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This work presents a theoretical and numerical analysis of the conditions under which distributed sequential consensus is possible
when the state of a portion of nodes in a network is perturbed. Specifically, it examines the consensus level of partially connected
blockchains under failure/attack events. To this end, we developed stochastic models for both verification probability once an error
is detected and network breakdown when consensus is not possible. Through a mean field approximation for network degree we
derive analytical solutions for the average network consensus in the large graph size thermodynamic limit.The resulting expressions
allow us to derive connectivity thresholds above which networks can tolerate an attack.

1. Introduction

Trust is usually conceived as the additive aggregation of
reliable pieces. However, when it comes to cyber-security or
privacy requirements, the challenge is how to collaboratively
create trust out of uncertain sources in a networked envi-
ronment [1–6]. A remarkable success story of this approach
is Bitcoin [7]. In Bitcoin, trust is built by a set of agents—
miners—which collaborates in sequencing blocks of transac-
tions in a chain.Blockchain (BC) is the underpinning technol-
ogy of Bitcoin, a protocol in which miners compete to solve a
computationally expensive problem, known as Proof-of-Work
(POW) [8]. The miners’ results are then assembled together
in a distributed data chain.The outcomes are only embedded
in the final version of the chain after consensus, which is only
reached if the order relationships are consistent. POW is a
proxy of trust and, hence, reliability increases as the chain
grows; it is incrementally more difficult to revert—hack—the
chain since this requires increasing computing power. Thus,
although each agent generates insecure information locally,
the resulting aggregate becomes more and more reliable over
time.

Recently however, these advantages have also caused
concerns about how the BC paradigm can be exported to
domains other than cryptocurrency, such as the Internet-of-
Things (IoT) orWireless SensorNetworks (WSN) [9, 10].This
difficulty arises from the limitations of the BC architecture,
which hamper the possibility of extending it to small devices
(e.g., sensors). Sensors, in particular, lack the computing
power to performPOW.An evenmore challenging fact is that
BC requires full connectivity to operate (which is unfeasible
for WSNs). Therefore, the question at issue is how to design
blockchains without POW and partial connectivity while
maintaining robustness to failures and attacks.

Distributed consistency is not a novel concept. In [11]
the authors analyse the consistency of distributed databases
by using algorithms which are closely related to epidemio-
logical models [12]. Two information diffusion mechanisms,
antientropy and rumormongering, happen to be particularly
useful for modelling distributed consistency. Antientropy
regularises entries in the databases while rumor monger-
ing updates the last information content from neighbour
instances. This trade-off between ordered and random infec-
tion allow the authors to find exponential epidemic growth
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by using a mean field approach. The concept of diffusion in
partially connected networks is treated rigorously in [13] in
the context of glassy relaxation. Here, the geometrical aspects
of the return probability of a Markovian hypercube walk are
also analysed using mean field theory.

The effect of graph topology on information spreading
has been extensively discussed in the literature (e.g., [14–16]).
However, the model in [16] (a random graph superposed to a
ring lattice) is particularly relevant to our discussion, since
it ensures a minimum connectivity while maintaining the
small-world property (i.e., high clustering coefficient and
small characteristic path length [17]).

In [18] the general distributed consensus problem is
described; 𝑛 nonfailing sites out of 𝑚 choices have to decide
on a common value V.The authors of that study found that the
key components for consensus breakdown are asynchronicity
and failure, which both inject uncertainty into the system
at different scales. Distributed consensus in networks is also
analysed in [19], where the authors address the most impor-
tant applications of the concept, such as clock synchronisa-
tion in WSNs. The authors introduce the average consensus
as the limit to which initial states converge, provided this
limit is equal to the averaged initial values. Interestingly, a
randomised consensus protocol (where only a fraction of sites
needs to agree on a value) is shown to be more robust against
crash than a deterministic algorithm [20].

