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Introduction 

 

In recent years the topic of mechanistic explanation has attracted considerable 

philosophical interest.2 Works by Glennan (1996, 2002) and by Machamer, Darden and Craver 

(2000) in particular have spawned a proliferating mechanism literature that makes contact with 

debates about many of the subjects of greatest concern to philosophers of science and 

philosophers of biology.3 These subjects include (besides explanation) causation, reduction, and 

function, as well as laws, theories and models. A specifically biological debate centres on whether 

evolution is to be understood in mechanistic terms (Skipper and Millstein 2005).  

 

Two main factors account for the amount of philosophical attention devoted to the topic 

of mechanism. One is the failure, despite strenuous efforts, to give a philosophically satisfactory 

account of scientific explanation in terms of such concepts as laws and theories. In biology, 

where formal laws are in short supply, this failure is felt especially keenly. Secondly there is the 

obvious fact that mechanism talk is a common feature of biological explanations in particular 

and descriptions of scientific phenomena more generally, as well as being widespread throughout 

broader culture. Across a huge range of areas it is easy to find references to the mechanism by 

which X happens or to mechanisms for doing Y. Chemists talk about reaction mechanisms; 

physicists are liable to describe in mechanistic terms processes ranging in scale from the sub-

atomic to the cosmic; cell biologists talk about cell signalling mechanisms, about the mechanism 

of protein synthesis, and about the mechanisms underpinning the immune response (to give but 

three examples); a zoologist might discuss camouflage mechanisms; biologists and psychologists 

investigate learning mechanisms and mechanisms of communication between individuals of a 

particular species; the list can be extended apparently without end.  

 

Against this background it is natural to ask what mechanisms are, and to seek to establish 

their role in explanation. Are they objectively real, or should they be thought of as explanatory 

constructs we use to interpret and understand phenomena? Or are they perhaps one of the 

forms that understanding can take? Can we give an account of the concept that makes sense of 

its application across contexts that exhibit considerable ontological diversity? What is the basis 

                                                 
1 Parts of this chapter first appeared in Powell 2009. 
2 The topic is hardly a new one, however. Gregory (1981) devotes a chapter to its significance in science and Mackie 
(1974) makes the connection between mechanism and causation from a more detached philosophical standpoint. 
The mechanistic tenor of much modern bioscience is prefigured in, for example, Monod‘s contention that life is 
machine-like at the molecular level (Monod 1971), and in Crick‘s ready adoption of mechanistic language (see, for 
example, his references to mechanism quoted in Olby 2009). More directly connected with the recent mechanism 
literature is Bechtel and Richardson 1993. 
3 See, for example: Bechtel 2006; Bechtel and Craver 2006; Bechtel and Abrahamsen 2005; Craver 2001; McKay 
Illari and Williamson 2010; Psillos 2004. Glennan (2008) provides a useful introduction to recent mechanism 
debates. 
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for a link between mechanism and explanation if, to exaggerate a little, almost anything can be 

regarded as a mechanism? 4 

 

Here I consider some of the principal contemporary philosophical perspectives. My 

stance in relation to these is somewhat equivocal. For example, the most influential account, that 

of Machamer, Darden and Craver (2000), suffers from problems of scope and reference. These 

stem perhaps from the arguably reductionist (but hardly unreasonable) desire for an account that 

subsumes much by way of little. On the other hand, however, the account does suggest 

possibilities for tightening our philosophical grasp on explanation and understanding. I discuss 

neo-mechanist philosophical perspectives in relation to several more or less commonsense ideas 

about mechanism, and whilst bearing in mind the diversity of molecular and cell biological 

phenomena. Towards the end of the chapter I explore further the connections between 

mechanism talk and psychological issues suggested by the account of Machamer, Darden and 

Craver. I argue that when we describe phenomena in the world mechanistically we inadvertently 

reveal the existence of cognitive entailment structures which mean that our thoughts are capable 

of paralleling, at least approximately, those external phenomena. The entailment structures in 

question are protean in nature, arising as they do from complex and interwoven conceptual, 

linguistic and possibly even emotional associations, and from diverse capacities to imagine, 

represent and reason. In large part this is why ontologically spare philosophical accounts struggle 

to capture the richness and variety of the mechanism talk we see in biology, in science generally, 

and in culture more widely.  

 

 

Neo-mechanist accounts: vices and virtues 

 

MDC: entities and activities 

 

The most prominent contemporary philosophical account of mechanism is that of 

Machamer, Darden and Craver (2000). (Henceforth I shall use ‗MDC‘ to refer to the paper, its 

authors and the ideas it articulates; context will indicate the intended meaning well enough.) The 

account defines mechanisms as ‗entities and activities organized such that they are productive of 

regular changes from start or set-up to finish or termination conditions‘ (MDC, p.3). Amongst 

the examples discussed from molecular biology and neurobiology is the case of DNA replication: 

 

In the mechanism of DNA replication, the DNA double helix unwinds, exposing slightly 

charged bases to which complementary bases bond, producing, after several more stages, 

two duplicate helices. Descriptions of mechanisms show how the termination conditions 

are produced by the set-up conditions and intermediate stages. To give a description of a 

mechanism for a phenomenon is to explain that phenomenon, i.e., to explain how it was 

produced. (MDC, p.3) 

 

                                                 
4
 Confining ourselves to material processes and phenomena it is surprisingly unclear how great is the degree of 

exaggeration. 
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Distinctive features of the MDC account include (1) its dual ontology of entities and activities; 

(2) its apparent substitution of the notion of productivity for explicit reference to the concept of 

causation; (3) its de-emphasis of functional language; and (4) the importance attached to the idea 

of regularity. In addition we can join Psillos in noting that its authors strive for an account that is 

in tune with scientific practice (Psillos 2004, p.294).  

