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This paper analyses customers’ demand flexibility in a local power trading scenario through an Ising spin-based model. We look at
quantitative information on the two-way relationships between power exchanges and spin dynamics. To this end, amodified version
of the Metropolis-Hastings algorithm was implemented, including a gradient descent through the constraint surface. This allowed
us to analyse the system on a large scale (considering the cumulated benefit of all the actors involved) and also from the perspective
of total aggregation. In a maximum flexibility scenario, the total aggregation profit increases with the number of aggregators. We
also investigate numerically the effect of aggregator boundaries on the spin dynamics.

1. Introduction

How can customers’ collective behaviour affect the effi-
ciency of distributed power systems? Furthermore, could the
outcomes of this collective behaviour be exploited in the
forthcoming self-organised power systems? In this work, we
explore these matters analytically and numerically. An Ising
spin-based model allowed us to provide quantitative criteria
to couple system’s performance and customers’ standpoint on
being flexible or not in their demand.

Distributed power systems (DPSs) are complex ecosys-
tems encompassing machines, networks, procedures, oper-
ators, and customers organised in hierarchical layers [1].
After restructuring the power systems, new players have
appeared, such as Distribution System Operators (DSOs)
which provide electrical demand to local customers [2].
Also, customers are increasingly changing their roles from
passive (only consumer) to active (generators). Moreover,
recent Demand Response (DR) programs require customers
to make a timely adjustment of their demand [3]. In this
interwined subsystems, customers are also exposed to social

interactions that can influence their decision as in any
other community. In particular, users’ flexibility in power
consumption has a major influence on the performance of
the whole system [4, 5]. In turn, DPSs powerful restrictions to
maintain quality of service and security cause new constraint
forces applied to customer behaviour.

On the other hand, collective behaviour has features
which are hard to explain by classical statistical methods [6].
For example, the so-called herding behaviour or the economic
bubbles are phenomena lying outside analyses that neglect
large correlations and self-organisation occurring near the
critical point [7]. In regard to DPSs, a sharp transition in
customer’s behaviour (i.e., emergence) can trigger dramatic
consequences. To the best of our knowledge however, a quan-
titative analysis of the complexity of customers behaviour in
DPSs has not yet been provided. Ising-based models are a
promising approach as we demonstrate here.

The Lenz-Ising spin model is known since 1925 [8]. In
short, the model consists of an arrangement of interacting
agents which have two possible states (i.e., up and down).
Agents interact with their neighbours locally and are also
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exposed to external action and to thermal noise. In the
physics metaphor of a ferromagneticmaterial, the atoms tend
to align their quantum spins tominimise energy.However, for
high temperatures, the agents flip their spins randomly.There
is a critical temperature 𝑇𝑐 (known as Curie temperature)
for which the system suffers a sharp change—second-order
phase transition—from order to disorder. Near 𝑇𝑐 the system
has anomalous behaviour and the correlations among spin
states propagate fast to the entire system. As we will show in
Section 2, this model is fairly simple but powerful enough to
capture most of the features of complex systems (e.g., phase
transitions and universality) [9]. This has motivated many
researchers to apply the Isingmodel to different fields ranging
from ecology [10] to language evolution [11] (see [12] for a
discussion of the physical motivation of the model and its
limitations).

Given that social systems are both finite and heteroge-
neous, the Isingmodel has been exported in different flavours
to capture the phenomena under investigation. Perhaps the
most known of these Ising-like models is Tom Schelling’s
model of segregation [13] which has been shown to provide
insight into the mechanisms under segregation in U.S. cities.
Thismodel has been shown to roughly correspond to an Ising
model at 𝑇 = 0 [14]. In this regard, the temperature has been
understood as a proxy of tolerance in binary thermodynamic
societies; solubility corresponds to integration (i.e., mixing)
and the miscibility gap to segregation [15]. Ising inspired
systems have also been applied to financial markets to explain
expectation bubbles and economic crashes [16]. For instance,
the authors in [17] create a synthetic market where agents
can take three actions: buy, sell, or stay inactive. Also,
researchers in the power systems and electricity markets
domain have made an effort to include part of this complex
behaviour in the problem. For instance, in [18] bilateral
electricity markets are analysed as complex networks. In [19],
the authors use a game theoretic approach to understand
the cooperation between small-scale electricity production
and consumers. Multiagent systems (MAS) have also been
applied to electricitymarkets to allow decentralized decision-
making [20]. See, for instance, [21], where authors modelled
the behaviour of local consumers and producers as active
agents in the electricity market based on the distributed
control approach. More recently, the entity of aggregators
has entered into the modelling scene. These are agents
mediating between customers and distribution companies to
offer demand bulks at competitive price. In this context, the
authors in [22] define a bilevel problem where the upper-
level maximises the profit of the DSO, while the lower-level
maximises the profit of each aggregator. Finally, in [23] the
authors use a Hopfield neural network to optimise control in
power systems and make the whole system self-controlled.
Here, there is a super-system composed of several power
subsystems which are in turn aggregations of customers.
Each customer is simulated as a node in the neural network
with two possible states: generation and consumption. Since
the Hopfield network is formally equivalent to a spin-glass
model, the problem has some formal resemblance with our
work. However, our approach is very different. In [23], the
aim is to adjust demand and supply to balance the system and

let it work autonomously; agent interactions are determined
to maintain proper frequency and voltage values only and
there is no market. In our work, spins are agents in a decision
environment with power exchanges among aggregators, the
DSO, and the real-time electricitymarket (RTEM).Moreover,
in this paper, we assume that DSOs act as agents able to
participate in the real-time electricity markets to trade real-
time power in a two-way fashion. Notice that here we follow
the same approach as in [22], where DSO behaves as a
proactive market agent able to transact power with the real-
time electricitymarket.This way, besides the RTEM, theDSO
is able to trade power with local agents (e.g., aggregators and
nodal consumers). Therefore, consumers can play as virtual
generation agents according to their behaviour in terms of
flexibility.

For the first time, we couple the local power trad-
ing problem with an Ising-based model and analyse the
interrelationships between them. The Ising model provides
quantitative criteria regarding how the diffusion of flexi-
ble/nonflexible behaviour impacts the required constraints in
the optimisation problem.

This paper is structured as follows. First we describe
the local power exchange problem in Section 2 and how
the Ising model can be linked to it in Section 3. Then in
Section 4we analyse the problem at the large scale—the social
welfare—where we find how the power exchange problem
constrains the Ising model in different ways. In Section 5 we
decrease the scale and we focus on the problem from the
demand aggregator’s perspective. Finally we conclude and
make our final remarks in Section 6.

2. Hierarchical Model and Agent Interactions
in the Distributed Power Grid

In our setting, we consider a real-time interplay structure
among five kinds of actors: consumers, bus-loads, aggrega-
tors, DSOs, and RTEM. In Figure 1, we describe schematically
the power exchange problem and how it couples with the
spin model. The power system at distribution level involves
a hierarchical structure as shown in (a). Here, only DSO
is able to exchange power 𝑃RT𝑡 with the RTEM at price
𝜆RT𝑡 . At time 𝑡 each bus 𝑗 interchanges power with both
DSO (𝑃DSO2L𝑗𝑡 ) and aggregator 𝑘 (𝑃L2A𝑗𝑡 ) at prices 𝜆DSO2L and
𝜆L2A𝑘𝑡 , respectively. Then, a generic aggregator 𝑘 exchanges
an amount of 𝑃A2DSO𝑘𝑡 power with DSO at price 𝜆A2DSO𝑘𝑡 .
In this way, the power transaction between bus-loads and
aggregators is two-way according to the flexibility behaviour
from the demand side. Moreover, there are two-way power
exchanges between aggregator and DSO. However, the power
transaction between DSO and bus-loads is one-way: only
from DSO to bus-loads. In other words, bus-loads can only
buy real-time power from the DSO, while they are able
to buy/sell power from/to aggregators. Also, only DSO can
participate in the RTEM.

