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Abstract. A ring is said to be clean if every element of the ring can be written as a sum of an idempotent

element and a unit element of the ring and a ring is said to be nil-clean if every element of the ring can be

written as a sum of an idempotent element and a nilpotent element of the ring. In this paper, we generalize

these arguments to symbolic 2-plithogenic structure. We introduce the structure of clean and nil-clean symbolic

2-plithogenic rings and some of its elementary properties are presented. Also, we have found the equivalence

between classical clean(nil-clean) ring R and the corresponding symbolic 2-plithogenic ring 2 − SPR.

Keywords: Clean ring; nil-clean ring; symbolic 2-plithogenic ring; clean symbolic 2-plithogenic ring; nil-

clean symbolic 2-plithogenic ring.

—————————————————————————————————————————-

1. Introduction

The concept of refined neutrosophic structure was studied by many authors in [1–5]. Sym-

bolic plithogenic algebraic structures are introduced by Smarandache, that are very similar

to refined neutrosophic structures with some differences in the definition of the multiplication

operation [17].

In [14], the algebraic properties of symbolic 2-plithogenic rings generated from the fusion of

symbolic plithogenic sets with algebraic rings, and some of the elementary properties and sub-

structures of symbolic 2-plithogenic rings such as AH-ideals, AH-homomorphisms, and AHS-

isomorphisms are studied. In [7], some more algebraic properties of symbolic 2-plithogenic
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rings are studied. Further, Taffach [15,16] studied the concepts of symbolic 2-plithogenic vec-

tor spaces and modules.

In [8], the concept of symbolic 2-plithogenic matrices with symbolic 2-plithogenic entries,

determinants, eigen values and vectors, exponents, and diagonalization are studied. Hamiyet

Merkepci et.al [12], studied the the symbolic 2-plithogenic number theory and integers. Ah-

mad Khaldi et.al [11], studied the different types of algebraic symbolic 2-plithogenic equations

and its solutions.

In [18], H. Suryoto and T. Uidjiani studied the concept of neutrosophic clean ring with many

elementary interesting properties. Recently, M. Abobala [6], proved that a neutrosophic ring

R(I) is clean if and only if R is clean. Motivated by this works, in this paper we have introduced

and studied the notion of clean and nil-clean symbolic 2-plithogenic rings. Also, we proved

that a symbolic 2-plithogenic 2− SPR is clean(nil-clean) if and only if R is clean(nil-clean).

2. Preliminaries

Definition 2.1. [14] Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:

2− SPR =
{
a0 + a1P1 + a2P2; ai ∈ R,P 2

j = Pj , P1 × P2 = Pmax(1,2) = P2

}
Smarandache has defined algebraic operations on 2− SPR as follows:

Addition:

[a0 + a1P1 + a2P2] + [b0 + b1P1 + b2P2] = (a0 + b0) + (a1 + b1)P1 + (a2 + b2)P2

Multiplication:

[a0 +a1P1 +a2P2].[b0 + b1P1 + b2P2] = a0b0 +a0b1P1 +a0b2P2 +a1b0P
2
1 +a1b2P1P2 +a2b0P2 +

a2b1P1P2 + a2b2P
2
2 + a1b1P1P1 = (a0b0) + (a0b1 + a1b0 + a1b1)P1 + (a0b2 + a1b2 + a2b0 + a2b1 +

a2b2)P2.

It is clear that 2−SPR is a ring. If R is a field, then 2−SPR is called a symbolic 2-plithogenic

field. Also, if R is commutative, then 2− SPR is commutative, and if R has a unity (1), than

2− SPR has the same unity (1).

Example 2.2. [14] Consider the ring R = Z4 = {0, 1, 2, 3, 4}, the corresponding 2− SPR is:

2− SPR = {a + bP1 + cP2; a, b, c ∈ Z4}.

If X = 1 + 2P1 + 3P2, Y = P1 + 2P2; then, X + Y = 1 + 3P1 + P2, X − Y = 1 + P1 + P2,

X.Y = 3P1 + 3P2.

Theorem 2.3. [14] Let 2 − SPR be a 2-plithogenic symbolic ring, with unity (1). Let X =

x0 + x1P1 + x2P2 be an arbitrary element, then:

(1) X is invertible if and only if x0, x0 + x1, x0 + x1 + x2 are invertible.
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(2) X−1 = x−1
0 + [(x0 + x1)

−1 − x−1
0 ]P1 + [(x0 + x1 + x2)

−1 − (x0 + x1)
−1]P2

Definition 2.4. [14] Let X = a + bP1 + cP2 ∈ 2− SPR, then X is idempotent if and only if

X2 = X.