 

 Regarding the dual ontology of entities and activities, entities at least seem 

unproblematic. They are ‗[t]hings that engage in activities‘ (MDC, p.3), and presumably can be 

equated with material structures or parts of structures, such as macromolecules and 

macromolecular complexes. Activities are less straightforwardly understood in any ontologically 

weighty sense, however. MDC describe them as ‗the producers of change‘, and note that 

‗[a]ctivities usually require that entities have specific types of properties‘ (ibid.). The aim of MDC 

in emphasizing activities in their account is to reflect the importance, highlighted by process 

ontologists, of ‗active kinds of changing‘. As they put it, ‗[t]here are kinds of changing just as 

there are kinds of entities. These different kinds are recognized by science and are basic to the 

ways that things work‘ (MDC, p.5). Activities are ‗constitutive of the transformations that yield 

new states of affairs or new products‘, and ‗[a]n activity is usually designated by a verb or verb 

form (participles, gerundives, etc.)‘ (MDC, p.4) – examples might include pushing, pulling, 

bonding, and so on.  

 

It is worth noting right away an important issue here: whether ‗active kinds of changing‘ 

should be regarded as things in or aspects of the world or rather as psychologically contingent 

aspects of the descriptions we give of things in the world. Torres (2009) pursues a course that is 

broadly compatible with the second interpretation. He argues that under the MDC account 

activities amount to reified causes. This is problematic, however, because molecular/cellular 

processes sometimes involve activities that can be construed as negative causes, whereas MDC 

construe activities as having a mandatory ontic component. The example he gives is neuronal 

long term potentiation (LTP), in which the removal of blocking magnesium ions enables (causes) 

calcium ions to diffuse throught the NMDA channel (Torres 2009, pp.242-247). In their 

conception of activities, Torres argues, MDC conflate how property changes are brought about 

with what it is that brings them about. Under his proposed  ‗descriptivist‘ interpretation, activity 

verbs such as ‗push‘, ‗stretch‘ or ‗break‘ (or, more negatively, ‗enable‘ or ‗allow‘) are explanatory 

just in virtue of their capacity to express something of the manner in which changes are brought 

about. This business of describing how things happen is distinct from any claim-making about 

what the ontologically prior things (or, perhaps and more abstractly, properties) are that do the 

bringing about. Distinguishing between how and what in this way confers on Torres‘ account the 

characteristic that activities do not (necessarily) stand in need of an ontic referent, and hence, 

Torres claims, it is able to accommodate cases of negative causation.  

 

 Psillos also disputes the notion that entities and activities enjoy equal ontic status, 

describing it as ‗wrong-headed‘ (Psillos 2004, p.312). He argues for the causal adequacy of an 

ontology of entities together with the dispositional capacities or active powers of those entities. 

On this view activities are ontologically otiose because they supervene on such capacities – ‗even 

if, from an epistemic point of view, we need to attend to the (observed) activities in order to 

conjecture about the capacities‘ (pp.313-4). (Which is one of the bases on which MDC attempt 
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to justify the primacy they accord to activities over properties.) Pertinent to the arguments of 

both Psillos and Torres are the computational molecular dynamics simulations employed by 

protein scientists to gain insight into peptide dynamics and protein folding (Karplus and 

McCammon 2002; Ho and Dill 2006). These work by computing the interactions between the 

atoms of the molecular system being studied, such as a peptide surrounded by water molecules, 

in order to calculate their motions. The ‗atoms‘ in such simulations are represented very simply 

in terms of points in Cartesian space, their interactions governed by laws representing the 

different inter-molecular forces (e.g. an appropriately scaled inverse-square law to model 

electrostatic interactions). At each time step of the simulation the forces acting on each atom are 

computed and the atoms are then displaced accordingly, and this procedure is repeated many 

times. The point is that to carry out the simulation what we need to know about are the entities 

(atoms) and their properties (locations, laws of interaction, covalent bonding relationships). To 

the extent that distinct activities can be identified in the context of an MD simulation – the 

effects of one part of a molecule on another might be describable in terms of activity verbs such 

as pushing, stretching, rotating or constraining, for example – they arise as a result of a property-

driven interplay of entities.  

 

Glennan: parts and interactions 

  

The ontological character of the MDC account contrasts with that of Glennan‘s account 

(1996, 2002). He proposes that: 

 

A mechanism underlying a behaviour is a complex system which produces that 

behaviour by the interaction of a number of parts according to direct causal laws. 

(Glennan 1996, p.52) 

 

The emphasis here, ontologically speaking, is on parts (entities) and their interaction in ways that 

can be expressed in terms of laws; it is these law-conforming interactions that give rise to 

behaviours (which presumably approximate to the activities of the MDC account). This 

proposal, in terms of the direction and nature of the dependency between parts and behaviours, 

accords with the character of MD simulations described previously. However, I do not wish to 

make the claim that MD simulations should be considered as exemplifications of mechanism in 

some general sense appealed to by all the mechanism talk we see in science and elsewhere. I 

simply note that the MD simulation example and Glennan‘s account intersect in the idea that 

interacting parts or entities give rise to behaviours or activities. 