Each bus-load connects a set of customers whose state
in terms of demand corresponds to a binary state of a spin
(here represented as an arrow up/down mimicking the spin
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(d) Lattice arrangement of customers

Figure 1: Power exchange and the spin model. Each bus in (a), (c) groups customers interacting through the Ising Hamiltonian with binary
states represented by up/down arrows (b). Aggregators share the demand in the bus-loads (c) and customers are arranged into a 2D lattice
(d) in a way that preserves the bus distance partially.

metaphor). From the demand side, different types of power
balancing or other constraints can force cooperation among
customers either at interbus level (blue arrows) or at intrabus
level (pink arrow) in Figure 1(b). In this work, we use a 33-
bus reference system (Figure 1(c)) from [1]. This is composed
of 32 loads and an entry bus—indicated as “s/s”—playing
the role of a slack bus connected to the main grid; power
exchanges between the DSO and RTEM are done through
this slack bus. The whole demand in the distributed power
system is partitioned by aggregators. In our schematic we
show the case of three operators as in [22]. In this work, we
will use the data in [1] (shown in Table 1) as a reference for
the maximum scheduled loads at each bus. From this data
and assuming that a homemight consume around 13 kW[24],
we estimate the approximate number of customers per bus
(assuming one customer per home) which makes a total of𝑁 ≈ 289 customers. Finally in Figure 1(d), we show a 2D grid
arrangement where each of the 17 × 17 = 289 cells represents

a customer. Furthermore, we assume that in the bus-loads
there exists some notion of topological closeness (e.g., spatial
or electrical proximity) which is partially mapped onto the
square lattice.

More rigorously, given a set 𝐶 of 𝑁 consumers 𝐶 ={1, . . . , 𝑁}, a set 𝐵 of 𝑛𝐽 electrical buses 𝐵 = {1, . . . , 𝑛𝐽}, and a
set 𝐴 of 𝑛𝐴 potential aggregators 𝐴 = {1, . . . , 𝑛𝐴}, we arrange
two partitions: in-bus-communities 𝐶 = z𝑗∈𝐵𝐵𝑗 and bus-
aggregations 𝐵 = z𝑘∈𝐴𝐴𝑘. This way 𝐵𝑗 represents the subset
of consumers with loads electrically connected to bus 𝑗 and𝐴𝑘 stands for the subset of buses whose load is aggregated
by aggregator 𝑘. These quantities enable us to define the
following maps: (1) customer-bus map: Δ 𝑐𝑏 : 𝐶 × 𝐵 →{0, 1}; (𝑖, 𝑗) 󳨃→ 𝜒(𝐵𝑗)(𝑖) and (2) bus-aggregator map: Δ 𝑏𝑎 :𝐵×𝐴 → {0, 1}; (𝑗, 𝑘) 󳨃→ 𝜒(𝐴𝑘)(𝑗), where 𝜒𝐴(𝑥) represents the
indicator function. To lighten notation, we will useΔ 𝑖𝑗 orΔ 𝑗𝑘
to represent Δ 𝑐𝑏(𝑖, 𝑗) or Δ 𝑏𝑎(𝑗, 𝑘), respectively, depending on
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Table 1: Bus maximum scheduled load from [1] and number of
homes assuming that each home demands approximately 13 kW as
in [24].

Bus 𝐿max
𝑗 [kW] Homes

1 100 8
2 90 7
3 120 9
4 60 5
5 60 5
6 200 15
7 200 15
8 60 5
9 60 5
10 45 3
11 60 5
12 60 5
13 120 9
14 60 5
15 60 5
16 60 5
17 90 7
18 90 7
19 90 7
20 90 7
21 90 7
22 90 7
23 420 32
24 420 32
25 60 5
26 60 5
27 60 5
28 120 9
29 200 15
30 150 12
31 210 16
32 60 5

the context. Notice that because 𝐵𝑗 and 𝐴𝑘 partition the sets𝐶 and 𝐵, respectively, it holds that
∑
𝑗∈𝐵

Δ 𝑖𝑗 = 1,

∑
𝑘∈𝐴

Δ 𝑗𝑘 = 1,
∀𝑖, 𝑗 ∈ 𝐶, 𝐵.

(1)

This means that each customer is linked at least to one bus
which is in turn connected to at least one aggregator. Below,
we describe each agent in the system, specifying both its
constraints and its objective function.

2.1. Bus-Loads and Consumers. Each consumer 𝑖 ∈ 𝐶 has
an associated load 𝑙𝑖𝑡 at time 𝑡. Since each bus 𝑗 ∈ 𝐵

connects |𝐵𝑗| customers, the load at each bus 𝑗 at time 𝑡
is 𝐿𝑗𝑡 = ∑𝑖∈𝐵𝑗 𝑙𝑖𝑡. Additionally, each consumer load can be
split into a scheduled amount 𝑙𝑐𝑖𝑡 and a flexible portion 𝑙𝑓𝑖𝑡 ,
which represents how customers can act as either upward
or downward flexible loads: 𝑙𝑖𝑡 = 𝑙𝑐𝑖𝑡 − 𝑙𝑓𝑖𝑡 , ∀𝑖 ∈ 𝐶, 𝑡.
The sign convention here is that a positive flexibility 𝑙𝑓𝑖𝑡 >0 tends to reduce the scheduled load, whereas a negative
flexibility 𝑙𝑓𝑖𝑡 < 0would increase customer’s expected demand.
In other words, if 𝑙𝑓𝑖𝑡 > 0 the corresponding customer
decreases his day-ahead scheduled electrical demand in the
real time. However, if 𝑙𝑓𝑖𝑡 < 0 his real-time electrical demand
is more than his day-ahead scheduled demand. From these
expressions, we find that

𝐿𝑗𝑡 = 𝐿𝑐𝑗𝑡 − 𝐿𝑓𝑗𝑡, ∀𝑗 ∈ 𝐵, 𝑡, (2)

where we have introduced consistently 𝐿𝑐𝑗𝑡 = ∑𝑖∈𝐵𝑗 𝑙𝑐𝑖𝑡 and𝐿𝑓𝑗𝑡 = ∑𝑖∈𝐵𝑗 𝑙𝑓𝑖𝑡 . For the scheduled load at each bus 𝑗, we use
the expression:

𝐿𝑐𝑗𝑡 = 𝑃𝑠𝑡 𝐿max
𝑗

∑𝑗∈𝐵 𝐿max
𝑗

, ∀𝑗 ∈ 𝐵, 𝑡, (3)

where 𝑃𝑠𝑡 represents the power at the source bus and 𝐿max
𝑗 is

the normalised expected load at bus 𝑗 (see Table 1). The per-
bus flexible component splits itself into the power exchanged
with both DSO (𝑃DSO2L𝑗𝑡 ) and aggregator (𝑃L2A𝑗𝑡 ):

𝐿𝑓𝑗𝑡 = 𝑃L2A𝑗𝑡 − 𝑃DSO2L𝑗𝑡 , ∀𝑗 ∈ 𝐵, 𝑡. (4)

According to the schematic shown in Figure 1(a) loads can
only buy from the DSO and hence we have

𝑃DSO2L𝑗𝑡 ≥ 0, ∀𝑗 ∈ 𝐵, 𝑡. (5)

On the other hand, the bus-aggregator power exchanges are
bidirectional. If 𝑃L2A𝑗𝑡 < 0 demand at bus 𝑗 is buying from
aggregator, the flexibility decreases.However, if𝑃L2A𝑗𝑡 > 0 then
the flexibility of the bus is increased. This can be interpreted
as virtual generation injected into the aggregator decreasing
the scheduled load at time 𝑡.

Eventually, the amount of flexibility would be constrained
in different ways to ensure self-sustainability and dynamic
flexibility of all loads. In this work, we allow two types of
flexibility constraint:

∑
𝑗∈𝐵

𝐿𝑓𝑗𝑡 = 0, ∀𝑡, (6)

∑
𝑡

𝐿𝑓𝑗𝑡 = 0, ∀𝑗 ∈ 𝐵. (7)

On one hand, (7) is the definition of the shiftable-loads
(i.e., loads that can be shifted over time). On the other hand,
(6) increases the self-sustainability of the distributed power
system and converges the problem to the optimum social
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welfare. As we will see both constraints lead to different
scenarios.

The optimisation at each bus 𝑗 can be expressed as the
trade-off between load bought from DSO at price 𝜆DSO2L
and virtual generation sold to its aggregator 𝑘 at price 𝜆L2A𝑘𝑡
integrated over time:

OF𝑗∈𝐴𝑘 = 𝜆DSO2L∑
𝑡

𝑃DSO2L𝑗𝑡 −∑
𝑡

𝜆L2A𝑘𝑡 𝑃L2A𝑗𝑡 . (8)

This function must be minimised from the perspective of the
loads’ profit. However, both aggregators and DSO have their
own priorities as we show below.