Theorem 2.5. [14] Let X = a + bP1 + cP2 ∈ 2 − SPR, then X is idempotent if and only if

a, a + b, a + b + c are idempotent.

Theorem 2.6. [14] Let 2 − SPR be a commutative symbolic 2-plithogenic ring, hence if

X = a + bP1 + cP2, then Xn = an + [(a + b)n − an]P1 + [(a + b + c)n − (a + b)n]P2 for every

n ∈ Z+.

Definition 2.7. [14] X is called nilpotent if there exists n ∈ Z+ such that Xn = 0.

Theorem 2.8. [14] Let X = a+ bP1 + cP2 ∈ 2−SPR, where R is commutative ring, then X

is nilpotent if and only if a, a + b, a + b + c are nilpotent.

3. Clean Symbolic 2-Plithogenic Rings

We begin with the following definition.

Definition 3.1. Let R be any ring, 2−SPR be its corresponding symbolic 2-plithogenic ring.

An element x ∈ 2− SPR is said to be clean if x = e + u, where e is an idempotent and u is a

unit element of 2− SPR. If, in addition, the existing idempotent e and the unit u are unique,

then x is called uniquely clean element.

In this section, we use the notation U(2 − SPR) to the set of all units in 2 − SPR and

Id(2− SRR) to the set of all idempotent elements in 2− SPR.

Example 3.2. Consider the symbolic 2-plithogenic ring

2− SPZ2 = {a + bP1 + cP2; a, b, c ∈ Z2}

=
{

0, 1, P1, P2, P1 + P2, 1 + P1, 1 + P2, 1 + P1 + P2

}
.

Here, U(2−SPZ2) = 1 and Id(2−SRZ2) = {0, 1, P1, P2, P1 + P2, 1 + P1, 1 + P2, 1 + P1 + P2}.
We can easily verify that every element of 2−SPZ2 can be expressed as a sum of an idempotent

and a unit in 2− SPZ2 . Hence, all the elements in 2− SPZ2 are clean elements. Since 1 is the

only unit element in 2− SPZ2 , so all the elements in 2− SPZ2 are uniquely clean elements.

Definition 3.3. A symbolic 2-plithogenic ring in which all elements are clean, then the ring

is called a clean symbolic 2-plithogenic ring. Furthermore, if each element of the symbolic 2-

plithogenic ring is uniquely clean, then the ring is called a uniquely clean symbolic 2-plithogenic

ring.
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Example 3.4. By the Example 3.2, the ring 2−SPZ2 is a uniquely clean symbolic 2-plithogenic

ring.

Example 3.5. Consider the symbolic 2-plithogenic ring

2− SPZ3 = {a + bP1 + cP2; a, b, c ∈ Z3}

=


0, 1, 2, P1, P2, 2P1, 2P2, P1 + P2, 2P1 + 2P2, P1 + 2P2, 2P1 + P2, 1 + P1,

1 + P2, 1 + P1 + P2, 1 + 2P1, 1 + 2P2, 1 + 2P1 + 2P2, 1 + P1 + 2P2,

1 + 2P1 + P2, 2 + P1, 2 + P2, 2 + P1 + P2, 2 + 2P1, 2 + 2P2, 2 + 2P1 + 2P2,

2 + P1 + 2P2, 2 + 2P1 + P2

 .

Here, U(2 − SPZ3) = {1, 2, 1 + P1, 1 + P2, 2 + 2P1, 2 + 2P2, 1 + P1 + 2P2, 2 + 2P1 + P2} and

Id(2 − SRZ3) = {0, 1, P1, P2, P1 + 2P2, 1 + 2P1, 1 + 2P2, 1 + 2P1 + P2}. All the elements of

2 − SPZ3 are clean elements. Hence 2 − SPZ3 is a clean symbolic 2-plithogenic ring. Take

2 + 2P1 + P2 ∈ 2 − SPZ3 , clearly 2 + 2P1 + P2 = (1 + 2P1 + P2) + 1 and also we have

2 + 2P1 + P2 = 0 + (2 + 2P1 + P2). Therefore 2 + 2P1 + P2 is not a uniquely clean element in

2− SPZ3 and hence 2− SPZ3 is not a uniquely clean.

Lemma 3.6. Let R be a ring. Then the class of clean symbolic 2-plithogenic rings is closed

under homomorphic images.