 

Potential difficulties faced by Glennan‘s account centre on the status of causal laws and 

their ability to underwrite a general account of the explanations we give of phenomena, on the 

ontological nature of parts, and on what I take to be the fact that mechanistic explanations do 

not always require or admit of reinterpretation or ‗bottoming out‘ in terms of fundamental 

entities or causal laws. Focusing just on the nature of mechanism parts, Glennan says that ‗parts 

must be objects‘ whilst also noting that for his concept of mechanism ‗to be sufficiently general 

it is important that a very wide variety of entities may be parts of mechanisms‘ (1996, p.53). For 

example, he suggests, ‗[p]arts may be simple or complex in internal structure, they need not be 

spatially localizable, and they need not be describable in a purely physical vocabulary. In certain 
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contexts … one might wish to consider genetic mechanisms whose parts are genes or 

information processing mechanisms whose parts are software modules or data structures‘ (ibid). 

This seems right, and what we know about many biological phenomena suggests that any 

constraint that parts of mechanisms be objects in some mereologically and compositionally 

uncomplicated sense is too stringent.5 But in his follow-up account Glennan invites us to take 

such a constraint seriously: 

 

[Parts] must have a relatively high degree of robustness or stability; that is, in the absence 

of interventions, their properties must remain relatively stable. Generally these parts can 

be spatially localized. (2002, p.S344) 

 

 In relation to the structural stability of parts, Glennan‘s definition of mechanism tilts, if 

only in one respect, towards the commonsense conception of a machine. This is one of the 

principal senses of mechanism recognized by the Concise Oxford English Dictionary: 

 

(1) ‗a piece of machinery‘, and  

(2) ‗a process by which something takes place or is brought about‘.6  

 

Machines – which typically are largely solid-state functional objects such as, say, lathes, 

dishwashers, and earth-moving equipment – consist of parts assembled hierarchically into 

specific configurations. Part shapes and spatial relationships, which are preserved by the 

structural robustness conferred by the solid state, serve to define particular points, lines and 

planes of articulation, in accordance with which the parts are able to move relative to each other 

(Gregory 1981). The number of degrees of freedom (or modes of configurational change) in a 

machine is extremely limited relative to the number that exists in the same amount of matter in 

fluid form. In general, changes in the configurations of a machine‘s parts that are constitutive of 

its normal operation are relatively unaffected by the specifics of the ambient environment, at 

least within the normal range of operating conditions.7 A machine‘s parts perform particular 

functions, and when correctly assembled they enable the machine to discharge its overall 

function(s). The hierarchy of parts maps onto a parallel functional hierarchy, and another way of 

expressing the point is to say that a machine‘s structural and functional decompositions are 

aligned with each other.  

 

Molecular machines & the diversity of biological phenomena 

 

The machine conception comes strikingly to the fore in biology in the guise of ‗molecular 

machines‘ (Morange 2006).8 In the editorial overview of a 1998 special issue of Cell Bruce Alberts 

proposes that ‗the entire cell can be viewed as a factory that contains an elaborate network of 

                                                 
5 If Glennan‘s parts can be equated, at least approximately, with MDC‘s entities then perhaps the latter should be 
regarded as being more problematic than I suggested earlier – perhaps as problematic as activities. 
6 A third sense is given, relating to the mechanical philosophy that came to prominence in the 17th Century, but I 
shall not consider it here (Concise Oxford English Dictionary, 10th Edition). 
7
 Obviously I am overlooking devices designed to sense aspects of their environment and respond accordingly, such 

as thermostats or pressure sensors. 
8 This is an idea that goes back at least nearly half a century, Monod writing in 1971 of how ‗[w]ith the globular 
protein we already have, at the molecular level, a veritable machine‘ (Monod 1971, p.98). 
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interlocking assembly lines, each of which is composed of a set of large protein machines‘ 

(Alberts 1998, p.291; see also Reynolds 2007 regarding the factory analogy).9 He goes on to 

explain that it makes sense to view the large protein assemblies underlying certain cell functions 

as machines because ‗like the machines invented by humans to deal efficiently with the 

macroscopic world, these protein assemblies contain highly coordinated moving parts. Within 

each protein assembly, intermolecular collisions are not only restricted to a small set of 

possibilities, but reaction C depends on reaction B, which in turn depends on reaction A – just as 

it would in a machine of our common experience‘. These highly constrained causal relationships 

amongst localized parts do indeed sound highly machine-like. Moreover, the parts appear to be 

identifiable with particular functions, supporting the idea that the use of strongly mechanistic 

terminology is often underpinned or motivated by the possibility of identifying stable structure—

function relationships. It appears to be considerations such as these that lead researchers to 

speak of certain macromolecular complexes in strongly mechanistic terms. For example, ClpX, 

an ATPase involved in protein degradation and disaggregation and a member of the so-called 

AAA+ superfamily of ATPases, is described as working ‗like a machine with a two-speed 

transmission‘ (Zolkiewski 2006, p.1096).  

