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1. Introduction

Agents situated in real-world environments need to reason about action
and change. In order to achieve certain goals agents have to develop
plans and keep track of changes, either caused by themselves or by other
agents present in the domain. Problems in reasoning about action and
change are either aspects of or related to the “frame problem”. It was
first posed by McCarthy & Hayes (1969) in attempts to formalize con-
sequences of actions and those facts that remain unaffected by actions.
The problem consists of finding an efficient way to formulate axioms
(so-called “frame axioms”) which state what remains the same after
the performance of an action. Conceived as a combinatorial problem, a
solution to the frame problem has to avoid writing down frame axioms
for each fact-action pair (see Reiter, 1980; Georgeff, 1987a). For, even
toy domains like a blocks world scenario require a vast number of frame-
axioms. For instance, moving a block changes its position but not its
color, shape, and so on.

The canonical example to illustrate the frame problem is the “Yale
Shooting Problem” (YSP) due to Hanks & McDermott (1987). The
shooting scenario is as follows: Mary loads a gun, waits and then shoots
at Fred. Here the problem is to derive that Fred is dead as a consequence
of Mary’s actions. Among other things one has to guarantee that the
gun is still loaded after waiting. This is a candidate for a frame axiom:
“if the gun is loaded when Mary begins waiting then the gun is still
loaded when Mary stops waiting.” The frame axiom says that the gun’s
state of being loaded is unaffected by the action of waiting. Notice that
we use “unaffected” here to suggest a formulation of the frame problem
for single-agent domains. On the other hand, “unchanging” is more
appropriate in case of environments with multiple agents. It is easy to
see that the combinatorial frame problem turns up in both cases.
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Unfortunately, most work on the frame problem (see Lifschitz, 1987;
Shoham, 1988) is conspicuously vague on the distinction between single-
agent and multiagent settings and therefore casual when it comes to
constructing models where the ‘right’ things happen (that the gun
remains loaded, for instance). As a rule, some kind of nonmonotonic
logic is utilized to tackle the problem, usually some sort ofminimization
strategy (see Makinson, 1993). That is, ‘abnormalities’ are minimized
such that facts remain unaffected (not changing) in the ‘normal’ course
of events (where interference is absent). Global minimization seems in-
appropriate in reasonably complex environments, especially when other
agents may contribute to changes in the domain. To overcome this
problem, more selective minimization strategies have been developed,
like scoped minimization (see Etherington et al. ,1991). However, it
was just this ‘global nature’ that originally made nonmonotonic ap-
proaches so appealing. This is best captured in the so-called persistence
assumption which states that all facts usually persist to hold after
the performance of all actions, if not stated otherwise. To the best
of our knowledge Georgeff (1987a, p. 73) first noticed that “it is not
sensible to try minimizing changes in all world properties when told,
for example, that a shooting event has occurred.” Of course, it is often
not possible to predict what actions other agents will perform. But the
formalism should not be overcommitted to the restriction that those
actions have not occurred. Accordingly, Georgeff (1987a) identifies the
overcommitment problem as a second subproblem of the frame problem.
A solution to the overcommitment problem requires that most facts are
allowed to vary freely, while only those facts which are prerequisites or
consequences of the agent’s actions are maintained.

To clarify terminology: like Georgeff (1987a) we use the term “frame
problem” in a generalized sense, which consists of several subproblems.
One subproblem is the combinatorial frame problem, another one is the
overcommitment problem. By now, many other aspects of the frame
problem have been identified (see Georgeff, 1987a, 1987b; Shoham,
1988; Ginsberg & Smith, 1988a, 1988b). The extended prediction prob-
lem concerns the problem of making inferences over extended periods
of time. A solution to the extended prediction problem should provide
means to state that, for example, under ‘normal’ circumstances the
gun remains loaded until Mary fired six times (assume a six-shooter).
Note that the combinatorial frame problem may be considered as a
subproblem of the extended prediction problem. The qualification prob-
lem concerns the conditions under which an action is executable. For
the shooting action to be executable in the intended way we need to
verify—in addition to explicit preconditions (that the gun is loaded)—
an immense number of implicit qualifications: that the gun has a firing
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pin, that there is no magnet present which distracts the bullet, and so
on. But if our formalization takes everything into account that could
block the performance of an action, it will be without practical use.
In nonmonotonic logics, both the extended prediction problem and
the qualification problem are handled by a strategy which minimizes
abnormalities. Observe that a solution to the overcommitment problem
is undermined, because thereby independent changes of other facts, for
instance, due to activities of other agents are also minimized, contrary
to observation of a complex world.1 Again, our criticism only applies to
global minimization strategies. On the other hand, we will show that
systems which scope reasoning run into similar problems as we do, for
we do not accept the persistence assumption.

The point we will make in Section 5 is this: our monotonic approach
to the frame problem and (unscoped) nonmonotonic approaches (based
on some minimization strategy) are complementary in the sense that
it is not possible to simultaneously minimize the effort to solve the
extended prediction problem (which subsumes the combinatorial prob-
lem) and give a satisfactory solution to the overcommitment problem.

In this paper, we pursue a monotonic approach to the frame problem
and concentrate on the combinatorial problem and the overcommit-
ment problem. We will propose a solution within the framework of
propositional dynamic logic (PDL)—the modal logic of actions and
of computer programs (see Pratt, 1976, 1980; Segerberg 1980; Harel,
1984). It is based on the idea of associating an operator [α] with each
action α, the brackets being reminiscient of the box operator 2 of
ordinary modal logic (see Hughes & Cresswell, 1984). The reading of
a formula [α]A is “after every terminating (halting) execution of α,
A is true.” PDL provides a powerful language for describing compound
actions such as sequential composition of actions α and β, written α;β,
(non-deterministic) choice between α and β, written α+ β, and (non-
deterministic) iteration of α, written α∗. Moreover, test, written A?,
and ‘doing nothing’, denoted by λ, are considered as actions.

1 Remember that early nonmonotonic logics suffered from the overcommitment
problem even in single-agent domains. As well known, this gave rise to the ‘multiple
extensions’ problem in temporal projection (see Hanks & McDermott, 1987.
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The following readings are standard (see Segerberg, 1980).

α;β the action consisting of doing first α and then β

α+ β the action consisting of doing α or β non-deterministically

α∗ the action consisting of doing α some finite number of times

A? the action consisting of verifying that A holds

λ ‘doing nothing’ (stationary waiting)

To our knowledge, nobody so far tried to cope with the combina-
torial problem and the overcommitment problem in a dynamic logic
framework. A notable exception is the paper of Stephan & Biundo
(1993) (see also Kautz, 1982; Morreau, 1992). In the language of first-
order dynamic logic they propose frame assertions of format A ⊃ [α]A
(where α is allowed to be a compound action). We extend this idea to
the intermediate states of a plan (typically a sequential composition of
actions). Loosely speaking, formulas of type cpres(α,A) are introduced
which are intended to mean that fact A is true at all intermediate
states of the execution of (compound) action α. In this way, we may
drastically reduce the number of frame axioms. For simplicity, we only
consider the propositional case. It will turn out that our resulting logic
is a natural alternative to temporal logic which is the major formalism
in the planning literature (see Pnueli, 1981; Manna et al., 1993).

The rest of the paper is organized as follows. In Section 2, PDL
is introduced together with a reminder of the basic steps of its com-
pleteness proof. Section 3 shows that PDL may be modified in order
to deal with multiagent domains in a uniform way. The resulting logic,
non-stationary PDL (NPDL), also includes a powerful action concept,
the ‘any’ action. We prove completeness and decidability for NPDL. In
Section 4, we introduce the concept of chronological preservation. By
means of this concept we are in a position to reason about the inter-
mediate states of plan execution. Moreover, a border case of chronolog-
ical preservation, called terminal preservation, is proposed. We show
that completeness and decidability results carry over to the resulting
extension of NPDL. Section 5 is concerned with applications of our
framework. First, we demonstrate how the combinatorial problem and
the overcommitment problem are solved in our framework. Thereby
an example which is more elaborate than the YSP serves as a testing
ground. Here we also address the ramification problem, which is a prob-
lem related to the frame problem. Second, several notions important

jolli96.tex; 6/03/2001; 0:25; p.4



Reasoning about Action and Change 5

to planning are formalized, concerning domain constraints and plan
constraints. An example from the manufacturing domain will illustrate
these notions. We also show how to encode several notions from tempo-
ral plan theory (Manna et al., 1993) in our logic. Finally, we compare
our solution of the frame problem to other monotonic and (scoped)
nonmonotonic solutions.

2. Propositional dynamic logic

2.1. Basic concepts

We assume as given a set S = {s, t, ..., s′, s′′, ...} of possible total states
of the world. A proposition can be identified with the set of states in
which it is true. An action α is a binary relation Rα on S, that is, a
set of ordered pairs 〈s, t〉 of states where s is the initial state of some
execution of α and t is the final state. Of course, a final state need not
be uniquely determined. Thus the modeling of actions is semantically
non-deterministic.2 As mentioned above, expressions of the form [α]A
have the informal meaning “whenever the execution of α halts, A is true
on termination.” Non-terminating ‘executions’ are said to fail. Since we
conceive of actions as proceeding from one state to another in a discrete
fashion, ‘executions’ with no final state simply don’t count in dynamic
logic. In fact, they are no executions at all. By < α >verum we can
express that there exists a terminating execution of α.

Note that choice and iteration in dynamic logic are non-deterministic.
This kind of non-determinism may be called “non-determinism with re-
spect to control-flow” (see Harel, 1987). We will call non-determinism of
control-flow procedural non-determinism. Since dynamic logic provides
no machinery to give priority of executing one action over executing
the other, choice is non-deterministic. In case of iteration α∗, an action
α is performed some non-deterministically chosen finite number n ≥ 0
of times. We may summarize the distinction between semantical and
procedural non-determinism as follows. Semantical non-determinism
concerns the fact that a (halting) execution of an action α may end
up in different states. One reason for this is that there exists always
a variety of different ways to perform an action. In Section 3 a sec-
ond reason is given: other agents may interfere and thus contribute
to state-changes even if the agent is passive. It will be seen from the
semantic modelling of actions (see below) that a ‘multiagent’ reading is
inappropriate only for two action constructs, test and ‘waiting’, which

2 This notion of non-determinism must not be confused with procedural non-
determinism to be introduced momentarily.
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are stationary in PDL. On the other hand, procedural non-determinism
between the execution of two actions α and β, for instance, concerns
the fact that the modelling of choice in dynamic logic does not fix which
action is to be performed.

In the next subsection we proceed with the explication of what is
called the standard view of propositional dynamic logic (see Goldblatt,
1987).