When consensus is not reached, systems usually break
down. From the point of view of control theory, a number of
interesting results have been obtained in studies focused on
this issue, for example, [19], aimed at self-healing the system
momentously after failure. However, security and resilience
are multidimensional objects which can be tackled more
consistently through a complex systems approach [21, 22].
For instance, [23] proposes a phone call model where 𝑛
players broadcast rumors randomly among their partners.
The authors study the effect of node failure and concentrate
on an interesting result; if failure patterns are random, 𝐹
crashing nodes result in only 𝑂(𝐹) uninformed players with
high probability. The work also shows that any randomised
rumor spreading algorithm running for 𝑂(log 𝑛) rounds
requires 𝑂(𝑛) transmissions. This is consistent with what we
know from network science [24]; random failures do not
spread so easily. The model considered in [25] consists of𝑛 sites running processes asynchronously where failures are
modelled as a Bernoulli process. In [26] the problem is set in
terms of a voter model and an invasion process; agreed values
are exported from a set of sites but imported errors infect the
rest of nodes.

When it comes to blockchain implementations, [27] anal-
yses information propagation in the Bitcoin network. This
work highlights the limitations of the synchronisation mech-
anisms in BC and the system’s weaknesses under attack.
Here, the communication network is modelled as a random
graph with a mean degree of ≈32 and it is found that the
block verification process can majorly contribute to delay
propagation and inconsistency. In their experiments the
authors show that the probability distribution of the rate at
which nodes learn about a block has a long tail. This means
that there is a nonnegligible portion of nodes which does

not receive information timely. The effect is equivalent to
considering an incomplete consensus network. A typical
example of organised attack in the BC is the so-called selfish-
mine strategy. This consists of a subset of nodes which
diffuse information partially to targets, instead of distributing
updates homogeneously [28]. In [29] aMarkov chainmodel is
used to analyse the selfish-mine strategy in Bitcoin. This and
other block-withholding behaviour can have a devastating
effect on the performance if the dishonest community is
around half the size of the network.

All these works provide key insights into the problem
of network resilience, diffusion, and consensus from dif-
ferent perspectives. However, to the authors’ knowledge, a
mathematical model of partially connected blockchains is
still missing. Therefore, in this paper we make a theoretical
and numerical analysis of the conditions under which a
distributed sequential consensus is possible. In concrete, we
examine the consensus level of partially connected block-
chains under failure/attack events. To this end, we develop
stochastic models for both verification probability once an
error is detected and network breakdown when consensus
is not possible. The resulting expressions allow us to derive
connectivity thresholds above which networks can tolerate
attack.

The paper is organised as follows. In Section 2 we for-
mulate the problem. The results obtained in the study are
presented in Section 3. Finally, we present the conclusions
obtained from our research and discuss the possibilities for
future work in Section 5.

2. Problem Formulation

Blockchains can be conceived as dynamical distributed
databases whose constituents (blocks) are collaboratively and
incrementally built by a set of agents. There are three key
factors in this process: (a) how information spreads, (b) how
consensus can be achieved, and (c) how errors affect the
overall performance. We elaborate on these elements below.

2.1. Partial Connectivity in Consensus Networks. From a
network perspective we consider a Peer-to-Peer (P2P) infras-
tructure with two types of nodes: communication sites and
processing sites, miners (Figure 1). Users connected to nodes
can launch transactions to other users in the network. If a
group of users {1, 2, 3, 4} is involved in a transaction arrange-
ment, one or more miners can attempt to verify the intended
transactions and if successful, pack them into a block. This
problem can be conceived as the interplay of three graphs:
communication, transactions, and miners. As stressed, the
usual BC protocol takes the full graph for granted, which is
not always possible; theremay either be failures or intentional
attacks on a portion of the network. However, it is unlikely
for a network to get disconnected under normal operation.
Hence, graph connectedness is a reasonable lower bound
assumption (particularly in the case of sensor networks and
IoT). This leads us to consider the network proposed in [16];𝐺 = R ∪ 𝐺, consisting of a random graph 𝐺 superposed
to a ring lattice R. This model still exhibits the small-
world property found in [14, 15] but it is closer to the real
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Figure 1: Schematic of nodes, transactions, and layers in the
blockchain problem. A subset of the communication P2P nodes (a)
are sites responsible for block processing, miners (light blue circles).
When a user intends to make a transaction (b) to another user (dark
blue lines) with weight 𝜔13, the miner consensus network (c) needs
to reach a consensus. However, the full connectivity of the miners’
graph is not guaranteed as there can be attacks (red line) or failures
(thin black lines).

requirements of minimum connectivity found in WSNs and
other networked systems such as computer networks [30].