 

Rather puzzlingly MDC do not mention protein machines, although sometimes what 

they say is suggestive of the mereological characteristics we associate with machines: 

 

Mechanisms occur in nested hierarchies and the description of mechanisms in 

neurobiology and molecular biology are frequently multi-level. The levels in these 

hierarchies should be thought of as part-whole hierarchies with the additional restriction 

that lower level entities, properties, and activities are components in mechanisms that 

produce higher level phenomena. (MDC, p.13) 

 

Bechtel is even clearer: 

 

The part—whole relationship between a mechanism‘s component parts and its structure 

can be understood as falling within the type of hierarchical, mereological framework that 

systematic biologists and others have long used to bring orderliness to types of entities at 

different levels. The relationship between a mechanism‘s component operations and its 

overall function have roughly the same character ... . What is important here is that both 

kinds of components (the parts and their operations) can be regarded as occupying a 

lower level than the mechanism itself (a structure with a function). (Bechtel 2006, p.40) 

 

These passages suggest (as some of what Glennan says suggests) that to some degree biological 

mechanisms share with machines the characteristics of compositional stability and hierarchical 

mereology. Certainly where molecular machines are concerned the salience of such an 

association can readily be granted. But it would be a mistake to attribute such characteristics to 

cell biological phenomena in an unrestricted way. Here neo-mechanist accounts are insufficiently 

nuanced. The mechanism examples they discuss, such as DNA replication and neuronal long 

term potentiation, are not situated within an overall framework that comprehends the sheer 

                                                 
9 Protein machines are a class of molecular machine. 
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diversity of the phenomena described by molecular and cell biology. The MDC account 

sometimes seems so loose as to subsume almost everything that exhibits order of almost any 

kind, yet at other times a more constrained notion involving only somewhat stable structures 

appears to be indicated. Without greater clarity it is difficult to know what fraction of 

phenomena neo-mechanist accounts are intended to cover. Which specific phenomena, if any, 

should we deem to be non-mechanistic? (And should any non-mechanisticity, so to speak, be 

regarded as an objective characteristic of the phenomena or as the product of aspects of human 

psychology, or perhaps as some compound of the two?) 

 

The nature of the structure—function relations that pertain to phenomena, mentioned 

above in relation to the machine conception of mechanism and protein machines, provides one 

basis for differentiation and classification. While often we are able to identify particular biological 

structures with specific functions, where other phenomena are concerned it is much harder to 

make such associations. A structure may be associated with several functions (which sometimes 

depend on the cellular context), or a function may be associated with several structures – or it 

may be difficult to associate functions and structures at all. Unproblematic structure—function 

relations might lead us to favour mechanistic descriptions and in these cases we can recognise 

the existence of a parallel with machine-type artefacts, in which there exists just this kind of 

alignment of structure with function. But many of the cell processes that biologists speak of in 

mechanistic terms, including some which exemplify this alignment of structure and function, are 

also strikingly different from machines in particular respects.  

 

One notable difference is the fact that cell processes frequently take place in a more or 

less fluid phase of matter. (Ganti describes the cell as a ‗fluid machine‘ of a kind he terms a 

chemoton (Ganti 2003), and it is for good reasons that a book on biologically inspired 

nanotechnology is entitled ‗Soft Machines‘ (Jones 2004).) Fluid milieux enable molecules to 

move more or less freely and to interact via recognition processes and events of varying degrees 

of specificity. These in turn constitute a basis for the establishment of specific causal networks 

that are to some extent functionally isolated and independent of other networks. Possibilities for 

highly specific molecular recognition mean that everything need not interact with everything else 

just as chance encounters dictate. In functional terms interaction networks may be thought 

analogous to the parts of a machine-type artefact, but in structural terms they are quite different. 

The entities involved in a network need not all exist simultaneously, so a network can be partly 

virtual, an idealized conception derived by imaginatively integrating over time multiple causal 

steps; a network need have no definite or persistent morphology; networks may interpenetrate; 

networks may share entities, so that complex functional inter-relationships are formed; network 

entities can be replaced without functional disruption; and so on. Some of these points Darden 

concedes in later work, for example when she notes that: 

 

in the mechanism of protein synthesis (as in any synthesis reaction), some of the entities 

of the mechanism are not intact and in place prior to the initiation of the start conditions. 

Some are made on the fly and rapidly degraded after they play their role (e.g., some 

messenger RNAs). Thus the analogy to a system with stable parts that either operate or 

do not fails for some changing components in this mechanism. (Darden 2006, p.281) 
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The reference to the analogy with a system of stable parts relates to discussion of whether a 

stopped clock is a mechanism on the MDC construal of the concept. Darden says that although 

it is a machine it is not a mechanism, for the reason that activities are lacking – ‗the entities are in 

place but not operating. ... When appropriate set-up conditions obtain (e.g., winding a spring, 

installing a battery), then the clock mechanism may operate‘ (ibid.).  

 

 What is surprising here is that more explicit consideration is not given to the non-

equilibrium nature of biological systems. Once we start worrying about structural dynamics then 

we must face up to the fact that while over certain timescales some biological systems such as 

cells and organisms look structurally somewhat invariant, this appearance of continuity of form 

and functional identity is achieved through processes that involve the continual turnover and 

throughput of matter at a variety of rates.10 When those processes stop, the structure of the host 

system (unlike that of a mechanical clock) begins to decay and its revivification becomes 

impossible. In energy terms the organism must, figuratively speaking, run in order just to stay in 

the same organizational place. The relationship between structures and processes in biological 

systems is thus frequently by no means straightforward. The distinction between low-flux and 

high-flux processes is helpful as a way of expressing this important aspect of the diversity we see 

in biological phenomena (Powell 2009, pp.118-122). Moreover, it provides a basis on which to 

distinguish between certain biological mechanisms and machines, as well as an additional 

dimension through which to express the diversity of biological phenomena. We can see a 

functional protein complex as machine-like inasmuch as it involves the coordinated operation of 

hierarchically organized structures that are compositionally stable over the timescales over which 

the complex performs its operational cycles. In relation to this discussion, however, the 

interesting point is that functional processes grounded in relatively stable structures are quite 

different from those based on interactions between highly mobile, labile or transient structures, 

yet we readily apply mechanistic terminology to both. 