2.2. Formal syntax and semantics of PDL

Language

Let P0 = {p1, p2, ..., p, q, r, ...} and A0 = {a1, a2, ..., a, b, c, ...} be de-
numerably infinite sets of propositional variables and action variables,
respectively. We will use A, A1, B,... to denote arbitrary formulas and
α, α1, β,... to denote arbitrary terms (denoting actions).

Propositional variables: p ∈ P0
Action variables: a ∈ A0
Formulas: A ∈ L(PDL)
Action terms: α ∈ A

A ::= p | ¬A | A1 ∨A2 | [α]A

α ::= a | α1;α2 | α1 + α2 | α
∗ | A?

We assume the usual definitions of ∧, ⊃, > (verum), ⊥ (falsum), and

so on. For example, < α > A
def
= ¬[α]¬A. In particular, we define an

action constant λ called stationary waiting by λ
def
= >?.

Semantics

By a frame F we mean a structure F = 〈S, {Ra : a ∈ A0}〉 such that
S is a nonempty set (of world-states), {Ra : a ∈ A0} is a set of binary
relations, where Ra ⊆ S × S for each action variable a ∈ A0.

AmodelM based on the frame F = 〈S, {Ra : a ∈ A0}〉 is a structure
M = 〈S, {Ra : a ∈ A0}, v〉 where v is a function v : P0 → Pow(S)
(Pow(S) is the powerset of S).

A standard modelM = 〈S, {Rα : α ∈ A}, v〉 is uniquely determined
by the model 〈S, {Ra : a ∈ A0}, v〉 through the following conditions
that inductively define Rα for compound action terms α ∈ A: Rα;β =
Rα ◦Rβ (the relative product of Rα and Rβ); Rα+β = Rα ∪Rβ ; Rα∗ =
(Rα)

? (the reflexive and transitive closure of Rα); and RA? = {〈s, s〉 :
M, s |= A}. From this and the definition of λ it follows that Rλ =
{〈s, s〉 : s ∈ S}.
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This is exactly the way Goldblatt (1987) proceeds in defining stan-
dard models. Fine & Schurz (1995) follow a strategy different from that
chosen here. They notice that it is already possible to define ‘standard’
frames by defining Rα;β , Rα+β , Rα∗ , and Rλ according to the conditions
for standard models. But there is a notable exception: the relations RA?

depend on the valuation function and therefore cannot be included in
frames.

The concept of truth of a formula at a state s in a standard model
M is inductively defined as follows:

− M, s |= p iff (if and only if) s ∈ v(p) (for p ∈ P0).

− M, s |= ¬A iff M, s 6|= A.

− M, s |= A ∨B iff M, s |= A or M, s |= B.

− M, s |= [α]A iff ∀t (〈s, t〉 ∈ Rα ⇒M, t |= A).

A formula A is said to be valid in a model M iff A is true at all
states s inM; A is valid on a frame F iff A is valid in all models based
on F . Moreover, A is valid with respect to a class of models M, written
M |= A, iff A is valid in all modelsM∈M, and A is valid with respect
to a class of frames F iff A is valid on all frames F ∈ F.

For convenience, we will use the notion of the truth-set of a formula
A (relative to a modelM), ‖A‖M, which is defined as {s ∈ S :M, s |=
A}.

Logics and axiomatization

An (action) logic is any subset L ⊆ L(PDL) that contains all instances
of the following axiom schemes:

Taut all classical propositional tautologies

K [α](A ⊃ B) ⊃ ([α]A ⊃ [α]B)

Comp [α;β]A ≡ [α][β]A

Union [α+ β]A ≡ ([α]A ∧ [β]A)

Mix [α∗]A ⊃ (A ∧ [α][α∗]A)

Ind [α∗](A ⊃ [α]A) ⊃ (A ⊃ [α∗]A)

sTest [A?]B ≡ (A ⊃ B)

and which is closed under the following rules of inference:

MP from ` A and ` A ⊃ B infer ` B

NEC from ` A infer ` [α]A

SUBST from ` A infer ` σA
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(where σA is the result of a uniform substitution of arbitrary formulas
B for propositional variables p in A).

Propositional dynamic logic is the smallest subset L ⊆ L(PDL)
that contains the above axiom schemes and is closed under the rules
of inference MP and NEC. Note that SUBST is not needed since we
define PDL in terms of axiom schemes rather than instances of schemes.

The deducibility relation Γ `L A between formula sets Γ and formu-
las A is defined as usual by Γ `L A iff (

∧

Γf ⊃ A) ∈ L for some finite
subset Γf ⊆ Γ, where L is a logic and

∧

Γf is the conjunction of Γf ’s

elements; with
∧

∅
def
= > and

∧

{A}
def
= A. As is well known, Γ `L A (so

defined) iff A is provable from Γ and L-theorems by using MP alone.

Correctness and completeness

A logic L is correct with respect to a class of models M iff all theorems
of L are valid in all models in M. A logic L is (weakly) complete with
respect to a class of models M iff all formulae which are valid in M are
theorems of L. Finally, a logic L is (weakly) determined (characterised)
by a class of models M iff L is correct and (weakly) complete with
respect to M.

It is well known that PDL is (weakly) characterised by the class
of all standard models. This is accomplished by employing a canon-
ical model construction and the filtration technique (see Segerberg,
1982; Harel, 1984; Goldblatt, 1987). It is also well known that—by the
nature of iteration—PDL is not compact and therefore not strongly
complete with respect to the class of standard models; and moreover,
that PDL has the finite model property which together with the finite
axiomatizability of PDL implies its decidability.

OBSERVATION 2.1. The notions of correctness and completeness ap-
ply similarly to frames. Clearly, PDL is also complete with respect to
the class of all frames. As noted by Fine & Schurz (1995), the star-free
fragment of PDL is a definitional extension of the underlying strati-
fied multimodal logic containing only atomic programs terms. (Fine &
Schurz speak of atomic program terms rather than action variables).
All frame completeness transfer theorems proved there apply to this
fragment. This means that if certain atomic programs are characterised
by additional axioms (for example T, S4, S5) which are complete for
their monomodal frames, the resulting star-free fragment of PDL will
still be frame-complete.

The next subsection offers the main steps in the standard completeness
proof for PDL. The proofs are omitted since they are well-known (see
Segerberg, 1982; Goldblatt, 1987).
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2.3. A determination result for PDL

THEOREM 2.1 (Correctness). PDL is correct with respect to the class
M of all standard models, that is, for all formulae A, ` A implies M |=
A.

By the canonical model Mc of PDL we understand the structure
Mc = 〈Sc, {Rc

α : α ∈ A}, vc〉 where (1) Sc = {s ⊆ L(PDL) : s is maximallyPDL-consistent}
(in short: PDL-maximal), (2) 〈s, t〉 ∈ Rc

α iff {A : [α]A ∈ s} ⊆ t, and (3)
vc(p) = {s ∈ Sc : p ∈ s} (p ∈ P0).

One basic step in proving completeness is to establish the ‘Truth
Lemma’ for canonical models which implies the following lemma:

LEMMA 2.1. A is valid inMc iff A is a theorem of PDL.

Indeed, the preceding claim holds for every normal logic. The impor-
tant proof which is specific for PDL is to verify that Mc satisfies all
the conditions for compound action terms. Unfortunately, this is not
completely true.

THEOREM 2.2. Mc satisfies all conditions of standard models except
Rc

α∗ ⊆ (Rc
α)

?.

That is to say, in the canonical model of PDL, (Rα)
? is not the reflexive

and transitive closure of Rα since the set {[α]np : n ≥ 0} ∪ {¬[α∗]p}
can be shown to be PDL-consistent. Consequently, PDL is not compact
(and therefore pruned from being strongly complete). Remember that
a logic L is said to be compact iff, whenever each finite subset Γf ⊆ Γ
is (simultaneously) satisfiable, Γ itself is (simultaneously) satisfiable.
Although the canonical model of PDL does not satisfy all conditions
for standardness, the filtration method produces a new (finite) model
that rejects any non-theorem of PDL and is in the desired class of
standard models. This new model is defined as follows.

The Fischer–Ladner closure of a formula set Γ is defined as the
smallest set ∆ such that the following conditions are satisfied (see
Fischer & Ladner, 1979): (1) Γ ⊆ ∆; (2) ∆ is closed under subformulas;
(3) [α;β]B ∈ ∆ ⇒ [α][β]B ∈ ∆; (4) [α + β]B ∈ ∆ ⇒ [α]B, [β]B ∈ ∆;
(5) [α∗]B ∈ ∆⇒ [α][α∗]B ∈ ∆; (6) [A?]B ∈ ∆ ⇒ A ∈ ∆.

LEMMA 2.2 (Fischer & Ladner, 1979). The Fischer–Ladner closure ∆
of a finite set Γ is finite.

Let Mc = 〈Sc, {Rc
α : α ∈ A}, vc〉 be the canonical model of PDL,

and let ∆ ⊆ L(PDL) by any set of formulas closed under the Fischer–
Ladner conditions. An equivalence relation ∼∆ (depending on ∆) is
defined on Sc by s ∼∆ t iff s∩∆ = t∩∆. The ∼∆-equivalence class of s,
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written |s|, is defined as |s| = {t ∈ Sc : s ∼∆ t}, where the subscript ∼∆
in |s|∼∆ is omitted for reasons of readability only. Finally, the quotient
set S∆ of Sc modulo ∼∆ is defined as the set of ∼∆-equivalence classes
|s| for all s ∈ Sc, S∆ = {|s| : s ∈ Sc}. We use notation ∆(s) for
{A ∈ ∆ : A ∈ s}.

Let
M∆ = 〈S∆, {R∆α : α ∈ A∆}, v∆〉

be a model of the fragment of the language which appears in ∆ and
which satisfies the following conditions:

1. S∆ is defined as above,

2. the set {R∆α : α ∈ A∆} satisfies the following conditions:

a) A∆ is defined as the smallest set of action terms such that

i) {a ∈ A0 : a occurs in a member of∆} ⊆ A∆.

ii) {A? : A? occurs in a member of∆} ⊆ A∆.

iii) α, β ∈ A∆ ⇒ α;β, α+ β, α∗ ∈ A∆.

b) for a ∈ A∆0 = A∆ ∩ A0, R
∆
a is any ∆-filtration of Rc

a.

c) for the remaining action terms,

i) R∆A? = {〈|s|, |s|〉 :M
c, s |= A}, if A? ∈ A∆.

ii) R∆α for arbitrary α ∈ A∆ is inductively defined according to
the conditions on standard models, that is, R∆α;β = R∆α ◦R

∆
α ;

R∆α+β = R∆α ∪R∆α ; R
∆
α∗ = (R∆α )

?.

3. Finally, let P∆0 = P0∩∆ be the set of propositional variables in ∆.
Then, for all p ∈ P∆0 , v

∆(p) = {|s| : s ∈ vc(p)}.