At this point it seems that information spreading in the
BC can be reduced to thewell-known problemof diffusion on
graphs. This area is vastly covered in the literature (see, e.g.,
[13]). However, BC diffusion holds some subtleties under the
hood as we show below.

2.2.Why OrderMatters: Sequential Diffusion. At every trans-
action arrangement, the ordering of each operation in the
set is a key factor. Consider the simple arrangement shown
in Figure 1(b), which represents four possible transactions.
These can be formalised as the directed links 𝐸 ={𝑒13, 𝑒34, 𝑒23, 𝑒35} shown in the graph. There are |𝐸|! ways to
sort this set but not all of them are consistent. The type
of consistency we refer to is that which avoids the double-
spending problem. Take two possible order relationships ⪯1
and ⪯2 implemented by the bijections 𝑇1,2 : 𝐸 → N. They
result in

(𝐸, ⪯1) : 𝑇1 (𝑒13) = 1,
𝑇1 (𝑒34) = 2,
𝑇1 (𝑒23) = 3,
𝑇1 (𝑒35) = 4,

(𝐸, ⪯2) : 𝑇2 (𝑒13) = 1,
𝑇2 (𝑒34) = 2,
𝑇2 (𝑒35) = 3,
𝑇2 (𝑒23) = 4.

(1)

Table 1: Evolution of states in the transaction graph shown in
Figure 1(b) obtained by iterating (1) 𝑛 = 1, . . . , 4 steps for ⪯2 (a) and⪯2 (b) orderings. The initial state is 𝑆(0) = (1, 1, 0, 0, 0) and 𝜔(𝑛) =1, ∀𝑛. The order relationship ⪯2 induces the double spending effect.

(a)

𝑛 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5
0 1 1 0 0 0
1 0 1 1 0 0
2 0 1 0 1 0
3 0 0 1 1 0
4 0 0 0 1 1

(b)

𝑛 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5
0 1 1 0 0 0
1 0 1 1 0 0
2 0 1 0 1 0
3 0 1 −1 1 1
4 0 0 0 1 1

The first ordering does not induce any inconsistency but
the ordered set (𝐸, ⪯2) violates the double spend constraint
depending on the weights 𝜔𝑖𝑗. If we label by 𝑆(𝑛) =(𝑠1(𝑛), 𝑠2(𝑛), 𝑠3(𝑛), 𝑠4(𝑛)) the state vector at step 𝑛, a transi-
tion, say 𝑒13, results in the update equation:Δ𝑆13 = −𝜔13𝑢1𝐿13
where 𝑢1 represents the row-base vector (1, 0, 0, 0) and 𝐿 𝑖𝑗
is the graph Laplacian corresponding to the transaction sub-
graph 𝑔𝑖𝑗 = ({𝑖, 𝑗}, 𝑒𝑖𝑗). The ordering allows writing compact
update equations as

𝑆 (𝑛 + 1) = 𝑆 (𝑛) − 𝜔 (𝑛)𝑋 (𝑛) 𝐿 (𝑛) , (2)

where 𝜔(𝑛), 𝑋(𝑛), and 𝐿(𝑛) represent transaction weights,
base vectors, and graph Laplacians for each transaction. In
Table 1, we show the evolution of states in the case 𝜔(𝑛) =1, ∀𝑛 with initial state 𝑆(0) = (1, 1, 0, 0, 0) for ⪯1 and ⪯2.
Notice that for ⪯2 node 3 has ran out of values at step 2 but it
still intends to perform a transaction to node 5 at step 3. This
is like having a balance of $10 in a bank account and spending
it twice by sending $10 to two different recipients. When it
comes to measurements in WSNs (say energy consumption
data) avoiding these inconsistencies is imperative [31]. If a
miner attempted to pack these transactions along with ⪯2
into a block, he will reach an inconsistency. These order
constraints make the BC diffusion different to regular graph
diffusion [13]. In fact, BC protocol ensures that double-
spending paradoxes cannot occur by imposing constraints
such as 𝑠𝑘(𝑛) ≥ 0, ∀𝑘, 𝑛. An example of this is the distributed
ledger in Bitcoin [27]. The next question is how this ordering
couples with failures in the network.

