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1. Background 

The two- variable fragment with counting quantifiers, here denoted C2, is the set of 
function-free, first-order formulas containing at most two variables, but with the 
counting quantifiers 3<c, 3>c and 3=c (for every C > 0) allowed. The satisfiability 
problem, Sat-C2, is the problem of deciding, for a given formula <f> of C2, whether <j> 
has a model; the finite satisfiability problem, Fin-Sat-C2, is the problem of deciding, 
for a given formula </> of C2, whether <p has a finite model. It is well-known that 
C2 lacks the finite model property; hence Sat-C2 and Fin-Sat-C2 do not coincide. 
The decidability of Sat-C2 and Fin-Sat-C2 was shown by Gradel et al. (1997); the 

decidability of Sat-C2 was shown independently by Pacholski et al. (1997, 1999). 
For a general survey, see Gradel and Otto (1999). 

When discussing the complexity of these problems, it is important to specify 
how the sizes of numerical quantifier subscripts are measured. Under unary coding, 
a quantifier subscript C is taken to have size C; under binary coding, by contrast, 
the same subscript is taken to have size log C. In determining upper complexity- 
bounds, binary coding is the more stringent accounting method, because formulas 

appear exponentially shorter under binary coding than they do under unary coding. 
Pacholski et al., op. cit. showed that Sat-C2 is in NEXPTIME, but only under 

unary coding. The present paper shows that both Fin-Sat-C2 and Sat-C2 are in 
NEXPTIME, even under binary coding. It is well-known that the satisfiability 
problem for the two- variable fragment without counting quantifiers (which has the 
finite model property) is NEXPTIME-hard. Hence, the bounds reported here are 

tight. 
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In the sequel, we confine attention to finite or countably infinite structures in- 
terpreting finite signatures of unary and binary predicates. Thus, all signatures are 
silently assumed to contain no individual constants or function-symbols. However, 
we treat the equality predicate « as a logical constant. The lack of individual con- 
stants constitutes no essential restriction of expressive power, because their effect 
can be reproduced using formulas of the form B=\xp(x). The presence of equality 
in the logic constitutes no extension of expressive power, because it can be defined 
by the formula Vx(x & x) A Vjc3=i y(x « y). 

The structure of the paper is as follows. Section 2 establishes a normal form 
for C2-formulas, and introduces various concepts which feature in the ensuing ar- 
gument. Section 3 shows how any model of a normal-form C2-formula <\> can be 
recursively transformed into a model of </> in which, informally speaking, only a lim- 
ited number of different sorts of element occur. Section 4 then outlines a method for 
encoding such models as data-structures satisfying certain arithmetical constraints, 
and shows on the basis of this encoding that Fin-Sat-C2 is in NEXPTIME. Finally, 
Section 5 extends this argument to show that Sat-C2 is also in NEXPTIME. 

2. Preliminaries 

If </> is a formula in C2, let \\<j>\\ denote the number of symbols in </>, assuming binary 
coding of numerical quantifier subscripts. 

LEMMA 1 . Let <f> be a formula in C2. We can construct, in time bounded by a 
polynomial function of\\(f)\\, a formula 

4>*:=VxaAVxVy(fiVx*ty)A /\ Vx3=Cky(Mx9y) Ax 96 y) (1) 
\<h<m 

satisfying the conditions: (i) a is a quantifier-free, equality-free formula with x as 
its only variable; (ii) /J is a quantifier-free, equality-free formula with x and y as its 
only variables; (Hi) m is a positive integer; (iv) for all h{\ < h < m), fhisa binary 
predicate and Ch a positive integer; and (v)for any domain A of size greater than 
C = max]<fj<m Ch> <P* is satisfiable over A if and only if(/> is satisfiable over A. 

Proof Routine adaptation of textbook transformation to Scott normal form. 
See, for example, Gradel and Otto (1999, Section 2.1) for an explanation of the 
required techniques.  

With binary coding of quantifier subscripts, the quantity C = max\<h<m Ch in 
Lemma 1 satisfies C < 2110*11. Hence, the problem of determining whether <f> is 
satisfiable over a domain of size C or less is in NEXPTIME. It thus follows from 
Lemma 1 that, to show that Fin-Sat-C2 and Sat-C2 are in NEXPTIME, we may 
restrict attention to formulas of the form (1). 
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Fix </>* to be some formula of the form (1), and let E* be the signature of cf>*. 
Thus, a(x) is a quantifier-free, equality-free formula over E* with x as its only 
variable, /?(*> y) is a quantifier-free, equality -free formula over E* with x and y 
as its only variables, /i, . . . , fm are distinct binary predicates of E* (with m > 0), 
and C\ , . . . , Cm are positive integers. In addition, let C = max ]<*<„, C/,. We keep 
the meanings of these symbols unchanged throughout this paper. The predicates 
/i , • • • » fm will play a key role in the ensuing argument; we refer to these predicates 
as the counting predicates. In addition, let us say that a signature E is a unary 
extension of E* if E consists of E* together with a (possibly empty) finite set of 
new unary predicates. 

We review some standard concepts. A literal is an atomic formula or the negation 
of an atomic formula. Let E be a finite signature (consisting of unary and binary 
predicates only). A 1-type (over E) is a maximal consistent set of equality -free 
literals over E involving only the variable x. A 2-type (over E) is a maximal 
consistent set of equality -free literals over E involving only the variables x and 

y. Reference to E is suppressed where clear from context. If r is a 2-type, then 
the result of transposing the variables x and y in r will also be a 2-type, denoted 
t"1. If a is any structure interpreting E, and a € A, then there exists a unique 
1-type n(x) over E such that 21 \= n[a]'9 we denote n by tpa[<i]. If, in addition, 
b € A is distinct from a, then there exists a unique 2-type r(jc, y) over E such that 
a (= r[fl, b]\ we denote r by tpa[a, b]. We do not define tp*[a, b] if a = b. If n 
is a 1-type, we say that it is realized in 21 if there exists a € A with tpa[a] = n. 
If r is a 2-type, we say that x is realized in 21 if there exist distinct a, b e A with 

tp*[a,b] = x. 

NOTATION 1. Given a fixed signature E, any 2-type x includes a unique 1-type, 
denoted tpj(r); in addition, we write tp2(r) for tp^r"1). 

REMARK 1. If tp*[a,b] = r, then tp*[b,a] = x~\ tp*[a] = tp^r) and 

tp*[b] = tp2(r). 

DEFINITION 1. Let E be a unary extension of E*, and let r be a 2-type over 
E. We say that r is a message-type (over E) if, for some counting predicate fh 
(1 < h < m), fh(x, y) e r . If x is a message-type such that z~l is also a message- 
type, we say that r is invertible. On the other hand, if r is a 2-type such that neither 
r nor r"1 is a message-type, we say that r is silent. 

Thus, a 2-type r is an invertible message-type if and only if there are count- 

ing predicates fh and fh> (1 < h < m, 1 < h! < m) such that fh(x, y) € x 
and fh'(y, x) e x. The terminology is meant to suggest the following imagery. If 

tpm[a, b] is a message-type /x, then we may imagine that a sends a message (of 
type /x) to b. If /x is invertible, then & replies by sending a message (of type /x"1) 
back to a. If tpa[a, fc] is silent, then neither element sends a message to the other. 
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The remainder of this section is devoted to some auxiliary observations regarding 
models of <j>* interpreting unary extensions of E*. In particular, we introduce the 

concepts of chromaticity and differentiation for such structures. 

DEFINITION 2. Let E be a unary extension of E*, and let 21 be a structure 
interpreting E. We say that 21 is chromatic (over E) if distinct elements connected 
by a chain of 1 or 2 invertible message-types have distinct 1 -types. That is, 21 is 
chromatic just in case, for all a, a\ a" e A: 

1. if a 7^ a' and tpm[a, a'] is an invertible message-type, then tpa[a] ^ tpa[a']; 
and 

2. if a, a\ a!' are pairwise distinct and both tpa[a, a'] and tp^fa', a"] are invertible 
message-types, then tpa[a] ^ tpa[a"]. 

Any model of <f>* can be made chromatic by interpreting not-too-many new unary 
predicates: 

LEMMA 2. Let the structure 21 interpret E*, ant/ /ef E' fo f/*£ signature formed 
by adding log((mC)2 + 1) (rounded up) new unary predicates to E*. If% (= 0*, 
f/z£W 21 can &e expanded to a chromatic structure 21' interpreting E'. 

Proo/ Suppose 21 ̂ = </>*, and consider the (undirected) graph G on A whose 
edges are the pairs of distinct elements connected by a chain of 1 or 2 invertible 
message-types. That is, G = (A, El U E2\ where 

El = {(a,a) \a ^ a' and tpa[a, a'] is an invertible message-type} 
E2 = {(a, a") |a^a" and for some a! € A, (a, a!) and (a\ a") are 

both in E1}. 