We defined R∆a for a ∈ A∆0 to be any ∆-filtration of Rc
a. Every ∆-

filtration must satisfy the following ‘suitability’ conditions (see Hughes
& Cresswell, 1984; Goldblatt, 19873):

(F1) 〈s, t〉 ∈ Rc
a implies 〈|s|, |t|〉 ∈ R∆a .

(F2) 〈|s|, |t|〉 ∈ R∆a implies {A : [a]A ∈ ∆(s)} ⊆ t.

THEOREM 2.3. M∆ is a ∆-filtration ofMc.

The tedious proof of Theorem 2.3 shows that R∆γ is a ∆-filtration of

Rc
γ for all γ ∈ A∆ by induction on the complexity of γ. Note that

the respective (Fischer-Ladner) closure conditions are crucial to prove
condition (F2). Given Theorem 2.3, the proof of the Filtration Lemma
is straightforward by induction on formula complexity.

3 It is well known that such a filtration always exists, for example, the ‘smallest’
filtration, confer the definition ofM∆ in Subsection 3. 2, item 2. b)ii).
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THEOREM 2.4 (Filtration Lemma). For all s ∈ Sc, all action terms
α ∈ A∆, and all formulas A ∈ ∆:Mc, s |= A iffM∆, |s| |= A.

COROLLARY 2.1. M∆ is a standard model.

Corollary 2.1 holds for α;β ∈ A∆, α + β ∈ A∆, and α∗ ∈ A∆ by
definition. The only remaining case is A? ∈ A∆, for which Corollary
2.1 is proved via Filtration Lemma (Theorem 2.4) and the definition of
R∆A? in M

∆; thus R∆A? = {〈|s|, |s|〉 :M
∆, |s| |= A}.

A logic L is said to have the finite model property iff every L-
consistent formula A is true at a state in some finite standard model.

THEOREM 2.5 (Finite model property). PDL has the finite model prop-
erty.

Theorem 2.5 follows in a straightforward way: Lemma 2.1 tells us that
for every PDL-consistent A there is some s ∈ Sc with Mc, s |= A;
Lemma 2.2 guarantees that the Fischer–Ladner closure ∆ of the set {A}
is finite, soM∆ is a finite model which, by Theorem 2.3, is a ∆-filtration
of Mc satisfying the conditions for standardness (see Corollary 2.1),
and by the Filtration Lemma,M∆, |s| |= A. In effect, we have a model
that is both finite and standard, and which verifies A.

COROLLARY 2.2 (Weak Completeness). PDL is (weakly) complete
with respect to the class of finite standard models.

COROLLARY 2.3 (Determination). PDL is (weakly) determined by
the class of finite standard models.

THEOREM 2.6 (Decidability). PDL is decidable.

3. Non-stationary propositional dynamic logic

Almost all interesting domains are populated with other agents. When
considering multiple agents, the standard view of dynamic logic runs
into problems for essentially two reasons: the standard modelling of
‘doing nothing’ (stationary waiting) and of stationary test are feasible
only in single-agent environments. Therefore, non-stationary proposi-
tional dynamic logic (NPDL) is defined below, which overcomes these
problems and treats multiagent domains in a uniform way. Although
actions of other agents are not explicit in the language of the logic, we
take them into account semantically.
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12 Helmut Prendinger and Gerhard Schurz

The restriction of stationary waiting λ to static domains is mir-
rored semantically by conceiving Rλ as the ‘diagonal’ of S × S. A
state-change during waiting is excluded by this modelling. However, in
dynamic environments some other agent may ‘cause’ a state-transition.
Therefore, non-stationary waiting, written ω, is introduced as the dy-
namic counterpart to stationary waiting. All we know about Rω is that
Rω ⊆ S×S; no further condition can be imposed because the dynamic
environment may cause arbitrary state-changes during the waiting of
the agent. However, ω makes good sense within preservation constructs
to be introduced in the next section.

Analogously to the case of non-stationary waiting we introduce a dy-
namic counterpart of stationary test, called non-stationary test, written
τA. In the modelling of non-stationary test the condition to be verified
must hold both at the initial and final state. It is not required that the
respective states be identical. Generally, non-stationary test seems to
be a better match with our intuitions on the verification of a condition.
Think, for example, of verifying that a solution is acid by the aid of
litmus paper. The crucial point here is that a well known state-change
occurs, namely that the paper’s color turns into red (the example is
Moore’s 1985).

However, there is a more subtle point. First, observe that the axiom
for stationary test, [A?]B ≡ (A ⊃ B) (sTest), is equivalent to the
conjunction of the following three axioms: (1) B ⊃ [A?]B, (2) ¬A ⊃
[A?]B, and (3) A ∧B ⊃< A? >B (note that (1) plus (2) is equivalent
to the right-to-left direction of sTest, while (3) is equivalent to the
left-to-right direction of sTest). For our non-stationary test operation
we certainly want to keep (2). Observe that (2) is equivalent to ¬A ⊃
¬ < A? >> (by modal logic), that is, whenever A is false at the initial
state, then there does not exist a terminating execution of A?. The
contrapositive of this formula is < A? >> ⊃ A and its non-stationary
analogon will be our axiom nTest.1 (< τA > > ⊃ A) below. Next,
we have to weaken (1): not every proposition remains true after every
terminating execution of verifying A, but only A itself—thus we weaken
(1) to [τA]A (nTest.2). The axioms nTest.1 and nTest.2 are mirrored
semantically by the simple requirement that RτA may be any set of
states 〈s, t〉 such that A is both true at s and t (as will be proved soon).
Intuitively, the notion τ implies that whenever A is true at a state s

and the action “verify A” is applied to s then if the action “verify A”
terminates, then A will also be true at its final state(s). However, the
notion τ does not guarantee that the action “verify A” indeed always
terminates if applied to a state s where A is true. Hence, the operation
τA describes an unsafe form of testing: the state-change which occurs
during testing A may destroy some of the preconditions of the test
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Reasoning about Action and Change 13

operation such that the test has no outcome at all. Imagine that in the
above test of acid by means of the litmus paper, the acid’s concentration
is so high that the litmus paper is destroyed before exhibiting some test
result.

For several purposes a stronger notion of non-stationary test is
needed, call it τ ◦: the operation τ ◦A always terminates if applied to
a state in which A is true. We call this notion safe non-stationary
test. Formally it is characterized by snTest.1–2 (as above) plus the
additional axiom snTest.3: A ⊃ < τ ◦A > >. snTest.3 is a natural
weakening of axiom (3) above for stationary test. Semantically it is
mirrored by the additional condition that for each state s ∈ S where
A is true, Rτ◦A contains a pair 〈s, t〉 with initial state s. (This re-
quirement is consistent with the previous requirement that A is true
at initial and final state: if A is true at s then at least 〈s, s〉 is a pair
satisfying this requirement.) Observe that snTest.3 and snTest.2 to-
gether imply A ⊃< τ ◦A >A, and this together with snTest.1 implies
A ≡ < τ◦A >A. The operation of safe non-stationary test is stronger
than non-stationary test but still much weaker than stationary test. For
convenience, we introduce both operations into our extended language.

Finally, a natural construct called the ‘any’ action is included within
NPDL to enhance the expressiveness of the framework. Following Passy
& Tinchev (1991), we will use the letter ν to denote the ‘any’ action.
For reasons that will become clear momentarily, it is called the universe
program in their paper (see also Gargov et al., 1987; Gargov & Passy,
1990; Goranko & Passy, 1992). The ‘any’ action will be included in
our framework for reasons that are independent of considerations on
single-agent or multiagent domains. With help of ν we become able to
express that something is true at every state in a generated model, since
in generated models Rν is universal, and hence Rα ⊆ Rν for arbitrary
action terms (see Passy & Tinchev, 1991). The semantic behavior of
Rν facilitates the formulation of domain constraints, that is, formulas
which are assumed to be invariant over every performance of every
action (see Rosenschein, 1981; Ginsberg & Smith, 1988a; Stephan & Bi-
undo, 1993; in the knowledgebase literature they are also called integrity
constraints, see Katsuno & Mendelzon, 1991). A more detailed study of
this simple yet powerful construct is given in section 5, when we turn to
applications of (extended) non-stationary propositional dynamic logic
to planning problems.
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14 Helmut Prendinger and Gerhard Schurz

3.1. Formal syntax and semantics of NPDL

Language

The vocabulary of L(PDL) is enriched by the designated action variable
ω, the action constant ν, and the (unary) operators τ and τ ◦.

α ::= a | ω | ν | α1;α2 | α1 + α2 | α
∗ | A? | τA | τ◦A

Here, A ∈ L(NPDL), a ∈ A0, and α ∈ A.
Before we turn to semantics, it will be useful to denote the following

sets: the set Aat of atomic action terms is defined as A0 ∪ {ν}, and the
set Ael of elementary action terms is defined as Aat ∪ {A?, τA, τ ◦A :
A ∈ L(NPDL)}.

Semantics

An agent frame F is a structure F = 〈S, {Rα : α ∈ Aat}, T, T •〉 where
(1) S is a nonempty set of world-states, {Rα : α ∈ Aat} is the set
of relations corresponding to atomic action terms, and the following
functions T (and T •) mirror (safe) non-stationary test on the level of
frames; (2) T is a function T : Pow(S) → Pow(S × S) such that for all
X ∈ Pow(S), TX ⊆ {〈s, t〉 : s ∈ X, t ∈ X}. (3) T • is like T except that
it meets the further condition that for each s ∈ X (and X ∈ Pow(S)),
T •X contains a pair 〈s, t〉 (for t ∈ S).

A standard agent frame is an agent frame F where Rν is universal.
Hence F is Rν-generated and Rα ⊆ Rν for all α ∈ A.

A standard agent modelM based on a standard agent frame F is a
structure M = 〈S, {Rα : α ∈ A}, T, T •, v〉 where (1) all conditions for
standard models are satisfied; (2) RτA = T‖A‖M; (3) Rτ◦A = T •‖A‖M

(informally speaking, T (T •) assigns to the proposition denoted by A

the action consisting of (safely) non-stationary verifying that A is true);
(4) v is a function v : P0 → Pow(S) as usual.

Observe that the restriction to Rν-generated frames is harmless in
the sense that it produces no new theorems. For, let M be an agent
model which satisfies all the conditions of standardness except that Rν

is just an equivalence relation with Rα ⊆ Rν for all α ∈ A (hence F
need not be Rν-generated). For any state u ∈ SM, letMu be the u-Rν-
generated submodel of M. Then it is a well-known fact of modal logic
that for all A ∈ L(NPDL) and s ∈ SM

u
, Mu, s |= A iff M, s |= A.
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Reasoning about Action and Change 15

Logics and axiomatization

Non-stationary propositional dynamic logic is defined as the smallest
subset L ⊆ L(NPDL) which contains all axioms and rules of PDL,
and in addition contains all instances of the following types of axiom
schemes.