2.2. Aggregators. Thefirst thing to notice is that each aggrega-
tor is able to sell to theDSOall the virtual generation collected
among the set of buses he operates on:

𝑃A2DSO𝑘𝑡 = ∑
𝑗∈𝐴𝑘

𝑃L2A𝑗𝑡 , ∀𝑘 ∈ 𝐴, 𝑡. (9)

Also there is a price model for these exchanges which is
constrained in the following way:

𝛿𝑘𝑡𝜆L2A𝑘𝑡 ≤ 𝜆A2DSO𝑘𝑡 ≤ 𝜆RT𝑡 , (10)

where 𝛿𝑘𝑡 ≥ 1 represents a lower bound threshold for
the aggregator-to-DSOprice compared to load-to-aggregator
price.This ensures aggregators’ profit, whichmakes it reason-
able for them to be part of the market. Also, the aggregator-
to-DSO price is limited by the DSO-to-market price; this
upper bound acts as a price control, limiting the bidding price
of aggregators below the real-time price. Here we will use
reference values from [22] for 𝛿𝑘𝑡 = 1.1, 𝜆L2A𝑘𝑡 and 𝜆RT𝑡 related
to the NordPool market. We summarise the respective values
in Tables 2 and 3.

The optimisation function for each aggregator 𝑘 can be
expressed as the accumulated balance over time between
power 𝑃A2DSO𝑘𝑡 sold to DSO at price 𝜆A2DSO𝑘𝑡 and power 𝑃L2A𝑗𝑡
bought from demand 𝑗, at price 𝜆L2𝐴𝑘𝑡 :

OF𝑘 = ∑
𝑡

∑
𝑗∈𝐴𝑘

𝜆L2A𝑘𝑡 𝑃L2A𝑗𝑡 −∑
𝑡

𝜆A2DSO𝑘𝑡 𝑃A2DSO𝑘𝑡 (11)

which as in the case of demand must be minimised to reach
a profitable situation from the aggregators’ perspective.

2.3. Distribution System Operator. In our model, DSO is
an agent able to exchange power directly with all other
agents in the system. As stressed, the DSO is the only player
who can exchange power with the RTEM. In the power-
flow balance, the power sold by the DSO to the whole
demand—bus-loads—arrives from the power transactedwith
both aggregators andmarket.We express this in the following
equation:

𝑃RT𝑡 + ∑
𝑘∈𝐴

𝑃A2DSO𝑘𝑡 = ∑
𝑗∈𝐵

𝑃DSO2L𝑗𝑡 . (12)

Table 2: Day-ahead market power transactions 𝑃𝑠𝑡 and real-time
market price 𝜆RT𝑡 obtained from [22].

Time (h) 𝑃𝑠𝑡 [kW] 𝜆RT𝑡 [€/kW]
1 1114,50 0,13
2 1114,50 0,12
3 1300,25 0,15
4 1114,50 0,11
5 2972,00 0,30
6 2972,00 0,32
7 3343,50 0,35
8 3715,00 0,40
9 3715,00 0,42
10 6315,50 0,66
11 6687,00 0,71
12 6687,00 0,74
13 6315,50 0,69
14 3715,00 0,50
15 3715,00 0,41
16 3715,00 0,40
17 3715,00 0,42
18 5572,50 0,60
19 5944,00 0,65
20 6315,50 0,67
21 6501,25 0,70
22 2972,00 0,35
23 1857,50 0,28
24 1486,00 0,15

Therefore, the DSOs optimisation function can be expressed
as the accumulated trade-off among these quantities, times
the respective prices over time:

OFDSO = ∑
𝑡

∑
𝑘∈𝐴

𝜆A2DSO𝑘𝑡 𝑃A2DSO𝑘𝑡 +∑
𝑡

𝜆RT𝑡 𝑃RT𝑡
− 𝜆DSO2L∑

𝑡

∑
𝑗∈𝐵

𝑃DSO2L𝑗𝑡 . (13)

This function will be minimised from the DSO’s perspective
to maximise its profit.

So far we have described the main actors in the power
exchange scenario with power balance and price constraints
along with the respective optimisation functions for each
agent. Now we describe the Ising model and our interpreta-
tion of its constituents in this context.

3. An Ising Spin Model for
Customers’ Flexibility

The Ising Hamiltonian (14) describes the interaction among
entities (i.e., agents or spins) given their state 𝑠𝑖 ∈ {−1, 1} and
between each spin and a global magnetic field 𝑏.The coupling
constant 𝐽measures the strength of spin-to-spin interactions.

𝐻 = −𝐽∑
⟨𝑖,𝑗⟩

𝑠𝑖𝑠𝑗 − 𝑏∑
𝑖

𝑠𝑖. (14)
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Table 3: Aggregator prices table obtained from [22].

Time (h) 𝜆L2A𝑘=1,𝑡 [€/kW] 𝜆L2A𝑘=2,𝑡 [€/kW] 𝜆L2A𝑘=3,𝑡 [€/kW]
1 0,05 0,08 0,06
2 0,05 0,08 0,07
3 0,05 0,09 0,07
4 0,04 0,07 0,05
5 0,11 0,18 0,15
6 0,12 0,20 0,16
7 0,13 0,22 0,17
8 0,15 0,24 0,19
9 0,16 0,25 0,20
10 0,24 0,41 0,33
11 0,26 0,42 0,36
12 0,28 0,43 0,37
13 0,25 0,40 0,32
14 0,18 0,26 0,21
15 0,15 0,24 0,20
16 0,14 0,22 0,18
17 0,15 0,25 0,19
18 0,20 0,36 0,30
19 0,21 0,36 0,29
20 0,22 0,41 0,30
21 0,24 0,42 0,33
22 0,12 0,22 0,16
23 0,11 0,19 0,15
24 0,06 0,09 0,07

The notation ⟨𝑖, 𝑗⟩ refers to pairs of spins belonging to the
same radius of action or neighbourhood. When 𝐽 > 1
(ferromagnetism) spins tend to align in the same direction
and if 𝐽 < 1 (antiferromagnetism) the spins tend to align
in opposite directions. For 𝐽 = 0, there is no spin-to-spin
interaction. The external action of a positive field 𝑏 > 0
will also foster positive spin alignments (and the other way
around for 𝑏 < 0). For a given temperature 𝑇 the probability
for finding a spin configuration Γ = {𝑠𝑖} is proportional to
the Boltzmann factor: exp(−𝐻/𝑘𝐵𝑇), where 𝑘𝐵 stands for the
Boltzmann constant. It is usual to take units such that 𝐽 = 1
and 𝑘𝐵 = 1. An important magnitude is the magnetisation
𝑀 = (1/𝑁)∑𝑁𝑖=1 𝑠𝑖 which measures the macroscopic effect of
the spin states. In the so-called Mean Field approximation its
value is 𝑇𝑐 = 2𝐽/(𝑘𝑏 log(1 + √(2))).

One way to implement the Ising model numerically
is through the Metropolis-Hastings algorithm [25], which
belongs to the family of the Markov Chain Monte Carlo
(MCMC) methods. Applied to our case it can be understood
as a random walk over the configuration space Ω = {Γ}
that converges to the Boltzmann distribution. In Algorithm 1
we show the pseudocode of a slight variant of the classical
algorithm where we have included the possibility for imple-
menting a constraint 𝑓 at each step. Here 𝑓 can represent
the constraints in (6) and (7). The idea is that the spin
shift is performed also when the constraint is minimised in
absolute value. The number of iterations is chosen so that the

final configuration reaches equilibrium. In operative terms
this means that the correlations among the spin states are
negligible at this point.

The size of the lattice is another important factor when
using the model. On one hand, a small lattice with free
boundary conditions—the one used here—shows border
effects which are not present in large systems or in systems
with other boundary conditions (e.g., periodic). In particular,
this can affect the number of iterations to decorrelate the
system and the potential transitions of state. There is an
interesting debate on whether finite systems can undergo
phase transitions or not [26]. Clearly, a finite system cannot
reproduce a singularity in a purely mathematical sense using
a finite number of sums. As it is shown in [26] phase
transitions in finite systems tend to be rounded and smoothed
near the critical points. In Figure 2 we show the autocor-
relation function for the spin states between the initial and
evolved configuration for increasing number of iterations.
We start with a random initial configuration for the 17 × 17
spin system shown in Figure 1(d). For > 5𝑘 iterations it is
possible to achieve a reasonable value of decorrelation. In the
inset, we show the phase transition in𝑀 beyond 𝑇𝑐. Notice
how the numerical implementation is still able to reproduce
qualitatively the transition 𝑀 = ±1 → 0 although in a
smoothed and rounded way.

