Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-06T03:16:45.043Z Has data issue: false hasContentIssue false

The role of corollary motor discharges, the corpus callosum, and the supplementary motor cortices in bimanual coordination

Published online by Cambridge University Press:  04 February 2010

Bruno Preilowski
Affiliation:
University of Tuebingen, Weissenau Field Station, D-7980 Ravensburg, Federal Republic of Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Commentary
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogen, J. E. (1979) The callosal syndrome. In: Clinical neuropsychology, ed. Heilman, K. M. & Valenstein, E.. Oxford University Press. [rCG]Google Scholar
Brand, M. (1984) Intending and acting: Toward a naturalized action theory. MIT Press. [rGG]Google Scholar
Brinkman, C. (1982) Callosal section abolishes bimanual coordination deficit resulting from supplementary motor area lesion in the monkey. Society for Neurosdence Abstracts 8:734. [BP]Google Scholar
Brinkman, C. (1984) Supplementary motor area of the monkey's cerebral cortex: Shortand long-term deficits after unilateral ablation and effects of subsequent callosal section. Journal of Neuroscience 4:918–29. [rGG]Google Scholar
Brinkman, C. & Porter, R. (1979) Supplementary motor area of the monkey: Activity of neurons during performance of a learned motor task. Journal of Neurophysiology 42:681709. [rGG]CrossRefGoogle ScholarPubMed
Bruce, C. J., Goldberg, M. E., Buschnell, M. C. & Stanton, G. B. (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology 54:714–34. [rGG]Google Scholar
Burgess, J. W. & Villablanca, J. R. (1986) Recovery of function after neonatal or adult hemispherectomy in cats. II. Limb bias and development, paw usage, locomotion and rehabilitative effects of exercise. Behavioral Brain Research 20:118. [rGG]CrossRefGoogle ScholarPubMed
Cohen, L. (1970) Interaction between limbs during bimanual voluntary activity. Brain 93:259–72. [BP]Google Scholar
Churchland, P. S. (1986) Neurophilosophy: Toward a unified science of the mind/brain. MIT Press. [rGG]Google Scholar
Crow, T. J. (1985) The anhedonia hypothesis for neuroleptics and operant behaviour. Behavioral and Brain Sciences 8:174. [rGG]CrossRefGoogle Scholar
Dabrowska, J. (1971) Association of impairment after lateral and medial prefrontal lesions in dogs. Science 171:1037–38. [rGG]Google Scholar
Dabrowska, J. (1972) On the mechanism of go, no-go symmetrically reinforced task in dogs. Acta Neurobiologiae Experimental (Warsaw) 32:345–59. [rGG]Google ScholarPubMed
Evarts, E. V., Kimura, M., Wurtz, R. H. & Hikosaka, O. (1984) Behavioral correlates of activity in basal ganglia neurons. Trends in Neurosciences 7:447–53. [rGG]Google Scholar
Evarts, E. V., Shinoda, Y. & Wise, S. P. (1984) Neurophysiological approaches to higher brain functions. Wiley. [rGG]Google Scholar
Evarts, E. V. & Wise, S. P. (1984) Basal ganglia outputs and motor control. In: Functions of the basal ganglia. Ciba Foundation Symposium 107:8396. [rGG]Google Scholar
Fuster, J. M. (1973) Unit activity in the prefrontal cortex during delayed response performance: Neuronal correlates of short-term memory. Journal of Neurophysiology 36:6178. [rGG]CrossRefGoogle Scholar
Fuster, J. M. (1984) Behavioral electrophysiology of the prefrontal cortex. Trends in Neurosciences 7:408–14. [rGG]Google Scholar
Goldberg, G. (1985) Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences 8:567616.CrossRefGoogle Scholar
Goldberg, G. (1987) From intent to action: Evolution and (unction of the premotor systems of the frontal lobe. In: The frontal lobes re-visited, ed. Perecman, E.. IRBN Press. [rGG]Google Scholar
Goldberg, G. (in press) Principles of rehabilitation of the elderly stroke patient. In: New issues in stroke: Diagnosis, treatment, and rehabilitation among the elderly, ed. Dunkle, R. & Schmidley, J. W.. Springer-Verlag. [rGG]Google Scholar
Goldberg, G., Coslett, B., Marks, S. & Schilling, D. (1986) Alien hand sign: Disordered volition in medial frontal cortex infarction. Archives of Physical Medicine and Rehabilitation 67:633. [rGG]Google Scholar
