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Abstract

One of the main tools in the study of nonmonotonic consequence relations is the
representation of such relations in terms of preferential models. In this paper we give an
unified and simpler framework to obtain such representation theorems.

1 Introduction

A consequence relation |∼ is a binary relation between formulas on a classical propositional
language. We are interested in nonmonotonic consequence relations, i.e. those relations that
do not satisfy the monotonicity rule: If α|∼γ then α ∧ β|∼γ. Several systems of postulates
(cumulative, preferential, rational and others) for classifying nonmonotonic consequence re-
lations has been investigated [6, 7, 5, 4, 3, 1]. One of the main features of these systems
is the amount of monotony that is required from the consequence relation. The study of
non monotonic reasoning has been motivated by problems arising in artificial intelligence
(knowledge representation, belief revision, etc). There is a vast literature concerning non-
monotonity, for the particular approach dealt with in this paper we refer the reader to [9, 6]
and the references therein.

An important tool for the study and classification of nonmonotonic consequence relations
is the representation of such relations in terms of preferential models. A preferential model
M is a triple 〈S, ı,≺〉, where S is a set of states, ı is function assigning to each state a
valuation and ≺ is a strict partial order over S. M is said to be a model of |∼ when α|∼β

iff ı(s) |= β for all s which are ≺-minimal among all states t such that ı(t) |= α (the details
are given in §2). A consequence relation |∼ is preferential if and only if it is of the form |∼M

for some preferential model M ([6]). If |∼ is rational then the model can be found ranked
([7]). Disjunctive relations were studied in [3] and shown to be those relations represented by
filtered models. When the relation also satisfies rational transitivity then M can be found
quasi-linear ([2, 1]). These results are referred to as representation theorems and they can be
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regarded as a sort of a soundness and completeness theorems. These representations, besides
providing a semantic interpretation of |∼, are also quite useful to establish most properties of
|∼ by model theoretic arguments instead of proof theoretic ones.

In this paper we give simpler proofs of representation theorems for injective relations. The
key idea is the notion of the essential relation <e (defined in §3) associated with a preferential
consequence relation |∼. We will show that if |∼ is preferential and disjunctive, then <e is
a transitive strict order defined on a set of valuations such that the models of {β : α|∼β}
are the <e-minimal valuations that satisfy α. In other words, <e provides a representation
of |∼. We will show also that if |∼ is disjunctive (resp. rational, rational transitive), then
<e is filtered (resp. ranked, quasi-linear). Most of these results were known but they were
proved by quite different means (see [6, 7, 3, 5, 1]). We think our proofs are easier and in a
sense “canonical”. One interesting feature of our approach is that <e provides a direct way
of “ordering” the valuations without using an auxiliary order over formulas, as is the case
of other proofs of representation theorems. Freund introduced a property (that we denote
by WDR) weaker than disjunctiveness. We show that if |∼ is preferential and satisfies WDR,
then <e represents |∼. In §5 we address the question of uniqueness of these representations.
In particular, we will compare our results with Freund’s and show that <e coincides with
Freund’s relation when DR holds. We will see in §6 that in spite of the fact that in some
cases <e is not transitive, it still provides a good representation of some preferential relations
for which other methods do not work. We also present an example showing that WDR is not
a necessary condition for having an injective model.

2 Preliminaries

We recall some basic definitions and results from Kraus, Lehmann and Magidor [6], Lehmann
and Magidor [7] and Freund [3] which will be used in the paper.

We consider formulas of classical propositional calculus built over a set of variables denoted
Var plus two constants ⊤ and ⊥ (the formulas true and false respectively). Let L be the
set of formulas. If Var is finite we will say that the language L is finite. Let U be the set
of valuations (or worlds), i.e. functions M : Var ∪ {⊤,⊥} −→ {0, 1} such that M(⊤) = 1
and M(⊥) = 0. We use lower case letters of the Greek alphabet to denote formulas, and
the letters M, N, P, M1, M2, . . . to denote worlds. As usual, ⊢ α means that α is a tautology
and M |= α means that M satisfies α where compound formulas are evaluated using the
usual truth-functional rules. We consider certain binary relations between formulas. These
relations will be called consequence relations and will be written |∼.

Definition 2.1 A relation |∼ is said to be cumulative iff the following rules hold

REF ∀α[ α|∼α ]

LLE ∀α, β, γ [ α|∼β & ⊢ α ↔ γ ⇒ γ|∼β ]

RW ∀α, β, γ [ α|∼β & ⊢ β → γ ⇒ α|∼γ ]

CUT ∀α, β, γ [ α∧β|∼γ & α|∼β ⇒ α|∼γ ]

CM ∀α, β, γ [ α|∼β & α|∼γ ⇒ α∧γ|∼β ]

These rules are known as the rules of the system C. The abbreviations above are read
as follows: REF -reflexivity, LLE -left logical equivalence, RW -right weakening, CM -cautious
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monotony. CUT is self-explanatory, but it should be noted that this form of cut, which plays
an important role in nonmonotonic logic, is weaker than the form of cut usually studied in
Gentzen-style formulations of classical and intuitionistic logic. The latter implies transitivity
of the consequence relation; the former does not.

It is well known [6] that the following rules (And, Reciprocity) are derivable from system
C:

AND ∀α, β, γ [ α|∼β & α|∼γ ⇒ α|∼β∧γ ]

RECIP ∀α, β, γ [ α|∼β & β|∼α & α|∼γ ⇒ β|∼γ ]

Definition 2.2 A relation |∼ is said to be preferential iff it is cumulative and satisfies the
following rule (or):

OR ∀α, β, γ [ α|∼γ & β|∼γ ⇒ α∨β|∼γ ]

A relation |∼ is said to be disjunctive rational iff it is preferential and the following rule
(disjunctive rationality) holds

DR ∀α, β, γ [ α∨β|∼γ & α|6∼γ ⇒ β|∼γ ]

A relation |∼ is said to be rational iff it is preferential and the following rule (rational
monotony) holds

RM ∀α, β, γ [ α|∼β & α|6∼¬γ ⇒ α∧γ|∼β ]

It is well known [6, 9] that given the preferential rules (system C plus OR), RM implies
DR and also that any preferential relation satisfies the following rule

S ∀α, β, γ [ α∧β|∼γ ⇒ α|∼β → γ ]

Let |∼ be a consequence relation. As usual, C|∼(α) = {β : α|∼β}. If there is no ambiguity
we shall write C(α) instead of C|∼(α). If U (α) is a set of formulas (a formula) then Cn(U)
(Cn(α)) will denote the set of classical consequences of U (α).