2.3. Attack and Failure in Consensus Dynamics. Blockchain
technology copes with the above restrictions efficiently by
elevating the transaction order relationships to the block
scale. Thus, every block (which can hold one or more
transactions) in the resulting blockchain builds on top of
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Figure 2: Two ways for error propagation in the miners consensus network: to a nonneighboring node (a) and to the next block solver (b).
The tables summarise the blockchain dynamics in a cycle. Rows represent sites and columns represent iterations. In the first case, the error
(represented as 𝐸) cannot be restored and it persists in the blockchain. In the second case, an additional recovery step 3∗ can restore the error
to the agreed value of 1.

the preceding block to preserve sequential diffusion. This
strategy can however be used by dishonest users to create
massive damage in the network. Consider the case depicted
in Figure 2 where 6 miners collaborate to build a blockchain.
Without loss of generality we can label the miners according
to the order of their block resolution (it is very unlikely
that two miners solve a block at the same time and, if this
happens, BC would still sort the resulting blocks in order
with high probability [20]). Node 3 is a failure node; it sends
an error/attack to either a nonneighboring node (a) or to
a miner who happens to be the one solving the next block
(b). Below each graph, we also show the evolution of the
chain. In this schematic, rows represent sites and columns
represent iterations within the cycle. A row stands for the
local instance of the chain at a given site and a column
represents the collective blockchain built up to a given step.
The blockchain is constructed as follows. At step 0 all sites
own the 0-genesis block. At step 𝑖 if miner 𝑛𝑖 finds no error
in the last block of his local instance of the chain he solves
the next block and broadcasts the solution to neighbours.The
nonreached sites simply replicate their state. However, if the
sending site is a failure node, it will broadcast a failure to one
of his neighbours. In this case, if the affected block finds the
error in his solving step, he still has a chance to restore the
block upon consensus from his acquaintances. In case this
consensus is not possible the blockchain breaks down. This
flow is depicted in Figure 3.

Both situations shown in Figure 2 trigger different phe-
nomena and have different effects in the overall network
performance. In the first case, the error (represented as 𝐸 in
the table) has no chance of being restored and it persists in
the blockchain. However, in the second case an additional
recovery step 3∗ can restore the error to the agreed value of1. Notice also that since the network is not fully connected

there are sites that lack state updates and their local instances
of the chain are not synchronised.This limits the information
spreading in the network as we show in the next section.

We highlight the fact that, in the Bitcoin implementation,
miners asynchronously relay blocks and transactions as soon
as they either receive or mine them [32]. In our case agents
hold received blocks and transmit their knowledge to neigh-
bours sequentially. In Figure 4 we compare the sequence
diagrams for both models in the case of three miners (for
the sake of simplicity we have only considered one thread per
miner. Since mining times are much larger than relay times,
splittingmining and relay processes in two threads would not
affect the conclusions of this comparison). Without loss of
generality miners 𝑆1−3 will solve blocks 𝑏1−3 in first, second,
and third order. In the Bitcoin blockchain implementation (a)
the processes of mining and the relay of blocks have different
timescales; ≈10 minutes for mining and a few seconds for
block forwarding. However in a context where POW is absent
(b), the mining lags tend to zero and the processes of mining,
verification, and relay converge. In (a) if site 𝑆1 at time 𝑡1
sends a block 𝑏1 to 𝑆2, this miner will forward it to 𝑆3 after
a short verification lag 𝑡2. Then, 𝑆2 will release 𝑏2 after a
big mining delay. However, in (b), since there is no POW,𝑆2 will broadcast 𝑏2 to neighbours pretty soon at epoch 𝑡2.
This enables saving time and reducing the network traffic
considerably.