Since 21 |= 0*, the degree of G (in the normal graph-theoretic sense) is at most 
(mC)2. Now use the standard (greedy) algorithm to colour the nodes of G with 
(mC)2 + 1 colours in such a way that no edge joins two nodes of the same colour. 
By interpreting the log((mC)2 + 1) (rounded up) new unary predicates to encode 
these colours, we obtain the desired expansion 2l\  

Chromatic models will play an important part in the argument of Section 4. They 
are easy to work with because they exhibit the following properties: 

REMARK 2. Let E be a unary extension of E* and let jt be a 1-type over E. 
Suppose 21 is a chromatic structure interpreting E, and let a € A. Then there is 
at most one element a! € A \ {a} with 1-type tt such that a sends an invertible 
message to a'\ moreover, if the 1-type of a is itself n, there is no such element a1 . 
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Turning now to the concept of differentiation, fix the constant Z to be (mC + 1 )2. 
The reasons for our particular choice of Z will become clear in the course of the 
paper. 

DEFINITION 3. Let a be a structure interpreting a signature E. We say that 21 
is differentiated {over E) if, for every 1-type n over E, the number u of elements 
in A having 1-type n satisfies either u < 1 or u > Z. 

Thus, in a differentiated structure, every 1-type is realized either at most once 
or more than Z times. Any structure can be made differentiated by interpreting 
not-too-many new unary predicates: 

LEMMA 3. Let Hbea unary extension o/E *, and let f&bea structure interpreting 
E. Let E' be the signature formed by adding log Z {rounded up) new unary predi- 
cates to E {so that E' is also a unary extension <?/E*). Then 21 can be expanded to 
a differentiated structure 21' interpreting S'. Moreover, if%L is chromatic over E, 
then 21' is chromatic over E'. 

Proof. For each 1-type n realized more than once but no more than Z times, 
colour the elements having 1-type n using Z different colours. By interpreting the 

log Z (rounded up) new unary predicates to encode these colours, we obtain the 
desired expansion 21'. This process clearly preserves chromaticity.  

Now let us fix a signature E obtained by adding 2 log Z (rounded up) new unary 
predicates to E*. Since Z > {mC)2 + 1, Lemmas 2 and 3 guarantee that, if <f>* has 
a model at all, then it has a model with the same domain which is chromatic and 
differentiated over E. Denote the total number of symbols in E by s. Enumerate 
the 1 -types over E, in some arbitrary order, as n\ , . . . , nL\ enumerate the invertible 

message-types over E, in some arbitrary order, as \i\ , . . . , /jlm*', and enumerate the 
non-invertible message-types over E, in some arbitrary order, as /xa/*+i, . . . , Mm- 
(Thus, jLti, . . . , fiM is an enumeration of all the message-types over E.) Finally, 
denote the set of silent 2-types over E by S. We fix the symbols E, s, L, 7ti 
(1 < i < L), Af*9 M, fij ; (1 < j < M) and S to have these meanings for the 
remainder of the paper. Since E is the only signature we shall be concerned with in 
the sequel, we generally suppress reference to it. Thus, 'model of 0*' henceforth 
means 'model of 0* interpreting E\ '1-type' means '1-type over E\ and so on. 
Table I lists the symbols introduced in this section and their fixed interpretations. 
Evidently, m and s are bounded by a polynomial function of ||</>*||; moreover, C, 
Z, L, M* and M are bounded by an exponential function of ||0*||. Thus, we should 

regard m and s as 'small', and C, Z, L, M* and M as 'large'. 
Using the notational conventions just established, we can state a simple fact 

about differentiated models of 0* which will prove useful at several points in the 

sequel. 
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Table I. Quick reference guide to symbols with fixed interpretations 

<p* Vjca A VxVytf v x * y>A Ai<*<« v^=cj(AU, y) a* ? y) 
C maxi</,<mC/, 
Z (mC + 1)2 
E* signature of 0* 
E E* with 2 log Z (rounded up) new unary predicates 
s the number of symbols in E 
it \, ... ,7i i the 1 -types over E 

Ijl\, ..., liM* the invertible message-types over E 

Mm*+i , • • • * MM tne non-invertible message-types over E 
S the set of silent 2-types over E 

DEFINITION 4. Let 21 be a structure and tt, ;r' 1 -types. We say that jt and ;r' 
form a noisy pair in 21 if, for all distinct a, a! e A such that tpa[a] = n and 
tp21!/*'] = jt', either tpa[a, a'] or tp^lV, a] is a message-type. 

Informally, n and 7r ' form a noisy pair just in case every element with 1 -type n ei- 
ther sends a message to, or receives a message from, every element (itself excepted) 
with 1-type n' '. Note that Definition 4 does not require it and jt' to be distinct. 

LEMMA 4. Suppose that 21 w a differentiated model of</>*, and that the 1 -types n 
and nf form a noisy pair in 21. Then either there is at most 1 element of A having 
1-type 7T, or there is at most 1 element of A having 1-type nf. 

Proof Suppose for contradiction that n and n' form a noisy pair, and that 
there is more than one element having 1-type n and more than one element having 
1-type 7r'. Since 21 is differentiated, there are at least (mC + I)2 + 1 elements 
having 1-type n and at least (mC + I)2 + 1 elements having 1-type nf. Now let 
B be a set of elements having 1-type 7t9 with \B\ = (mC)2 + mC + 1; and let B' 
be a set of elements having 1-type n\ disjoint from B, with \B'\ = mC + 1 . Since 
\B\ + \B'\ = (mC + I)2 + 1, such sets can evidently be found, even if n = nf. 
Select any b e B. Since 21 (= 0*, b sends a message to at most mC elements 
in B\ so that there exists bf e B' such that b sends no message to b' and hence 
(since n and n' form a noisy pair) such that V sends a message to fc. Thus, for all 
b e 5, there exists Z/ € fi' such that b1 sends a message to b. But since each of the 
(mC + 1) elements of |£'| sends a message to at most mC elements in B, we have 
\B\ < mCirnC + 1), contradicting \B\ = (mC)1 + mC + 1.  

3. Manipulating Structures 

The goal of this section is to show that, if </>* has a model, then it has a model in 
which only a limited number of different sorts of element occur, in a sense which 
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we must make precise. We remind ourselves that the symbols 0*, a, )8, m, C/,, fh 
(1 < h < m), C, Z, E, 5, Af*, Af, /x7 (1 < ; < M) have fixed interpretations 
(Table I), and that the signature E is assumed throughout. 

3.1. Profiles, Counts and Approximations 

The first step is to manufacture some tools for manipulating structures. 

NOTATION 2. Let 21 be a structure, n a 1-type, and n a set of 1 -types. When 21 
is clear from context, denote by An the set {a € A | tpa[a] = 7i}, and denote by 
An the set {a e A | tpa[a] e n}. In addition, denote by nc the set of all and only 
those 1 -types not contained in n. 

REMARK 3. For any structure 21 and any set of 1-types n, An< = A \ An- 

For the next definition, recall that fi\, . . . , \±m are the message-types (invertible 
and non-invertible). 

DEFINITION 5. Suppose 21 [= <t>*. Let a e A, and let n be any set of 1-types. 
The U-profile of a in 21, denoted piff[#], is the Af -element integer vector whose 

yth element (1 < j < M) is given by: 

\{b€An:b^aandtpm[a,b] = Hj}\. 

If n is the set of all 1-types, we call piff [a] simply the profile of a in 21, and denote 

itpr*[a]. 

The vector pr^la] records, for each message-type fij (1 < j < M), how 

many elements a sends a message of type /x7 to. For any set of 1-types n, the 
vector piff [0] is an incomplete description of pr*[a] obtained by zeroing its jth 
coordinate whenever tp2(/x7 ) is not a member of n. It helps to think of these vectors 
as describing aspects of a's 'local environment'. 

For the next definition, recall that f\ , . . . , fm are the counting predicates. 

DEFINITION 6. Suppose 21 \= 0*. Let a e A, and let n be any set of 1-types. 
The Tl-count of a in 21, denoted ct^ [a], is the m-element integer vector whose hth 
element (l</*<m)is given by: 

\{b € An : b jtaandZl^ fh[a,b]}\. 

If n is the set of all 1-types, we call ctf\[a] simply the count of a in 21, and denote 

itcta[fl]. 

The vector ct*[a] records, for each counting predicate fh (1 < h < m), how 

many elements a is non-reflexively related to by fh- For any set of 1-types n, the 
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vector ctpf [a] is an incomplete description of ct21^] obtained by discounting those 
elements whose 1 -type is not in n. It is best to think of the vector ctjSf [<z] as providing 
a statistical summary of the vector pr^ [a]. In particular, pr^f [a] determines ct^f [0], 
but not conversely. 