 

Regularity 

  

An aspect of the machine conception is regularity, and where a macroscopic mechanical 

contraption is concerned this typically equates to repetitive or consistent patterns of 

configurational change associated with the machine‘s operation. Protein machines often undergo 

comparable cycles of configurational change, and usually these are accompanied by (and reflect 

the occurrence of) sequences of chemical operations such as covalent bond making and 

breaking. MDC too talk about the importance of regularity, their basic mechanism definition 

(‗entities and activities organized such that they are productive of regular changes‘) asserting that 

what are regular are the changes that mechanisms bring about. But what sorts of change are we 

talking about here, and in what respects are the changes regular? Presumably something like 

similarity of outcome is often meant – but does that mean structural outcome or outcome in 

terms of, say, the flux rate of a particular reaction or the level of expression of a specific gene, or 

                                                 
10

 Schrödinger discussed how living systems build order by feeding off what he termed negative entropy 
(Schrödinger 1944), and more recently authors such as Dupré have emphasized the distinctiveness of these and 
related properties of living systems (Dupré 2008). 
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result in terms of the instantiation or maintenance of some specific functional capacity? It can, I 

suggest, mean all these things and more.  

 

MDC also say that mechanisms are regular ‗in that they work always or for the most part 

in the same way under the same conditions. The regularity is exhibited in the typical way that the 

mechanism runs from beginning to end‘ (MDC, p.3). Again a parallel with the regularity 

displayed by machines just mentioned is implicit in this assertion, and the use of ‗way‘ is 

interesting. Despite its great vagueness it functions well at an intuitive level: real-life examples of 

scientific mechanism talk do often seem to be at least partly illuminated when we say that ‗the 

mechanism of X‘ means roughly ‗the way in which X happens‘. (There is a close connection here 

with the second dictionary definition of mechanism, as ‗a process by which something takes 

place or is brought about‘.) In this context it is interesting to consider the case of protein folding. 

This is the biophysically fundamental phenomenon whereby under physiological conditions a 

synthesized polypeptide (chain of amino acid residues) in many, and probably most, cases 

spontaneously adopts a compact globular shape or conformation. Now while protein scientists 

routinely talk about the mechanism of protein folding or protein folding mechanisms, it is not 

immediately clear what sense of mechanism is invoked in such usages. What is it about how 

proteins are thought to fold that invites mechanism talk? I shall quickly summarize the basics of 

protein folding in order to provide some sort of basis for confronting the question. 11,12 

 

Protein folding 

 

The folding of a polypeptide chain requires that rotations occur around those of its 

chemical bonds that are free to rotate. The overall conformation of the molecule is established 

by the relative rotations that occur around the two bonds either side of the alpha carbon atom of 

each of its constituent amino acid residues.13 The angles of rotation around these two bonds are 

called phi and psi, and it is possible to represent the conformation of each amino acid residue as 

a point on a plot of phi against psi (a so-called Ramachandran plot) (Ramakrishnan and 

Ramachandran 1965). Now the number of conformations in principle open to a polypeptide is 

astronomically large. Even if we assume that phi and psi can each take only three values per 

amino acid residue then for a polypeptide chain made up of 100 residues the number of different 

possible conformations is around 9100, which is greater than the estimated number of protons in 

the universe.14 Yet protein molecules fold spontaneously in timescales on the order of seconds. 

How does it happen?  

 

A population of unfolded protein molecules in solution consists of an ensemble of 

different conformations. Thermal energy manifests as Brownian motion which causes molecules 

                                                 
11 In recent years a class of proteins has come to light that lack a unique three-dimensional structure but which 
nevertheless have functional activity, the so-called intrinsically unstructured proteins (Wright and Dyson 1999; 
Gsponer and Babu 2009). Their existence poses no threat to the points I make here, however, since it remains the 
case that under physiological conditions most proteins do fold, and my proximate concern is with how to explicate 
the mechanism talk that surrounds the protein folding phenomenon. 
12 For further information on protein folding see e.g. Dill and Chan 1997; Karplus 1997; Dobson 2003; Clark 2007; 
Chen et al. 2008; Service 2008. 
13 Rotations around the sometimes bulky amino acid sidechains are also involved. 
14 The point was famously made by Levinthal (1969). 
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to jostle and writhe about so that they sample the huge conformational space defined by the 

energetically accessible possibilities for bond rotations. For a variety of reasons some 

conformations are more stable than others. The native conformations of proteins (i.e. their 

functional folded shapes), as revealed for example by X-ray crystallography, are telling in this 

regard. Generally they are quite compact and globular (fibrous proteins being an exception), and 

often they contain regions of regular structure such as alpha helices and beta sheets. These are 

characterized by particular patterns of hydrogen bonding between different amino acids. In 

addition, in native protein conformations non-polar (hydrophobic) amino acid residues usually 

cluster towards the interior of the molecule whilst polar (hydrophilic) residues, capable of 

hydrogen bonding to water molecules, occur more often at the surface. These factors together 

mean that the native conformation is a low energy state, indeed probably the minimum energy 

state, of the molecule in solution. 