– For (unsafe) non-stationary test:

nTest.1 < τA >> ⊃ A

nTest.2 [τA]A

– For safe non-stationary test:

snTest.1 < τ ◦A >> ⊃ A

snTest.2 [τ◦A]A

snTest.3 A ⊃< τ ◦A >>

– For the ‘any’ action:

Any.1 [ν]A ⊃ A

Any.2 [ν]A ⊃ [ν][ν]A

Any.3 < ν > [ν]A ⊃ A

Any.4 [ν]A ⊃ [α]A

NPDL is (weakly) characterised by the class of all standard agent
models, and is decidable. Details are provided in the next subsection.

3.2. A determination result for NPDL

We show that the determination result for PDL can be modified to
account also for non-stationary test and the ‘any’ action. Thus we build
upon previous results and other facts from ordinary modal logic.

THEOREM 3.1 (Correctness). NPDL is correct with respect to the
class of all standard agent models.

Proof. It is easily verified that nTest.1–2, snTest.1–3 and Any.1–

4 are true in a standard agent model M. For example, in the case
of nTest.1, assume M, s |=< τA > >. This means that there exists
t ∈ SM with sRτAt. By definition of RτA, M, s |= A. Similarly for
nTest.2. For snTest.3, assume M, s |= A. Since Rτ◦A contains at
least one pair 〈s, t〉 for t ∈ S, M, s |=< τ ◦A >> follows. The proofs of
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16 Helmut Prendinger and Gerhard Schurz

Any.1–4 are well-known. 2

As usual, the completeness part of the proof is opened by the defi-
nition of canonical structures.

Let Mc = 〈Sc, {Rc
α : α ∈ A}, T c, T •c, vc〉 be the canonical model of

NPDL. It is defined like the canonical model of PDL. Of course, the
definition of Mc includes the new cases α = ω, α = ν and α = τB or
τ◦B.

T cX and T •cX are defined in two steps: (i) For those propositions
X = ‖A‖M

c
which are denoted by some formula A ∈ L(NPDL) we put

T c‖A‖M
c
= Rc

τA and T •c‖A‖M
c
= Rc

τ◦A (ii) In the other case, that
is, when there is no A ∈ L(NPDL) such that X = ‖A‖M

c
, just let

T cX and T •cX be any subsets of {〈s, t〉 : s ∈ X, t ∈ X}, where T •cX

satisfies the additional condition that it contains a pair 〈s, t〉 for each
s ∈ Sc.

LEMMA 3.1. (1) Rc
τA ⊆ {〈s, t〉 : M

c, s |= A, Mc, t |= A}; (2) Rc
τ◦A

satisfies (1) and for each s ∈ S it contains at least one pair 〈s, t〉 (for
t ∈ Sc); and (3) Rc

ν is an equivalence relation on Sc and Rc
α ⊆ Rc

ν for
each α ∈ A.

Proof. (1) Non-stationary test. In case (i) of the paragraph preceding
Lemma 3.1 we first show that 〈s, t〉 ∈ Rc

τA ⇒ A ∈ s, t (thereby exploit-
ing the power of the Truth Lemma). For s, assume that 〈s, t〉 ∈ Rc

τA. We
have that > ∈ t. Therefore < τA > > ∈ s. By nTest.1 and maximality
we have that (< τA > > ⊃ A) ∈ s. Thus, A ∈ s. For t, suppose that
〈s, t〉 ∈ Rc

τA. Then [τA]A ∈ s by maximality, and because [τA]A is in
the logic (nTest.2). Therefore, A ∈ t. In case (ii) of the paragraph
preceding Lemma 3.1, the claim holds by definition. In summary, Mc

satisfies T cX ⊆ {〈s, t〉 : s ∈ X, t ∈ X} in all cases.
(2) Safe non-stationary test. It remains to prove the additional se-

mantic condition for the case (i), because in the case (ii) it holds by
definition. Assume s ∈ Sc and A ∈ s. We must show that there exists
t ∈ Sc such that sRc

τ◦At (for arbitrary formula A) which means that we
have to prove that the set {B : [τ ◦A]B ∈ s} is NPDL-consistent. For
reductio, assume the opposite. Hence, by modal logic and maximality
of s, s must contain [τ ◦A]⊥. However, because of snTest.3 and A ∈ s,
s contains also < τ ◦A >>, that is, ¬[τ ◦A]⊥, which contradicts the fact
that s is NPDL-consistent.

(3) The ‘any’ action. Axioms Any.1–3 guarantee that Rc
ν is an

equivalence relation on Sc (see, for example, Hughes and Cresswell,
1984). The addition of axiom Any.4 guarantees that Rc

α ⊆ Rc
ν for all

α ∈ A: assume sRc
αt and [ν]A ∈ s. Then, for all α ∈ A, [α]A ∈ s by
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Reasoning about Action and Change 17

Any.4 and maximality. Therefore, A ∈ t. 2

It is easy to see that NPDL (like PDL before) is not compact. There
is thus no escape from applying the filtration technique again. However,
we do not apply filtration directly to Mc, but rather take an Rν-
generated submodel of Mc, call it Mcu. The reason is that filtration
preserves universality (see Chellas, 1980, p. 103). Mcu is Rν-universal
and equivalent with Mc for all its states. Hence, by Lemma 3.1 Mcu

is a standard agent model. Any filtration of Mcu through a given
∆ will preserve universality because of the first suitability condition:
sRcu

ν t⇒ |s|R∆ν |t|.
The definition of the Fischer–Ladner closure ∆ of a formula set

Γ within L(NPDL) has to be extended vis-à-vis its definition within
L(PDL) by the following conditions: (1) [τA]B ∈ ∆ ⇒ A ∈ ∆ and
(2) [τ◦A]B ∈ ∆ ⇒ A ∈ ∆. It is easy to see that the Fischer–Ladner
closure ∆ of a finite formula set Γ continues to be finite in the new
setting (compare Lemma 2.2). The set A∆ is defined as the least set of
action terms such that

− {α ∈ Ael : α occurs in a member of∆} ⊆ A∆.

− α, β ∈ A∆ ⇒ α;β, α+ β, α∗ ∈ A∆.

In the structure to be introduced momentarily, we write |A|∆ for
the set {|s| ∈ S∆ :Mcu, s |= A}, if A is in ∆.

Take Mcu = 〈Scu, {Rcu
α : α ∈ A}, T cu, T •cu, vcu〉 and let ∆ ⊆

L(NPDL) be any Fischer–Ladner closed set. Define the model

M∆ = 〈S∆, {R∆α : α ∈ A∆}, T∆, T •∆, v∆〉

where

1. as before, S∆ is the quotient set of Scu modulo ∼∆,

2. the set {R∆α : α ∈ A∆} satisfies the following conditions:

a) for a ∈ A∆0 , R
∆
a is any ∆-filtration of Rcu

a ,

b) for action terms A?, τA, τ ◦A, ν ∈ A∆,

i) R∆A? = {〈|s|, |s|〉 :M
cu, s |= A} (as before),

ii) in case of R∆τA and R∆τ◦A, we take the smallest ∆-filtration,
that is,

R∆τA = T∆|A|∆ = {〈|s|, |t|〉 : ∃s′ ∈ |s|∃t′ ∈ |t|〈s′, t′〉 ∈ T c‖A‖M
cu

},

and similar for R∆τ◦A which is defined with help of T •cu.
Otherwise, for X ⊆ S∆ where there is no A ∈ ∆ such that
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18 Helmut Prendinger and Gerhard Schurz

X = |A|∆, let T∆X and T •∆X be subsets of {〈|s|, |t|〉 : |s| ∈
X, |t| ∈ X}, where T •∆X satisfies the additional condition
that for each | s |∈ S∆ it contains a pair 〈|s|, |t|〉 (for some
|t| ∈ S∆),

iii) R∆ν is any ∆-filtration,

iv) R∆α for compound action terms is inductively defined as
before;

3. v∆(p) (p ∈ P0) is defined as before.

The next statement extends Theorem 2.3.

THEOREM 3.2. M∆ is a ∆-filtration ofMcu.

Proof. We show that R∆γ is a ∆-filtration of Rcu
γ for all γ ∈ A∆. Thereby,

we only consider cases not already covered by Theorem 2.3.
Non-stationary waiting. The case γ = ω is given by the definition of

R∆a . Remember that ω is considered as an action variable.
Non-stationary test. We have to show that the filtration conditions

(F1) and (F2) are satisfied. (F1): Assume τA ∈ A∆. Suppose that
〈s, t〉 ∈ Rcu

τA. Then, by definition, 〈s, t〉 ∈ T cu‖A‖M
cu
. The definition of

T∆|A|∆ yields 〈|s|, |t|〉 ∈ R∆τA. (F2): Assume |s|R∆τA|t|. Then for some
s′ ∈ |s| and t′ ∈ |t|, 〈s′, t′〉 ∈ T cu‖A‖M

cu
. Hence 〈s′, t′〉 ∈ Rcu

τA by
definition. Suppose [τA]A ∈ ∆(s). We have s ∼∆ s′ andMcu |= [τA]A.
So A is in t′. Moreover, because ∆ is closed under the Fischer–Ladner
conditions, A ∈ ∆ and so, for t′ ∼∆ t, A ∈ t as desired.

For safe non-stationary test the proof is the same.
The ‘any’ action. Again, this case holds by definition. 2

The Filtration Lemma may now be proved as before and reads as
follows:

THEOREM 3.3 (Filtration Lemma). For all s ∈ Scu, and all formulas
A ∈ ∆:Mcu, s |= A iffM∆, |s| |= A.

COROLLARY 3.1. (1) T∆X ⊆ {〈|s|, |t|〉 : |s| ∈ X, |t| ∈ X} (for every
X ⊆ S∆); (2) T •∆X satisfies (1) plus the condition that for all |s| ∈ S∆

it contains a pair 〈|s|, |t|〉 (for some |t| ∈ S∆); (3) R∆ν is universal on
S∆; and (4)M∆ is a standard agent model.

Proof. (1) Non-stationary test. Assume that there is some A ∈ ∆ such
thatX = |A|∆ (in the other case, the claim holds by definition). Assume
〈|s|, |t|〉 ∈ T∆|A|∆. There exist s′ ∈ |s| and t′ ∈ |t| such that 〈s′, t′〉 ∈
T cu‖A‖M

cu
. By Lemma 3.1, s′ ∈ ‖A‖M

cu
and t′ ∈ ‖A‖M

cu
, so |s′|, |t′| ∈

|A|∆ by Theorem 3.3. But |s| = |s′|, |t| = |t′|. Therefore, |s|, |t| ∈ |A|∆.
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(2) Safe non-stationary test.Wemust show in addition that T •∆|A|∆

contains for each |s| ∈ S∆ a pair 〈|s|, |t|〉 (for some |t| ∈ S∆). Given
|s| ∈ S∆, then s ∈ Scu, and sRcu

τ◦At for some t ∈ Scu by Lemma 3.1,
whence by definition (2)(b)(ii), 〈|s|, |t|〉 ∈ T •∆|A|∆.