Proof. It is clear since the homomorphic image of an idempotent element in a symbolic 2-

plithogenic ring is again an idempotent.

Theorem 3.7. Let R be any ring, 2 − SPR be its corresponding symbolic 2-plithogenic ring.

2− SPR is clean if and only if R is clean.

Proof. Assume that 2 − SPR is clean. Since R is a homomorphic image of 2 − SPR, so R is

clean by Lemma 3.6.

Conversely, assume that R is clean, we must prove that 2−SPR is clean. Let x = a+bP1+cP2 ∈
2−SPR then a, a+b, a+b+c ∈ R. Since R is clean we have a = e1+u1, a+b = e2+u2, a+b+c =

e3 + u3, where ei are idempotent elements and ui are unit elements of R. Now,

x = a + bP1 + cP2

= a + [(a + b)− a]P1 + [(a + b + c)− (a + b)]P2

= (e1 + u1) + [(e2 + u2)− (e1 + u1)]P1 + [(e3 + u3)− (e2 + u2)]P2

= (e1 + u1) + [(e2 − e1) + (u2 − u1)]P1 + [(e3 − e2) + (u3 − u2)]P2

= [e1 + (e2 − e1)P1 + (e3 − e2)P2] + [u1 + (u2 − u1)P1 + (u3 − u2)P2]

= x1 + x2.
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where, x1 = e1+(e2−e1)P1+(e3−e2)P2 and x2 = u1+(u2−u1)P1+(u3−u2)P2. By Theorem

2.5, e1, e1 + (e2 − e1) = e2, e1 + (e2 − e1) + (e3 − e2) = e3 are idempotents in R. Therefore, x1

is a idempotent element of R. Also, x2 is a unit element of R by a similar discussion. Hence

2− SPR is clean.

Definition 3.8. Let 2 − SPR be a symbolic 2-plithogenic ring. An idempotent element e ∈
2−SPR is called a central idempotent if e.x = x.e for every x ∈ 2−SPR. The set of all central

idempotents of 2− SPR is denoted by C(2− SPR).

Example 3.9. In the symbolic 2-plithogenic ring 2− SPZ3 , we have

Id(2− SPZ3) = {0, 1, P1, P2, P1 + 2P2, 1 + 2P1, 1 + 2P2, 1 + 2P1 + P2}.

As 2− SPZ3 is commutative so all the idempotents of 2− SPZ3 are central. Hence

C(2− SPZ3) = {0, 1, P1, P2, P1 + 2P2, 1 + 2P1, 1 + 2P2, 1 + 2P1 + P2} = Id(2− SPZ3).

Lemma 3.10. If x is an idempotent element of 2 − SPR, then 1 − x is also an idempotent

element of 2− SPR, where 1 is the unit element of 2− SPR.

Proof. If x an idempotent element of 2−SPR then x2 = x. But then, (1−x)2 = 1−2x−x2 =

1− x and so 1− x an idempotent element of 2− SPR.

Lemma 3.11. Let 2 − SPR be a symbolic 2-plithogenic ring with the identity 1. If e ∈
C(2− SPR) then 1− e ∈ C(2− SPR), where 1 is the unit element of 2− SPR.

Proof. Assume that e ∈ C(2−SPR). For any x ∈ 2−SPR, we have (1−e).x = (1.x)− (e.x) =

(x.1)− (x.e) = x(1− e). Hence, 1− e ∈ C(2− SPR).

Theorem 3.12. In any symbolic 2-plithogenic ring 2 − SPR, every central idempotent is a

uniquely clean element.

Proof. Let x ∈ C(2− SPR). Then we have, x2 = x and x = (1− x) + (2x− 1) = e + u, where

e = 1− x is an idempotent by Lemma 3.10 and u = 2x− 1 is a unit element by Lemma 3.11.

Hence x is a clean element. Also, if x.y = y.x we obtain e + u = (e + u)2 = e + 2eu + u2, so

u = 1− 2e. Hence e = 1− x. Thus x is a uniquely clean element.

Theorem 3.13. Every idempotent element in a uniquely clean 2-plithogenic ring is a central

idempotent.
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Proof. Assume that 2 − SPR is a uniquely clean 2-plithogenic ring. Let e ∈ 2 − SPR be an

idempotent element and x be any element of 2− SPR. Now, the element e + (ex− exe) is an

idempotent and 1 + (ex− exe) is a unit and [e + (ex− exe)] + 1 = e + [1 + (ex− exe)]. Since,

2 − SPR is a uniquely clean 2-plithogenic ring we have e + (ex − exe) = e. Hence ex = exe

and xe = exe, so ex = ex as required.