2.4. Mathematical Model. By putting all these facts together,
we obtain a minimum blockchain model that captures
the dynamics described above: (a) partial connectivity, (b)
sequential diffusion, and (c) failure spreading. Below we
develop a stochastic process analysis to examine the averaged
network performance under different conditions.
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Figure 4: Sequence diagram comparison between Bitcoin
blockchain (a) and the sequential model proposed in this work
(b) for a simple miners network (c). In (a) if site 𝑆1 at time 𝑡1
sends a block 𝑏1 to 𝑆2, this miner will forward it to 𝑆3 after a short
verification lag 𝑡2. Then, 𝑆2 will release 𝑏2 after a much larger mining
delay. In (b) however, since there is no POW, 𝑆2 will broadcast 𝑏2 to
neighbours pretty soon at epoch 𝑡2.

With the graph model of size 𝑁 described in Section 2.1
we represent each information block (or measure state in

general) at site 𝑛𝛼 at the 𝑖th iteration as 𝑠𝛼(𝑖). As stressed
above, all sites start from the 0-genesis block: 𝑠𝛼(0) = 0, ∀𝛼.
Then, following the flow depicted in Figure 3, at iteration 𝑖
node 𝑛𝑖, checks its state and adds a block to the chain. We
collect the number of sites matching the current block in the
variable 𝑋𝑖, which is equal to the node degree 𝑘𝑖 plus a noise
term 𝜎𝑖 ∈ {0, 1}. If 𝑛𝑖 sends an error signal to 𝑛𝑖+1 which
cannot be reverted to the state 𝑠𝑖+1(𝑖) = 𝑖, then 𝜎𝑖 = 0 and𝜎𝑖 = 1 in any other case. The performance ratio per iteration𝑚𝑖 = 𝑋𝑖/𝑁 = (𝑘𝑖 + 𝜎𝑖)/𝑁 is a measure of the consensus
level reached at step 𝑖. Depending on whether consensus is
reached or not the whole chain may collapse. In an ensemble
of chains Ω we define both the failure and matching random
variables 𝐹 : Ω → {0, 1},𝑀 : Ω → 𝑅, and 𝜔 󳨃→ 𝑀(𝜔) =(1 − 𝐹(𝜔))∑𝑁𝑖=1𝑚𝑖/𝑁, respectively. 𝐹 = 1 in case there is
one or more steps where consensus is not possible. Hence the
ensemble mean for𝑀 can be expressed as

⟨𝑀⟩ = 𝑘 + 𝜎𝑁 (1 − 𝑃𝐹) , (3)

where 𝑘 = 2 + 𝑝(𝑁 − 3)—with 𝑝 as connection probability—
represents the network average degree, 𝜎 ≡ ∑𝑁𝑖=1 𝜎𝑖/𝑁, and𝑃𝐹 = 𝑃(“𝐹 = 1”) stands for the failure probability. Since a
chain failure can only happen after verification, 𝑃𝐹 = 𝑃𝐹|𝑉𝑃𝑉,
where 𝑃𝑉 = 𝑃(“𝑉”) is the verification probability and 𝑃𝐹|𝑉 =𝑃(“𝐹” | “𝑉”) the respective conditional probability.
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Figure 5: Exponential behaviour of the verification probability. As
the ratio of attacking nodes increases, verifications grow exponen-
tially. Graph connectivity decreases the verification rate. The inset
shows the lower and upper connectivity bounds (40% and 100%)
along with an intermediate connectivity of 70%.

Notice that even in the failure-free case there is an upper
bound in the mean efficiency 𝑀0 = (1/𝑁)(𝑘 + 𝜎) imposed
by the lack of full connectivity (full connectivity and full
recovery with 𝜎 = 1 would result in the limit ⟨𝑀⟩ = 1 (i.e.,
100% efficiency)). Hence, both size and connectivity limit
network performance due to the partial sequential diffusion,
specific for the BC architecture. Next, we look into chain
failure probability.