(3) The ‘any’ action. Assume |s|, |t| ∈ S∆. Because Rcu
ν is universal

on Scu, sRcu
ν t. By suitability condition (F1), |s|R∆ν |t| follows. Hence,

R∆ν is universal on S∆.
(4) Follows immediately from (1), (2) and Corollary 2.1. This finishes

the proof. 2

THEOREM 3.4 (Finite model property). NPDL has the finite model
property.

Proof. Take any NPDL-consistent formula A. The relevant steps are as
follows: First, by Lemma 2.1 A is true at some state u in the canonical
modelMc. Next, letMcu be the u-Rν-generated submodel ofMc; A is
true at u inMcu. Theorems 3.2 and 3.3 guarantee that A is true at |u|
in the ∆-filtrationM∆ ofMcu and Corollary 3.1 (4) tells us thatM∆

is a standard agent model. Since the Fischer–Ladner closure ∆ of {A}
is finite, M∆ is finite. Analogously to Theorem 2.5 we have gained a
verifying model for A that exhibits both the features of finiteness and
standardness. 2

The following statements are consequences of Theorems 3.1 and 3.4.

COROLLARY 3.2 (Determination). NPDL is (weakly) determined by
the given class of finite standard agent models.

THEOREM 3.5 (Decidability). NPDL is decidable.

4. Preservation

Real-world planning often requires that some facts are protected from an
action, or put differently, preserved with respect to an action.4 Concern-
ing the frame problem, the decisive problem is to offer an economic way
to reason about what remains true during an action which is composed
by sequencing actions. A method that covers that problem efficiently
may count as a solution to the combinatorial frame problem. In this

4 On naming: we eventually decided to speak of “preservation with respect to an
action” rather than “protection from an action” as only the former seems to support
the multiagent reading.
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Figure 1. A proposition is terminally preserved with respect to the sequence of ac-
tions α, β and γ. (Filled circles indicate that the proposition is true at the respective
states.)

section, we define the logic resulting from the inclusion of preservation
formulas in formal terms. It will be called extended non-stationary
propositional dynamic logic (NPDL+). Applications to both the frame
problem and planning are discussed in the next section.

Depending on whether facts have to hold in a particular situation, for
example, where they figure as preconditions (‘initial conditions’) for the
execution of an ensuing action, or whether they have to be true at all
states of an action sequence (as ‘boundary conditions’), two concepts of
preservation are distinguished: terminal preservation and chronological
preservation. These facilities are obtained by introducing formulas of
type tpres(α,A) and cpres(α,A). In case of terminal preservation the
formula tpres(α,A) is intended to mean that a fact A is terminally
preserved with respect to a (possibly compound) action: if A is true
when the execution of α begins, A is true upon termination of α. For
chronological preservation the formula cpres(α,A) is intended to mean
that a fact A is chronologically preserved with respect to a (possibly
compound) action α: whenever A is true initially, A is true not only
terminally but at the intermediate states of the execution of α as well.

Fig. 4 illustrates the case of a proposition being terminally preserved
with respect to an action consisting of first doing α, then β and finally
γ. The filled circles (denoting states) in the figure indicate that the
proposition is true at the final states of the relation Rα;β;γ which cor-
responds to the sequence of actions α, β and γ (in that order). As
chronological preservation requires in addition that a proposition be
true at intermediate states, application to the sequence α;β; γ results
in the proposition holding at all states, that is, whenever the perfor-
mance of α, α;β or α;β; γ terminates, the proposition is true. This
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Figure 2. A proposition is chronologically preserved with respect to the sequence
of actions α, β and γ. (Filled circles indicate that the proposition is true at the
respective states.)

case is illustrated in Fig. 4. Note that here all circles are filled. So,
‘non-terminating beginnings’ of the sequence α;β; γ count as well.

Several researchers have suggested notions that bear a close simi-
larity to our preservation operators (see Pratt, 1978; Segerberg, 1980).
Pratt (1978) introduces formulas throughout(α,A) to mean that for-
mula A is true throughout (at every state of) the execution of action
α. In Pratt’s framework the meaning of an action is realized as a set
of trajectories, that is, k + 1-tuples 〈s0, ..., sk〉 of states rather than
binary relations. Accordingly, throughout(α,A) is true at a state (in
a model) iff A holds at every state in every trajectory corresponding
to α. Although the conception of the meaning of actions as sets of
trajectories seems reasonable in the particular case of a (chronological)
preservation operator, it leads to fairly complicated logics in the general
case, so-called process logics (see Harel, Kozen & Parikh, 1982). In our
account, a definitional extension of action models (see the function µc)
does the job. Segerberg (1980) suggests a notion of preservation, written
α-presA, which is essentially that of Pratt (1978).

4.1. Formal syntax and semantics NPDL+

Language

The operators tpres and cpres are added to the vocabulary of L(NPDL).

A ::= p | ¬A | A1 ∨A2 | [α]A | tpres(α,A) | cpres(α,A)

(where p ∈ P0, A ∈ L(NPDL
+), and α ∈ A).

For the following, recall the definitions of special term sets already
given in the previous section.
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Semantics

An extended standard agent frame F is a structure F = 〈S, {Rα : α ∈
Aat}, T, T •, µ〉 where (1) 〈S, {Rα : α ∈ Aat}, T, T •〉 is a standard agent
frame; and (2) µ is called the smoothness function. It is an definitional
extension of standard agent frames, a function µ : {Rα : α ∈ Aat} ×
Pow(S)→ Pow(S) such that for all s ∈ S, X ∈ Pow(S),

s ∈ µ(Rα, X) iff s ∈ X ⇒ ({t : 〈s, t〉 ∈ Rα} ⊆ X).

An extended standard agent modelM based on F is a structure

M = 〈S, {Rα : α ∈ A}, T, T •, µt, µc, v〉

where

1. all conditions for standard agent models are satisfied; and

2. the following functions are introduced:

a) µt is the function µt : {Rα : α ∈ A} × Pow(S)→ Pow(S) such
that

s ∈ µt(Rα, X) iff s ∈ X ⇒ ({t : 〈s, t〉 ∈ Rα} ⊆ X).

Note that µt(Rα, X) = µ(Rα, X) for atomic action terms α ∈
Aat.

b) µc is the function µc : {Rα : α ∈ A} × Pow(S)→ Pow(S) such
that

µc(Rα, X) = µt(Rα, X)

for all elementary action terms α ∈ Ael. For compound action
terms, µc is inductively defined as follows:

µc(Rα;β , X) = µc(Rα, X) ∩ {s : {t : 〈s, t〉 ∈ Rα} ⊆ µc(Rβ , X)}

µc(Rα+β , X) = µc(Rα, X) ∩ µc(Rβ , X)

µc(Rα∗ , X) =
⋂

n≥0
µc(Rαn , X)

3. Finally, v is a function v : P0 → Pow(S).

Terminal preservation (µt) takes care only of initial and final states:
s ∈ µt(Rα, X) iff whenever s is an initial state of Rα at which X holds,
then X holds at all final states of Rα starting from s. Chronological
preservation (µc) forces X to be preserved also at all intermediate
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states—it gains its power when applied to compound actions, other-
wise it reduces to terminal preservation.5 Note also that models for
L(NPDL+) are definitional extensions of models for L(NPDL) since µt

and µc are defined parameters.
Given any fixed standard agent model M, we define the meanings

of formulas and terms by adding the following clauses:

− M, s |= tpres(α,A) iff s ∈ µt(Rα, ‖A‖
M).

− M, s |= cpres(α,A) iff s ∈ µc(Rα, ‖A‖
M).

It follows that the following conditions are satisfied by M (the
reference to models is left tacit): For all s, t ∈ S, α ∈ A:

‖cpres(α;β,A)‖ = ‖cpres(α,A)‖ ∩ {s : {t : 〈s, t〉 ∈ Rα} ⊆ ‖cpres(β,A)‖}

‖cpres(α+ β,A)‖ = ‖cpres(α,A)‖ ∩ ‖cpres(β,A)‖

‖cpres(α∗, A)‖ =
⋂

n≥0
‖cpres(αn, A)‖

Logics and axiomatization

The extended logic is defined as the smallest subset L ⊆ L(NPDL+)
which is closed under the rules of PDL, contains all axioms of NPDL
and in addition all instances of the following two new axiom schemes,
tPres and cPres.

– For terminal preservation:

tPres tpres(α,A) ≡ (A ⊃ [α]A)

The formulation of an appropriate axiom scheme for expressions
of the form cpres(α,A) is more involved. We define I as a function
I : A → Pow(A) that assigns to each action term α ∈ A the set of all
action terms that denote initial strings of Rα. For elementary action
terms, α ∈ Ael, we have I(α) = {α}, that is, an elementary action term
has itself as its only initial string. In order to define initial strings for
compound action terms, we need the auxiliary definition

(α; I(β))
def
= {(α; γ) : γ ∈ I(β)}.

Then for all α ∈ A:

5 A note on naming: smoothness is to be understood always with respect to the
envisaged facts whose truth is ‘preserved’.
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I(α;β) = I(α) ∪ (α; I(β))

I(α+ β) = I(α) ∪ I(β)

I(α∗) = (α∗; I(α))

Hence, the initial strings of Rα;β are all those of Rα plus all those
obtained from concatenating initial strings of Rβ to Rα; the initial
strings of Rα+β are those of Rα and those of Rβ ; the initial strings of
Rα∗ are all those obtained by sequencing Rα∗ with an initial string of
Rα.

We now introduce the following axiom scheme

– for chronological preservation:

cPres cpres(α,A) ≡

(

A ⊃
∧

β∈I(α)
[β]A

)

Correctness and completeness

By defining an adequate translation function, we can show that NPDL+

is (weakly) characterised by the class of all extended standard agent
models, that NPDL+ has the finite model property and is decidable.

4.2. A determination result for NPDL+

Because of the nature of the proof-procedure pursued in this section it
is advisable to distinguish notions of NPDL and NPDL+. Let ` denote
the deducibility relation of NPDL and `+ the deducibility relation of
NPDL+. Likewise, models of NPDL+ are indexed by “+”, and models
of NPDL have no index. For convenience, we abbreviate L(NPDL) by
L and L(NDPL+) by L+.

The main steps of the argument are as follows: First, we translate
each formula A ∈ L+ into a formula θ(A) ∈ L and prove that

`+ A ≡ θ(A).

Then we show that if A is NPDL+-consistent then θ(A) is NPDL-
consistent. Next, for each modelM for L, L-model for short, we define
the corresponding L+-modelM+ and show that for each A ∈ L+, and
s ∈ S:

M+, s |= A iff M, s |= θ(A).