We recall the definition of preferential models.

Definition 2.3 A structure M is a triple 〈S, ı,≺〉 where S is a set (called the set of states),
≺ is a strict order (i.e. transitive and irreflexive) on S and ı : S −→ U is a function (called
the interpretation function).

Let M = 〈S, ı,≺〉 be a structure. We adopt the following notations: if T ⊆ S, then
min(T ) = {t ∈ T : ¬∃t′ ∈ T, t′ ≺ t}, i.e. min(T ) is the set of all minimal elements of T with
respect to ≺; modM(α) = {s ∈ S : ı(s) |= α}; minM(α) = min(modM(α)).

Definition 2.4 Let M = 〈S, ı,≺〉 be a structure and T ⊆ S. We say that T is smooth if it
satisfies the following

∀s ∈ T \ min(T ) ∃s′ ∈ min(T ) s′ ≺ s

M is said to be a preferential model if modM(α) is smooth for any formula α.
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Each preferential model has an associated consequence relation given by the following:

Definition 2.5 Let M = 〈S, ı,≺〉 be a preferential model. The consequence relation |∼M is
defined by the following

α|∼Mβ ⇔ minM(α) ⊆ modM(β) (1)

The following representation theorems are one of the basic tools in the study of non-
monotonic consequence relations. The if part of them are not difficult to establish. The
main subject of this paper consists in providing, for a large class of preferential relations, a
‘canonical’ way of proving the only if part.

Theorem 2.6 (Krauss, Lehmann and Magidor [6]) A consequence relation |∼ is preferential
iff there is a preferential model M such that |∼ = |∼M.

A structure M = 〈S, ı,≺〉 is said to be a ranked model if it is a preferential model and
there exists a strict linear order (Ω, <) and a function r : S −→ Ω such that for any s, s′ ∈ S,
s ≺ s′ iff r(s) < r(s′).

Theorem 2.7 (Lehmann and Magidor [7]) A consequence relation |∼ is rational iff there is
a ranked model M such that |∼ = |∼M.

In general, it is not easy to grasp the intuition behind the set of states S and the inter-
pretation function ı. A special case, which is intuitively easy to handle, is when the function
ı is injective (in this case, M is said to be an injective model). If a preferential model is
injective one does not need to mention the interpretation function ı, instead one can assume
that S is a set of valuations and ≺ is a strict smooth order over S, so ı would be the identity
function. In this case the notion of a smooth relation says that for every M ∈ S and for every
formula α if M |= α and M is not in min(mod(α) ∩ S,≺), then there is N ∈ S such that
N ≺ M and N ∈ min(mod(α) ∩ S,≺) (where the notion of a ≺-minimal element is defined
as in the paragraph following 2.3). The relation ≺ is understood as a preference relation
over valuations. Thus (1) says that to compute the consequences of a formula α we need to
look only at the preferred valuations of α according to ≺, i.e. those valuations belonging to
min(mod(α) ∩ S).

Freund [3] studied a family of consequence relations admitting injective models. 1 He
observed that one can always assume that S is certain collection of valuations which we define
next

Definition 2.8 Let |∼ be a consequence relation. A valuation N is called normal w.r.t. |∼
if there is a formula α such that N |= C(α).

If there is not ambiguity we shall say that an interpretation is normal instead of normal
with respect to |∼ (in [3] normal valuations were called |∼-consistent). Freund showed (see

1According to the referee the first study of consequence relations having injective models is due to Satoh
[11].

4



remark 3.1 in [3]) that if |∼ is represented by an injective model then it can also be represented
by an injective model where the set S is the collection of all normal valuation w.r.t. |∼. We
will state his result next

Theorem 2.9 (Freund [3]) Let |∼ be a consequence relation and S the collection of normal
valuation w.r.t |∼. Then |∼ is represented by an injective model iff there is a smooth strict
order ≺ over S such that

α|∼β ⇔ min(mod(α) ∩ S,≺) ⊆ mod(β) (2)

From this point on we will assume without explicitly mention it that an injective model
has the corresponding partial order defined on S.

Let us observe that (2) can be restated in the following way: min(mod(α) ∩ S,≺) ⊆
mod(C(α)). Some consequence relations admit an injective representation where the equality
holds. They were called standard in [3], the formal definition is the following

Definition 2.10 Let |∼ be a consequence relation and S the collection of normal valuations
w.r.t |∼. We say that |∼ is represented by a standard model if there is a smooth strict order
≺ over S such that

mod(C(α)) = min(mod(α) ∩ S,≺)

Such order ≺ will be called a standard order that represents |∼.

3 The essential relation and the main representation theorem

It is not difficult to show that if the language is finite the notions of an injective and a
standard model coincide (see [3] pag. 236) but this is not the case if the language is infinite
(an example will be given in §5). Freund characterized some preferential relations that admit
a standard representation. In the case of a finite language his characterization is quite easy
to state. The following property is called Weak Disjunctive Rationality

WDR C(α∨β) ⊆ Cn(C(α) ∪ C(β))

Freund showed that for a finite language, a preferential relation admits an injective (thus stan-
dard) model iff it satisfies WDR. In order to deal with infinite languages, Freund introduced
a property stronger than WDR which is based in the notion of a trace of a formula.

In this section we will prove the main result of this paper which is a general representation
theorem for consequence relations that satisfy WDR. For that end we will introduce the
essential relation which plays a key role in the proof. We will show that this relation can
be considered the canonical relation that represents a given preferential consequence relation
that satisfies WDR. The essential relation seems easier to handle than the relation defined by
Freund. We will see in §5 that they are equal under some conditions. However, we will also
give an example of a preferential relation |∼ represented by our relation but not by Freund’s.
The idea behind the definition of the essential relation seems to be quite general and turns
out to be also useful in a different context (see [10]).
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Notation: Given a consequence relation |∼ we will always denote by S(|∼) the collection
of normal valuation w.r.t |∼, when there is no ambiguity about which consequence relation
is used we will just write S. If M is a valuation, Th(M) will denote the theory of M , i.e.