Goldberg, G., Mayer, N. H. & Toglia, J. U. (1981) Medial frontal cortex infarction and the alien hand sign. Archives of Neurology 38:683–86. [rGG]Google Scholar
Gomez-Pinilla, F., Villablanca, J. R., Sonnier, B. J. & Levine, M. S. (1986) Reorganization of pericruciate cortical projections to the spinal cord and dorsal column nuclei after neonatal or adult cerebral hemispherectomy in cats. Brain Research 385:343–55. [rGG]CrossRefGoogle ScholarPubMed
Gordon, H. W., Bogen, J. E. & Sperry, R. W. (1971) Absence of deconnexion syndrome in two patients with partial section of the neocommissures. Brain 94:327–36. [BP]CrossRefGoogle ScholarPubMed
Hikosaka, O. & Wurtz, R. H. (1983) Visual and oculomotor function of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology 49:1268–84. [rGG]Google Scholar
Hoist, E. von & Mittelstaedt, H. (1950) Das Reafferenz-prinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Die Naturwissenschaften 37:464–76. [rGG, BP]Google Scholar
Hore, J. & Villis, T. (1984) Loss of set in muscle responses to limb perturbations during cerebellar dysfunction. Journal of Neurophysiology 51:1137–48. [rGG]CrossRefGoogle ScholarPubMed
Kimura, M., Rajowski, J. & Evarts, E. V. (1984) Tonically discharging putamen neurons exhibit set-dependent responses. Proceedings of the National Academy of Sciences U.S.A. 81:49985001. [rCG]CrossRefGoogle ScholarPubMed
Konorski, J. (1972) Some hypotheses concerning the functional organization of prefrontal cortex. Acta Neurobiologiae Experimentalis (Warsaw) 32:595613. [rGG]Google Scholar
Kornhuber, H. H. (1980) Introduction. In: Motivation, motor and sensory processes of the brain: Electrical potentials, behaviour and clinical use. Vol. 54, Progress in brain research, ed. Kornhuber, H. H. & Deecke, L.. Elsevier. [BP]Google Scholar
Lestienne, F. & Caillier, P. (1986) Role of the monkey substantia nigra pars reticulata in orienting behavior and visually triggered arm movements. Neuroscience Letters 64:109–15. [rGG]CrossRefGoogle ScholarPubMed
Libet, B. (1985) Unconscious cerebral initiative and the role of conscious will in action. Behavioral and Brain Sciences 8:529–39. [rGG]CrossRefGoogle Scholar
Lidsky, T. I., Manetto, C. & Schneider, J. S. (1985) A consideration of sensory factors involved in motor functions of the basal ganglia. Brain Research Reviews 9:133–46. [rGG]Google Scholar
MacKay, D. M. & MacKay, V. (1982) Explicit dialogue between left and right half-systems of split brains. Nature (London) 295:690–91. [rGG]CrossRefGoogle ScholarPubMed
Manetto, C. & Lidsky, T. I. (1986) Caudate neuronal activity in cats during head turning: Selectivity for sensory-triggered movements. Brain Research Bulletin 16:425–28. [rGG]CrossRefGoogle ScholarPubMed
Mann, S. E., Thau, R. & Schiller, P. H. (1986) The conditional response properties of single cells in monkey frontal dorsomedial cortex. Society for Neuroscience Abstracts 12:258. [rGG]Google Scholar
Mauritz, K. -H. & Wise, S. P. (1986) Premotor cortex of the rhesus monkey: Neuronal activity in anticipation of predictable environmental events. Experimental Brain Research 61:229–44. [rGG]CrossRefGoogle ScholarPubMed
Mazziotta, J. C., Phelps, M. E. & Wapenski, J. A. (1985) Human cerebral motor system metabolic responses in health and disease. Journal of Cerebral Blood Flow and Metabolism 5(supplement 1):5213–14. [rGG]Google Scholar
Meador, K. J., Watson, R. T., Bowers, D. & Heilman, K. M. (1986) Hypometria with hemispatial and limb motor neglect. Brain 109:293305. [rGG]Google Scholar
Olmstead, C. E., Villablanca, J. R., Sonnier, B. J., McAllister, J. P. & Gomez, F. (1983) Reorganization of cerebellorubral terminal fields following hemispherectomy in adult cats. Brain Research 274:336–40. [rGG]CrossRefGoogle ScholarPubMed
Petrides, M. (1986) The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. Journal of Neuroscience 6:2054–63. [rGG]Google Scholar
Porter, R. (1984) General discussion 1: Basal ganglia links for movement, mood and memory. In: Functions of the basal ganglia. Ciba Foundation Symposium 107:103–13. [rGG]Google Scholar
Preilowski, B. (1972) Possible contribution of the anterior forebrain commissures to bilateral coordination. Neuropsychologia 10:267–77. [rGG, BP]Google Scholar