For each A ∈ L+, the translation θ : L+ → L is given by the following
recursive conditions:
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θ(p) = p (for p ∈ P0)
θ(¬A) = ¬θ(A)
θ(A ∨B) = θ(A) ∨ θ(B)
θ([α]A) = [α]θ(A)
θ(tpres(α,A)) = θ(A) ⊃ [α]θ(A)
θ(cpres(α,A)) = θ(A) ⊃

∧

β∈I(α)
[β]θ(A).

We now begin the completeness argument.

LEMMA 4.1. For all A ∈ L+: `+ θ(A) ≡ A.

Proof. As well known, the rule of replacement of logically equivalent
subformulas holds in all classical modal logics. Now, θ(A) results from
A by a finite number of such replacements of NPDL+-equivalent sub-
formulas. 2

COROLLARY 4.1. If A ∈ L+ is NPDL+-consistent, then θ(A) is
NPDL-consistent.

Proof. Suppose otherwise, that θ(A) is not NPDL-consistent. Since all
axiom schemes and rules of inference of NPDL are also in NPDL+, if
` θ(A) ⊃ ⊥ then `+ θ(A) ⊃ ⊥, whence `+ A ⊃ ⊥ follows by Lemma
4.1. Therefore, A is not NPDL+-consistent. 2

LEMMA 4.2. For givenM = 〈S, {Rα : α ∈ A}, T, T •, v〉 defineM+ =
〈S, {Rα : α ∈ A}, T, T •, µt, µc, v〉 such that µt and µc are defined as
above (in Section 4.2). Then for all A ∈ L+ and s ∈ S: M+, s |=
A iffM, s |= θ(A).

Proof. By induction on the formation of A. The case A = p is given
becauseM+ andM agree on the valuation function. The cases for ¬, ∨
and [α] are straightforward. The only critical cases are A = tpres(α,B)
and A = cpres(α,B).

It is important to note that the operation + is reversible. For each
L+-model can be viewed as an extended model M+ of some L-model,
that is, M+ has a L-reduction.

We start the proof with the case A = tpres(α,B).

M+, s |= tpres(α,B) ⇐⇒ (s ∈ ‖B‖M
+

⇒ {t : 〈s, t〉 ∈ Rα ⊆ ‖B‖
M+

})

by definition of µt and the semantic condition for tpres(α,B)-formulas.
So

⇐⇒ (M+, s |= B ⇒ (∀t : 〈s, t〉 ∈ Rα ⇒M+, t |= B)).
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Applying induction hypothesis we conclude (since M and M+ are
based on the same frame) that

⇐⇒ (M, s |= θ(B) ⇒ (∀t : 〈s, t〉 ∈ Rα ⇒M, t |= θ(B)),

hence by the truth condition for boxed formulas

⇐⇒ (M, s |= θ(B) ⇒ M, s |= [α]θ(B))

which gives us
⇐⇒ M, s |= (θ(B) ⊃ [α]θ(B))

and thus, by the recursive clauses for θ,

⇐⇒ M, s |= θ(tpres(α,B)).

The case A = cpres(α,B) is proved by (nested) induction on the
complexity of α.
Elementary action terms. By definition of initial strings for elemen-

tary action terms α ∈ Ael, I(α) = {α}. Hence, the proof is as for
A = tpres(α,B).
Sequential composition.Assume α = α1;α2. ThenM

+, s |= cpres(α1;α2, B)

⇐⇒ M+, s |= cpres(α1, B) & ∀t : sRα1t⇒M+, s |= cpres(α2, B)

by the truth condition for cpres(α;β,A)-formulas, then

⇐⇒ M, s |= θ(cpres(α1, B)) & ∀t : sRα1t⇒M, s |= θ(cpres(α2, B))

by induction hypothesis, which gives

M, s |=



θ(B) ⊃
∧

β∈I(α1)

[β]θ(B)



 & (1)

∀t : sRα1t ⇒ M, t |=



θ(B) ⊃
∧

γ∈I(α2)

[γ]θ(B)



 (2)

by definition of θ. Since I(α1;α2) = I(α1)∪ (α1; I(α2)) by definition of
initial strings, (1) and (2) yield

⇐⇒ M, s |=



θ(B) ⊃
∧

δ∈I(α1;α2)

[δ]θ(B)



 ,

which gives
⇐⇒ M, s |= θ(cpres(α1;α2, B))
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by definition of θ.
Non-deterministic choice. In a similar way, the proof for the case α =

α1 + α2 uses the truth-clause for cpres(α + β,B)-formulas, induction
hypothesis, definition of θ and the definition of I(α1 + α2).
Non-deterministic iteration. The remaining case is α = β∗. By the

truth condition for cpres(α∗, A)-formulas, M+, s |= cpres(β∗, B)

⇐⇒ M+, s |= cpres(βn, B) for all n ≥ 0,

and
⇐⇒ M, s |= θ(cpres(βn, B)) for all n ≥ 0,

by induction hypothesis, which yields

⇐⇒ M, s |=



θ(B) ⊃
∧

γ∈I(βn)

[γ]θ(B)



 for all n ≥ 0 (3)

by definition of θ.
To proceed, we insert the following

LEMMA 4.3 (Initial String Lemma for the star operator). The follow-
ing sets are identical: {〈s, t〉 ∈ Rγ : γ ∈ I(βn), n ≥ 0} = {〈s, t〉 ∈ Rγ :
γ ∈ (β∗, I(β))}.

Proof. For the ⊆-part, assume γ ∈ I(βn). Then γ has the form (βm; ε)
for some ε ∈ I(β) and m ≥ 0. So Rβm;ε ⊆ Rβ∗;ε. Thus each 〈s, t〉 ∈ Rγ

for such a γ will be in the set at right hand side.
For the ⊇-part, suppose 〈s, t〉 ∈ Rγ for γ ∈ (β∗, I(β)). Then there

will be some m ≥ 0 such that 〈s, t〉 ∈ Rβm;ε with ε ∈ I(β). Hence
〈s, t〉 ∈ Rγ belongs to the set at the left hand side. 2

With the help of the preceding lemma we may continue the proof of
Lemma 4.2 as follows:

(3) ⇐⇒ M, s |=



θ(B) ⊃
∧

γ∈(β∗;I(β))

[γ]θ(B)





and, since I(β∗) = (β∗; I(β)) by definition of initial strings,

⇐⇒ M, s |=



θ(B) ⊃
∧

γ∈I(β∗)

[γ]θ(B)



 ,

which gives
⇐⇒ M, s |= θ(cpres(β∗, B))

by definition of θ. This ends the proof of Lemma 4.2. 2

jolli96.tex; 6/03/2001; 0:25; p.27



28 Helmut Prendinger and Gerhard Schurz

THEOREM 4.1 (Correctness). NDPL+ is correct with respect to the
class of extended standard agent models.

Proof. We have to show that tPres and cPres are valid in all NPDL+-
models. For tPres,M+, s |= tpres(α,A) ⇐⇒ M, s |= θ(tpres(α,A))
(by Lemma 4.2) ⇐⇒ M, s |= θ(A) ⊃ θ([α]A) (by definition of θ).
Then, trivially ⇐⇒ M+, s |= θ(A) ⊃ θ([α]A) (because the valuation
function for L-formulas does not depend on the functions µt and µc),
so ⇐⇒ M+, s |= A ⊃ [α]A (by Lemma 4.1). The argument for cPres

takes essentially the same steps. 2

THEOREM 4.2 (Finite model property). NPDL+ has the finite model
property.

Proof. Take a NPDL+-consistent formula A. Then, by Corollary 4.1,
θ(A) is NPDL-consistent. So, θ(A) is true at a state s in a finite
(standard agent) model M for NPDL. Hence, A is true at s in a finite
(extended standard agent) model M+ for NPDL+ by Lemma 4.2. 2

As immediate consequences we obtain

COROLLARY 4.2 (Determination). NPDL+ is (weakly) determined
by the class of all finite extended standard agent models.

THEOREM 4.3 (Decidability). NPDL+ is decidable.

5. Applications

This section is dedicated to applications of our framework. We do not
describe how our approach handles the simple Yale Shooting problem
(see Hanks & McDermott, 1987), because our approach yields no sig-
nificant advantages here as compared, for example, with the handling
of this problem in the situation calculus of McCarthy & Hayes (1969).
Our approach is profitable as soon as (pre)conditions have to be ‘trans-
ported’ over action sequences of reasonable length. This is the case in
planning. We give an example which involves more actions and proper-
ties than the shooting problem. Then, it is shown that domain and plan
constraints are naturally encoded in NPDL+ if the ongoing behavior
of a plan is considered. The usefulness of these notions is illustrated by
way of an example from the manufacturing domain. Finally, it is shown
how the (temporal) properties of temporal plan theory (see Manna et
al., 1993) are expressed in NPDL+. Finally, we compare our solution
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to some aspects the frame problem to monotonic and nonmonotonic
solutions, respectively.

5.1. The frame problem: A TV Example

The following example confronts us with the (nowadays easy) problem
of installing a TV set. Consider the following definitions concerning the
actions and effects (preconditions) of the installation procedure:

plug in = (the action consisting of) plugging in the TV set
connect = connecting the signal feed
press on = pressing the “on” button
scan = scanning the signal for programs

(by initiating the automated programming system (APS))
select = selecting a program
GUIDE = a TV guide is at hand
CURRENT = the TV set is provided with a current
SIGNAL = the tuner is provided with a signal
TV ON = the TV set is on
PROG = the tuner is ready to receive all programs
FAV PROG = a (favorite) program is selected

The initial situation is described by a single statement,

(INI) GUIDE.

We want to deduce that after every terminating execution of the action
sequence consisting of plugging in the TV set, connecting the signal
feed, pressing the “on” button, initiating APS, waiting (since waiting
became so popular in the AI literature on the frame problem), and
finally selecting a program, a (favorite) program is selected.

The assumptions on the preconditions and effects of actions are as
follows:

(A1) [plug in]CURRENT

(A2) [ν](CURRENT ⊃ [connect]SIGNAL)

(A3) [ν](CURRENT ∧ SIGNAL ⊃ [press on]TV ON)

(A4) [ν](CURRENT ∧ SIGNAL ∧ TV ON ⊃ [scan]PROG)

(A5) [ν](CURRENT ∧ SIGNAL ∧ TV ON ∧ PROG ∧ GUIDE ⊃ [select]FAV PROG)

For instance, the forth assumption states that in all situations we con-
sider as possible, the tuner may receive all programs after initiating
the automated programming system, if the TV set is provided with
a current, the tuner is provided with a signal and the TV set is on.
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Observe that all actions mentioned in the example have effects which
figure as preconditions for all ensuing actions. For instance, if current
breaks down at some intermediate state, all later actions will not be
feasible. Here we have a situation where the cpres operator becomes
important.