Th(M) = {α : M |= α}. For a fixed consequence relation |∼ and a valuation M , T |∼(M) will
denote the set {α : M |= C(α)}, i.e. a sort of “nonmonotonic theory” of M . If there is no

ambiguity we write T (M) instead of T |∼(M).

Definition 3.1 Let |∼ be a consequence relation. The essential relation is defined by the
following: Let N and M normal valuations,

M <e N ⇐⇒ ∀α (N |= C(α) ⇒ M 6|= α )

In other words, M <e N iff Th(M) ∩ T (N) = ∅.

The essential relation is not in general transitive (we will see an example in §6). It is not
difficult to show that transitivity of ≺ is not necessary in order to get the easy half of 2.6
(but smoothness can not be avoided). This was already observed in [6] (pag. 193) and we
state it for later reference.

Lemma 3.2 ([6]) Let < be a binary irreflexive (but not necessarily transitive) smooth relation
over a set T of valuations. Define a consequence relation by α|∼β iff min(mod(α) ∩ T, <) ⊆
mod(β). Then |∼ is preferential.

Since the usual definition of a standard model requires transitivity of the relation, it is
quite natural to ask when is <e transitive. In §5 we will show that if |∼ is disjunctive, then
<e is transitive and in §6 we give an example of a preferential relation satisfying WDR for
which <e is not transitive. However, for a finite language <e is transitive for |∼ preferential.
We thank the referee for pointing out that in this case our original assumption (WDR) was
superfluous and suggesting lemma 3.3 below.

As we said in the introduction, previous proofs of representation theorems usually have
used an order among formulas as an external tool to define the preferential model. For a
finite language the essential relation is very much related to one of such orders. Let us recall
the definition of < given by Freund

α < β iff α ∨ β |∼¬β

For |∼ preferential Freund showed that < is transitive. This order captures the whole conse-
quence relation: It is easy to check that α|∼β iff α < α∧¬β. In the particular case where |∼
is rational, this relation coincides with the one that was defined in [6] and it is quite related
also to the expectation ordering of [5].

Assuming the language is finite we fix for every valuation N a formula γN such that
mod(γN) = {N}. Observe that a valuation N is normal iff γN |6∼ ⊥.

Lemma 3.3 Suppose the language is finite and |∼ is preferential. Let N and M be normal
valuations. Then M <e N iff γM < γN . In particular, <e is transitive.
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Proof: The order < can be characterized in term of a preferential model given by 2.6. Fix
a preferential model M = 〈T, ı,≺〉 such that |∼ = |∼M. Recall that for a given formula α,
we denote by modM(α) the set {t ∈ T : ı(t) |= α}. In [3] (see lemma 4.1) was shown that

α < β iff for all t ∈ modM(β) there is s ∈ modM(α) such that s ≺ t.

Notice that s ∈ modM(γN) iff ı(s) = N . So it suffices to show the following fact

M <e N iff for each t ∈ T such that ı(t) = N there is s ∈ T such that s ≺ t and ı(s) = M

Suppose that M <e N . Let t ∈ T be such that ı(t) = N . Consider the formula α = γN ∨ γM .
Then t ∈ modM(α) but t can not be minimal in modM(α) otherwise we would have that
N |= C(α) and M |= α. Therefore there is s ∈ modM(α) which is minimal and s ≺ t. Clearly
ı(s) ∈ {N, M} and since ı(s) |= C(α) then as before ı(s) 6= N . Hence ı(s) = M .

Suppose now that M 6<e N and let α be a formula such that N |= C(α) and M |= α.
Since the language is finite, there is t ∈ T such that t is minimal in modM(α) and ı(t) = N .
Since M |= α, then ı(s) 6= M for all s ≺ t.

From the equivalence we just have shown, it is easy to check that <e is transitive.

When WDR holds we will give later a different proof of the previous lemma which does
not use 2.6 (see 3.12).

We will see that under the presence of WDR the relation <e is smooth and represents |∼
in the sense that equation in 2.10 holds. For this reason we will use the following notion,
which is more permissive than that of a standard model.

Definition 3.4 Let |∼ a consequence relation and ≺ a binary relation over S. We say that
≺ is a standard relation that represents |∼ if the following holds

mod(C(α)) = min(mod(α) ∩ S,≺) (3)

We emphasize that we do not ask the relation to be a strict smooth order, but in most
interesting cases the relation will be smooth. We show next that (3) implies that |∼ satisfies
WDR.

Lemma 3.5 Suppose |∼ is a consequence relation and < is a standard relation that represents
|∼. Then |∼ satisfies WDR.

Proof: Let N |= C(α) ∪ C(β), we have to show that N |= C(α ∨ β). Since < is standard
and N is normal then from (3) we have that N ∈ min(mod(α))∩min(mod(β)). It is easy to
check that N ∈ min(mod(α ∨ β)).

The following observation shows that the essential relation associated with |∼ is finer than
any standard relation representing |∼.

Lemma 3.6 Let |∼ be a consequence relation and < a standard relation that represents |∼.
Then for all normal valuations N and M , if N < M , then N <e M .
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Proof: Suppose N and M are normal valuations such that N 6<eM . That is to say, there is
α such that N |= α and M |= C(α). Since < is standard and M is normal then from (3) we
have that M ∈ min(mod(α) ∩ S, <), therefore N 6< M .

The following observation is obvious and says that <e satisfies one half of (3) without any
hypothesis about |∼.

Lemma 3.7 Let |∼ be a consequence relation. If M |= C(α) then M ∈ min(mod(α)∩S, <e).

The following observation is well known [9]

Lemma 3.8 Let |∼ be a cumulative relation. If α|∼β then C(α) = C(α∧β).

Lemma 3.9 Let |∼ be a preferential relation. If M |= α and M |= C(β) then M |= C(α∧β).