Definition 3.14. A symbolic 2-plithogenic ring 2 − SPR is called a boolean symbolic 2-

plithogenic ring if x2 = x for all x ∈ 2− SPR.

Example 3.15. In the symbolic 2-plithogenic ring 2−SRZ2 , all the elements are idempotent

so 2− SRZ2 is a boolean symbolic 2-plithogenic ring

For any boolean symbolic 2-plithogenic ring, we have the following result.

Theorem 3.16. Every boolean symbolic 2-plithogenic ring is uniquely clean.

Proof. If 2 − SPR is a boolean symbolic 2-plithogenic ring, then 2 − SPR = Id(2 − SPR).

Since boolean rings are abelian, we have Id(2 − SPR) = C(2 − SPR). This implies that,

2 − SPR = C(2 − SPR). By Theorem 3.12, every element of the ring 2 − SPR are uniquely

clean. Hence 2− SPR is uniquely clean ring.

4. Nil-clean Symbolic 2-Plithogenic Rings

We begin with the following definition.

Definition 4.1. Let R be any ring, 2−SPR be its corresponding symbolic 2-plithogenic ring.

An element x ∈ 2−SPR is said to be nil-clean if x = e+n, where e is an idempotent and n is a

nil-potent element of 2−SPR. If, in addition, the existing idempotent element and nil-potent

elements are unique, then x is called uniquely nil-clean element.

Example 4.2. Consider the symbolic 2-plithogenic ring

2− SPZ3 = {a + bP1 + cP2; a, b, c ∈ Z3}

=


0, 1, 2, P1, P2, 2P1, 2P2, P1 + P2, 2P1 + 2P2, P1 + 2P2, 2P1 + P2, 1 + P1,

1 + P2, 1 + P1 + P2, 1 + 2P1, 1 + 2P2, 1 + 2P1 + 2P2, 1 + P1 + 2P2,

1 + 2P1 + P2, 2 + P1, 2 + P2, 2 + P1 + P2, 2 + 2P1, 2 + 2P2, 2 + 2P1 + 2P2,

2 + P1 + 2P2, 2 + 2P1 + P2

 .

Since 0 is a nil-potent element in 2−SPZ3 , so the idempotent elements 0, 1, P1, P2, P1+2P2, 1+

2P1, 1 + 2P2, 1 + 2P1 + P2 are nil-clean elements of 2− SPZ3 . The only nilpotent elements of

2 − SPZ3 is 0, so 0, 1, P1, P2, P1 + 2P2, 1 + 2P1, 1 + 2P2, 1 + 2P1 + P2 are uniquely nil-clean

elements of 2− SPZ3 .
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Definition 4.3. A symbolic 2-plithogenic ring in which all elements are nil-clean, then the ring

is called a nil-clean symbolic 2-plithogenic ring. Furthermore, if each element of the symbolic

2-plithogenic ring is uniquely nil-clean, then the ring is called a uniquely nil-clean symbolic

2-plithogenic ring.

Example 4.4. 2 − SPZ2 = {0, 1, P1, P2, P1 + P2, 1 + P1, 1 + P2, 1 + P1 + P2} is a nil-clean

symbolic 2-plithogenic ring, that is because all the elements in 2− SPZ2 are idempotents and

0 is a nilpotent element in 2− SPZ2 .

Lemma 4.5. If x is a nilpotent element of 2− SPR, then 1 + x is a unit in 2− SPR.

Proof. If x is a nilpotent element of 2 − SPR then xk = 0 for some k > 0. But then,

(1 + x)(1− x + x2 − x3 + ... + (−1)k−1xk−1) = 1 and so 1 + x is unit in 2− SPR.

Theorem 4.6. Every nil-clean symbolic 2-plithogenic ring is clean symbolic 2-plithogenic ring.

Proof. Suppose that 2− SPR is a nil-clean symbolic 2-plithogenic ring, and let x ∈ 2− SPR.

Then x−1 is an element of 2−SPR and hence x−1 = e+n, where e is an idempotent element

and n is a nilpotent element of 2− SPR.

This implies that, x = e + (1 + n) is a nil-clean element of 2 − SPR because 1 + n is a unit

element of 2− SPR by Lemma 4.5.

The converse of the Theorem 4.6 is not true. See the following example.