The following conditions ensure that preconditions of subsequent
actions are met.

(C1) [ν](cpres(connect; press on; scan;ω, CURRENT))

(C2) [ν](cpres(press on; scan;ω, SIGNAL))

(C3) [ν](cpres(scan;ω, TV ON))

(C4) [ν](cpres(ω, PROG))

(C5) [ν](tpres(plug in; connect; press on; scan;ω, GUIDE))

In condition (C4), the cpres operator collapses to the tpres oper-
ator, since ω is an elementary action term. In (C5), we only need
tpres because the presence of a TV guide is interesting only when the
agent selects a program; at the intermediate states of the installation
procedure, some other agent may cary the guide to another room, etc.

The problem of installing a TV set may now be solved as follows (`
is the deducibility relation of NPDL+):

(INI), (A1–5), (C1–5) ` [plug in; connect; press on; scan;ω; select]FAV PROG

(4)
The following argument sketch shows the relevant steps.

1. [plug in](CURRENT ⊃ [connect]SIGNAL)

(A2); Any.4.

2. [plug in][connect]SIGNAL

(A1), 1; modal logic.

3. [plug in][connect](CURRENT ∧ SIGNAL ⊃ [press on]TV ON)

(A3); Any.4, Comp.

4. [plug in][connect]CURRENT

(C1), (A1); Any.4, cPres, and modal logic.

5. [plug in][connect][press on]TV ON

2, 3, 4; modal logic.

6. [plug in][connect][press on](CURRENT ∧ SIGNAL ∧ TV ON ⊃ [scan]PROG)

(A4); Any.4, Comp.

7. [plug in][connect][press on]CURRENT

(C1), (A1); Any.4, cPres, Comp, and modal logic.
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8. [plug in][connect][press on]SIGNAL

(C2), 2; Any.4, cPres, Comp, and modal logic.

9. [plug in][connect][press on][scan]PROG

5, 6, 7, 8; modal logic.

10. [plug in][connect][press on][scan][ω]CURRENT

(C1), (A1); Any.4, cPres, Comp, and modal logic.

11. [plug in][connect][press on][scan][ω]SIGNAL

(C2), 2; Any.4, cPres, Comp, and modal logic.

12. [plug in][connect][press on][scan][ω]TV ON

(C3), 5; Any.4, cPres, Comp, and modal logic.

13. [plug in][connect][press on][scan][ω]PROG

(C4), 9; Any.4, cPres, Comp, and modal logic.

14. [plug in][connect][press on][scan][ω]GUIDE

(C5), (INI); Any.1, tPres, Comp, and modal logic.

15. [plug in][connect][press on][scan][ω](CURRENT ∧ SIGNAL ∧ TV ON∧

∧PROG ∧ GUIDE ⊃ [select]FAV PROG)

(A5); Any.4, Comp.

16. [plug in; connect; press on; scan;ω; select]FAV PROG

10, 11, 12, 13, 14, 15; Comp and modal logic.

In our formalisation, the combinatorial problem and the extended pre-
diction problem are solved by stating conditions which preserve facts
over sequences of actions. Thereby we exploit the power of the preser-
vation operators. We will discuss these problems at greater detail mo-
mentarily.

Now assume that the initial situation is described by the more
elaborate formula

GUIDE ∧ FRED ALIVE ∧ TWEETY FLYING

where, apart from the TV guide being at hand, Fred is alive and Tweety
is flying. We do not force these (possibly unrelated) facts be true after
the installation procedure. So other facts may vary freely, dependent
on activity of other agents; maybe Fred is shot or Tweety has its wing
broken. In this way, the overcommitment problem is solved.

Concerning the qualification problem, we cannot offer a solution
within our framework. We have no means to differentiate the treatment
of explicit preconditions from the treatment of qualifications. Consider
assumption (A2) of the installation example: the TV set being provided
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with current figures as an explicit precondition for the action consisting
of connecting the signal feed. On the other hand, qualifications which
may generally be assumed to hold (the antenna is not broken, there
is reception, and so on) have to be made explicit too. If we take into
account qualifications, our second premise has the rather unattractive
format

[ν](CURRENT ∧ ¬BROKEN ∧ RECEPTION ∧ ... ⊃ [connect]SIGNAL).

The problem is that we need to verify all qualifications which is notori-
ously inefficient. Here, nonmonotonic logics are clearly superior to our
approach. They handle qualifications by the (defeasible) assumption
that abnormalities (the antenna is broken, for instance) do not arise.
For a probabilistic justification of this assumption, see Schurz (1994).

A problem related to the frame problem is the ramification problem
(also called consistency constraint problem in Georgeff, 1987a). It is the
problem of stating all (known) effects of actions. In case of the action
of selecting a (favorite) program we should be able to say that the
action selects the program without having to specify the consequences
of the selection, for example, that watching a (favorite) program makes
the person happy. But our formalism seems easily amenable to that
problem. By means of the ‘any’ action we may express the following
(self-explaining) formula

[ν](FAV PROG ⊃ HAPPY)

and thereby avoid to make the fact HAPPY an explicit result of selecting
a favorite program. We simply state the fact as a domain constraint (for
more discussion on constraints, see Subsection 5.2). A similar route to
solve the ramification problem is taken by Ginsberg & Smith (1988a,
pp. 170–172).

5.2. Planning

We are now going to demonstrate that NPDL+ is an appropriate tool
to formalize concepts essential to planning. Planning is a discipline that
concentrates on problems adherent to the specification, verification, and
synthesis of plans (see Manna & Waldinger, 1980; Rosenschein 1981;
Georgeff, 1987b; Stephan & Biundo 1993). Plan synthesis concerns the
composition (‘synthesis’) of a plan, usually a compound action term,
to achieve some specified goal or goals. The process that checks if the
proposed plan meets its specification, is called verification. By speci-
fication one understands certain properties that describe the desired
behavior of the plan, in the first place, that the goal is satisfied.
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In this subsection, our concern is specification. To obtain consistent
axiomatizations of planning domains where the ‘clean’ behavior of a
plan is important, constraints of essentially two kinds need to be con-
sidered. Domain constraints make assertions about the whole scenario,
while the range of plan constraints is restricted to the plan under con-
sideration. Constraints on plans typically express assertions about the
ongoing behavior of a plan, and consequently regard intermediate states
of the execution. It will come as no surprise that domain constraints
and plan constraints in NPDL+ are dealt with by the ‘any’ action and
the concept of chronological preservation, respectively.

Domain constraints will have format [ν]C. If C is a term-free for-
mula, the constraint is called static, otherwise dynamic (see Rosen-
schein, 1981). For instance, the (dynamic) constraint “if a block is
not clear then moving another block to its top fails” is expressed by
the formula [ν](< α >> ⊃ A). Plan constraints will be expressed as
‘boundary’ conditions and defined via the cpres operator.

In order to illustrate these notions, we give an example from the
manufacturing domain.

A manufacturing example

Consider an agent (robot) working at a car-manufacturing plant. The
agent is supplied with a driver and a camera. The agent’s task consists
in turning screws until they are flush with the car-body.

The manufacturing domain is described as follows:

screw = the action consisting of turning the screw
FULL = the batteries are fully charged
Sn = the screwhead is n units apart from the car-body

Observe that the screwhead is flush with the car-body, if n = 0. Of
course, we assume that the Si’s are mutually exclusive, that is, ¬(Si∧Sj)

whenever i 6= j. We define τ ◦>
def
= τ◦(¬S0) and τ◦=

def
= τ◦(S0). Hence

we assume our camera’s operations of testing whether the screwhead
is still apart from the car-body or not are safe.

The entire plan our robot has to execute is ((τ ◦>; screw)∗; τ◦=).
Clearly this plan, if it terminates, will terminate in S0 (else τ◦= will
abort). But under which conditions will this plan terminate? The cru-
cial point is to ensure that for both the driver and the camera to work
the batteries must be loaded during the whole performance of the plan.

For convenience, we define bound(α,A)
def
= A ∧ cpres(α,A), that is,

A is a boundary condition during the performance of α. Hence our
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boundary condition is (the plan constraint)

bound((τ ◦>; screw)∗; τ◦=, FULL). (5)

We also assume the dynamic domain constraint

[ν]((FULL∧Sn) ⊃ (< screw >>∧[screw]Sn−1)), (for alln > 0) (6)

that is, the action screw applied to a state where the batteries are full
and the screwhead is n units away from the car-body will terminate and
after termination the screwhead is n− 1 units away from the car-body.
Since our test operation τ ◦> is non-stationary, we must explicitly add a
further assumption (dynamic domain constraint), namely that the test
operation performed by the camera has no effect on the position of the
screw, that is,

[ν]tpres(τ ◦>, Sn). (for all n > 0) (7)

This sounds trivial, but clearly, a defective robot which clashes with
the screwdriver whenever it tests whether n > 0 such that the screw is
turned some unit off the car, would never be able to execute the plan.

Within NPDL+, we may now prove our desired result, namely

(5), (6), (7), Sn ` [(τ◦>; screw)n]S0 ∧ < (τ◦>; screw)n; τ◦= >>, (8)

that is, first, whenever the action consisting of n times verifying n >

0 and then turning the screwhead terminates, the screwhead is fixed
(flush with the car-body) and second, the entire plan of performing this
action some number of times and then verifying that the screwhead is
fixed, will terminate if this number is n.