Proof: Suppose α∧β|∼γ. We want to show that M |= γ. By the S rule, β|∼α → γ, since
M |= C(β) then M |= α → γ. Since M |= α, then M |= γ.

Since we are dealing with non monotonic consequence relations we can not expect the set
T (M) to be closed under ∧ (not even in the case of a rational consequence relation). On the
other hand, in general, T (M) is not closed under ∨. The next lemma establish under which
condition T (M) is closed under ∨.

Lemma 3.10 |∼ satisfies WDR if and only if for any M , T (M) is closed under the connective
∨, i.e. for any β1, β2 ∈ T (M), (β1∨β2) ∈ T (M).

Proof: Suppose that β1, β2 ∈ T (M), so M |= C(βi) for i = 1, 2. Thus M |= Cn(C(β1) ∪
C(β2)). By WDR, C(β1∨β2) ⊆ Cn(C(β1) ∪ C(β2)), then we have M |= C(β1∨β2), i.e.
(β1∨β2) ∈ T (M). The other direction is also straightforward.

The following result is the basic representation theorem in this paper. All others repre-
sentation theorems that we will show are based on it and will only add that <e has nicer
properties (like being transitive, filtered, modular or quasi-linear) when the preferential re-
lation |∼ satisfies some extra postulates besides WDR. This theorem is a generalization of
Freund’s main representation theorem (see his theorem 4.11 in [3]).

Theorem 3.11 Let |∼ be a consequence relation. Then |∼ is a preferential relation satisfying
WDR if, and only if <e is a smooth standard relation representing |∼.

Proof: The if part follows from 3.2 and 3.5. For the only if part we start by showing that
<e is irreflexive. If M is normal then there exists α such that M |= C(α), so Th(M)∩T (M) ⊇
{α} 6= ∅, i.e. M 6<e M .
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Now we show that <e is smooth. Let M ∈ mod(α) ∩ S. We want to show that either
M ∈ min(mod(α) ∩ S, <e) or there exists N ∈ min(mod(α) ∩ S, <e) with N <e M . We
consider two cases: M |= C(α) or M 6|= C(α). In the former case, by lemma 3.7, we have
M ∈ min(mod(α)∩S, <e). In the latter case define U = C(α)∪{¬β : β ∈ T (M)}. We claim
that U is consistent. Otherwise by compactness there are α1, . . . , αm in C(α) and β1, . . . , βn

in T (M) such that {α1, . . . , αm,¬β1, . . . ,¬βn} ⊢ ⊥. Hence α1∧ · · · ∧αm ⊢ β1∨ · · · ∨βn. Put
β = β1∨ · · · ∨βn. By AND, α|∼α1∧ · · · ∧αm, so by RW, α|∼β. Hence, by lemma 3.8, C(α) =
C(α∧β). By lemma 3.10, β ∈ T (M). Thus by lemma 3.9, M |= C(α∧β), i.e. M |= C(α),
a contradiction. Now consider N such that N |= U . By definition of U , N |= C(α) so by
lemma 3.7, N ∈ min(mod(α) ∩ S, <e). Also by definition of U it is clear that N <e M .

To see that <e is a standard relation that represents |∼ it suffices to show that if
M ∈ min(mod(α) ∩ S, <e) then M |= C(α), the other direction is given by 3.7. But this was
already shown above, since we have proved that if M 6|= C(α), then M 6∈ min(mod(α)∩S, <e).

Remark 3.12 For a finite language and in the presence of WDR the proof of the transitivity
of <e follows from the previous result. In fact, suppose that M <e N and N <e P ; we want to
show that M <e P . Consider the formula α = γM∨γN∨γP . Note that mod(α) = {M, N, P}.
By the assumptions, M is the only element of {M, N, P} which can be minimal in mod(α).
Therefore by the smoothness of mod(α), M <e P .

Putting together 3.2, 3.5, 3.11 and 3.12 we obtain the following result which is essentially
the same result of Freund (see his theorem 4.13 in [3]) but with a different proof.

Theorem 3.13 Assume the language is finite. Then |∼ is a preferential relation satisfying
WDR if and only if <e is a standard order that represents |∼.

4 Disjunctive, Rational and other relations

In this section we will use the main result of §3 to give simple and uniform proofs of repre-
sentation theorems for Disjunctive, Rational and other consequence relations. We start with
those relations satisfying disjunctive rationality DR. The next remark is trivial but useful

Lemma 4.1 DR is equivalent to saying that C(α∨β) ⊆ C(α) ∪C(β) for all formulas α and
β. In particular, any consequence relation satisfying DR satisfies WDR.

Lemma 4.2 The following properties are equivalent for a cumulative relation |∼:

(i) The relation |∼ satisfies DR.

(ii) For any valuations M, N and for any formulas α, β if M |= C(α) and N |= C(β) then
M |= C(α∨β) or N |= C(α∨β).
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Proof: (i ⇒ ii) Suppose M |= C(α) and N |= C(β). For reductio, suppose M 6|= C(α∨β)
and N 6|= C(α∨β). Then there are formulas γ1, γ2 ∈ C(α∨β) such that M 6|= γ1 and N 6|= γ2.
By AND, γ1∧γ2 ∈ C(α∨β), so by 4.1 γ1∧γ2 ∈ C(α) or γ1∧γ2 ∈ C(β). But in both cases we
get a contradiction because neither M nor N are models of γ1∧γ2.

(ii ⇒ i) Suppose γ ∈ C(α∨β). We want to show that γ ∈ C(α) or γ ∈ C(β). Suppose
not. Then there are valuations M, N such that M |= C(α), N |= C(β), M 6|= γ and N 6|= γ.
By (ii), M |= C(α∨β) or N |= C(α∨β). But in both cases we get a contradiction because
neither M nor N are models of γ.

The following relation between valuations was defined in [8]. We came up with the
definition of <e by trying to extend the results in [8] to the case of an infinite language and
to a larger class of consequence relations.

Definition 4.3 Let |∼ a consequence relation. We define the relation <u over the normal
valuations by:

M <u N ⇐⇒ ∀α∀β [ M |= C(α) & N |= C(β) ⇒ M |= C(α∨β) & N 6|= C(α∨β) ]

The relation <u is quite more intuitive and we show next that it is equal to <e under the
presence of DR.

