalized by the same metric for the RE task
(N7)

(ii) The normalized coefficient of variation for the motor
unit synchronization index (N9) during the AO task
in dominant tremor hand

(iii) The mean log power of all the movement harmonics,
averaged over the AO, PO, WE, and RE tasks, for the
nondominant tremor hand (M2).

Notably, these three metrics were proposed in this study,
which highlights the potential impact of these novelmethods.
The most discriminative metric, the neural drive symmetry
for the AO task normalized by the RE task (N7), was placed in
the root of the decision tree.The cut-off point𝑇= 1.555 clearly
divided 25 PD patients, with parameter value lower or equal
to𝑇, from 23 ET patients (Figures 7 and 8).Thus, PD patients
exhibited higher neural drive symmetry in the RE task than
in the AO task, whereas the opposite was true for the ET
patients (note that this result could not have been drawn from
the rectified surface EMG). The other two metrics were used
in the second level of the decision tree, thereby improving
classification accuracy to accurately diagnose 2 additional PD
patients.The ET patients exhibited lower variability in motor
unit synchronization for the RE task than the PD patients
(Figure 7). The interpretation of M2 splitting rules is more
difficult, mainly due to the complex relationship between
muscle activation dynamics and movement discussed above.

To further test the performance of our decision tree
system for tremor diagnosis, we applied it on the data from
the six additional patients (test group) that had not been
included in the training datasets. Remarkably, all these six
additional patients received the model-based diagnosis that
matched the clinical diagnosis. This result highlights the
potential of our model to generalize to new (unprocessed)
patients.

5. Discussion

In this study we tested 194 tremor metrics (many of them
proposed herein) with the goal of developing a computer-
based system to diagnose ET and PD tremor. Despite this
large number of metrics, the most successful data mining
model relied only on three metrics we proposed: the global
tremor symmetry in the AO task normalized to the RE
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Figure 7: Values of the global tremor symmetry (N6 and N7), the coefficient of variation for pairwise motor unit synchronization (N8 and
N9), and the mean log power of all the harmonics (M2) metrics in the postural (AO, WE, and PO) and rest (RE) conditions. Normalization
of the metrics during postural tasks with respect to their values during the RE task significantly increased the power to discriminate between
ET and PD patients (c). The black horizontal lines depict the best cut-off values as listed in Tables 1 and 2.

task (N7); the coefficient of variation for the pairwise motor
unit synchronization (N9) in the AO task normalized to
the RE task; and the mean log power of all the harmonics
averaged over the AO, PO, WE, and RE tasks (M2) in the
nondominant tremor hand. The same three tremor metrics
were also proposed by logistic regression (results not shown).
Critically, the two metrics that best discriminated tremor
types were based on the analysis of motor unit activity.
This indicates that accurate computer-aided tremor diagnosis
benefits fromexamining fine aspects of neural control that are
not detectable with raw surface EMG recordings.

There are several possible explanations why the neu-
ral drive metrics (especially tremor symmetry) are more
informative than the wrist movement metrics. First of all,
the tremulous neural drive may be subtle and obscured
by substantial simultaneous voluntary and/or involuntary
cocontraction of several antagonistic muscles, which may
stabilize the controlled joint and, thus, mask the tremor
component of movement. Second, due to the intrinsic com-
plexity of the tremor dynamics [21], the tremor may shift
from one muscle to another or may affect the whole group of
muscles during the entire trial. When those muscles control

the same joint, the changes of their net mechanical effect can
be relatively small or relatively complex and, thus, difficult to
interpret and quantify frommovementmeasurements.Third,
the interactions among synergistic and antagonistic muscles
likely affect the harmonics of the wrist movement, but this
effect is highly complex and difficult to interpret from wrist
movements. Assessments of the neural drive to individual
muscles provide more precise insight into the underlying
neural mechanisms of tremor, which likely explains why it is
the basis for the most discriminative metrics.

In pathological tremor, the motor unit firing patterns
that ultimately cause the tremulous movement depend on
the strength of the descending common tremor drive to
the motoneuron pool; the concomitant voluntary drive, if
present; afferent feedback from receptors within the same
muscle and from other muscles; the intrinsic motoneuron
properties; and the level of synaptic noise [20, 21]. By
summing motor unit spike trains together into CST, the
intrinsic noise components of many motoneurons average
out, revealing their time-varying common input [21, 36, 44,
45]. Autocorrelation function of neural drive further empha-
sizes the rhythmic (synchronous) motor neuron activities
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Figure 8: Decision tree, induced by CHAID algorithm on the data from 27 ET and 27 PD patients. Rectangles depict neural drive (yellow)
and movement (green) metrics. Red and blue ellipses depict PD and ET diagnosis, as predicted by the model. “Normalized global tremor
symmetry in AO” (N7) metric discriminated 25 PD and 23 ET patients. Additional 3 ET and 2 PD patients were discriminated by “average
of mean log power of all the harmonics in non-dominant tremor hand” (M2) and “normalized coefficient of variability for pairwise motor
unit synchronization in AO” (N9) metrics, respectively. Three ET patients were misdiagnosed by this model.

and suppresses the asynchronous ones. When extended to
several muscles, this analysis of neural drivemay provide also
an insight into the tremor drive projections to neighboring
muscles [35] or even compartments within the same muscle
[46].