Suppose 21 (= 0*, and let a € A. Then pr21^] is a vector of M integers in 
the range [0, C]; hence, the number of different profile vectors realized in 21 is 
bounded by (C + l)M and therefore by a doubly exponential function of ||0*||. 
On the other hand, cta[a] is a vector of m integers in the range [0, C]; hence, 
the number of different count vectors realized in 21 is bounded by (C + l)m, 
and therefore by a singly exponential function of ||0*||. The main task of this 
section is to show that, by modifying the structure 21, the number of realized 

profile vectors can be reduced so that it too is bounded by a singly exponential 
function of \\4>*\\. The next definition introduces the device used to effect this 
reduction. 

DEFINITION 7. Suppose 21 is a chromatic model of 0*. Let n be a set of 1- 

types, and let B be a subset of A. A structure 21' over the domain A is a (n, B)- 
approximation to 21 if (i) 21' is chromatic; (ii) every 2-type realized in 21' is also 
realized in 21; and (iii) for all a € A: 

1. tpa'[fl] = tpaW; 
2. pr*;[a] = pr*[a]; 
3. a e A \ B implies pr*' [a] = pr*[a]; 
4. a e B implies ct^f [a] = ct%[a]. 

Very roughly, a (n, 5 ^approximation to 21 is a surgically modified version of 
21 in which only the ri-profiles of elements of B have been interfered with. In 

particular: all elements of A retain their old 1 -types and their old FF-profiles; all 
elements of A \ B retain their old profiles; and all elements of B retain their old 
n-counts. In addition, chromaticity is preserved, and no new 2-types (or 1 -types) 
are introduced. We remark that, in Condition 4 of Definition 7 (iii), the restriction 
that a e B is in fact logically redundant, since if a & B, Condition 3 certainly 
entails ctft' [a] = ct^[a]. 

REMARK 4. Let 21, 21' and 21" be chromatic models of <p* over some common 
domain A, let n, IT be sets of 1-types and let B, B' be subsets of A. Then 21 is 
a (11, i? ̂ approximation to itself. Furthermore, if 21' is a (n, /^-approximation to 
21, n C IT, and B C B\ then 21' is also a (IT, B')-approximation to 21. Finally, if 
21' is a (n, ^-approximation to 21, and 21" is a (n, 2?)-approximation to 21', then 
21" is a (n, /^-approximation to 21. 

A crucial fact about (n, /^-approximations is that they maintain satisfaction 
of</>*: 
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LEMMA 5. Suppose a is a chromatic model of<f>*. Let U be a set of 1 -types, let 
B be a subset of A, and let a' bea(Tl, B)-appwximation to 21. Then a' |= (/>*. 

Proof By Remark 4, we may assume without loss of generality that Fl is the 
set of all 1-types and B = A. Since every 2-type realized in 21' is also realized in 
a, a' t= Vjca A VjcVjOS v x « y). And since cta'[a] = cta[a] for every a € A, 
»' N Ai<*<m v*3=c*y(/*(*, y) a x ^ y). a 

3.2. Groups and Patches 

Lemma 5 shows that, for any set of 1-types n and any B c A9 taking a (FI, 5)- 
approximation to a model a of </>* yields another model of 0*. Our strategy now 
is to show that, for certain Fl and B, a (n, fi)-approximation can be obtained in 
which the elements of B exhibit 'few' Fl-profiles. 

For the next definition, recall that /x\ , . . . , fi m* are the invertible message-types. 
Thus, for any model a of <f>* and any 1-type jr, the first M* coordinates of any 
{7r}-profile pr^}[tf] tell us, for each invertible message-type /jlj (1 < j < AT), 
how many elements in An the element a sends a message of type /jLj to. Notice 
that, if a is chromatic, then, by Remark 2, the first M* coordinates of pr^}[a] are 
either all zero, or else are all zero except for a single occurrence of unity. 

DEFINITION 8. Suppose a (=</>*. Let n be a set of 1-types, let n be a 1-type, 
and let B be a subset of A. We say that B is a Tl- group if every element of B has 
the same 1-type and every element of B has the same n -count. We say that B is a 

n-patch if B is a {jr}-group and, for all a, b e 5, the vectors pr^}[a] and prj^ffc] 
agree in each of their first M* coordinates. 

We now demonstrate that, if B is a n -patch in a chromatic, differentiated model 
of 0*, then by taking a ({n}, ^-approximation to that model, we can reduce the 
number of {7r}-profiles realized by the elements of B to just 1. 

LEMMA 6. Suppose a is a chromatic, differentiated model of (/)*. Let n be a 

1-type, and let B C A be a n-patch in a. Then there exists a structure a' such that 
ar is a ({7r}, B)-approximation to a in which the elements of B all have the same 

{tt} -profile. 
Proof Let tt* be the 1-type such that B C A^*. If |B| < l,ar = a obviously 

satisfies the conditions of the lemma. And if |A^| < 1, by re-interpreting the 

non-counting predicates if necessary, we easily obtain a structure satisfying the 
conditions of the lemma. So we may suppose that B and An both contain more 
than one element. Since a is differentiated, by Lemma 4, let r be a silent 2-type 
such that, for some a e An* and some a' € An9 tp*[a, af] = r. 

For a e B, let 

Aa = {a e An \a ^ a' and tpa[a, a'] is a non-invertible message-type); 
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and for a & 5, let Aa = 0. Notice, incidentally, that a! e Aa implies a & Aa>. 
Choose b e B for which \Ab\ is smallest, and fix b. Enumerate Ab as b\, bi, . . . . 
For any a € B not equal to b9 let Aa be a subset of Aa having the same number of 
elements as A^, and enumerate Aa as a\ , ai, . . . . 

We now define the structure 21' by assigning 2-types as follows. For all a € B 
such that a ^ b, set 

tpa/[fl,fl/]=tpa[fc,W, (2) 

where i ranges over the enumeration of Aa, and set 

tp*'[a,<i'] = r, (3) 

where a! is any element of Aa\Aa. In addition, for all distinct a, a' such that 
a! & Aa and a & Aa>, set 

tpa'[fl,fl/]=tpa[fl,fl/]. (4) 

Since a! e Aa implies a # Aa>, none of these assignments overwrites any other. And 
since B c An*, the 1-type assignments implicit in (2)-(4) never clash: indeed, we 
have tp2* [a] = tpm[a] for all a € A. Furthermore, the transformation from 21 to 21' 
does not affect invertible message-types. That is: for distinct a, a\ tpa[a, af] is an 
invertible message-type if and only if tp21 [a, a'\ is an invertible message-type; and 
moreover, if tp^fa, a'] is an invertible message-type, then tpa [a, a'] = tp^fa, a']. 

We now verify that 5a' is a ({7r}, /^-approximation to 21. From the re- 
marks of the previous paragraph and the fact that 21 is chromatic, we have 
that 21' is also chromatic. In addition, it is immediate from (2)-(4) that ev- 

ery 2-type realized in 21' is also realized in 21. Now let a be any element 
of B. Since B is a n -patch, the vectors pr^j[a] and pr^}[fe] by definition 

agree in their first M* coordinates (corresponding to the invertible message- 
types). Hence, since we have just shown that the transformation from 21 to 
21' does not affect invertible message-types, the vectors pr^}[a] and pr|^j[fc] 
also agree in their first M * coordinates. Furthermore, the assignments (2)-(4) 
guarantee that prj^jfa] and prj^j[&] also agree in the remaining coordinates 
M* + 1, . . . , M (corresponding to the non-invertible message-types). Hence, 

pr*[a] = pr£}[fc] for all a € B. (5) 

It is now a simple matter to check the numbered conditions in Definition 7 (iii). Let 
a be an arbitrary element of A. 

1. We have already established that tp21 [a] = tpa[a]. 
2. Let a! be any element of A^y with a ^ a' . Then certainly a! g Aa C An, so 

that tp21^, a'\ can be different from tp*[a, a'] only if a e Aa>. But if a e Aa>, 
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then neither tp21 [a, a!\ nor tp21 [a, a!\ can be a message-type. Hence, pr^JC[a] = 

3. Suppose a € A \ B, and let a! be any element of A with a ^ a '. The argument 
now proceeds much as for the previous condition: certainly, a! & Aa = 0, so 
tp21 [a, a!\ can be different from tpa[a, af] only if a e Aa>. But if a € Aa, 
then neither tp*[a, a'] nor tp21 [a, a'] can be a message-type. Hence pr* [0] = 

pr*[a]. 
4. Suppose a e B. Equation (5) yields ctj^j[a] = ct*}[Z?]. And since B is a 

{;r}-group, ctfn][b] = ct*}[a]. It follows that ct*[a] = ct*}[a]. 

Finally, it is immediate from Equation (5) that all elements of B have the same 
{^-J-profileinSl'.  