Lemma 4.4 Let |∼ a disjunctive rational relation. Then <e is equal to <u.

Proof: (<e ⊆ <u) Suppose M <e N , M |= C(α), N |= C(β). We want to show that
M |= C(α∨β) and N 6|= C(α∨β). Since M |= α, M |= α∨β and M <e N , then N 6|= C(α∨β).
Therefore by proposition 4.2, M |= C(α∨β).

(<u ⊆ <e) Suppose M <u N . We want to show that Th(M) ∩ T (N) = ∅. Suppose not,
then there is a formula β such that M |= β and N |= C(β). Let α be a formula such that
M |= C(α). By lemma 3.9, M |= C(α∧β); and since M <u N , then N 6|= C((α∧β)∨β). But
⊢ ((α∧β)∨β) ↔ β, so N 6|= C(β), a contradiction.

Lemma 4.5 If the relation |∼ is disjunctive rational then <e is transitive.

Proof: Suppose N <e M and M <e P but N 6<e P . Let α be such that P |= C(α)
and N |= α. Let β be such that M |= C(β), then it follows from the definition of <e that
P 6|= C(α ∨ β) and M 6|= C(α ∨ β). By 4.2 |∼ does not satisfy DR.

The following definition is due to Freund [3]

Definition 4.6 An order ≺ over valuations is filtered iff for any formula α and any valua-
tions M, N ∈ mod(α) such that M 6∈ min(α) and N 6∈ min(α) there exists P ∈ min(α) such
that P ≺ M and P ≺ N .

Lemma 4.7 If |∼ is disjunctive rational then <e is filtered.

10



Proof: The argument is very close to that in the proof of the smoothness of <e (cf. proof
of proposition 3.11). By hypothesis and lemma 3.7, M 6|= C(α) and N 6|= C(α). Put U =
C(α)∪{¬β : β ∈ T (M)}∪{¬γ : γ ∈ T (N)}. We claim that U is consistent. Suppose not, then
by compactness there are α1, . . . , αm in C(α), β1, . . . , βn in T (M) and γ1, . . . , γr in T (N) such
that {α1, . . . , αm,¬β1, . . . ,¬βn,¬γ1, . . . ,¬γr} ⊢ ⊥. Hence α1∧ · · · ∧αm ⊢ β1∨ · · · ∨βn∨γ1∨ · · · ∨γr.
Put β = β1∨ · · · ∨βn and γ = γ1∨ · · · ∨γr. By AND, α|∼α1∧ · · · ∧αm and by RW, α|∼β∨γ. By
observation 3.10, β ∈ T (M) and γ ∈ T (N). Thus by proposition 4.2 M |= C(β∨γ) or N |=
C(β∨γ). Without lost of generality suppose that M |= C(β∨γ) (the other case is similar).
By lemma 3.9, M |= C(α∧(β∨γ)) and since α|∼β∨γ, then by lemma 3.8, C(α) = C(α∧(β∨γ)),
hence M |= C(α), a contradiction. Hence U is consistent. Let P be a model of U . By
definition of U , P |= C(α), P <e M and P <e N . So by 3.7 P ∈ min(α)

Freund [3] has shown that a consequence relation is disjunctive rational if and only if it
has a standard filtered model. The next theorem is the hard half of his result with a different
proof. The theorem follows from 3.11, 4.5, and 4.7.

Theorem 4.8 Let |∼ be a disjunctive rational relation. Then <e is a standard filtered order
representing |∼.

Now we look at the properties that <e would have in the presence of rational monotony
RM. It is not difficult to check the well known fact (see [6]) that any rational relation satisfies
DR. Thus, if |∼ is rational then <e is filtered and in particular transitive. We have already
mentioned that rational relations are represented by ranked models (see 2.7). A preferential
model is ranked when the order relation is modular. We recall the definition of modular
relation (see [7]):

Definition 4.9 A relation < on E is said to be modular iff there exists a strict linear order
≺ on some set Ω and a function r : E −→ Ω such that a < b ⇔ r(a) ≺ r(b).

The following characterization of modularity is well-known and easy to verify.

Lemma 4.10 An order < on E is modular iff for any a, b, c ∈ E if a and b are incomparable
and a < c then b < c.

The following result is well known and we include its proof for the sake of completeness.

Lemma 4.11 Let |∼ be a rational relation. If α 6 |∼¬β, then C(α∧β) = Cn(C(α) ∪ {β})

Proof: Let δ ∈ C(α) then by RM we have δ ∈ C(α∧β). Thus Cn(C(α) ∪ {β}) ⊆ C(α∧β).
For the other inclusion, if α∧β|∼δ then by the rule S we have α|∼β → δ. Therefore δ ∈
Cn(C(α) ∪ {β}).

The next result shows that under the presence of RM it is quite easy to check that
N <e M .
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Lemma 4.12 Let |∼ be a rational relation and N, M be normal models. Then N <e M if
and only if there are α and β formulas such that N |= C(α), M |= C(β) and N |= C(α∨β)
but M 6|= C(α∨β).

Proof: The only if part comes from 4.4 (recall that rational relations are in particular
disjunctive rational). For the if part, suppose that such α and β exist, we will show that
N <u M . Let γ and δ be any formulas such that N |= C(γ) and M |= C(δ). From proposition
4.2 we get that γ∨δ 6 |∼¬(α∨β) and also α∨β 6 |∼¬(γ∨δ). Hence from lemma 4.11 we get that

C((α∨β)∧(γ∨δ)) = Cn( C(γ∨δ) ∪ {α∨β})
= Cn( C(α∨β) ∪ {γ∨δ})

and from this the result follows because N |= Cn( C(α∨β) ∪ {γ∨δ}) so N |= C(γ∨δ) and
since M 6|= Cn( C(α∨β) ∪ {γ∨δ}) and M |= α∨β, we have M 6|= C(γ∨δ).

A straightforward consequence of this lemma is the following

Lemma 4.13 Let |∼ be a rational relation and N, M be normal models. N 6<eM and M 6<eN

if and only if N , M |= C(γ∨δ) for all formulas γ and δ such that N |= C(γ), M |= C(δ).