 

The tendency of physical systems to adopt low-energy states means that in the absence 

of factors that militate against folding (such as the presence of denaturing compounds like urea, 

or excessively high temperature) polypeptide molecules in solution tend to adopt compact 

conformations (Figure 1). Hydrophobic residues cluster together, reducing the surface-to-

volume ratio of the cage of water molecules surrounding the protein.15 Secondary structures such 

as alpha helices reduce the polypeptide‘s energy by satisfying the hydrogen-bonding potential of 

specific pairs of amino acid residues. The early formation of stabilizing structures such as these 

increases the chances that particular residues, possibly quite distant in sequence terms, are 

brought into proximity in particular configurations that lead to the creation of further structures. 

Thus there is a trend towards reduction of entropy and a progressive build up of stable structure. 

Of particular note here is that the order in which particular events occur is likely to be highly 

variable across different folding instances – because of the randomness of Brownian motion, for 

example – even when the instances all relate to the same polypeptide sequence. There is a 

funnelling towards the native conformation, but from different starting points and by different 

routes – and with occasional reverses. Structures that play a particular role in the folding of a 

polypeptide sequence on one occasion may not play the same role on other occasions, and may 

play no such role at all in relation to the folding of a different polypeptide sequence. 

 

The mechanism talk surrounding protein folding looks prima facie different in kind from 

that associated with the machine concept. Whereas that concept implies highly constrained and 

regular motion within a simple state space, protein folding involves irregular and complex 

pathways through highly complex state spaces. And while machines can generally be 

characterized in terms of straightforward structure—function relations, protein folding is more 

resistant to such a characterization. Yet there is regularity of a sort across different protein 

folding instances, something that is similar or which holds constant across them. This is just the 

fact that the same physico-chemical principles (e.g. the hydrogen-bonding propensities of certain 

amino acids, hydrophobic effects, electrostatic interactions, etc.) serve as a basis for explicating 

all instances of the phenomenon. Thus in spite of the differences of structural outcome that 

                                                 
15 The intrinsically unstructured proteins mentioned previously tend to lack the bulky hydrophobic residues that 
promote this clustering (Gsponer and Babu 2009, p.95). 
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commonly obtain for different polypeptide sequences,16 and irrespective of the fact that the 

folding of two different proteins may involve minimal structural similarity even where similar 

amino acid subsequences occur, there are substantial elements of commonality. Perhaps the 

most basic shared feature is that proteins generally do attain definite conformations under 

physiological conditions (i.e. the native conformations). Overlaid on this is the fact that similar 

elements of secondary structure – alpha helices, beta strands and sheets, loops, etc. – can occur 

in proteins that differ markedly in amino acid sequence.  

 

Ontology, epistemology & intelligibility 

 

The view we are led to is that a protein folding mechanism is the way in which a protein 

folds, and this can be described by reference to particular physico-chemical factors and the 

effects these typically bring about over time. This notion fits the second dictionary definition of a 

mechanism (what could be called the causal process sense), as ‗a process by which something 

takes place or is brought about‘. It is perhaps rather unclear how it relates to neo-mechanist 

accounts such as that of MDC, however – in part because the unusual nature of that account‘s 

ontological claims deflects attention from its epistemological content. One interpretation of the 

neo-mechanist project is that it seeks to combine some of the flexibility of the causal process 

conception of mechanism with scientific knowledge about material patterns of entailment within 

particular domains (molecular cell biology and neurobiology in the case of MDC). The causal 

process conception of mechanism has a strong epistemic dimension, with a mechanism in that 

sense being what lies behind our words, images, equations, graphs, and so on – or, probably 

most often, by way of some admixture of these different kinds of cognitive resource – when we 

say how something comes about. Now whether a description has explanatory force is, I take it, a 

psychologically contingent matter. Perspicuous scientific descriptions of the etiology of some 

phenomenon show – and specifically show us, with our psychological capacities and propensities 

– how particular structures and processes we take to exist and occur in the world (on the basis of 

empirical evidence) give rise to the phenomenon. It is in relation to this idea, I suggest, rather 

than as regards its ontological claims, that the MDC account is most attractive. MDC say that 

 

The understanding provided by a mechanistic explanation may be correct or incorrect. 

Either way, the explanation renders a phenomenon intelligible. Mechanism descriptions 

show how possibly, how plausibly, or how actually things work. Intelligibility arises not from an 

explanation‘s correctness, but rather from an elucidative relation between the explanans 

(the set-up conditions and intermediate entities and activities) and the explanandum‘. 