We now demonstrate that, if B is a Fl-group in a differentiated, chromatic model 
of (/>*, then, by taking a (n, 5)-approximation to that model, we can reduce the 
number of n-profiles realized by the elements of B so that it is bounded by a singly 
exponential function of ||0*||. This demonstration will occupy Lemmas 7-9. Our 

strategy is first to partition n into roughly equal sets IT and FT. We then recursively 
bound the number of II '- and n "-profiles realized by elements of 5, and finally 
align these IT- and FT-profiles so as to bound the number of n-profiles that result. 

LEMMA 7. Suppose 21 is a chromatic model of<p*. Let U be a set of 1 -types, 
let B C A be a Y\-groupy and let co be a permutation of B. Then there exists 
a structure 2tr such that 21' is a (11, B)-approximation to 21, and for all b e B, 
pt*[co(b)]=pt*[b]. 

Proof First, extend co to the whole of A by setting co(a) = a for a e A\B. 
Next, for all b e A, define: 

\oj(a) if be An 
^n(*)=|a otherwise; 

Thus, (obn is a permutation of A (which may be the identity). Since (cohn)~l and 

(^"^n are the same permutation, we may unambiguously write cd^. Clearly, co 
fixes B setwise and A \ B pointwise; so, therefore, does co^. Moreover, since B is 
a n -group, every element of B by definition has the same 1-type, and this 1-type 
is either a member of n or it is not. Hence, either B C An or B C A^ = A\Ay\. 
Thus, co fixes both An and AUc setwise, and so therefore does co^. 

Define the structure 2lr over domain A by setting, for all distinct a, a! e A: 

tp*'[a, a'} = tp^a^a), (o-&a')\ (6) 

To show that 21' is well-defined, we must show first that the elements co~,lu(a) and 

co~n(a') in each instance of (6) are distinct, and second, that the 1-type assignments 
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implicit in the different instances of (6) do not clash. Suppose, then that a ^ a'\ 
we prove that (o~}n{a) =^ co~^(af). Since the permutations o)~^ and a)~}u fix B 
setwise and A \ B pointwise, we may assume that a, a! € B. We have already 
noted that either B C An or B C A \ AU- If B C An, then (D~,ln(a) = co~\a) 
and (o~n(af) = a;"1^'); if, on the other hand, B C A \ An, then a)~,lu(a) = a 
and <w~n(aO = a '. Either way, (D~,lu(a) ̂ co~^(af). Next, we prove that the 1-type 
assignments in (6) never clash. Since all elements of B have the same 1-type, and 
since a> is the identity outside B, we have, for all a, a\ tpm[co~,ln(a)] = tpa[a]; 
thus, t\y*[a)~}u(a)\ does not depend on a'. Hence, the 1-type assignments implicit 
in (6) cannot clash, and a' is indeed well-defined. In fact, this argument establishes 
that tp*'[a] = tp*[a] for all a e A. 

We first check the numbered conditions of Definition 7 (iii) in turn. Let a be an 
arbitrary element of A. 

1. We have just established that tp*[a] = tp*[a]. 
2. For all b € Aw, o)^(a) = a; in particular, if a € Aw, then (o~^(a) = a. 

Therefore, co~^ is always a permutation of A^ \ {a}, and moreover, for all 
be AUc\ {a}, tp*'[a, b] = tp*[a, co'^b)]. Thus, the list of 2-types tp^fa, b] 
obtained as b ranges over A n A {a } is (in some order) the list of 2-types tpa [a , b'] 
obtained as V ranges over Aw\ {a}. It follows that pr^fa] = pipfc!/*]. 

3. Suppose a € A \ B. Then, for all b € A, co^(a) = a; in particular, co~^(a) = a. 
Therefore, co~^ is a permutation of A \ {a}, and moreover, for all b e A \ {a}, 
tp*'[a , b] = tp*[a, <o~n(b)]. Thus, the list of 2-types tp*'[tf , b] obtained as b 
ranges over A \ {a} is (in some order) the list of 2-types tp*[a, b'] obtained as 
V ranges over A \ {a}. It follows that pr* [a] = pr*[a]. 

4. For all b e An, o)^(a) = co~x{a)\ in particular, if a € An, then (o~^(a) = 

a>~l(a). Therefore, co~^ is a bijection from the set An \ [a] to the set An \ 
{co-\a)}9 and moreover, for all b e An\{a},tpa'[a, b] = V^[arl{a), (o~^(b)]. 
Thus, the list of 2-types tpm [a, ft] obtained as b ranges over An \ {a} is (in some 
order) the list of 2-types tp^fo;" 

] (a), b'] obtained as b1 ranges over A n \{a)~ l (a)}. 
It follows that 

pr*[a] = pr*[cD-\a)]. (7) 

Certainly, then, we have ct^ [a] = ct^[a)~l(a)]. But since B is a Fl-group in a, 
a e B implies ctj^arHtf)] = ct^[a], whence ct^'[a] = ct%[a]. 

We have thus established that, for all a € A, piff [a] = pr^ f^"1^)] and pifflfr*] = 

pr^c[a]. Since 21 is chromatic, it follows easily that 2lr is chromatic. Moreover, all 
2-types realized in ar are realized in a. Hence, a' is a (FI, 5)-approximation to a. 
Finally, it follows from Equation (7) that, for all b e B, pt^[co[b)] = piff [6].  

Suppose a, n and B are as in Lemma 7. That lemma then assures us that, 
as long as we are content to work with (n, /^-approximations, we can permute 
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the n-profiles of the elements in B at will! The following lemma exploits this 
facility. 

LEMMA 8. Suppose a is a chromatic model ofcj)*. Let FT, FT be disjoint, non- 
empty sets of 1 -types, and let FI = FT U IT'. Suppose the non-empty set B C A 
is both a YM -group and a Uff -group, and hence also a U-group. Let the number of 
different T\f -profiles realized in a by the elements of B be Jr; and let the number 
of different T\" -profiles realized in 21 by the elements of B be J". Then there exists 
a (FI, B)-approximation 21" to 21 in which at most Jf + J" - 1 different Yl-profiles 
are realized by the elements of B. 

Proof For perspicuity, we assume first that B is finite. Enumerate B as 
b\, ...,bj. Let the various IT-profiles realized by at least one element of B be 

Dp . . . , vrJt\ and let the various FT-profiles realized by at least one element of B 
be v", . . . , Vj,,. Since B is a IT-group, Lemma 7 guarantees that we can obtain a 
(IT, /^-approximation to 21 in which the IT-profiles of B are permuted at will. So 
let 21' be a (FT, /^-approximation to 21 in which the IT-profiles of the b\ , . . . , bi 
fall into consecutive blocks in the sense depicted in the middle column in Figure 1. 
More precisely, we have integers 0 = I\ < h < * • • < A/'+i = / such that, for all 

j (1 < j < 7'X prjy [fr/] = Vj for i in the range [/, + 1, //+i]. Since B is also a 

IT-group, we can obtain a structure 21" such that 21" is a (FI", 5)-approximation 
to 21' in which the elements of B have FI "-profiles likewise arranged in consecutive 
blocks. Since 21" is a (FI", B)-approximation to 21' and the sets FT and n" are dis- 

joint, the IT-profiles of the elements of B will be unaffected by the transformation 
from a' to a": a typical alignment of n'-profiles and n"-profiles in a" is shown 
in Figure 1. By inspection, at most J' + J" - 1 n -profiles are realized in a" by the 
elements of B. From Remark 4, a" is a (II, 5)-approximation to a, because a' is 
a (FT, /^-approximation to a and a" is a (FI", B)-approximation to a'. 

The same argument applies in the case where B is infinite, with only minor 
modifications. Of course, the number of different FT- and FT-profiles realized by 

Figure L Arrangement of FT-profiles and FT-profiles in B. 

Element Il'-profile in Or II -profile in 2r 
of B (and also in g") 
			 

v'J,, 
b! xfj, 
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the elements of B can still only be finite, but some of the resulting blocks of B may 
contain infinitely many entries. The matching up of these blocks so that at most 
J' + J" - 1 n -profiles result is routine.  

LEMMA 9. Suppose 21 is a differentiated, chromatic model of<j>*. Let I > 0, let 
n be a non-empty set of 1 -types such that \U\ < 2l, and let B C A be a Tl-group. 
Then there is a structure 21' such that 21' is a (II, B)-approximation to 21 and 
the number of different Yl-profiles realized in 21' by the elements of B is at most 
2/(M* + l)(C + l)/m. 

Proof By induction on/. To aid readability, let Kt standfor2/(M*+l)(C+l)/m. 
If / = 0, let n = {n}. Decompose B into maximal ;r -patches Bu ..., BH. Since 
21 is chromatic, Remark 2 guarantees that the first M* coordinates of any vector 

prj^}[tf] are either all zero, or else are all zero except for a single occurrence of 
unity. Therefore, H < M* + 1. Now let 2t0 = 21, and for all h (1 < h < //), apply 
Lemma 6 to obtain a structure 21/, such that 21/, is a ({n}, /^-approximation to 
2l/,_i in which the elements of Bh all have the same {7r}-profile. By Remark 4, 21// 
is a ({n}, /^-approximation to 21. And because the Bh are pairwise disjoint, 1 < 
h < h' < H implies pr*h'[d] = pr^[a] for all a € /?/,. Hence, the total number 
of {7r}-profiles realized by elements of B in 21// is at most H < M * + 1 = Kq. 
Thus, setting 21' = 21// establishes the case / = 0. 