When using this model one has to fix the interpretation
for the following elements: (1) spin states, (2) spin-to-spin
interactions, (3) external field, (4) magnetisation, and (5)
temperature. In our setting, we can parametrize the eagerness
of consumer 𝑖 to follow the flexibility program at time 𝑡 with
two state variables: (1) flexible 𝛾𝑖𝑡 = 1 and (2) not flexible:𝛾𝑖𝑡 = −1. A possible and simple model for 𝑙𝑓𝑖𝑡 is then

𝑙𝑓𝑖𝑡 = 𝑙𝑐𝑖𝑡𝛾𝑖𝑡. (15)

The spin-to-spin interaction can be a proxy for commu-
nication among customers and the external field 𝑏 can
simulate a top-down directive forcing customers to follow
some policies or Demand Response (DR) programs that are
adopted by players in the top layers of the system (e.g.,
DSO and aggregators). On the other hand, in the context
of financial markets [27] interprets 𝑀 as a measure for
the deviation from the fundamental value; if 𝑀 is large
agents are afraid of trading unless they have strong support
from their private opinions or from their neighbours. In
our case 𝑀 = 1 and 𝑀 = −1 represent that the system
has either maximum or minimum flexibility. A value of 𝑀
close to 0 is interpreted as a perfect balance where half of
the customers are flexible and the other half is not. Finally,
the temperature can represent customers’ uncertainty about
the effectiveness of the flexibility program that can impact
on the reliability and security of the system. We can also
associate 𝑇 with noise in customers’ information channels;
too much noise destroys the spontaneous magnetisation
(max/min flexibility previously achieved) [15]. Also, when the
“social temperature” [28] is high it destroys large domains
(subpopulations) and hence it favours the mixing of options.

Let us also assume that all consumers connected to a bus
have the same amount of scheduled load: 𝑙𝑐𝑖𝑡 = 𝑙𝑐𝑗𝑡 > 0, ∀𝑖 ∈
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INPUT: Δ 𝑐𝑏, Γ, 𝑓, 𝑇, 𝑛𝑢𝑚.𝐼𝑡𝑒𝑟𝑠
OUTPUT: Γ󸀠𝑡(1) 𝑖𝑡𝑒𝑟 ← 0(2) while 𝑖𝑡𝑒𝑟 ≤ 𝑛𝑢𝑚.𝐼𝑡𝑒𝑟𝑠 do(3) 𝑛 ← pick a random spin from Γ(4) Δ𝐸 ← 2𝛾𝑛𝑡∑⟨𝑖,𝑛⟩ 𝛾𝑖𝑡 {energy change if spin flipped}(5) 𝑃(Δ𝐸) ← exp(−Δ𝐸/𝑇) {Boltzmann’s probability for Δ𝐸}(6) 𝛾󸀠𝑖𝑡 ← 𝛾𝑖𝑡(1 − 2𝛿𝑖𝑛) {new configuration if spin flipped}(7) 𝑀󸀠𝑗𝑡 ← (1/𝑛𝑗) ∑𝐵j 𝛾󸀠𝑖𝑡 {bus magnetization in new configuration}
(8) if |𝑓(𝑀󸀠𝑗𝑡)| ≤ |𝑓(𝑀𝑗𝑡)| then(9) 𝑥 ← random number ∈ [0, 1] from uniform distribution(10) if (Δ𝐸 ≤ 0 or 𝑥 ≤ 𝑃(Δ𝐸)) then(11) Γ󸀠𝑡 ← Γ𝑡 \ {𝛾𝑛𝑡} ∪ {−𝛾𝑛𝑡} {flip spin}(12) end if(13) end if(14) 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1(15) end while

Algorithm 1: Constrained Metropolis-Hastings (CMH).
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Figure 2: Autocorrelation function for the spin states between
initial and evolved configurations. Grey dots represent numerical
realisations and the blue line represents the average.The inset shows
the phase transition in𝑀 beyond 𝑇𝑐 (red line).

𝐵𝑗, 𝑗, 𝑡 (notice that this does not reduce the generality of the
problem; we can always adjust the number of customers per
bus to represent the scheduled per-bus load 𝐿𝑐𝑗𝑡). Therefore,
the flexible component of the load at bus 𝑗 at time 𝑡 renders

𝐿𝑓𝑗𝑡 = 𝑙𝑐𝑗𝑡𝑀𝑗𝑡𝑛𝑗, (16)

where 𝑛𝑗 = |𝐵𝑗| represents the number of customers in
bus 𝑗 and 𝑀𝑗𝑡 stands for the bus magnetisation 𝑀𝑗𝑡 ≡(1/𝑛𝑗) ∑𝑖∈𝐵𝑗 𝛾𝑖𝑡. Let us also define dimension-free variables
∀𝑗 ∈ 𝐵, 𝑡 as follows: 𝜂𝑗𝑡 ≡ 𝑃L2A𝑗𝑡 /𝐿𝑐𝑗𝑡 and 𝜓𝑗𝑡 ≡ 𝑃DSO2L𝑗𝑡 /𝐿𝑐𝑗𝑡.
Further, we assume that the real-time power exchanged from
DSO and RTEM is a factor of the total load the DSO has to

supply to buses.𝑃RT𝑡 ≡ ∑𝑗∈𝐵 𝜃𝑗𝑡𝐿𝑐𝑗𝑡.With these definitions and
(4), we find

𝜂𝑗𝑡 − 𝜓𝑗𝑡 = 𝑀𝑗𝑡, ∀𝑗 ∈ 𝐵, 𝑡. (17)

Notice that the power flow from aggregator 𝑘 to DSO in (9)
can be expressed as

𝑃A2DSO𝑘𝑡 = ∑
𝑗∈𝐵

Δ 𝑗𝑘𝑙𝑐𝑗𝑡𝜂𝑗𝑡𝑛𝑗. (18)

Also, from (1), (12), and (18) one can express the DSO power
constraints as

∑
𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡 (𝜃𝑗𝑡 + 𝜂𝑗𝑡 − 𝜓𝑗𝑡) = 0, ∀𝑡. (19)

Since 𝑙𝑐𝑗𝑡 ≥ 0, ∀𝑗 ∈ 𝐵, 𝑡 and 𝑛𝑗 ≥ 0, ∀𝑗 ∈ 𝐵, inequality 5 is
expressed as

𝜓𝑗𝑡 ≥ 0, ∀𝑗 ∈ 𝐵, 𝑡. (20)

Notice that constraints (17) and (19) can be combined into

∑
𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡 (𝜃𝑗𝑡 +𝑀𝑗𝑡) = 0, ∀𝑡. (21)

Finally, flexibility constraints in (6), (7) can be expressed
through (16) as

∑
𝑗∈𝐵

𝑙c𝑗𝑡𝑛𝑗𝑀𝑗𝑡 = 0, ∀𝑡, (22)

∑
𝑡

𝑙𝑐𝑗𝑡𝑀𝑗𝑡 = 0, ∀𝑗 ∈ 𝐵. (23)

By combining constraints (10), (17), (19), (20), with either
(22) or (23) and different objective functions, we can build
scenarios from different perspectives and scales as we show
below.
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4. Large Scale Optimisation: Flexibility and
Social Welfare

With the definitions above and from (8), we find the optimi-
sation for each bus 𝑗:
OF𝑗 = ∑

𝑡,𝑘∈𝐴

𝑛𝑗𝑙𝑐𝑗𝑡Δ 𝑘𝑗 (𝜆DSO2L𝜓𝑗𝑡 − 𝜆L2A𝑘𝑡 𝜂𝑗𝑡) ,
∀𝑗 ∈ 𝐵, 𝑡,

(24)

(where we have used OF𝑗 = ∑𝑘∈𝐴 Δ 𝑘𝑗OF𝑗∈𝐴𝑘). The optimisa-
tion functions for each aggregator from (9) and (11) render