Preilowski, B. (1975) Bilateral motor interaction: Perceptual-motor performance of partial and complete “split-brain” patients. In: Cerebral localization, ed. Ziilch, K. J., Creutzfeldt, O. & Galbraith, G. C.. Springer. [BP]Google Scholar
Preilowski, B. (1977) Phases of motor-skills acquisition: A neuropsychological approach. Journal of Human Movement Studies 3:169–81. [rGG, BP]Google Scholar
Preilowski, B. (1979) Intra- and intermanual weight discriminations: An investigation of possible interhemispheric processes in “split-brain” patients and normal subjects. Unpublished manuscript, University of Konstanz. [BP]Google Scholar
Prosser, C. L. (1986) Adaptational biology: Molecules to organisms. Wiley. [rGG]Google Scholar
Rolls, E. T., Thorpe, S. J. & Maddison, S. P. (1983) Responses of striatal neurons. I. Head of the caudate nucleus. Behavioral Brain Research 7:179210. [rGG]Google Scholar
Sasaki, K. & Gemba, H. (1982) Development and change of cortical field potentials during learning processes of visually initiated hand movements in the monkey. Experimental Brain Research 48:429–37. [rGG]CrossRefGoogle ScholarPubMed
Schell, G. R. & Strick, P. L. (1984) The origin of thalamic input to the arcuate premotor and supplementary motor areas. Journal of Neuroscience 4:539–50. [rGG]Google Scholar
Schlag, J. & Schlag-Rey, M. (1985) Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey. Experimental Brain Research 58:208–11. [rCG]Google Scholar
Schlag, J. & Schlag-Rey, M. (1987) Evidence for a supplementary eye field. Journal of Neurophysiology 57:179200. [rCG]Google Scholar
Schmidt, R. A. (1982) Motor control and learning: A behavioral emphasis. Human Kinetics Publishers. [rGG]Google Scholar
Schultz, W. (1986) Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory and complex events. Journal of Neurophysiology 55:660–77. [rGG]CrossRefGoogle ScholarPubMed
Searle, J. (1983) Intentionality. Cambridge University Press. [rGG]Google Scholar
Sergent, J. (1986) Subcortical coordination of hemisphere activity in commissurotomized patients. Brain 109:357–69. [rGG]CrossRefGoogle ScholarPubMed
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology 43:482–89. [rGG, BP]CrossRefGoogle ScholarPubMed
Sperry, R. W., Gazzaniga, M. S. & Bogen, J. E. (1969) Interhemispheric relationships: The neocortical commissures; syndromes of hemisphere disconnection. In: Handbook of clinical neurology, vol. 4, ed. Vinken, P. J. & Bruyn, G. W.. North-Holland. [BP]Google Scholar
Strick, P. L. (1983) The influence of motor preparation on the response of cerebellar neurons to limb displacements. Journal of Neuroscicnce 3:2007–20. [rGG]Google Scholar
Tanji, J. (1985) New findings on the behavior of supplementary motor area neurons in task-performing monkeys. Behavioral and Brain Sciences 8:599600. [rGG]Google Scholar
Tanji, J. & Evarts, E. V. (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. Journal of Neurophysiology 39:1062–68. [rGG]Google Scholar
Tanji, J. & Kurata, K. (1982) Comparison of movement-related activity in two cortical motor areas of primates. Journal of Neurophysiology 48:633–53. [rGG]CrossRefGoogle ScholarPubMed
Tanji, J., Taniguchi, K. & Saga, T. (1980) Supplementary motor area: Neuronal response to motor instructions. Journal of Neurophysiology 43:6068. [rGG]Google Scholar
Turvey, M. T. (1986) Intentionality: A problem of multiple reference frames, specificational information, and extraordinary boundary conditions on natural law. Behavioral and Brain Sciences 9:153–55. [rGG]CrossRefGoogle Scholar
Wilson, D. H., Reeves, A. & Gazzaniga, M. (1978) Division of the corpus callosum for intractable epilepsy. Neurology 28:649–53. [rGG]Google Scholar
Wise, S. P. (1985) The primate premotor cortex: Past, present and preparatory. Annual Reviews of Neuroscience 8:119. [rGG]Google Scholar
Zaidel, D. & Sperry, R. W. (1977) Some long-term effects of cerebral commissurotomy in man. Neuropscyhologia 15:193204. [rGG, BP]CrossRefGoogle ScholarPubMed
Ziilch, K. J. & Miiller, N. (1969) Associated movements in man. In: Handbook of clinical neurology, vol. 1, ed. Vinken, P. J. & Bruyn, G. W.. North-Holland. [BP]Google Scholar