Now suppose / > 0. We may assume n is not a singleton, since otherwise, we 
can employ the argument of the case / = 0; so let n be partitioned into non-empty 
sets IT and II" each of cardinality at most 2/-1. Also, partition B into maximal 
n'-groups B\,...9Bh (say). Since B is a Fl-group, the B\ , . . . , Bh will also be FT- 
groups. Moreover, since 21 (= <j>*9 the Pi-count of any element in 21 is one of at most 
(C + l)m different vectors; and since B is a Fl-group, all elements of B must have 
the same 1 -type, whence H < (C + 1 )m . Again, let 2lo = 21, and consider the set B\ . 
By inductive hypothesis, let f&\ be a (IT, /^-approximation to 2to in which at most 
Ki-\ iT-profiles are realized by the elements of B\ . Again, by inductive hypothesis, 
let 21" be a (IT', /^-approximation to Vi\ in which at most AT/_i iT'-profiles are 
realized by the elements of B\ . Thus, in the structure 21", B\ is a iT-group realizing 
at most AT/_i different IT-profiles, and also a IT'-group realizing at most tf/_i 
different FT-profiles. By Lemma 8, let 2li be a (II, /^-approximation to 21" in 
which the elements of B\ realize at most 2 AT/_ i - 1 < 2 AT/_ i different Il-profiles. By 
Remark 4, 2li is a (n , B\ )-approximation to 2lo. Treating the sets /?2, ..,/?// in the 
same way, we obtain structures 21/, (1 < h < H) such that, for each h in this range, 
21/, is a (n, /^-approximation to 2l/,_i in which at most 2Ar/_i different Il-profiles 
are realized by the elements of Bh. By Remark 4, 21// is a (II, /^-approximation 
to 21. And because the Bh are pairwise disjoint, 1 < h < hf < H implies that 
pr"*' [a] = pr^ [a] for all a e Bh. Hence, the total number of Il-profiles realized 
by elements of B in 21// is at most 2HKi_x < 2(C + l)mAT/_i = Kh Thus, setting 
21' = 21// completes the induction.  
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3.3. Sparse Structures 

We are now ready to achieve the goal of this section, namely, to show that, if 0* 
is satisfiable over some domain, then it is satisfied in a structure over that domain 
in which only a limited number of different sorts of element occur. Recall that 
Mi , . . . , Mm* are the invertible message-types and that mm*+i , . . . , Mm are the non- 
invertible message-types. The next definition relies on conventions established in 
Notation 1. 

DEFINITION 9. A star-type {over E) is a pair a = (it, v), where n is a 1-type 
over E and v = (v\, . . . , vm) is a vector over N satisfying the condition that, for 
all j (1 < j < M), Vj > 0 implies tp x(fij) = x- We say that a is chromatic if, 
for every 1-type n\ the sum of all the vj (I < j < M *) such that tp2(My) = n' 

equals either 0 or 1, and equals 0 in the case n' = it. If 21 (= (f>* and a € A, 
then (tp^fa], pr*[a]) is evidently a star-type, which we call the star-type of a in 21, 
denoted sta[a]. We say that the star-type a is realized in 21 if a = stm[a] for some 
a e A. 

It is best to think of sta[a] as a description of a together with its local envi- 
ronment. Note that, if <7r, v> is a star-type, and v is not the zero- vector, then n is 

actually determined by v. 

NOTATION 3. If a = (tt, v) is a star-type with v = (vu . . . , vM), we denote ;r 

by tp(a) and Vj by a|j] for all j (1 < j < M). 

REMARK 5. If 21 |= 0* and a e A, then tp(sta[a]) = tp*[a]. Moreover, 21 is 
chromatic if and only if every star-type realized in 21 is chromatic. 

REMARK 6. Let a be a chromatic star-type and let j and / be integers between 1 
and M* (so that m; and fij> are invertible message-types). If mJ1 = M/» then either 

a[j] = 0 or a[/] = 0. In particular, if mJ1 = My* then a[./] = 0. 

DEFINITION 10. Suppose 21 is a model of 0*, and let X be a positive integer. We 

say that 21 is X -sparse if 21 realizes no more than X different star-types - that is, if 

|{st*[a] : a e A}\ < X. 

For the next lemma, recall that s is the number of symbols in E , m is the number 
of counting predicates, and C = maxi<^<m Ch (see Table I). 

LEMMA 10. Let X = AS(\6S + 1)(C + l)5m. If<f>* has a model then it has a 
chromatic \ differentiated, X -sparse model over the same domain. 

Proof. Suppose 0* has a model with domain A. By Lemmas 2 and 3, <f>* has 
a chromatic, differentiated model 21 with the same domain. Let n be the set of 
all 1 -types; thus, |n| = 2s. Let Au • • • , AH be a list of the non-empty sets An, 
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where n € II; thus, H < 2s. The sets Ah together partition A; moreover, since 
a ^= </>*, each Ah (1 < h < H ) is a n -group. Letting 2lo = 21, by Lemma 9, 
we can obtain 2li, . . . , 21// such that, for all A (1 < A < //), 21/, is a (n, Ah)- 
approximation to 2t/,_i in which at most 2S(M 

* + 1)(C + l)5m different profiles are 
realized by the elements of Ah . Using by now familiar reasoning, 21// is therefore a 

(n, ^-approximation to 21 realizing at most H.[2S(M* + 1)(C + l)5m] < 4S(M* + 
1)(C + l)5m different star-types. By Lemma 5, 21// (= 0*. By Definition 7, 21// is 

chromatic; and since tp^"[a] = tpa[a] for all a e A, 21// is also differentiated. 

Finally, M* < 2As == 165. Thus, 21// is the required structure.  

4. Deciding Finite Satisfiability 

We continue to use the symbols in Table I with their advertised meanings. By 
means of Lemma 10, we have reduced the problem of determining whether </>* has 
a (finite) model to the problem of determining whether 0* has a (finite) chromatic, 
differentiated, X-sparse model over E, where X = 45(165 + 1)(C + \)sm. Crucially, 
X is bounded by a singly exponential function of \\<f>* || . The task of this section is to 
show how finite models of 0* which are chromatic, differentiated and X-sparse can 
be encoded as data-structures satisfying certain arithmetical constraints, whose size 
is also bounded by a singly exponential function of \\<p* \\ . The result that Fin-Sat-C2 
is in NEXPTIME follows from this encoding. 

Recall that 7t\ , . . . , ni are the 1 -types over E. 

NOTATION 4. We write X to denote the set of unordered pairs of (not necessarily 
distinct) integers between 1 and L. Formally: X = {{/, /'} | 1 < i < /' < L). 

The next definition again uses Notation 2. Recall that S is the set of silent 2-types 
over E. 

DEFINITION 1 1 . A frame is a tuple T = (a , /, 0), where a = (ai , . . . , crN) is a 
list of pairwise distinct star-types, / is a subset of J, and 6 is a function 0 : I -> E 
such that, for all {i, /'} € / with / < /', tp^fltf/, /'})) = m and tp2(<9({/, /'})) = nv. 
The dimension of T is Af . For Y a positive integer, T is Y -bounded if, for all k 
(1 < k < N) and all j (1 < j < M\ ck[j] < Y. Finally, T is chromatic if every 
Gk is chromatic. 

Think of a frame .T7 = (a , /, 0) as a (putative) schematic description of a structure, 
where a tells us which star-types are realized, / tells us which pairs of 1 -types are 
not noisy (Definition 4), and 6 selects, for each non-noisy pair of 1 -types, a silent 
2-type joining them. More precisely: 

DEFINITIONS. Suppose2t h 0*, and let ̂  = (a, /, 0) be a frame. We say that 
T describes 21 if the following conditions hold: 
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1 . a is a list of all and only those star-types realized in 21; 
2. / is the set of all and only those {/, /'} e X such that 7r, and ni do not form a 

noisy pair in 21; 
3. for each {/, /'} € /, there exist distinct a, a' e A such that tpa [a, a'\ = 0({i, /'}). 

Any model 21 of </>* is evidently described by some (not necessarily unique) 
frame; and certain interesting properties of 21 correspond to obvious prop- 
erties of the frames which describe it, as we see from the following two 
lemmas. 

LEMMA 11. Suppose 21 |= </>*, and let T be a frame which describes 21. Then: 
(i) 21 is chromatic if and only if T is chromatic; (ii) 21 is X -sparse if and only ifT 
has dimension at most X; and (Hi) T is C -bounded. 

Proof Immediate.  