Critically, this detailed assessment of the neural drive
is unlikely to come from classical EMG measures, such as
the EMG power spectrum or the rectified EMG, because,
contrary to CSTs, these measures reflect both the tremor-
related input to themuscle and the undesired effects ofmuscle
anatomy and geometry on the EMG [25, 28]. The latter
aspects are not relevant for the neural control of movement
and thus constitute “biological noise” from a data processing
point of view. This “noise” is mostly due to the negative
influence of the MUAP shapes (see, e.g., [25, 30–32, 47]),
caused by the heterogeneity of subcutaneous tissues and the
(close to) random motor unit distribution within the muscle
tissue [27]. In fact, the EMG power spectrum can be directly
expressed as the sum of the MUAP spectra, weighted by
motor unit discharge rates [25]. The CSTs, analyzed in this
study, are not sensitive to MUAP shapes (nor to muscle
geometry and anatomy) and thus constitute much more
appropriate means for characterizing the tremulous drive
than the rectified EMG. In this regard, herewe clearly demon-
strated the negative effect that a single surface electrode
placement has on the assessment of pathological tremor
characteristics (Figure 1). We also showed that metrics based
on the rectified EMG have less discriminative power than
metrics based on the summed motor unit spike trains. This

was true even when we minimized the impact of electrode
location by averaging the rectified EMG over all 60 EMG
channels in the electrodematrix whereat the electrodematrix
covered most of the skin above the muscle of interest (see
Section 4).

Possibly due to the aforementioned very high sensitivity
of our tremor identification metrics, we found that all the
tested ET and PD patients had tremor in the tested rest and
postural conditions (Figures 6 and 7). In several cases, the
tremor was subclinical and almost invisible to the naked
eye. Thus, further studies of this observation are required.
However, all the three selected metrics, namely, the global
symmetry (N6), the coefficient of variation for pairwise
motor unit synchronization metrics (N8), and the mean
log power of all the movement harmonics (M2), increased
significantly their discriminative power when we normalized
their values in the postural tasks by their value in the rest task
(Tables 1 and 2, Figure 7). Critically, this indicates that, while
tremor properties (and thus the values of our metrics) are
similar across PD and ET patients during an individual task
(Figure 7), they have very different trends when switching
from rest to posture. In our study, both the global tremor
symmetry and the coefficient of variation for the pairwise
motor unit synchronization increased in the ET patients,
whereas the increase was much smaller (or there even was
a decrease) in the PD patients. Similar trends were observed
in the wrist movement metrics.

An interesting observation from all of the experiments
is that none of the demographics/clinical parameters (age,
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gender, tremor onset, tremor duration, severity of tremor,
results on UPDRS/Fahn-Tolosa scale, family history, medica-
tions, and predominance) was included in themodels built by
stepwise algorithms. This suggests that the proposed tremor
metrics complement clinical parameters in discriminating
ET and PD, thereby demonstrating their potential to aid
diagnosis in complicated cases.

We also want to note that one of the three ET patients
that were misclassified by the CHAID decision tree model
was rediagnosed as PD more than one year after he was
originally diagnosed by his neurologist. Another misclassi-
fied ET patient was rediagnosed as dystonic tremor with
ET. The third misclassified ET patient experienced very mild
tremor in all of the investigated tasks. These observations
further highlight the potential of the proposed tremormetrics
and the proposed decision model to aid clinical diagnosis
of tremors. Also, importantly, these objective measures open
the door to deriving metrics of patient response to different
treatments and to drawing objective comparisons among
interventions. Even though clinical diagnosis will remain
the gold standard for tremor diagnosis, our data suggest
that neural drive-based metrics may identify patient-specific
peculiarities that are otherwise hard to detect, especially
during the early stage of the disease when misdiagnosis is
most common [7, 8]. Furthermore, due to their objectiveness
and precision, thesemetricsmay help guide patient follow-up
and treatment.

There are two practical limitations that make the clinical
use of neural drive metrics less attractive than movement
metrics. First, the acquisition of hdEMG signals is more
cumbersome and time consuming than movement record-
ings, which can be easily performed using inertial measure-
ment units. Second, several muscles need to be recorded
to compute the proposed metrics. These limitations may
be mitigated in the near future by recent developments
of unobtrusive and wireless surface EMG sensors, such as
epidermal electronics [48]. We further acknowledge that, in
this study, we only measured each patient in a single session.
Thus, we were not able to assess the test-retest reliability.
For the same reason, we could not evaluate the long-term
tracking of tremor characteristics. Finally, we focused on the
discrimination of ET and PD patients because these are the
most prevalent types of tremor [1, 49]. The analyses of other
types of tremor such as dystonic tremor are left for future
work.

In summary, here we have introduced novel metrics to
quantify and discriminate PD and ET tremor. In partic-
ular, we proposed metrics that characterize the temporal
(CSTs), spatial (the normalized coefficient of variation for
the pairwise motor unit synchronization), and cross-muscle
tremor variability (neural drive symmetry). We showed that
these metrics provide highly accurate insight into the char-
acteristics of ET and PD tremor, and that they outperform
metrics based on the rectified EMG and movement data. By
demonstrating the discriminative power of the neural drive-
based metrics on 30 ET and 30 PD patients, we confirmed
our hypothesis that neural drive assessment provides novel
insight into these pathologies.
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