Example 4.7. Consider, the clean symbolic 2-plithogenic ring 2− SPZ3 . All the elements of

2− SPZ3 are clean elements. The only nilpotent element of 2− SPZ3 is 0 and P1 + P2 is not

an idempotent element in 2 − SPZ3 so it is not nil-clean. Hence 2 − SPZ3 is not a nil-clean

ring.

Lemma 4.8. Let R be a ring. Then the class of nil-clean symbolic 2-plithogenic rings is closed

under homomorphic images.

Proof. It is clear since the homomorphic image of a nil-potent element of a symbolic 2-

plithogenic rings is again a nil-potent.

Theorem 4.9. Let R be any ring, 2 − SPR be its corresponding symbolic 2-plithogenic ring.

2− SPR is nil-clean if and only if R is nil-clean.
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Proof. Assume that 2− SPR is nil-clean. Since R is a homomorphic image of 2− SPR, so R

is nil-clean by Lemma 4.8.

Conversely, assume that R is nil-clean, we must prove that 2 − SPR is nil-clean. Let x =

a + bP1 + cP2 ∈ 2 − SPR then a, a + b, a + b + c ∈ R. Since R is nil-clean we have a =

e1 + n1, a + b = e2 + n2, a + b + c = e3 + n3, where ei are idempotent elements and ni are

nilpotent elements of R. Now,

x = a + bP1 + cP2

= a + [(a + b)− a]P1 + [(a + b + c)− (a + b)]P2

= (e1 + n1) + [(e2 + n2)− (e1 + n1)]P1 + [(e3 + n3)− (e2 + n2)]P2

= (e1 + n1) + [(e2 − e1) + (n2 − n1)]P1 + [(e3 − e2) + (n3 − n2)]P2

= [e1 + (e2 − e1)P1 + (e3 − e2)P2] + [n1 + (n2 − n1)P1 + (n3 − n2)P2]

= x1 + x2.

where, x1 = e1 + (e2 − e1)P1 + (e3 − e2)P2 and x2 = n1 + (n2 − n1)P1 + (n3 − n2)P2. By

Theorem 2.5, e1, e1 + (e2 − e1) = e2, e1 + (e2 − e1) + (e3 − e2) = e3 are idempotents in R.

Therefore, x1 is a idempotent element of R. Also, x2 is a nilpotent element of R by a similar

discussion and by Theoerem 2.8. Hence 2− SPR is nil-clean.

Theorem 4.10. If 2− SPR is a symbolic 2-plithogenic ring, then every central idempotent of

2− SPR is uniquely nil-clean element.

Proof. We know that, every idempotent element of 2− SPR are nil-clean. Let x be a central

idempotent element of 2 − SPR. Then x = (1 − x) + (2x − 1). Suppose that x = e + n,

where e is an idempotent and n is a nilpotent element of 2− SPR. Since nx = xn, we obtain

e + n = (e + n)2 = e + 2en + n2. So, we have n = 1− 2e and hence e = 1− x, as reuired.

Lemma 4.11. Let 2− SPR be uniquely nil-clean symbolic 2-plithogenic ring. Then all idem-

potents of 2− SPR are central.

Proof. Let e ∈ 2 − SPR be an idempotent element and x be any element of 2 − SPR. Now,

the element e+ ex− exe can be written as e+ (ex− exe) or (e+ (ex− exe)) + 0 each time as

the sum of an idempotent and a nilpotent element of 2− SPR. Since 2− SPR is uniquely nil

clean, we have e = e + (ex − exe). This implies that ex − exe = 0 and so ex = exe. In the

similar way, we can show that xe = exe. Hence ex = xe as required.

Theorem 4.12. Every boolean symbolic 2-plithogenic ring is uniquely nil-clean.
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Proof. If 2 − SPR is a boolean symbolic 2-plithogenic ring, then 2 − SPR = Id(2 − SPR).

Since boolean rings are abelian, we have Id(2 − SPR) = C(2 − SPR). This implies that,

2 − SPR = C(2 − SPR). By Theorem 4.10, every element of the ring 2 − SPR are uniquely

nil-clean. Hence 2− SPR is uniquely nil-clean ring.

5. Conclusion

In this article, we have introduced the the new classes of rings called, clean symbolic 2-

plithogenic rings and nil-clean symbolic 2-plithogenic rings and we have studied various prop-

erties of clean and nil-clean symbolic 2-plithogenic rings with proper examples. Also, we have

determined necessary and sufficient condition for a symbolic 2-plithogenic ring to be clean and

nil-clean.
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