For the next definition, recall that a 1-type n is simply a finite collection of 
formulas, so that /\ n denotes the conjunction of those formulas; similarly for 

2-types. 

DEFINITION 13. Let T = (a, /, 0) be a frame, where a = {au • . • , aN). We 
write T (= </>* if the following conditions are satisfied: 

1. forallifc(l < k < N\ \= /\tp(crk) -> a; 
2. for all k (1 < k < N) and all j (1 < j < M), if ak[j] > 0 then 

|= AM; -»£(*, 3>) A £(>;,*); 
3. for all {/, f } € /, \= A 0({i9 i'}) ^ P(x9 y) A ̂ 8(y , *); 
4. for all it (1 < k < N) and all h (1 < h < m), the sum of all the ak[j] 

(1 < j < M) such that //,O, j) € /x7 equals Q. 

REMARK 7. Let T = (a, /, 6>) be a frame, where a = (ai, . . . , aN\ VlT\= <p\ 
then, for all k (1 < k < N), Ei<;<m ^^l ^ mC- 

LEMMA 12. Suppose 21 (= 0*, an^ fcr T be a frame describing 21. Then T (= </>*. 

Proo/ Almost immediate.  

However, while every model of 0* is described by some frame, not every frame 
describes a model of 0*; and it is important for us to define a class of frames which 
do. Recall that nx , . . . , nL are the 1 -types, /jl} , . . . , fiM*, the invertible message- 
types, and /zm*+i, • • • » Mm, the non-invertible message-types. 

NOTATION 5. Let T = (a, /, 6) be a frame, where a = (ai, . . . , aN). If T 
is clear from context, for integers i, k in the ranges 1 < i < L9 I < k < N 
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write: 

fl iftp(ajt) = 7ti 

\ 0 otherwise; 

if, for all j (1 < j < M), tp2(/xy) = 7r,- implies adj] = 0 

0 otherwise; 

Hk = 
^^L/L where J = {j \ M* + 1 < j < M and tp2(/xy) = tt,}; 

*'* = Ylak^ where y = U I * - * - M and ̂(/^y) = ni)' 
jeJ 

In addition, for integers j9kin the ranges 1 < j < M *, \ <k < N, write: 

REMARK 8. Suppose 21 |= 0*, and let T be a frame describing 21. Then the 

symbols 0,-*, /?/*, ̂ , r,^ and 5/^ in Notation 5 have the following interpretations 
with respect to 21: 

1. o/£ = 1 just in case every element with star-type a* has 1-type 7r,; 
2. /?/* = 1 just in case no element with star-type a* sends a message to any element 

having l-type7T/; 
3. qjk counts how many messages of (invertible) type \ij any element having star- 

type ak sends; 
4. r,-* is the total number of elements having 1 -type tt,- to which any element having 

star-type a* sends a non-invertible message; and 
5. sik is the total number of elements having 1-type 7T/ to which any element having 

star-type a* sends a message. 

With this notation in hand we can characterize a class of frames whose members 
are guaranteed to describe models of (f>*. 

DEFINITION 14. Let T = (a, /, 0) be a frame, where a = (au . . . , aN). Let 
u> = Oi, . . . , ww) be a vector of positive integers. Using Notation 5, for all i 
(1 < 1 < £), all r (1 < V < L) and all j (I < j < M*\ let: 

\<k<N \<k<N \<k<N 

We say that w is a solution of ^* if the following conditions are satisfied for all i 
(1 < 1 < />), all i; (1 < V < L), all j (I <j < M*) and alU (1 < k < N): 
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(Cl) Vj = Vj>9 where / is such that /jlJ1 = ixy\ 
(C2) sik<Ui\ 
(C3) ut < 1 or ut > Z; 
(C4) if Oik = 1, then either w/ > 1 orr,* <*/',•; 
(C5) if {/, /'} $ /, then either ut < 1 or uv < 1; 
(C6) if {/, i) & I and oik = 1, then rrk > xVi. 

REMARK 9. Suppose 21 is a finite model of 0*, and let T = (o\ /, 0) be a frame 
describing 21. For all & (1 < k < TV), let w* be the number of elements of A having 
star-type ok in 21. In that case, the symbols ii,-, uy- and *,-,•' in Definition 14 have the 
following interpretations with respect to 21: 

1. ui is the number of elements a € A such that tpa[a] = 7zv; 
2. v,- is the number of pairs (a, b) e A2 such that a ^ b and tpa[a, b] = /x7; 
3. jcn' is the number of elements a e A such that tpa[a] = 7T/ and a does not send 

a message to any element having 1-type n^. 

The following lemma shows that Definition 14 is not too stringent for the struc- 
tures that interest us. 

LEMMA 13. Suppose 21 is a finite, differentiated model of<t>*. Let T = (a, /, 0) 
be a frame describing 21. Then T has a solution. 

Proof. Let a = (ai, . . . , aN), and let wk = \{a e A : sta[a] = <7*}| for all k 
(1 < k < N). We show that w = (w\, . . . , w;^) is a solution of T. In doing so, we 
make free use of Remarks 8 and 9. Note that, by construction, the w\ , . . . , w^ are 
all positive. 

Cl: If /xj1 = fij>9 then the sets {(a, b) \ a ^ b and tpm[a, fc] = /xy } and {(a, b) \ 
a^b and tpa[a, fo] = /x7} can obviously be put in 1-1 correspondence, namely: 
(a, b) h» (fe, a). But the cardinalities of these sets are Vj and vy, respectively. 

C2: Since J7 describes 21, any element of A having star-type ok sends a message 
to exactly sik elements having 1-type 7T/. But u; is the number of elements of A 

having 1-type jt/. Since a* is realized in 21, s/* < m/. 
C3: Immediate given that 21 is differentiated. 
C4: If 0/* = 1 and ul ? < 1, then wz = 1, so that 21 contains exactly one element 

with 1-type jt,-; moreover, this element has star-type ok. Denote this element by 
a. Thus, a sends a non-invertible message to exactly r,-^ elements with 1-type 
7T/'. Clearly, none of these elements sends a message back to a (since otherwise 
a\ message to it would be invertible), so that there exist at least rz* elements 
with 1-type nv which do not send a message to a. But since a is the only element 
with 1-type ni9 there exist at least r^ elements with 1-type jtf which do not send 
a message to any element having 1-type 7T;. In other words, r^ < jc/,. 
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C5: Since T describes a, {/, i '} ^ / implies that iii and Ttf form a noisy pair in a. 
In that case, by Lemma 4, either ux < 1 or Uf < 1. 

C6: Since ̂ * describes a, {/, /'} ^ / implies that jr, and 7r,-' form a noisy pair in 
a. Now if oik = 1 , there exists at least one element a having 1-type 7r,- and star- 
type ck. Moreover, there are jc,-',- elements having 1-type it? which do not send a 
message to any element having 1-type nh and hence at least xn elements having 
1 -type n v which do not send a message to a. Therefore, a sends a message (in fact, 
a non-invertible message) to all of these elements. But since a has star-type ak, a 
sends a non-invertible message to exactly rt>k elements having 1-type itf. Thus, 
rvk >Xi>i. 

 

We now prove a converse of Lemma 13. 

LEMMA 14. Lef T be a chromatic frame. If T has a solution and T |= 0*, f/ien 
there exists a finite structure a such that a ^ 0*. 

Proof Let ̂  = (a, /, 0), let a = {a\ , . . . , a^), and let w = (wi , . . . , ti;^) be 
a solution of ^*. In the sequel, we use the symbols o,-*, p/^, ̂ ^, rik and 5,-^ (with 
indices in the appropriate ranges), as specified in Notation 5, and the symbols m,-, Vj 
and xu> (again, with indices in the appropriate ranges), as specified in Definition 14. 
Hence, the conditions C1-C6 of Definition 14 hold. 

For every k (1 < k < N)9 let Ak be a set of cardinality wk, and let A be the 
disjoint union of the Ak. Think of Ak as the set of elements which 'want' to have 
star-type ak. In addition, we define for all i (1 < i < L), all V (1 < V < L) and all 
j (1 < j < M*): 

Ui = {J{Ak | 1 < k < N and oik = 1} 

Xn-, = (J{^^ | l < k < N and oikpvk = 1} 

V} = \J{Ak | 1 < k < N and ̂  = 1}. 

Since ̂ * is chromatic, qjk < 1 for all j (1 < y < Af *) and all it (1 < it < iV). Thus, 
for all i, i#/ and y in the appropriate ranges: 

1^1 = 11,-; \Xu>\=xur9 \Vj\ = vj. 

Think of f/,- as the set of elements which 'want' to have 1-type ni9 Xir as the set of 
elements in [// which do not 'want' to send a message to any element in Uv, and V) 
as the set of elements which 'want' to send an (invertible) message of type /x7 to 
some other element. We remark that Ak C [// if and only if tp(a*) = 7t(. Moreover, 
for all j (1 < j < M*\ if V} ̂  0, there exists a unique i (1 < i < L) such that 
V} C t// - namely, that i such that tp,(/xy) = ^. We now convert the domain A 
into a structure a in four steps. 