(MDC, p.21; their italics) 

 

Explanation is not, MDC argue, fundamentally a matter of regularity: rather, ‗explanation 

involves revealing the productive relation. It is the unwinding, bonding, and breaking that explain 

protein synthesis ... . It is not the regularities that explain but the activities that sustain the 

regularities‘ (p.22; their italics). This partial disavowal of regularity sounds like a nod towards 

something more akin to the causal process conception of mechanism than to the machine sense, 

and may make some sense of neo-mechanist denials that biological mechanisms should be 

                                                 
16 Contrarily, very different sequences sometimes give rise to similar overall folded structures. 
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thought of in machine terms. MDC are suggesting, I take it, that mechanistic explanation is a 

matter of making phenomena and their production conceivable or imaginable, even though they 

do not speak in exactly those terms. They do consider briefly the sensory basis of intelligibility, 

however, and argue that it is not just a visual affair: 

 

But seeing is not our only means of access to activities. Importantly, our kinaesthetic and 

proprioceptive senses also provide us with experience of activities, e.g. pushing, pulling, 

and rotating. Emotional experiences also are likely experiential grounds of intelligibility 

for activities of attraction, repulsion, hydrophobicity, and hydrophilicity. These activities 

give meanings that are then extended to areas beyond primitive sense perception. The 

use of basic perceptual verbs, such as ―see‖ or ―show‖, are extended to wider forms of 

intelligibility, such as proof or demonstration. (MDC, p.22) 

 

The link with emotional experience perhaps requires further explanation in order to amount to a 

convincing claim, but the involvement of kinaesthetic and proprioceptive senses in the 

comprehension of phenomena accords with psychological findings. In addition, the implied 

centrality of the visual sense accords with the importance biologists place on visualizing 

phenomena and with their reliance on visual descriptions such as diagrams, images and visual 

metaphors.  

 

 

Cognitive entailment and mechanistic ways of thought 

 

 A few paragraphs ago I alluded to psychological contingency in the descriptions we give 

of how things come about. Now I want to go further in the same direction by suggesting that we 

side-step MDC‘s allegedly ontic, and apparently problematic, dualism of entities and activities to 

consider another dualism. This other dualism opposes the material patterns of entailment that 

might reasonably be held to occur in the world on the one hand and parallel sets of cognitive 

entailments that unfold in our minds on the other (an orientation which Craik (1943) can be seen 

as foreshadowing). According to this somewhat Kantian position we don‘t so much describe the 

constituent phenomena of the world as describe our models and conceptions of them and their 

various inter-relationships.  

 

I noted earlier that frequently it is possible to construe ‗mechanism of X‘ as meaning ‗the 

way in which X occurs‘. But what is a way exactly? For present purposes it can be understood to 

mean something not so very distant from the everyday sense of a path; more specifically it is a 

cognitive path or a chain of thought. Being able cognitively to connect a phenomenon with its 

antecedent conditions requires us to be psychologically structured in a certain way. Our cognitive 

dispositions must be such that our thoughts readily lead us from causes to effects, from 

antecedent conditions to phenomena. This dispositional wayfaring might proceed via quite direct 

processes of mental association, or it might involve our thoughts proceeding via a series of steps, 

as when we reason our way through a problem. (We may need to generate and externalize 

representations of various kinds to help us get around, for example, limitations of working 

memory or constraints on our capacity to visualize.) What is important is that our thoughts do 

not obviously contradict the available empirical evidence or what we believe to be the case. If 
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our thoughts are incapable, either subconsciously or consciously, of making the relevant 

connections then we tend to see gaps in our understanding (although we are also capable in 

certain circumstances of papering over such gaps (Keil 2003). If on the other hand we can 

imagine how something comes about or could come about, or more generally are able to think 

through how it comes or could come about (i.e. can fit it to a causal template of some sort), then 

we enter psychological territory in which the employment of mechanism talk becomes a 

possibility. Additional cognitive constraints presumably apply, with the result that we speak in 

mechanistic terms less frequently than these broad initial conditions suggest. Thought of in these 

terms mechanisms look more like things we ‗read into‘ or project onto the world than things that 

have some ontically robust, objective, existence. 

 

One additional constraint on the invocation of mechanism talk might be the possibility 

of identifying some goal, purpose or functional benefit which can be associated with the 

phenomenon in question. In other words, the attribution of mechanism is often a matter of 

being able to connect antecedent conditions with their actual or imagined effects, and overlaying 

this actual or counterfactual pattern of entailment with intentional character. (A mechanism is for 

something; it enables certain goals to be achieved.18) Another common constraint on mechanism 

attribution is the identification of a class of phenomena, as opposed to singular cases. Where 

something happens only once, and the chances of it happening again seem remote or otherwise 

uninteresting, I suspect that we tend to avoid mechanistic language. (We probably could employ 

it, but it would seem excessive or contrived.) But where the ways by which we group phenomena 

and individuate classes of events lead us to recognise a category of entailment patterns that admit 

of explanation as a group, my hunch is that we are more likely to speak of the mechanism by 

which they come about, or could be made to come about. This raises the issue of the often 

schematic nature of mechanistic explanation, to which MDC rightly draw attention (see MDC 

Section 5.3).  

 

Mechanism schemas pick out classes of phenomena on the basis of explanatorily relevant 

similarities but leave pockets of vagueness and ambiguity that are capable of being ‗filled in‘ in 

different ways by different phenomena. (We could say that a mechanism schema ties a variety of 

phenomena together at their shared points of causal and explanatory salience.) More and larger 

pockets make for more abstract – more schematic – schemas. But why is explanation so often a 

schematic business in any case? The answer probably has to do with data reduction: we live in a 

complex world but one that manifests a considerable degree of order. We need to make sense of 

things quickly by cutting through the complexity and latching onto the order, and what has been 

described as our psychological bias towards simplicity (Chater 1999) can be viewed in terms of 

an adaptive orientation towards the identification of common underlying principles and patterns 

of entailment.  