OF𝑘 = ∑
𝑡,𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡Δ 𝑘𝑗 (𝜆L2A𝑘𝑡 − 𝜆A2DSO𝑘𝑡 ) 𝜂𝑗𝑡, ∀𝑘 ∈ 𝐴, 𝑡, (25)

where we have used ∑𝑗∈𝐴𝑘[⋅] = ∑𝑗∈𝐵 Δ 𝑘𝑗[⋅]. Finally, from (9)
and (13), we find

OFDSO = ∑
𝑡,𝑘∈𝐴,𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡 [Δ 𝑘𝑗𝜆A2DSO𝑘𝑡 𝜂𝑗𝑡 + 𝜆
RT
𝑡𝑛𝐴 𝜃𝑗𝑡

− 𝜆DSO2L𝑛𝐴 𝜓𝑗𝑡] , ∀𝑡.
(26)

By defining OF𝐿 ≡ ∑𝑗∈𝐵OF𝑗 and OF𝐴 ≡ ∑𝑘∈𝐴OF𝑘, the
total load and total aggregation objective functions are found
straightforward. Finally our objective is to maximise the
social welfare of the distributed power system. Hence, the
optimisation function is defined as OF𝑊 = OF𝐿 + OF𝐴 +
OFDSO to ensure the maximised profits of all players (DSO,
aggregator, and bus-loads) in the distributed power system.
The global optimisation function OF𝑊 can be expressed as

OF𝑊 = ∑
𝑡

𝜆RT𝑡 ∑
𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡𝜃𝑗𝑡. (27)

Notice how from this global scale the specifics about
power exchanges between DSO-to-demand, demands-to-
aggregators, and aggregators-to-DSO cancel out. The only
relevant quantity which remains is the aggregated power
exchanges between the DSO and RTEM integrated over time.
From constraint (21) it holds

OF𝑊 = −∑
𝑡

𝜆RT𝑡 ∑
𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡 (28)

which links the objective function to the spin flexibility.
What this equation is telling us is that social welfare

increases (OF𝑊 isminimised)when flexibility increases. Now
depending on which additional constraint we use for the
flexible amount ((22) or (23)), there are two main scenarios
to analyse:

𝑆1(Shiftable-Loads):{{{{{

OF𝑊 = −∑
𝑗∈𝐵

𝑛𝑗∑
𝑡

𝜆RT𝑡 𝑙𝑐𝑗𝑡𝑀𝑗𝑡
∑
𝑡

𝑙𝑐𝑗𝑡𝑀𝑗𝑡 = 0, ∀𝑗 ∈ 𝐵, (29)

𝑆2(Self-Sustainability):{{{{{
OF𝑊 = 0
∑
𝑗∈𝐵

𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡 = 0, ∀𝑡. (30)
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Figure 3: Resulting per-bus magnetisations. Blue dotted line shows
the values for the normalised RTEM prices 𝜆RT𝑡 . The red dot repre-
sents a situation where the discrete spin system is unable to comply
with the electrical constraint by flipping spin states.

These two forms for constraining customers’ flexibility lead
to very different strategies in terms of consumers’ interaction
and cooperation (see arrows in Figure 1(b)). The constraint
in 𝑆1 can be achieved by asking spin communities to adjust
their flexibility over time independently of other commu-
nities; the only requirement is that at the end of the 24 h
cycle each bus 𝑗 renders ∑𝑡 𝑙𝑐𝑗𝑡𝑀𝑗𝑡 = 0. This can be set
into a linear programming problem for the variables 𝑀𝑗𝑡.
On the other hand, in scenario 𝑆2 the objective function
vanishes regardless of consumer’s flexibility.However, in-bus-
communities (i.e., spin communities) are forced to constrain
their spin state every hour so that the whole system renders∑𝑗∈𝐵 𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡 = 0. This requires a level of coordination
among the bus communities at every hour 𝑡.
4.1. Shiftable-Loads. The constraint in (29) can be imple-
mented as follows. First we solve the optimisation problem
in (29). The output is the per-bus magnetisations 𝑀𝑗𝑡.
Notice that the constraint can be factorised in 𝑗. This way,
minimising OF𝑊 is equivalent to solving

min −∑
𝑡

𝜆RT𝑡 𝑃𝑠𝑡𝑀𝑗𝑡
s.t. ∑

𝑡

𝑃𝑠𝑡𝑀𝑗𝑡 = 0.
(31)

For all 𝑗 ∈ 𝐵. Therefore the solutions 𝑀𝑗𝑡 do not depend
on 𝑗 and we can write 𝑀𝑡 ≡ 𝑀𝑗𝑡, ∀𝑗 ∈ 𝐵. In Figure 3
we show the solution along with the RTEM prices scaled in
the following way: 𝜆RT𝑡 = 2(𝜆RT𝑡 − min(𝜆RT𝑡 ))/(max(𝜆RT𝑡 ) −
min(𝜆RT𝑡 )) − 1 ∈ [−1, 1]. This scaling makes both quantities
comparable. Notice how the bus-flexibility solution follows
the RTEM prices over time. This means that at demand peak
times (10–13 h) and from (18–21 h) it is necessary to increase
customers’ flexibility.

Then we might ask how the spin system can comply with
the total magnetisation imposed by the electrical constraints
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at every time 𝑡 (see Figure 3). We need each spin-community𝛾𝑖𝑡, ∀𝑖 ∈ 𝐵𝑗 to follow the constraint:

∑
𝑖∈𝐵𝑗

𝛾𝑖𝑡 = 𝑛𝑗𝑀𝑡, ∀𝑗, 𝑡. (32)

This must hold for each bus-community of size 𝑛𝑗 for all
times. By redefining the spin states as 𝑠𝑖𝑡 ≡ (1 + 𝛾𝑖𝑡)/2 with𝑠𝑖𝑡 ∈ {0, 1}, the constraint in (32) is equivalent to

∑
𝑖∈𝐵𝑗

𝑠𝑖𝑡 = 𝑛𝑗2 (1 +𝑀𝑡) , ∀𝑗, 𝑡. (33)

Since the spin system is discrete, the left hand side of (33) is a
positive natural number: N+ ∋ 𝑥 ≡ ∑𝑖∈𝐵𝑗 𝑠𝑖𝑡. Therefore, there
is no solution if𝑀𝑡 is not a rational number:𝑀𝑡 ∉ Q. If𝑀𝑡 ∈
Q (i.e., 𝑀𝑡 = 𝑎/𝑏; 𝑎, 𝑏 ∈ Z, 𝑎, 𝑏 ̸= 0), there is a solution
when

(1) 𝑎 = 0 and 𝑛𝑗 is even; the solution consists in having
half of the spins up and half down;

(2) 𝑎 = 𝑏 with solution 𝑠𝑖𝑡 = 1, ∀𝑖;
(3) 𝑎 = −𝑏 with solution 𝑠𝑖𝑡 = 0, ∀𝑖;
(4) 𝑎/𝑏 ∈ (−1, 0) and 𝑛𝑗 is a multiple of 2𝑏.

Notice that in Figure 3 all solutions are𝑀𝑡 = ±1 for all times
except for 𝑡 = 18, where we found 𝑀𝑡 = −0.4. In the first
case the only possible solutions are 𝑠𝑖𝑡 = 1, ∀𝑖 if𝑀𝑡 = 1 and𝑠𝑖𝑡 = 0, ∀𝑖 if𝑀𝑡 = −1. However, in the latter case of𝑀𝑡 =−0.4 = −2/5 customers will not be able to flip their states
in order to attain this magnetisation; although we are in case(4), none of the available buses connects a number of homes
which is a multiple of 5 (Table 1).