Here is a sketch of the proof. We first prove by induction on m that

< (τ◦>; screw)m >> (9)

[(τ◦>; screw)m]Sn−m (10)

follow from the premises (5), (6), (7) and Sn for each 0 < m ≤ n.
m = 1: Sn implies (1.a) < τ ◦> >> by snTest.3 and the assumption

that the Si’s are mutually exclusive, that is, Sn−m ⊃ ¬S0 for m < n.
(7) implies (1.b) [τ ◦>]Sn by Any.1, tPres and Sn. (5) implies (1.c)
[τ◦>]FULL by the definition of bound and the axiom for cpres. (1.b)
and (1.c) give us (1.d) [τ ◦>](FULL ∧ Sn) by modal logic. (1.a) and
(1.b) yield (1.e) < τ ◦> > Sn by modal logic. (1.c) and (1.e) give (1.f)
< τ◦> > (FULL ∧ Sn) by modal logic. (6) implies (1.g) [τ ◦>]((FULL ∧
Sn) ⊃ (< screw > > ∧ [screw]Sn−1)) by Any.4. By standard PDL,
(1.f) and (1.g) imply < τ ◦>; screw > >, and (1.d) and (1.g) imply
[τ◦>; screw]Sn−1, which proves the case for m = 1.
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m ⇒ m + 1: We assume (9) and (10) for a given m as induction
hypothesis and show that (9) and (10) hold for m+ 1. (5) implies (2.)
[(τ◦>; screw)m; τ◦>]FULL by the definition of bound, cPres and the
PDL-theorem [α∗]A ⊃ [αn]A. (3.) [(τ ◦>; screw)m](Sn−m ⊃< τ◦> >>)
follows from snTest.3 by modal logic and the assumption that the Si’s
are mutually exclusive. (9) and (10) imply (4.) < (τ ◦>; screw)m >Sn−m

and (4.) and (3.) imply (5.) < (τ ◦>; screw)m; τ◦> > > by standard
PDL. (6.) [(τ ◦>; screw)m]tpres(τ◦>, Sn) follows from (7) by Any.4.
(10) and (6.) imply (7.) [(τ ◦>; screw)m; τ◦>]Sn−m by the axiom for
tpres. Now, (5.) and (7.) imply (8.) < (τ ◦>; screw)m; τ◦> > Sn−m

by modal logic. From (2.), (8.) and modal logic it follows that (9.) <

(τ◦>; screw)m; τ◦> >(FULL∧ Sn−m). (6) implies (10.) [(τ ◦>; screw)m; τ◦>]((FULL∧
Sn−m) ⊃ (< screw > > ∧ [screw]Sn−m−1)) by Any.4. Finally, by
standard PDL, (9.) and (10.) imply < (τ ◦>; screw)m+1 >> and (7.)
and (10.) imply [(τ ◦>; screw)m+1]Sn−m−1, which was to prove.

Putting m = n, (10) gives us [(τ ◦>; screw)n]S0, the first conjunct we
wanted to prove; and this together with (9) gives (11.)< (τ ◦>; screw)n >

S0. snTest.3 implies (12.) [(τ ◦>; screw)n](S0 ⊃< τ◦= >>) by modal
logic. Finally, (11.) and (12.) yield < (τ ◦>; screw)n; τ◦= >>, the second
conjunct we wanted to prove. 2

Temporal plan theory

Recently, Manna et al. (1993) stressed the importance of ‘safety’ prop-
erties which are required to be true a intermediate states of plan ex-
ecution. They call them temporal properties, and the proposed theory
temporal plan theory. In our framework, plan constraints figure as dy-
namic logic counterparts to temporal properties (see also Rosenschein,
1981). As opposed to domain constraints, the range of plan constraints
is restricted to the plan under consideration. Manna et al. (1993) or-
ganize temporal properties into a hierarchy of several classes, whereby
each class is associated with a characteristic formula scheme. Within
NPDL+, all canonical schemes mentioned in Manna et al. (1993) are

easily adapted. Recall our definition of a boundary condition, bound(α,A)
def
=

A ∧ cpres(α,A).
Let π = α1; ...;αj ;αk; ...;αn be a fixed plan such that for all 1 ≤

i ≤ n, αi is an elementary action term, β an arbitrary action term, and
A,B term-free formulas.
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Safety bound(π,A)

Guarantee A ∨
∨

γ∈I(π)[γ]A

Obligation the disjunction of safety and guarantee

Response bound(π,A ⊃< β >B)

Persistence [α1; ...;αj ]bound(αk; ...;αn, A)

Reactivity the disjunction of response and persistence

The safety property has already been used, in the TV installation ex-
ample and in the manufacturing example. Guarantee asserts that A is
initially true or holds after some initial string of Rπ, and obligation is
the disjunction of the safety and the guarantee property. The response
property states that always during the performance of the plan, where
A holds, some state satisfying B is attainable via action β. Persistence
is of importance when the agent aims to achieve several goals simul-
taneously. It may be the case that a certain subgoal A results from
(successfully) executing the subplan α1; ...;αj , and after the final state
of this subplan (also called a protection point by Waldinger, 1977),
A is preserved throughout the rest of the plan, say, αk; ...;αn. The
disjunction of the two previous properties is called reactivity (see also
Pnueli, 1981).

5.3. Comparision to monotonic solutions

As mentioned in the Introduction, a solution to the combinatorial frame
problem has to avoid writing down frame axioms of format p ⊃ [α]p
for each fact-action pair p-α (p ∈ P0 a propositional variable, α ∈ Ael

an elementary action term). In the original formulation of McCarthy
& Hayes (1969), for a domain with m propositional variables and n

(elementary) action terms, m×n frame axioms are needed. 6 Recently,
more efficient monotonic solutions have been proposed in the situation
calculus. Schubert (1990) needs at most 2 × m (explanation closure)
axioms and Reiter’s (1991) axiomatization of action and frame axioms
requires m + n axioms in total (m the number of fluents and n the
number of actions).

If we make no assumptions on the domain, the number of frame
axioms needed in our approach is equally large as in the original for-
mulation of McCarthy & Hayes (1969). In the worst case, we have to

6 McCarthy & Hayes (1969) formulate the frame problem in the language of
situation calculus. In the terminology of situation calculus, propositional variables
are called propositional fluents.
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state m× n assertions of the form

[ν]tpres(α, p)

where p ∈ P0, α ∈ Ael. With help of nondeterministic choice we may
reduce this number to m axioms of the form

[ν]tpres





∑

α∈Ael

α, p



 .

The above axioms will guarantee that every state of affairs specified in
terms of P0 is preserved over every sequence of actions from Ael.

However, this is rather unrealistic. In planning contexts, the ter-
mination (or success) of actions always depends on the outcomes of
previous actions. Therefore, the ordering of elementary actions is es-
sential for the success of the plan, while most permutations of these
actions will lead into nonsensical or at least non-terminating action
sequences. For instance, the TV installation problem is of that sort. As
another example, take the problem of attaching a new wheel to a car.
First, the car is lifted by means of a (lifting) jack. Second, the wheel
is removed from the car. Third, a new wheel is attached to the car.
Finally, the jack is removed. It is important to perform the individual
actions in exactly that order. For instance, if the jack is removed after
removing the wheel, the whole plan aborts.

In the context of planning, therefore, preservation axioms are not
required for arbitrary action sequences, including all permutations, but
only for that sequence of actions which constitutes the plan (or in the
worst case, for all subsequences of that sequence). As seen from the
proof in the TV installation example, we formulate our preservation
conditions by the combination of the ‘any’ and the cpres operator.
Assume α1; ...;αn is the sequence defining the entire plan.7 In the best
case, we have just one precondition to be preserved over the entire
plan. This holds in the manufacturing example (condition 5, batteries
are fully charged). In the worst case, we have a distinct precondition pi
necessary for the termination of each action αi and all of its successor
actions.8

Then our preservation requirements are expressed by n axioms of
the form

[ν]cpres(αi; ...;αn, pi) (1 ≤ i ≤ n).

7 Note that in our framework the αi’s need not be elementary but may themselves
be composed.
8 This is the simplest case; instead of pi we might have also have a conjunction

of propositional variables pi
1 ∧ ... ∧ p

i
mi

.
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Typically, pi will be the outcome of action αi−1; but conditions pi may
also be externally given (like GUIDE in our TV example).

5.4. Comparision to nonmonotonic solutions

Nonmonotonic logics circumvent the computational problem of stat-
ing a large number of frame axioms by introducing a ‘blanket’ frame
axiom which covers all (atomic) facts and (elementary) actions. If one
abstracts from the different syntactical appearance of the blanket frame
axiom in nonmonotonic logics, an informal rendering of the frame
assertion might read (see Ginsberg, 1991):

(FA) if a fact p is true in a situation s and the action α is not abnormal
with respect to p when performed in s, then p is still true after
termination of α.

An action α is called abnormal with respect to p in s if α reverses the
truth-value of p. According to the policy of causal minimization (of
abnormalities), a fact changes its truth-value if and only if a terminat-
ing action (performed by the agent) causes it to do so (see Lifschitz,
1987). The circumscriptive approach (a nonmonotonic logic based on
some sort of minimization) became very popular, since it solves the
frame problem correctly and is robust as regards various aspects of
the frame problem (see the ‘standard’ solution of Baker, 1991). After
all, the circumscriptive policy usually minimizes the extension of the
‘abnormality’ predicate which seems unnatural to us when multiagent
domains are considered.

Our approach does not depend on normality assumptions. On the
contrary, we only force certain facts to persist, generally those which
are preconditions to ensuing actions or effects of actions while other
facts may vary due to activity of other agents.

Etherington et al. (1991) observe that nonmonotonic reasoning mech-
anisms fix the truth-value of too many facts. Hence, they introduce
a methodology of scoped nonmonotonic reasoning which restricts the
scope of reasoning to some pre-defined extension of a predicate. If ap-
plied to the blanket frame axiom (FA), their approach does not suffer
from the overcommitment problem: instead of minimizing ‘globally’,
that is, minimize changes of all facts if not forced otherwise, scoped
circumscription only minimizes abnormalities concerning certain prop-
erties p ∈ Pscope. Of course, a scope adequate for a specific problem has
to be determined in advance. In the context of nonmonotonic solutions
to the frame problem, Miller & Shanahan (1994) began to make up
criteria how to actually determine scope. For instance, the criterion of
causal independence states that actions can only affect facts (fluents in
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their terminology) within a specific region. In our approach, a process
similar to the identification of a scope consists in finding a set of facts
which are to be preserved over sequences of actions.

We may now substantiate the claim made in the Introduction: in
our monotonic approach and (unscoped) nonmonotonic logic (possi-
bly based on the minimization strategy) there is an opposite trade-off
between a satisfactory solution to the overcommitment problem and
the problems of extended prediction and qualification. To solve the
extended prediction problem, nonmonotonic logic employs a blanket
frame axiom which by default forces the domain to bemaximally stable,
that is, all facts remain unchanged over actions. Deviations from sta-
bility must be made explicit by stating abnormality assertions. In this
way, instability is introduced to the domain. In scoped nonmonotonic
logic, in addition to instability, ignorance of the truth-value of certain
facts can be introduced by scope restrictions. We approach the extended
prediction problem from the opposite side. If we are to maintain facts
over actions, we have to state frame axioms explicitly. As a consequence
of the monotonic character of our approach, we remain ignorant on facts
not (syntactically) appearing in the frame axioms. We have the choice of
formulating weaker or stronger frame axioms. Weak frame axioms allow
for independent activity of other agents, that is, a minimum amount
of facts is preserved. On the other hand, stronger frame axioms impose
increasing stability on the domain.

Observe that (chronological) preservation formulas are very compact
representations of frame axioms. Frame axioms which ‘transport’, say
an atomic fact over an elementary action are monotonic consequences
of [ν](cpres(α,A)) format formulas (α a compound action term, A an
arbitrary formula). Thereby, our approach avoids compuational diffi-
culties resulting from repeatedly applying a blanket frame axiom. For
a different strategy to avoid the computational problem with complex
facts and sequences of actions, see Ginsberg (1991).
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