Lemma 4.14 If the relation |∼ is rational then <e is modular.

Proof: Let M, N, P be normal valuations. Suppose N 6<eM , M 6<eN and M <e P . By 4.10
it suffices to show that N <e P . Let α, β, γ be formulas such that M |= C(α), N |= C(β)
and P |= C(γ). Since M and N are incomparable, by lemma 4.13 we have M |= C(α∨β) and
N |= C(α∨β). We claim that P 6|= C(α∨β∨γ) and N |= C(α∨β∨γ), which implies, by lemma
4.12, that N <e P . To prove the claim it suffices (by lemma 4.2) to see that P 6|= C(α∨β∨γ).
Since M <e P and M |= C(α∨β) and P |= C(γ), then P 6|= C(α∨β∨γ).

Now putting together 4.8 and 4.14 we get the following well known theorem which has
been proved in many different ways ([7, 5, 3]). We will see in §5, that <e is in fact the unique
standard modular order that represents a given rational relation.

Theorem 4.15 If |∼ is a rational relation then <e is a standard and modular relation that
represents |∼.

To finish this section we will comment about a postulate stronger than rational monotony.
A relation |∼ is rational transitive, if it is preferential and the following rule (RT) holds

RT

α|∼β β|∼γ α|6∼¬γ

α|∼γ

It is known that rational transitive consequence relations satisfies RM and that rational
transitive consequence relations are represented by ‘quasi-linear’ standard relations (a relation
< is quasi-linear if M is a valuation that is not minimal then for any valuation N different of
M we have N < M or M < N) (see [2, 1]). If |∼ is rational transitive then <e is quasi-linear
(this follows from proposition 5.6 of [1]).
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5 Uniqueness of representation.

In this section we will address the problem of when a consequence relation has a unique
representation. We will also compare our relation <e with that introduced by Freund [3]. In
particular, we will show that they coincide if DR holds.

Let us make first some simple observations to put the question in the right setting. By 2.9
we know that an injective model for a consequence relation |∼ can be assumed to be defined
without loss of generality on the set S of all normal valuations w.r.t. |∼. In other words, there
are consequence relations |∼ that can be represented (as in 2.5) by various order relations
defined on different sets of valuations. But there is always at least one such relation defined
on the entire set S. It is nothing strange that there are so many representations, just recall
that only countable many valuations are needed to define the semantic counterpart |= of the
classical entailment relation ⊢. Taking these considerations into account, the question we
want to address is whether for a given preferential relation |∼ (admitting an injective model)
there is a unique order on S representing |∼. In this generality, this uniqueness seems to be
quite rare when the language is infinite (it holds when it is finite). So we will mainly be
interested in the following more restrictive question: if there is a standard model, when is it
unique?

It is well known that a subset T of the collection of valuations U suffices to define the
classical relation |= iff T is topologically dense in U with respect to a natural topology
associated with U . This topology turns out to be quite useful in relation with the problems we
address in this section. Its use will make some proofs short and simple, and more important,
we will show that <e has a topological property that makes it unique among other standard
relation.

We will use the natural topology on the set of valuations coming from the identification
of a valuation with the characteristic function of a set of propositional variables. In other
words, each valuation N is viewed as a function N : V ar → {0, 1}. The collection of all
such functions is usually denoted by {0, 1}V ar. This set is endowed with the usual product
topology where {0, 1} is given the discrete topology. We will assume that V ar is countable,
so {0, 1}V ar is a metric space (in fact, homeomorphic to the classical Cantor space). The
topology on {0, 1}V ar is then defined by declaring mod(α) as the basic open sets for every
formula α (in fact, mod(α) is also closed). We will regard S as a topological space by using
its subspace topology. The well known basic facts about this topology that will be needed in
the sequel are stated in the following lemma.

Lemma 5.1 (i) Let N and Ni with i ≥ 1 be valuations. The following two conditions are
equivalent: (a) Ni converges to N . (b) for all formula α, N |= α if and only if there is a j

such that Ni |= α for all i ≥ j.

(ii) A set F ⊆ S is closed in S iff given Ni ∈ F converging to a normal valuation N , then
N ∈ F .

(iii) If F ⊆ S is closed in S and N ∈ S \ F , then there is a formula α such that N |= α

and P 6|= α for all P ∈ F .

(iv) Let C be a set of formulas and V ⊆ mod(C). Then Th(V ) = Cn(C) iff V is topo-
logically dense in mod(C) (i.e. for all M ∈ mod(C) and all formula α with M |= α, there is
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N ∈ V such that N |= α).

It is convenient to have a quick way of checking when an injective representation is in
fact standard. The following lemma will be useful.

Lemma 5.2 Let < be a relation over S representing |∼.

(i) If N 6∈ min(mod(α)∩S, <) and N |= C(α), then there is a sequence Ni ∈ min(mod(α)∩
S, <) converging to N .

(ii) < is standard iff min(mod(α) ∩ S, <) is topologically closed for all α. In particular,
if min(mod(α) ∩ S, <) is finite for all α, then < is standard.

Proof: From 5.1(ii) we have that mod(C(α)) is closed and by 5.1(iv) we have that min(mod(α)∩
S, <) is dense in mod(C(α). From this the result follows.

We will introduce next a property that <e has and in fact it is the unique standard
relation (with this property) that represents |∼.

Definition 5.3 Let < be a binary relation over S, we will say < is downward-closed is
for all N in S the set {M ∈ S : M < N} is (topologically) closed in S.

Lemma 5.4 Let |∼ be a consequence relation. Then <e is downward-closed.

Proof: Let N, M, Mi be normal valuations with Mi converging to M . Suppose that Mi <e N

for all i. We will show that M <e N . Let α be a formula such that N |= C(α), then by
assumption Mi |= ¬α. Since Mi converges to M , then M |= ¬α, i.e. M <e N .

Lemma 5.5 Let |∼ be a consequence relation. Suppose that < is a standard relation that
represents |∼. If < is downward-closed then <=<e.