This evidences a potential limitation of a discrete model
when it is coupled to the local power exchange problem. In
the presence of electrical constraints, a discrete system will
in general not be able to follow the continuum limit every
time. A possible strategy to cope with this situation is to
include an external effect (field) in the customer interactions
to force their flexibility. In the Ising parlance, this is equivalent
to setting 𝑏 > 0 in the Ising Hamiltonian of (14). Then we
can measure how customer’s flexibility increases by setting𝑀𝑡=18 = −1, evolve the system for different field intensities,
and see if we reach 𝑀𝑡=19 = 1. In Figure 4 we show
the final magnetisation for a pair of (𝑇, 𝑏) reached from a
starting configuration with all spins down (𝑀 = −1) after
10k iterations using the Metropolis algorithm without any
constraint. Magnetisations are averaged from 5000 Monte
Carlo runs for each (𝑇, 𝑏) combination. As a reference we
find the field strength 𝑏 = 1.5 that makes the system reach𝑀𝑡 = 1 at the theoretical critical temperature 𝑇𝑐 (blue dotted
line in the inset).This is a way of forcing the so-called herding
behaviour by imposing a top-down approach. Notice how the
external action ramps up customers’ flexibility. However, if
temperature is high, the noisewill destroy these dynamics and
the intended constraint can not be reached.
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Figure 4: Ramping up to meet maximum flexibility. Each curve
represents the final magnetisation for a pair of (𝑇, 𝑏) reached from
a starting configuration with all spins down (𝑀 = −1). The inset
shows the curve for 𝑏 = 1.5 (grey dots are numerical realisations and
red line represents the averaged value) and the critical temperature
(blue vertical line).

4.2. Self-Sustainability. Now let us explore a different situa-
tion where loads are forced to adjust so that ∑𝑗∈𝐵 𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡 =0 at every time. A simple way to tackle this problem is
by seeking solutions where the total magnetisation is either
maximised or minimised. Hence, the problem can be set in
terms of an Integer Linear Programming (ILP) problem of
the form:

max (min) ∑
𝑗

𝑀𝑗𝑡
s.t. ∑

𝑗

𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡 = 0
− 1 ≤ 𝑀𝑗𝑡 ≤ 1
𝑀𝑗𝑡 ∈ Z.

(34)

Analogous for 𝑗 in the shiftable-loads case, now the optimal
solutions𝑀𝑗𝑡 do not depend on time and we can set 𝑀𝑗 ≡𝑀𝑗𝑡, ∀𝑡. For each case (max or min) we have the range of
values for𝑀𝑗 = {−1, 0, 1}. In Figures 5(a) and 5(b) we show
both solutions with our spin arrangement (Figure 1(c)). The
maximisation solutions from the system in (34) result in 125
locationswith𝑀𝑗 = −1, 132with𝑀𝑗 = 1, and 32with𝑀𝑗 = 0.
On the other hand, the minimisation results in 132 locations
with𝑀𝑗 = −1, 125 with𝑀𝑗 = 1, and also 32 with𝑀𝑗 = 0.
Therefore, the total magnetisation in both cases is 7 and −7
for the maximisation or minimisation problem, respectively.

As in Scenario 𝑆1, spin communities with constraints𝑀𝑗 = 1 or𝑀𝑗 = −1 can be obtained by switching the spin
states regardless of the size of the community. However for
the𝑀𝑗 = 0 communities (shown in white color in Figure 5),
a solution is only found when 𝑛𝑗 is even.Therefore, buses 𝑗 =10, 28 in themaximisation and 𝑗 = 3, 10 for theminimisation,
respectively, will lack a solution as indicated by a red label in
the figure. We have also verified this numerically by solving
the following simple Binary Linear Programming (BLP)
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1 3 6 7 8 12 15 18 20 24 24 25 28 29 31
1 3 6 7 9 12 15 18 20 24 24 26 28 30 31
1 3 6 7 9 13 15 18 20 24 24 26 28 30 31
1 3 6 7 9 13 15 18 21 23 23 26 29 30 31
1 3 6 7 9 13 16 18 21 26 29 30 31
1 3 6 7 9 13 16 18 21 24 24 26 29 30 31
1 3 6 7 10 13 16 19 21 24 24 

24 24 
24 24 

27 29 30 31
1 4 6 7 10 13 16 19 21 24 24 27 29 30 31
2 4 6 7 10 13 16 19 21 24 24 27 29 30 31
2 4 6 7 11 13 17 19 21 24 24 27 29 30 31
2 4 6 7 11 13 17 19 22 23 23 

23 23 
23 23 
23 23 
23 23 
23 23 
23 23 

23 23 

23 23 
23 23 

23 23 
23 23 
23 23 

24 24 2Z 29 30 31
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Figure 5: Electrical constraints and spin solutions in a self-sustainability scenario. (a, b) Max/min solutions with𝑀𝑗 = −1 (red),𝑀𝑗 = 0
(white), and𝑀𝑗 = 1 (blue); numbers indicate the bus number the customers belong to. (c, d) Spin solutions with 𝛾𝑗𝑡 = −1 (red), 𝛾𝑗𝑡 = 1
(green), and grey color if there is no solution.

problem for each bus-community (notice that minimising
instead of maximising the problem will provide the same
result; the only difference among solutions is the switching
of states in the bus communities when 𝑛𝑗 is an even number).

max
𝑛𝑗∑
𝑖=1

𝑠𝑖

s.t.
𝑛𝑗∑
𝑖=1

𝑠𝑖 = 𝑛𝑗2 (1 +𝑀𝑗)
𝑠𝑖 ∈ {0, 1} .

(35)

We show the spin solutions from (35) in Figures 5(c) and 5(d).
Since these constraints must hold for all times, it is

interesting to check how robust the system is for complying
with such magnetisations. To this end we test the robustness
as follows:

(1) Regularise buses with𝑀𝑗 = 0 and 𝑛𝑗 odd by rewir-
ing a random customer from another bus with𝑀𝑗 ̸=

0.This results in a feasible spin configuration compat-
ible with the constraints in (30).

(2) Perturb the feasible spin solution with strength 𝑞 by
switching the state of round(𝑞/𝑁 ⋅ 100) spins.

(3) Evolve the spin system with both the unconstrained
Metropolis and with the CMH algorithm for a range
of temperatures 𝑇/𝑇𝑐 = 0.5, 0.6, . . . , 1.5.

(4) Measure the value of the constraint 𝐹 = ∑𝑗 𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗 in
both cases.

(5) In the resulting ensemble find the realisation with
minimum 𝐹 and monitor how |𝐹| deviates from 0.

We found that the constraints-free evolution renders𝐹 values
of 3 orders of magnitude larger than those obtained with the
constrained version (CMH). The results of this experiment
are shown in Figure 6. Here we compare on a normalised
scale how the constraints deviate from 0 as we perturb the
feasible spin solution with increasing perturbation strength.
We measure the perturbation by the Hamming distance
between the original and the perturbed configuration. Every
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(d) Constrained evolution: 𝑏 = 5

Figure 6: Constraint robustness in a self-sustainability scenario. (a, b) Unconstrained evolution. (c, d) Evolution with the CMH version.The
size of the points is proportional to the temperature where the minimum value of |𝐹| is found.

point represents the average value of 20 Monte Carlo replicas
for the same parameters. As expected, the unconstrained
evolution fails to provide a systematic trend in these dynamics
since once the constraint is broken, there are no mechanisms
to bend the spin dynamics towards regions with increasing
feasibility. However, we find a pattern for the constrained
evolution: as we deviate from the solution the value for 𝐹
increases monotonically (worsening the feasibility). Notice
that if perturbations are large, the minimum 𝐹 is only
found for high temperatures, since as we increase thermal
fluctuations, the system will be able to explore different
configurations and discover lower 𝐹 values.

The effect of the external field is different in both cases. In
the unconstrained case the field only tilts up the values and
reduces the noise. This is useless in our case since the field
action reinforces the perturbations worsening the constraint.
In the constrained case, however, the field linearises the point
pattern on our scaling (we have added a dotted grey line for

reference) and this improves feasibility.Therefore, an external
action in the community would not be useful for recovering
flexibility unless additional mechanisms are implemented to
penalise deviations from the feasible region. These actions
can be implemented smoothly because the drift from opti-
mality increases monotonically with the perturbation.