COMPLEXITY OF THE TWO- VARIABLE FRAGMENT WITH COUNTING 389 

Step 1 (Interpreting the unary predicates and diagonals of binary predicates): For 
every k (1 < k < N) and every a e Ak, set tpa[a] = tp(crk). At the end of this 
step, we have, for every i (1 < i < L) and every a € £//, tpm[a] = jt,-. 

Step 2 (Fixing the invertible message-types): For every j (1 < j < M*), let 
/ be such that /xj1 = /xy. By Cl, V) and Vy are equinumerous. If / > j9 
pick some 1-1 correspondence between V) and Vy\ and for every a € V), 
set tpa[a, a'] = /Xj ?, where a' is the element of V}/ corresponding to a € V). 
This completes Step 2. We must show that these assignments are meaningful, 
do not clash with Step 1, and do not clash with each other. Suppose then that 
the assignment \p*[a,a'] = /jlj is made, and that /xj1 = \xy. Thus, a € V) 
and a! € V)*. To show that the assignment is meaningful, we must prove that 
a j=- a\ For contradiction, suppose a = a\ and let k be such that a e Ak. But 
then crk[j] > 0 and crk[jf] > 0, which is impossible by Remark 6. To show 
that the assignment does not clash with Step 1, suppose /xj1 = /xy, and let i, 
V be such that V) C [// and Vy C I/,-'. As observed above, jti = tp^/xy) and 
nv = tp^/xy) = tp2(/xy), which conforms to the assignments in Step 1. To 
show that these assignments do not clash with each other, it suffices to prove 
that, if a € V) H Vh, a! € Vy D Vh> fij1 = fly and /x^1 = iih>, then y = h. 

Suppose then that the antecedent of this conditional holds; let k and kf be such 
that a e Ak and a! € Ak>. Then ok>[j'] > 0 and ̂ [A'] > 0. Since ok> is 
a star-type, tpjOi/0 = tp^/x/,), whence tp2(/x,) = tp2(/x/l). But ak[j] > 0 
and ajt[/i] > 0, and since ok is a chromatic star-type, y = h. Note that, if 

ix T1 = /x7, then V) = 0 by Remark 6. Thus, at the end of Step 2, for every 
element a € A and every j (I < j < AT), a sends a (unique) message of type 
fij to some other element if and only if a € V). That is: for all k (1 < k < N)9 
all a € At, and all j (1 < j < M*), there are exactly crk[j] elements a' e A 
such that a ± a! and tpa[a, a'] = /x7. We make one further observation before 

proceeding. Suppose that tpm[a,a'] is assigned in this step and that a € I/,-; 
we claim that a' & Xn for any /'. To see this, suppose a e V} Q Ut and 
a' e Ak> C V>, with /xj1 = fiy. Then tp^/x^) = tp2(/x,) = ^. But then 

<*k'[j'] > 0, whence p/^' = 0, whence a' & Xri, This observation will be useful in 

Step 3. 
Step 3 (Fixing the non-invertible message-types): Let i and V be such that 1 < i < 

V < L. We fix all the non-invertible messages sent, in either direction, between 

Ui and £/,-'. By C3, either ut < 1 or ut > Z; similarly, either uv < 1 or uv > Z. 
We consider five cases. 

Case 1: ux = 0. In this case, there are no elements of £/,- and hence no 2-type 
assignments to be made between elements of f/,- and elements of £//'. Note 
that, by C2, sik = 0 for all k (1 < k < N\ whence ak[j] = 0 for all k 

(1 < k < N) and for all j (1 < j < M) such that tp2(/x7) = ni. (Intuitively, 
no element of A - and in particular of Uv - 'wants' to send a message to an 
element with 1-type 7T/ anyway.) 
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Figure 2. Dealing with non-invertible messages between £// and Uf. 

Ui> Uj Uv 

Case 2: Ui = l Case 5: v^, u^ > Z > 3mC 

Case 2: ux  = 1. The situation is illustrated in the left-hand diagram of Figure 2. 
Let a be the sole element of {/,- , and let k be such that a e A^ . We deal first with 
the assignment of non-invertible messages sent from Uf to Ui = {a}. Consider 
any a' € A^ c Ui'.ByCljSw < 1 ; hence there is at most one value of j in the 
range 1 < j < M such that tp2(/xy) = tz\ and cr^U] > 0. Suppose then that 
such a j exists. Again, since Siv < l.o^'ty] = 1- If j < Af*, then this message 
has already been dealt with in Step 2; so we may assume M * + 1 < j < M . It 
follows from C4 that i ^ i ' . Hence a ^ a\ so that we may set tp21 [a', a] = /* , . 
Since tpjC/Xy) = iZ[> and tp2(/x7) = jt/, this assignment does not clash with 
Step 1 . Observe also that, just as in Step 2, if this assignment is made, we have, 
by definition, pw = 0, so that a! & X,-',-. By carrying out the same procedure 
for all a' € f/,v, we complete the assignment of non-invertible messages sent 
from Uf to Ui. It remains to deal with the non-invertible messages sent from 
Ui = {a} to U^. Remembering that a e A*, C4 ensures the existence of a 
subset R C Xn such that \R\ = r,-^. For each y (Af * + 1 < j < M ), if 
tP2(/f/) = ^r» select <t*|j] fresh elements a' of /?, and make the assignment 
tp^fa, a'\ = /Xj -,. (There are enough such elements by the definition of r/^.) 
These assignments clearly do not clash with those made in Step 1 . Moreover, 
we have observed that tp^[a, a'] has previously been assigned (either in this 
step or in Step 2) only if a! & X^. Thus, these assignments do not clash with 
those made earlier in this step or those made in Step 2. 

Case 3: u^ = 0 and ux > Z. Symmetrical to Case 1. 
Case 4: Ui> = 1 and ii/ > Z. Symmetrical to Case 2. 
Case 5: ut > Z and uv > Z. Since Z = (mC + I)2 > 3mC, partition [// into 

three sets £//o, £/n, I//2, each containing at least mC elements; and similarly 
for Ur. Suppose a e Ui. Then for some h (0 < h < 3), a € £///,. Let it be 
such that a € A*, and let W = A + 1 (mod 3). For all j (M* + 1 < j < M ), 
select <t*|j] fresh elements ar of t/w such that tp21^, ar] was not assigned 
in Step 2, and set tp*[a, a'\ = /z,. By Remark 7, I^^ ^[7] < mC; and 
since |t/,-^| > mC, we never run out of fresh elements to select. In this way, 
we deal with all messages sent from Ut to Uy\ the messages sent from Ut> to 
Ui are dealt with symmetrically. It is obvious that these assignments do not 
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clash with Step 1 or Step 2; and the fact that h! = h + 1 (mod 3), ensures 
that they do not clash with each other (even if i = /'), as is evident from the 
right-hand diagram of Figure 2. 

Performing these assignments for all pairs i, V such that 1 < i < V < L 
completes Step 3. At the end of Step 3, then, for all k (1 < k < N\ all a € Ak, 
and all j (1 < j < M ), there are exactly crk[j] elements a1 € A such that a ^ a' 
andtpa[a, a'] = fij. 

Step 4 (Fixing the silent 2-types): Finally, we use the components / and 6 of 
T = (a, /, 9) to deal with all the remaining 2-types in 21. Let a, a! be distinct 
elements of A such that Vp*\a, a'] has not yet been assigned. Let i, /', k, k' be 
such that a e Ak Q Ut and a! € Ak> c f//s and assume, without loss of 
generality, that i < i'. We claim that {/, i'} e I. For suppose otherwise. By 
C5, we have either m = 1 or U[> = 1. Assume the former. Now, if pw = 0, 
then there is some / (1 < / < M) such that a*[/] > 0 and tp2(/xy) = nh 
whence - bearing in mind that a is the unique element of I/,- - tpa[a, a'\ will 

certainly have been assigned in Step 2 (if \iy is an invertible message-type) 
or in Step 3 Case 2 (if \iy is a non-invertible message-type), contradicting the 
fact that tpa[a,a'] is unassigned. Thus, pik' = 1, and hence Oi>k>pik> = 1. 
That is: a' € AV,. But |AV/| = *,•',-. And by C6, xVi < rvk. Yet in Step 3 
(Case 2), r,/^ elements of X^ were chosen to receive messages from a. Hence 
a' must be among these elements, again contradicting the fact that tpa[a, a'\ 
is unassigned. The case where Uf < 1 proceeds symmetrically. Thus, we have 
established that, if tpa[a, a'] has not yet been assigned, then {i, /'} € /, so that 
we can make the assignment tp*[a, a'\ = 0({/, /'}). Since tpj (#({/, /'})) = itt 
and tp2(0({/, /'})) = 7ti'9 there is no clash with Step 1. Evidently, we can proceed 
in this way until all remaining 2-types have been assigned. Moreover, since each 

#({/, i'}) is silent, this step does not spoil the work of Steps 2-3: we still have 
that, for all k (1 < k < N\ all a e Ak, and all j (1 < j < M\ there are exactly 
crk[j] elements a' € A such that a ^ a' and tp^fa, ar] = /x7. 