Proof: From 3.6 we already know that < ⊆ <e. For the other direction, let N, M be normal
valuations such that M 6< N . We will show that M 6<e N . Since F = {P ∈ S : P < N} is
closed and M 6∈ F , then by 5.1(iii) there is a formula α such that M |= α and P 6|= α for
all P ∈ F . Let β be such that N |= C(β). It suffices to show that N |= C(α ∨ β). Since <

is standard and represents |∼, then N ∈ min(mod(β) ∩ S, <). Hence P 6|= β for all P < N .
On the other hand, by the choice of α, we also have that P 6|= α for all P < N . Therefore
N ∈ min(mod(α ∨ β) ∩ S, <) and since < represents |∼ then N |= C(α ∨ β).

From 3.11 and the previous results we immediately get the following

Theorem 5.6 Let |∼ be a preferential relation satisfying WDR. Then <e is the unique
downward-closed standard relation that represents |∼.
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A valuation N ∈ S is said to be isolated in S, if there is a formula α such that
mod(α) ∩ S = {N}. We will say that S is discrete if every N ∈ S is isolated in S. These
notions correspond to the topological notion of an isolated point and discrete space. In par-
ticular, every finite set is discrete. In every discrete space the only converging sequences are
the eventually constant sequences, therefore every relation over a discrete space is trivially
downward-closed. On the other hand, by using the same argument as in the proof of 3.12 it
can be easily checked that if S is discrete and |∼ satisfies WDR, then <e is transitive. More-
over, by 5.2(i) we have also that any injective model defined on a discrete set is necessarily
standard. Thus we have the following generalization of an analogous result known for finite
languages.

Corollary 5.7 Let |∼ be a preferential consequence relation satisfying WDR. If the collection
of normal valuations is discrete, then <e is the unique (and in fact standard) order repre-
senting |∼.

The following result might be known but it is now quite easy to show

Corollary 5.8 Let |∼ be a rational relation. Then <e is the unique standard modular order
representing |∼.

Proof: It suffices to show that every modular standard order representing |∼ is downward-
closed. Let < be such modular relation and M, N, Ni be normal valuations with Ni converging
to N and Ni < M for all i. Let α, β be formulas such that M |= C(α) and N |= C(β). It
suffices to show that M 6|= C(α∨ β). Since in this case, there must exists a normal valuation
P < M such that P |= β. Since N |= C(β) and < is modular, standard and represents |∼
then N < M . To see that M 6|= C(α∨β) we need to show that M 6∈ min(mod(α∨β)∩S, <).
Since N |= β and Ni converges to N , then there is (in fact, infinitely many) i such that
Ni |= β. Since Ni < M , then M is not minimal in mod(α ∨ β).

We will use the results presented in this section to compare <e with the relation <S

defined by Freund [3]. Let |∼ be a preferential relation. We say that α is |∼-consistent if
α|6∼ ⊥. The trace of a formula α is denote by α+ and is defined as the set of all formulas
β such that α ∨ ¬β|∼β. This can be equivalently expressed using the order < on formulas
(defined in §3 just before 3.3) as follows: β is in α+ iff ¬β < α.

The relation <S is defined over S by

M <S N ⇐⇒ ∀α |∼-consistent (N |= α+ ⇒ M 6|= α)

For |∼ preferential, Freund showed that <S is transitive and irreflexive and also that C(α) =
Cn({α} ∪ α+) for all α. Now it is easy to verify that <S ⊆ <e and that <S is a downward-
closed relation.

A consequence relation is said to have the (**) property if the following holds for every
pair of |∼-consistent formulas α and β:

C(α ∨ β) = Cn(α+ ∪ β+ ∪ {α ∨ β})

The (**) property seems to be tailor-made for getting part (i) of the following result
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Theorem 5.9 (Freund [3]) (i) A preferential relation |∼ has the (**) property iff <S is a
standard order representing |∼.

(ii) Every disjunctive relation has the (**) property.

(iii) The (**) property implies WDR and they are equivalent when the language is finite.

(iv) DR is strictly stronger than WDR.

We will show in the next section (see 6.3) that (**) is strictly stronger than WDR for an
infinite language. Since <S is downward-closed and transitive then from 3.11, 5.6 and the
previous theorem we conclude the following

Theorem 5.10 Let |∼ be a preferential relation satisfying WDR. Then |∼ has the (**) prop-
erty iff <e=<S. In particular, if |∼ has the (**) property, then <e is transitive.

6 Two examples and final comments

In this section we present two examples and make some final comments. Our first example
shows that WDR is not a necessary condition for having an injective model. In particular, by
3.5, we conclude that the property of having a standard model is strictly stronger than that
of having an injective one. This result stands in contrast to what happens when the language
is finite (see 3.13). Our second example shows that the (**) property is strictly stronger than
WDR and also that <e is not necessarily transitive.

Example 6.1 (A preferential relation not satisfying WDR and with an injective model)
Let {p1, p2, · · · , pn, · · ·} denote the set of propositional variables. Let P be the valuation
identically equal to one, i.e. P |= pi for all i. Let Q be the valuation satisfying Q |= p1 and
Q |= ¬pi for i > 1. Let N be the valuation identically equal to zero, that is to say, N |= ¬pi

for all i. Let Ni and Mi be such that Ni |= ¬p1 ∧ · · · ∧ ¬pi and Ni |= pj for all j > i;
Mi |= ¬p1 ∧ · · ·∧¬pi ∧pi+1 ∧¬pi+2 and Mi |= pj for all j > i+2. Notice that both sequences
converge to N .

We define a strict order ≺ over S = {N, P, Q, Ni, Mi} by letting P ≺ N , Q ≺ N , P ≺ Ni,
Q ≺ Mi, Ni ≺ N and Mi ≺ N for all i ≥ 1. Let |∼ be the preferential consequence relation
defined by (S,≺). It is easy to check that S is the collection of all normal valuations w.r.t.
|∼. First we prove that every valuation in S is normal. Note that min(mod(¬p1) ∩ S,≺) =
{Ni, Mi : i ≥ 1} so Ni and Mi are normal for all i and since mod(C(¬p1)) is closed then
N |= C(¬p1). Notice that N 6∈ min(mod(¬p1) ∩ S,≺) and therefore ≺ is not standard. It
is not difficult to see that P |= C(p1∧p2) and Q |= C(p1∧¬p2). Conversely, suppose that
R |= C(α). We want to show that R ∈ S. We know that C(α) = Th(min(mod(α) ∩ S)). By
5.2 there exists a sequence Ri ∈ min(mod(α)∩S) converging to R. But it is easy to see that
S is closed, so R ∈ S.