5. The Aggregators’ Perspective

From (17) and (25) we find that the total aggregation optimi-
sation function renders

OF𝐴 = ∑
𝑡𝑗

𝑛𝑗𝑙𝑐𝑗𝑡 (𝜓𝑗𝑡 +𝑀𝑗𝑡)∑
𝑘

Δ 𝑘𝑗 (𝜆L2A𝑘𝑡 − 𝜆A2DSO𝑘𝑡 ) (36)

which must attain a minimum value to maximise total aggre-
gation profit. Each aggregator-to-DSO transaction has a price
𝜆A2DSO𝑘𝑡 bounded by constraint (10) and as stressed before:
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𝜆A2DSO𝑘𝑡 ≥ 𝛿𝑘𝑡𝜆L2A𝑘𝑡 . Since we also have 𝜓𝑗𝑡 ≥ 0, this problem
will be in general unbounded in𝜓𝑗𝑡 (the power that customers
buy from DSO). From the aggregator’s profit perspective, the
larger the quantity (𝜓𝑗𝑡+𝑀𝑗𝑡), the higher their benefit (notice
that in this case the flexibility constraints in (22) and (23) do
not bound the 𝜓𝑗𝑡 values).This way, maximum flexibility and
maximum 𝜓𝑗𝑡 will render an optimal benefit to aggregators
without considering the optimum profit of the bus-loads.
Hence, optimising the problem from the aggregators’ point of
view propels a bottom-up power transaction from bus-loads
to aggregators, from aggregators to DSO, and from DSO to
the real-timemarket, hierarchically.Moreover, the exchanged
power benefit between the DSO and bus-loads is missing
because this is irrelevant to aggregators. Consequently, as (36)
shows, aggregators ask for the maximum loads’ flexibility.
In other words, the power flexibility is balanced with the
power exchanged between the bus-loads to aggregators and
with the power sent from DSO to bus-loads. Hence, from the
aggregators’ perspective, this will push the system to increase
the flexibility from demand side and transacted power from
the DSO to the loads. Notice that although this case is
profitable for the DSO, it is not a profitable way for bus-loads
to join this energy management approach.

One way to motivate bus-loads to join this setting is
by letting 𝜓𝑗𝑡 be a parameter instead of a variable in this
optimisation problem. In particular—and without loss of
generality—we can set𝜓𝑗𝑡 = 0. Also notice that, in optimality
conditions, the variables 𝜆A2DSO𝑘𝑡 will attain their maximum
values in (10): 𝜆A2DSO𝑘𝑡 = 𝜆RT𝑡 . The modified aggregation
optimisation function is then expressed as

OF𝐴 = ∑
𝑡𝑗

𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡∑
𝑘

Δ 𝑘𝑗 (𝜆L2A𝑘𝑡 − 𝜆RT𝑡 ) . (37)

Below we explore two analytical limits of (37) and how
flexibility constraints in (22) and (23) affect the respective
solutions.

(1) Aggregator Homogeneous Prices Limit. If all aggregators
offer the same price for their transactions with the bus-loads,𝜆L2A𝑘𝑡 → 𝜆L2A𝑡 (i.e., there is no heterogeneity in the distributed
power system), the optimisation function does not depend on
the load-to-bus mapping OF𝐴 → ∑𝑡(𝜆L2A𝑡 −𝜆RT𝑡 ) ∑𝑗 𝑛𝑗𝑙𝑐𝑗𝑡𝑀𝑗𝑡.
Also, if the self-sustainability flexibility constraint (22) is
added to the problem, the function will be zeroed. This way,
self-sustainability constraints do not have any effect on the
total aggregation benefit because it makes the distributed
power system an independent energy system. Hence, the
system does not depend on the real-time electricity market
to provide its local demand.

(2) Stationary Limit in Aggregator Prices. On the other hand,
consider a situation where there is no price evolution over
time (i.e., a fixed tariff scenario). In this case we get 𝜆L2A𝑘𝑡 →𝜆L2A𝑘 , 𝜆RT𝑡 → 𝜆RT, and the optimisation function in (37)
renders OF𝐴 → ∑𝑘𝑗 Δ 𝑗𝑘𝑛𝑗(𝜆L2S𝑘 − 𝜆RT) ∑𝑡 𝑙𝑐𝑗𝑡𝑀𝑗𝑡. In this case
the function is zeroed and again independent of the load-
to-bus mapping if we impose the shiftable-loads flexibility

constraint (23). This is because in a fixed tariff scenario
shifting demand over time is not rational, and it does not
render any extra profit for the distributed power system.

5.1. Optimal Load-to-Aggregator Mappings. If we assume that
customers are maximally flexible we can set 𝑀𝑗𝑡 = 1
in the optimisation function and conjecture which bus-to-
aggregatormappings aremore effective in different scenarios.
In [22] the authors analysed the problem with 3 aggregators
and other different configurations built by merging these 3
operators with aggregator prices in Table 3. Since for all times
aggregator 𝐴1 always holds the minimum price, the optimal
solution will map all buses to 𝐴1. However, this is unrealistic
since it is unlikely that all demand can be monopolised by
a single aggregator. One way to cope with this is to force
aggregators to split load as ∀𝑘∑𝑗 Δ 𝑗𝑘 ≤ round(𝑛𝐽/𝑛𝐴) +𝑞, where 𝑞 ∈ N is a slack threshold for the uniform
bus-to-aggregator mapping. By adding this constraint, the
optimisation can be tackled by solving the BLP problem in
the Δ 𝑗𝑘 variables

min 𝑧 = ∑
𝑡𝑗

𝑛𝑗𝑙𝑐𝑗𝑡∑
𝑘

Δ 𝑘𝑗 (𝜆L2A𝑘𝑡 − 𝜆RT𝑡 )

s.t. ∑
𝑘

Δ 𝑗𝑘 = 1, ∀𝑗

∑
𝑗

Δ 𝑗𝑘 ≤ round( 𝑛𝐽𝑛𝐴) + 𝑞, ∀𝑘
Δ 𝑗𝑘 ∈ {0, 1} .

(38)

In Figure 7 we show the normalised value of the objective
function in (38) as we increase the number of aggrega-
tors (in %) and for different 𝑞 values. First we notice a
global trend: the optimisation increases (lower objective
function values) with the number of aggregators. Also 𝑞
helps in this reduction by pulling the solutions downwards
and by smoothing the peaks as it increases. For low 𝑞
values the constraints are more stiff and the feasible space
becomes fragmented. In the limit 𝑞 = 0 (maximum
homogeneity of load split) we find that for combinations of{5, 6, 10, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31} aggre-
gators there are no optimal solutions (black dots).The reason
for this is that for 𝑞 = 0 and, say, 𝑛𝐴 = 5, we are forcing to
evenly distribute 32 buses among 5 aggregators so that at least
one bus belongs to one aggregator. But each aggregator can
only group round(32/5) = 6 buses atmaximum.On the other
hand, as 𝑞 increases the peaks are smoothed, since the feasible
space increases too. To test ourmodel we compare our results
(39) with the mapping in [22] displayed in Figure 1(d). The
cardinality of 𝐴1, 𝐴2, 𝐴3 = (11, 11, 10) corresponds to our
optimal solution from (38) for 𝑞 = 0 and 𝑛𝐴 = 3:

𝐴1 = {1, 3, 6, 7, 13, 23, 24, 28, 29, 30, 31} ,
𝐴2 = {2, 4, 5, 8, 9, 17, 18, 19, 20, 21, 22} ,
𝐴3 = {10, 11, 12, 14, 15, 16, 25, 26, 27, 32} .

(39)
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Figure 7: Bus-to-aggregator map efficiency. The normalised value
of 𝑧 for the optimal solution is shown for different number of
aggregators and 𝑞. Black circles represent feasible solutions for 𝑞 = 0.

From these results we conclude that, in amaximumflexibility
scenario, the total aggregation profit increases with the
number of aggregators. In general, depending on the bus
scheduled loads and the number of aggregators, demand
cannot be split 100% evenly among aggregators; there must
be some slack mechanisms to allow for flexibility in this
mapping. Since customers group into buses and buses are
mapped to aggregators, this discussion is relevant to the
customer’s flexibility as we show below with our Ising model.

5.2. Aggregator Boundaries and Their Effects. Since aggre-
gators operate on bus-load collections they might impose
certain boundaries on the customers (and hence, in the asso-
ciated spin system).These boundaries can be, for instance, by-
contract forcing actions or other rules which have a greater
or lesser influence on the customers’ behaviour. The effect of
this on the spinmodel is that agentswill prefer to interactwith
neighbourswho share the same aggregator. In our final exper-
iment we measure the effect of aggregator boundaries by
comparing a standard evolution (neighbourhood-free) with
another evolution where spins interact only with neighbours
belonging to the same aggregator. We start with a feasible
solution formaximumflexibility𝑀 = 1 and thenwemeasure
how thermal noise worsens the solution.