Firstly, it is clear that failure can only happenwhen at iter-
ation 𝑖 the last block of node 𝑛𝑖+1 is an error state.This requires
(a) the emisor node to be an attack node with probability 𝜓
and (b) the receiving node is indeed 𝑛𝑖+1. Since connections in𝐺 are uniformly random, the verification probability at step𝑖 can be expressed as 𝑃𝑉(𝑖) = 𝜓/𝑘𝑖. Also, because the chain
is verified if at least one step needs verification, consequently
the probability of blockchain verification is

𝑃𝑉 = 1 −
𝑁∏
𝑖=1

(1 − 𝜓𝑘𝑖) . (4)

3. Main Results

3.1.Mean Field Approximation for the ChainVerification Prob-
ability. By using a mean field approximation [11] we replace
node degree by the mean network degree 𝑘. In this case, for
large𝑁, 𝑃𝑉 renders

𝑃𝑉 = 1 − exp(−𝜓𝑝) . (5)

In Figure 5 we compare expression (5) with Monte Carlo
simulation. For a ring lattice of size𝑁 = 60 we generated 105
synthetic networks with increasing connections and attack
strength until graph saturation. Each experimental point (50

runs with the same parameters) represents the fraction of
networks that reported a verification step. As the ratio of
attacking nodes increases verifications grow exponentially,
like the epidemics in [11]. As expected, graph connectivity
(measured with the percentage of additional links until
saturation) decreases the verification rate.

It is important to provide this estimate because a large
number of verification steps translate directly to cost and
efficiency in real implementations. Next, we investigate in
detail the probability of a chain failure after a verification step.

3.2. Network Consensus Mechanisms. As stressed, if node 𝑛𝑖
sends an error code to node 𝑛𝑖+1 at iteration 𝑖, there is a chance
for node 𝑛𝑖+1 to revert this error provided that the consensus
reached among its neighbours is over a given threshold. The
problem can be formulated as follows. Let 𝑈𝑗 represent the
neighbours of node 𝑛𝑗. Notice that, at iteration 𝑖, nodes in
𝑈̃𝑖+1 ≡ {𝑖} ∪ (𝑈𝑖+1 ∩ 𝑈𝑖) have value 𝑖 while the remaining
nodes in 𝑈𝑖+1 can attain any value from the set Γ ≡ {𝐸} ∪{0, 1, . . . , 𝑖 − 1}. Given a consensus threshold 𝑧 ∈ N, let𝜒 ≡ max𝛾∈Γ{∑𝑥∈𝑈𝑖+1 1𝛾(𝑥)} denote the maximum frequency
of values in𝑈i+1 which are different than 𝑖.There is agreement
when

max {󵄨󵄨󵄨󵄨𝑈𝑖+1 ∩ 𝑈𝑖󵄨󵄨󵄨󵄨 + 1, 𝜒} ≥ ⌊𝑘𝑖+1𝑧 ⌋ , (6)

where the notation ⌊𝑥⌋ stands for the floor value of 𝑥 ∈ R.
Notice that 𝑧 = 2 defines a simple majority based consensus
among the 𝑈𝑖+1 sites.

Consequently, inspired by the antientropy and rumor
mongering concepts [11], we split the consensus problem of
(6) in two mechanisms: clustering and random infection (we
use the mathematical epidemiology terminology for infected
nodes as those receiving a given state. Notice that in our case
infection is not necessarily a negative phenomenon unless
the broadcasted quantity is an attack). In the former, 𝑛𝑖+1
neighbours get an update from 𝑛𝑖 to value 𝑖. In the latter case𝑛𝑖+1 neighbours eventually agree on a value ̸= 𝑖 arriving from
other sites different than 𝑛𝑖 or from their own replications
along the preceding steps in the blockchain cycle.