We will show that |∼ does not satisfies WDR. For this end, it suffices to find two formulas
α and β such that N |= C(α) ∪ C(β) but N 6|= C(α ∨ β). Let α = ¬p1 ∨ (p1 ∧ ¬p2) and
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β = ¬p1 ∨ (p1 ∧ p2). It is easy to verify that

min(mod(α) ∩ S,≺) = {Q} ∪ {Ni : i ≥ 1}
min(mod(β) ∩ S,≺) = {P} ∪ {Mi : i ≥ 1}

min(mod(α ∨ β) ∩ S,≺) = {P, Q}.

Therefore N |= C(α) ∪ C(β), but N 6|= C(α ∨ β).

Since having a standard representation is a more restrictive condition we expected that it
might imply that in this case <e should be transitive. In other words, if |∼ admits a standard
representation (in particular, WDR holds) then <e must be transitive (and thus it would be
a standard order representing |∼). Our second example shows that this is not the case.

Example 6.2 A preferential relation |∼ with a standard model (in particular WDR holds)
and <e not transitive
Let {p1, p2, · · · , pn, · · ·} denote the set of propositional variables. We will define valuations
N , M , P , Ni and Mi (for i ≥ 1) viewing them as characteristic functions (i.e. as sequences
of 0 and 1):

Mi = < 0, 0, · · · , 0, 1, 1, 1, · · · > It starts with i ceros and then follows only 1’s
Ni = < 0, 0, · · · , 0, 1, 0, 1, · · · > It starts with i ceros, then follows 1, 0 and then only 1’s
P = < 1, 0, 1, 0, · · · > 1,0 periodically repeated.
M = < 0, 0, · · · > Only 0’s
N = < 1, 1, · · · > Only 1’s

The order among this valuation is the transitive closure of the following pairs

Ni < Mi

Ni < Ni+1

Mi < P

N < M

In particular we have that Ni < P and also that Ni < Nj and Ni < Mj for all i < j. Notice
that M 6< P . Let S = {N, M, P} ∪ {Ni, Mi : i ≥ 1}. Since < is clearly wellfounded then
it is smooth. Let |∼ be the preferential relation defined by (S, <). We claim that S is the
collection of normal valuation w.r.t. |∼. First, we show that the elements of S are normal.
Notice that every valuation isolated in S is clearly normal. Since M is the only not isolated
point of S it suffices to check that M is a normal valuation. In fact, it is easy to verify that
M ∈ min(mod(¬p1) ∩ S, <). Conversely, suppose R |= C(α). We want to show that R ∈ S.
To see that it is enough to prove that min(mod(α) ∩ S, <) is finite for every formula α and
then we apply 5.2. This also shows that < is standard. Suppose that α uses only the letters
p1, · · · , ps. We consider two cases: (a) min(mod(α) ∩ S, <) ⊂ {M, N, P}. In this case we are
obviously done. (b) Suppose that Ni |= α or Mi |= α for some i. If Ni |= α for some i, then
it is easy to verify that

min(mod(α) ∩ S, <) ⊂ {M, N} ∪ {Nj , Mj : j ≤ i} (4)

and we will be done. Suppose then that Mi |= α for some i. Let γ = ¬p1 ∧ ¬p2 ∧ · · · ∧ ¬ps,
then Ni, Mi |= γ for all i ≥ s. Observe that if Mi |= α for some i ≥ s, then γ ⊢ α, thus

17



Ns |= α and therefore by (4) we are done. From this it follows that min(mod(α) ∩ S, <) is
finite for all α.

Since < is standard then from 3.5 we know that |∼ satisfies WDR and therefore by 3.11
<e is also a standard relation representing |∼. By 3.6 we have that < ⊆ <e. However, <e is
not transitive. We have that N <e M (as N < M) and we claim that M <e P but N 6<e P .
In fact, it is easy to check that N, P |= C(p1) and therefore N 6<e P . On the other hand, Mi

converges to M , Mi < P and since <e is downward-closed (by 5.4) then M <e P .

We will see below that in spite of the fact that <e might not be transitive it provides a
very good representation of |∼ even in some cases where other methods do not work.

Proposition 6.3 The (**) property is strictly stronger than WDR. Moreover, there is a
preferential relation represented by <e but not by <S.

Proof: We will show that the consequence relation |∼ given in 6.2 does not have the (**)
property. Recall that |∼ was defined by a strict order that in fact is a standard model of |∼.
In particular, |∼ satisfies WDR. Since |∼ is preferential then <S is transitive. But <e is not
transitive, thus <e 6= <S . Therefore, by 5.10 |∼ does not have the (**) property. Moreover,
by 5.9 (i) we conclude that <S does not represent |∼, but by 3.11 <e does (even though
(S, <e) is not a standard model of |∼ because it is not transitive).

A final question: is there a postulate that characterize when a preferential relation has
an injective model or a standard model? By the example 6.1 we know that WDR is not
a necessary condition to have an injective model. The example 6.2 shows that the (**)
property is not a necessary condition (but it is sufficient) to have a standard model. None
of our examples have ruled out that WDR suffices to obtain an standard model. Given a
preferential relation |∼ satisfying WDR by 3.6 we know that any (if it exists) standard order
representing |∼ has to be contained in <e. Thus we have to remove from <e some pairs in
order to make it transitive. It is quite natural to use the following strategy to get an injective
(hopefully standard) model of |∼: start with <e and remove all instances of non transitivity
and get <∗

e⊂<e. It is quite curious that this process indeed leads to a transitive relation. In
principle, one would expect that after a pair is removed other instances of non transitivity
might appear. But this is not the case with <e. However, it is not clear that this ‘pruned”
relation <∗

e still represents |∼ (we even don’t know if <∗
e is smooth). These two families

of consequence relations seem so complex that we will not be surprised if there is no such a
characterization (at least in terms of the type of postulates used so far to classify consequence
relations).
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