In Figure 8 we show these results by comparing the
boundary-free evolution with the aggregators’ boundary
dynamicswith the reference boundaries shown in Figure 1(d).
As expected, with very high temperature, noise will dominate
interactions and the system will reach the𝑀 = 0 equilibrium
as shown in Figure 2 (inset). However, the interesting dynam-
ics occur precisely near criticality. Here we can monitor how
sharply the flexibility (𝑀) drops as 𝑇 increases. The free-
neighbourhood solution drops fast to 𝑀 = 0 for 𝑇/𝑇𝑐 >1.5 (shown as a grey dotted line in the inset of the figure).
However, notice how the neighbourhood constrained evolu-
tion slows down the worsening of the flexibility. Following
our interpretation of temperature as uncertainty (lack of
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Figure 8: Aggregator boundaries and total magnetisation. Standard
evolution (red) compared with another evolution where spins
interact only with neighbours belonging to the same aggregator
(blue). Dots represent 100 realisations for each 𝑇 and lines show
averaged values (𝑇𝑐 shown in blue vertical line). The inset zooms
in the solutions where there is a phase-like transition at 𝑇/𝑇𝑐 (grey
dotted line).

information), as 𝑇 grows, shared opinions as to whether
demand should be increased (spin-to-spin interactions) will
not be strong enough to keep customers’ confidence level
in the flexibility program. Consequently, they will randomly
decide whether to increase or decrease their demand and the
constraint for maximum flexibility will start to deteriorate.
However, when the information flow among customers is
bounded within regions in the configuration space, this drop
is smoothed, since the information does not propagate to the
entire system in the same way. From our previous discussion
about the limitations of a finite model for reproducing a
phase transition, one might attempt to provide a semicritical
exponent to these phase-like transitions. However, that is left
for a future work.

6. Summary and Discussion

In this work we have analysed the customers’ demand
flexibility in a local power trading problem through an Ising
spin-based model. We interpret spin states as customers’
standpoint on following a flexibility program or not, which
translates into an increase or decrease of their scheduled
load. Spin-to-spin interactions simulate how these customer
attitudes can change when information is retrieved from
neighbouring customers. An external field is a proxy of top-
down directives to enforce flexibility criteria and we associate
the temperature in the spin systemwith uncertainty about the
flexibility program. Further, we have addressed quantitative
information about the two-way relationships between power
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exchanges and spin dynamics. These are formalised in terms
of constraints, which force the spin system to evolve in
different ways. To this end we provide a modified version
of the Metropolis-Hastings algorithm including a gradient
descent through the constraint surface. This implementation
allowed us to analyse the system on a large scale (considering
the cumulated benefit of all the actors involved) and also from
the perspective of total aggregation.

At the global scale—welfare—we made two reasonable
assumptions to limit customers’ flexibility (shiftable-loads
and self-sustainability). Each leads to two different scenarios
which in turn motivate different types of analyses in our
spin system. In the shiftable-loads scenario the maximum
welfare requires each bus-community tomeet a given value of
flexibility every time. However, in general this is not possible
in a discrete system. We provide conditions for this and also
measure how an external field can force customers’ flexibility.

Maximum welfare in the self-sustainability scenario
requires all customers to meet the flexibility criteria every
hour. We monitor the robustness of a feasible solution by
perturbing the spin matrix and then measuring the feasi-
bility of the perturbed magnetisation. When spins evolve
by decreasing the constraint, there is an improvement of
3 orders of magnitude in the solutions with respect to the
classical Metropolis evolution. An external action in the
community would not be useful for recovering flexibility
unless additional mechanisms are implemented to penalise
deviations from the feasible region.

On the aggregation scale we analyse two limits: homo-
geneous and fixed electricity tariff of aggregators. These are
interesting cases since flexibility constraints set the total
aggregation optimisation function to zero: shiftable-loads
in the fixed tariff case and self-sustainability in the case
of homogeneous prices. Here we also address quantitative
results of how aggregators can effectively split the total
demand in the system and which are the implications
of aggregator subcommunities in the spreading of flexible
behaviour. We find that, in a maximum flexibility scenario,
the total aggregation profit increases with the number of
aggregators. In general, depending on the bus scheduled
loads and the number of aggregators, demand cannot be split
100% evenly among aggregators; there must be some slack
mechanisms to allow flexibility in this mapping. Finally, we
check the effect of aggregator boundaries on spin dynamics
following our interpretation of temperature as uncertainty
(lack of information); as 𝑇 grows shared opinions as to
whether demand should be increased will not be strong
enough to keep customers’ confidence level in the flexibility
program. Consequently, they will randomly decide whether
demand should be increased or decreased and the constraint
for maximum flexibility will start to deteriorate. However,
when the information flow among customers is bounded
within regions in the configuration space, it is smoothed,
since the information does not propagate to the entire system
in the same way.

In a future work we will make a more in-depth analysis of
the relationships between more general spin system topolo-
gies and the flexibility constraints. Also we will develop a
more thorough study of the phase transitions in presence of
aggregator boundaries and their implications.

Nomenclature

𝑁: Number of customers𝐶: Set of customers𝐵: Set of bus-loads𝐵𝑗: Customers connected to bus 𝑗𝐴: Set of aggregators𝐴𝑘: Buses managed by aggregator 𝑘𝑛𝐽: Number of buses𝑛𝐴: Number of aggregators𝑛𝑇: Number of hours𝑛𝑗: Number of customers connected at bus 𝑗Δ 𝑖𝑗: = 1(0) if customer 𝑖 is connected (not
connected) to bus 𝑗Δ 𝑗𝑘: = 1(0) if bus 𝑗 is managed (not managed)
by aggregator 𝑘𝐻: Ising Hamiltonian𝛾𝑖: Flexibility for customer 𝑖𝑠𝑖: State of spin 𝑖𝐸: Energy of the spin system𝑇: Temperature of the spin system𝑇𝑐: Critical temperature𝐽: Spin-to-spin interaction strength𝑏: Magnetic external field𝑀: Magnetisation of the spin systemΓ: One configuration in the spin systemΩ: Set of possible spin configurations𝑙𝑖𝑡: Load of customer 𝑖 at time 𝑡𝑙𝑐𝑖𝑡: Expected load of customer 𝑖 at time 𝑡

𝑙𝑓𝑖𝑡 : Flexible proportion of load of customer 𝑖
at time 𝑡𝐿𝑐𝑗𝑡: Expected load in bus 𝑗 at time 𝑡

𝐿𝑓𝑗𝑡: Flexible proportion of load in bus 𝑗 at time𝑡𝑃𝑠𝑡 : Power at the source bus at time 𝑡𝐿max
𝑗 : Normalised expected load at bus 𝑗
𝑃L2A𝑗𝑡 : Power exchange for buy/sell between bus 𝑗

and aggregator 𝑡
𝑃RT𝑡 : Real-time power exchange between DSO

and RTM at time 𝑡
𝑃A2DSO𝑘𝑡 : Power exchange or buy/sell between

aggregator 𝑘 and aggregator DSO
𝑃DSO2L𝑗𝑡 : Power bought to DSO by demand at bus 𝑗

(customers connected to bus 𝑗)𝜓𝑗𝑡: Normalised power bought to DSO by
demand at bus 𝑗 at time 𝑡𝜂𝑗𝑡: Normalised power exchange for buy/sell
between bus 𝑗 and aggregator at time 𝑡𝜃𝑗𝑡: Fraction of power exchange between DSO
and RTM reaching bus 𝑗 in time 𝑡

𝜆L2A𝑘𝑡 : Price for buy/sell between demand at bus
and aggregator 𝑘 at time 𝑡

𝜆RT𝑘𝑡 : Real-time market price for DSO and RTM
power exchanges

𝜆DSO2L: Price for DSO and load power exchanges
𝜆A2DSO𝑘𝑡 : Real-time market price for DSO and

aggregator 𝑘 power exchanges
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𝛿𝑘𝑡: Profit guarantee factor of aggregator 𝑘 at
time 𝑡𝑓: Additional constraint imposed to the
Metropolis-Hastings algorithm

OF𝑗: Optimisation function for bus-load 𝑗
OF𝐿: Optimisation function for all buses
OF𝑘: Optimisation function for aggregator 𝑘
OF𝐴: Optimisation function for all aggregators
OF𝑊: Optimisation function in the social

welfare scenario𝑞: Slack threshold to relax constraints in (38).
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