This completes the construction of 21. The only 1 -types realized in a are the 
1 -types tp(a*) (where 1 < k < N). The only message-types realized in 21 are 
those fij such that crk[j] > 0 for some k. And the only silent 2-types realized in 
21 are the 0({i\ /'}) for {/, /'} e I. Since T \= 0*, we have 21 \= Vjca A VxVyOS v 
x « y). Moreover, for all k (1 < k < N)9 and for all a € Ak, st*[a] = crk. 
Since T N <f>*, we have, for all a € A, ctm[a] = (Ci, . . . , Cm); in other words, 
a N Ai<*<m Vx3=Qj(//l(x, y)Ax? y). Hence, 21 |= 0*.  

Lemmas 1 3 and 14 in effect reduce the task of determining whether <j>* is finitely 
satisfiable to that of determining whether certain frames T have a solution. We can 
now employ a standard result to bound the complexity of determining whether a 

given frame has a solution. 
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LEMMA 15. Let T be a Y -bounded, N -dimensional frame over E. Then T has a 
solution if and only if it has a solution w such that every component ofw is bounded 
by some (fixed) singly exponential function of the quantity L + M* + N + log Y + 
logZ. 

Proof This follows immediately from the well-known result (Papadimitriou, 
1981) that, if an integer programming problem has a solution at all, then it has 
a solution all of whose components are bounded by a singly exponential func- 
tion of the size of the problem (encoded in the obvious way). For the conditions 
C1-C6 in Definition 14 amount to a disjunction of integer programming problems 
whose sizes are all bounded by a polynomial function of L + M * + N + log Y + 
log Z.  

THEOREM 1 . The problem Fin-Sat-C2 is in NEXPTIME. 
Proof By Lemma 1, it suffices to show that the finite satisfiability of any 

formula 0* of the form (1) can be decided non-deterministically in time bounded 
by a singly exponential function of ||0*||. Using the symbols in Table I with the 
advertised interpretations, let X = 45(16S + 1)(C + l)sm. 

We claim that 0* is finitely satisfiable if and only if there exists a chromatic, 
C-bounded frame T over E of dimension N < X, such that T has a solution 
and T (= 0*. For suppose 0* is finitely satisfiable. By Lemma 10, 0* has a finite, 
chromatic, differentiated, X-sparse model 21 interpreting E. Let T be a frame 
over E describing 21. By Lemma 1 1 , T is chromatic, of dimension N < X and 
C-bounded. By Lemma 12, T |= 0*. Finally, by Lemma 13, T has a solution. 
Conversely, suppose T is a chromatic frame over E such that T has a solution and 
T \= </>*. Then Lemma 14 guarantees that </>* is finitely satisfiable. 

By Lemma 15, then, </>* is finitely satisfiable if and only if there exists a chro- 
matic, C-bounded frame T over E of dimension N < X and a vector w of positive 
integers bounded by some doubly exponential function of ||</>* ||, such that T \= </>* 
and w is a solution of T. Using the standard binary encoding of integers, it is easy to 
write down T and w in a number of bits bounded by a singly exponential function 
of ||0* ||, and to check whether they satisfy the requisite conditions in time bounded 
by a singly exponential function of ||0* ||.  

The above proof yields a small model property for finitely satisfiable C2- 
formulas: 

COROLLARY 1. Let (f) be a formula ofC2. If<p is finitely satisfiable, then it is 
satisfiable in a structure of size bounded by a doubly exponential Junction of\\4>\\. 

Proof The structure built in Lemma 14 from T and its solution w has domain 
of cardinality w\ H 
			 \- w^. u 

Notice that the complexity result of Theorem 1 is better than one might naively 
expect on the basis of the small model property of Corollary 1. Nevertheless, the 
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bound of Corollary 1 is optimal in the sense that there is a sequence {(pi) of finitely 
satisfiable formulas of C2 whose size grows as a polynomial function of i , but whose 
smallest satisfying structures grow as a doubly exponential function of i (Gradel 
and Otto, 1997, p. 317). 

5. Deciding Satisfiability 

Having established that Fin-Sat-C2 is in NEXPTIME, we now turn our attention to 
Sat-C2. In fact, there is almost no further work to do. 

NOTATION 6. Let N* denote the set N U {No}. We extend the ordering > and 
the arithmetic operations + and • from N to N* in the obvious way. Specifically, 
we define No > n for all n € N; we define No + **o = No * ^o = No and 
0 . No = No • 0 = 0; we define n + No = No + * = **o for all n € N; and we 
define n • No = ^o * n = No for all n e N such that n > 0. Under this extension, 
> remains a total order, and +, • remain associative and commutative. 

A system of linear equalities and inequalities defining an integer programming 
problem can of course be re-interpreted so that solutions are sought not over N but 
over N*. (We always assume that the coefficients occurring in such problems are 
in N.) As an example, the single inequality jci > x\ + 1 has no solutions over N, 
but it does have a solution over N*, namely, jci = No. 

Lemmas 2-10 apply to both finite and infinite structures. Furthermore, the def- 
inition of a frame and its relationship to the models of </>* it describes makes no 
reference to the cardinalities of those models, and Lemmas 1 1 and 12 again apply 
generally. Definition 14 requires modification, however. 

DEFINITION 15. Let S and T = (a, /, 9) be as in Definition 14. Let w = 

(w\ , . . . , wN) be a vector of non-zero elements of N*. We say that w is an extended 
solution of T if w satisfies the conditions of Definition 14, with the arithmetic 

interpreted over N* as specified in Notation 6. 

We must check that the obvious analogues of Lemmas 13 and 14 hold: 

LEMMA 16. Suppose a is a differentiated model of </>*. Let T = (a, 1,6) be a 

frame describing 21. Then T has an extended solution. 

LEMMA 17. Let T be a chromatic frame. If T has an extended solution and 
T [= 4>*, then there exists a structure 21 such that 21 \= (p*. 

The proofs are exactly the same as in the finite case. Note that the variables u,-, 
Vj and xa> as well as the Wk may now take the value No; by contrast, the coefficients 
Oi^ Pik, qjk* rik and sik remain finite. Remark 9 generalizes unproblematically to 
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countably infinite structures, so that the quantities m,-, Vj and xw mentioned in Def- 
inition 14 continue to have their familiar interpretations. The proofs of Lemmas 16 
and 17 then proceed exactly as for Lemmas 13 and 14. 

There is one final hurdle to overcome. The proof of Lemma 15 used a well- 
known result bounding solutions of integer programming problems. Since we are 
now dealing with N* -programming problems, we need the following extension of 
that result. 

LEMMA 18. Let <J> be a finite set of linear inequalities of the form 

ao + a\ x\ -\ 
			 h anxn < b0 + b\X\ H 
			 h bnxn 

in variables x\ , . . . , xn. Here, all coefficients are assumed to be in N. We take the 
size o/0, denoted || O ||, to be measured in the usual way, assuming binary encoding 
of integers. If® has a solution over W, then 4> has a solution over N* such that 
all finite values are bounded by some (fixed) singly exponential function of ||4>||. 

Proof Suppose that O has a solution over N*. Re-order the variables if neces- 
sary so that this solution has the form u>&o> with w = w\ , . . . , w^ € Nk for some 
k (0 < k < n) and Ko an (n - &)-tuple of Kos. Say that an inequality in * does 
not involve the variable xt if the corresponding coefficients a, and b[ are both zero. 
Let * be the set of inequalities in O involving none of the jc*+i , . . . , xn. Thus, *I>, 
considered as a problem in variables x\ , . . . , jc*, has a solution w over N, whence it 
has a solution w' bounded by some singly exponential function of ||*|| (and hence 
of ||*||). But then it is easy to see that w'&o is a solution of 4>.  

THEOREM 2. The problem Sat-C2 is in NEXPTIME. 
Proof Exactly as for Theorem 1, noting that, by Lemma 18, extended solu- 

tions for a C-bounded frame T over E of dimension TV < 4s(l6s + l)(C + \)sm 
can be written down and checked in time bounded by an exponential function of 
11*1.  

Obviously, there is no interesting small model property for satisfiable C2- 
formulas along the lines of Corollary 1 . However, we have the next best thing: 

COROLLARY 2. Let (f> be a formula of the form (1). Then there exist integers X 
and W, with X bounded by a singly exponential function of\\(f>\\ and Wbya doubly 
exponential function o/||0||, such that, if</> is satisfiable, then it has an X -sparse 
model in which every star-type is realized either infinitely often or at most W times. 
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