 

Some of these points can be illustrated by reference to the examples listed earlier. 

Chemical reaction mechanisms, which I mentioned but did not discuss in any detail, describe 

very broad classes of molecular phenomena in which many of the chemical specifics of particular 

                                                 
18

 The goals can be those we attribute to a system in order to explain it or, when we seek to make instrumental use 
of parts of our environment, our own goals. 
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cases are left as unfilled variables. It is just the occurrence of a specific configuration of bond-

making and bond-breaking events that makes a specific reaction a member of a class of reactions 

that can be described in terms of the same reaction mechanism. Understanding a reaction 

mechanism confers powers of control, for we can seek to create molecules bearing the relevant 

functional groups in the appropriate configurations in order to bring about particular molecular 

transformations. Thus mechanism descriptions are capable of conveying ideas about causal 

manipulability, in roughly the sense developed by Woodward (2003). The schematic nature of 

the concept of a reaction mechanism makes for epistemic potency. It enables us to see elements 

of uniformity within the diversity of the molecular world, and provides us with a resource for 

factoring into our cognitive operations larger groupings of chemical phenomena than would be 

possible were we to be blind to that uniformity.  

 

Another route to schematicity and the attendant benefits of abstraction and epistemic 

economy lies in the capacities to identify and attribute functions. By function I mean something 

like Cummins‘ notion of causal role within a system (Cummins 1975). The close relationship that 

exists between explanation, mechanism, function and causation can perhaps be put like this: 

explanations are often essentially causal; the explanatory value of mechanism descriptions lies 

largely in their capacity to elucidate causality; and functional concepts provide a means for 

relating what a system‘s parts do to what the system does.19 An important feature of functions is 

that in principle they can be attributed to processes as well as to structures, and thus they provide 

us with a resource for conceptualizing mechanisms that is capable of subsuming low-flux 

(structural) and high-flux (processual) systems. Functional attributions reflect an ability to black-

box the details of how part of a system works to focus on the causal relationships between a 

structure or process and the rest of the host system. This is partly a counterfactual matter: when 

we know about the function of something then we generally have a set of expectations about 

what might happen to the system if it were altered or removed. And mechanism descriptions 

often seem to work in part by providing us with expectations of this sort. 

 

The MDC account says much of value about mechanism schemas and psychological 

aspects of mechanistic explanation, but my sense is that it does not go far enough into 

psychological territory. In addition, the relationship between seeking to elucidate mechanism talk 

in science and aiming to develop an ontologically grounded, philosophically normative account 

of mechanism – which I take to be the two principal neo-mechanist aims – is not entirely clear. 

Can we be sure that accomplishing the second objective will help to achieve, or indeed is 

compatible with, the first? A significant difficulty as I see it is that the ways in which scientists 

deploy mechanistic terminology are continuous with highly diverse patterns of usage that extend 

well beyond the scientists‘ specialist domains. Much scientific mechanism talk draws on 

something like the causal process conception of mechanism, as we saw in the case of protein 

folding. Now that conception is very broad, potentially taking in singular causal processes and 

not necessarily being confined to material processes. (We can say that setting the interest rate 

constitutes the mechanism by which the Bank of England attempts to regulate inflation, for 

example.) If ‗mechanism‘ often denotes the way in which something comes about, and if ‗way‘ 

                                                 
19

 We have an impressive capacity to view what a system does from a teleological standpoint, often readily seeing it 
as what the system is ‗for‘. 
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can as I suspect be unpacked in terms of cognitive connectability amongst more or less 

schematic cognitive models of phenomena and derivative representations of various kinds, then 

the prospect of elucidating mechanism talk and mechanistic explanation through an ontologically 

spare, normative account of mechanism looks somewhat remote. This is because the underlying 

psychological dispositional structures – cognitive mechanisms if you will – that instantiate the 

cognitive models and schemas we develop and use to think about and interpret phenomena in 

the world are (I assume we can agree) richly interconnected and highly plastic. Words evoke 

images; images may be associated with words; numbers, equations, graphs and images are often 

readily interconvertible; etc. In short, we are protean in our abilities to connect, blend and 

integrate varied representations of different aspects of the world in ways that succeed in 

spanning particular phenomena and modeling their causal structure, and in our capacity to 

synthesize explanatory narratives that evoke the requisite associations in others. 

 

No doubt often it will prove possible to explicate the use of mechanistic terminology 

within a narrow domain in terms of apparently objective characteristics of the phenomena 

studied in (and perhaps constitutive of) the domain. The resultant sense of ontological 

groundedness is likely to confer on such explications a philosophically satisfying clear-cut and 

normative character. But the relevant phenomenal characteristics are liable to differ across 

domains and between phenomena, and the price to be paid for ontologically grounded 

normativity may then be that we find that phenomenal space must be carved up into miniscule 

sub-domains, perhaps no bigger than a specific type of phenomenon, each of which aligns with a 

particular ontic construal of mechanism. In that case we will hardly be any further forward: we 

will still have to answer the question, if we are interested in mechanistic explanation per se, of 

what it is that unites the varied senses of mechanism and diverse kinds of mechanism talk 

invoked in relation to different phenomena. Making further progress in understanding what 

mechanisms are and how they explain will require us to distinguish more explicitly between what 

happens in the world and what happens in our minds, and to be clear about when we are talking 

about the former and when the latter. 
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