Notice that the number of symbols in Γ increases with
the number of iterations. Therefore, it is increasingly less
likely to reach consensus by random infection. On the other
hand, the link consensus mechanism does not decrease with
the iterations. Hence, the link consensus will dominate over
random consensus in the thermodynamic limit 𝑁 ≫ 1.
For a reasonable network size (say 𝑁 > 50) this enables
us to neglect the random term contribution to the failure
probability. Below we elaborate more on this stochastic
approximation.

3.3. Stochastic Network Failure in the Thermodynamic Limit.
As demonstrated before, cluster consensus occurs when there
are at least ⌊𝑘𝑖+1/𝑧⌋ sites out of 𝑘𝑖+1 − 1 possible nodes (the −1
term is because site 𝑛𝑖 already holds an 𝑖 state) with state 𝑖.
Equivalently, it can be assumed that 𝑛𝑖 is connected to at least⌊𝑘𝑖+1/𝑧⌋ nodes in 𝑈𝑖+1 \ {𝑖}. In this way, we can model the
process as a Bernoulli trial (akin to [25]) where the success
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variable follows the binomial ∼𝐵(𝑘𝑖+1 − 1, 𝑝). The resulting
failure probability renders

𝑃𝐹|𝑉 (𝑖, 𝑧) =
⌊𝑘𝑖+1/𝑧⌋∑
𝑥=0

(𝑘𝑖+1 − 1𝑥 )𝑝𝑥 (1 − 𝑝)𝑘𝑖+1−1−𝑥 . (7)

Since the blockchain failure probability can be expressed as

𝑃𝐹 = 1 −
𝑁∏
𝑖=1

(1 − 𝑃𝐹 (𝑖, 𝑧)) , (8)

by using (8) and (3) and 𝑃𝐹(𝑖, 𝑧) = 𝑃𝑉(𝑖)𝑃𝐹|𝑉(𝑖, 𝑧) =𝜓𝑃𝐹|𝑉(𝑖, 𝑧)/𝑘𝑖 we arrive to the expression
⟨𝑀⟩ = 𝑀𝑜 exp

𝑁∑
𝑖=1

log(1 − 𝜓𝑃𝐹|𝑉 (𝑖, 𝑧)𝑘𝑖 ) . (9)

Now, provided that the quantity 𝜓𝑃𝐹|𝑉(𝑖, 𝑧)/𝑘𝑖 is small com-
pared to 1, we approximate the logarithm in the last expres-
sion by its first-order series expansion. By implementing the
same mean field approximation as for 𝑃𝑉 in the preceding
section we obtain the equation

⟨𝑀𝑀𝐹⟩ = 𝑀𝑜 exp(−𝜓𝑝𝑃𝑀𝐹𝐹|𝑉 (𝑧)) , (10)

where 𝑃𝑀𝐹𝐹|𝑉 (𝑧) denotes the corresponding mean field approx-
imation for 𝑃𝐹|𝑉(𝑖, 𝑧). In Figure 6 we show the mean field
approximation to the blockchain performance measured as
the average network consensus for 𝑁 = 60 and 𝑧 = 2. As
for 𝑃𝑉 we generated 105 synthetic networks with increasing
connections and attack strength until graph saturation. For
eachnetwork instance,wemonitored the number of siteswith
value 𝑖 at iteration 𝑖 within the blockchain cycle. This gives
us an empirical estimate for the network match per iteration𝑚𝑖. Then, we averaged the𝑚𝑖 quantities over the cycle, which
results into a measure for the network performance (i.e.,
consensus level). Finally, we obtain the mean value of this
quantity from our Monte Carlo dataset. Each experimental
point represents 50 runs with the same parameters.

Notice that 100% performance—blockchain limit—can
only be achieved for full connectivity 𝑝 → 1. The 𝑀𝑜
upper bound (black straight line) limits the network match
for partial connectivity; as we increase the link probability
the performance increases according to (10). Also, stronger
attack strategies (larger𝜓 values) result in lower performance
as expected.

A remarkable result in Figure 6 is that beyond a critical
value of connectivity 𝑝𝑐; consensus is only limited by infor-
mation spreading and not by failure.This fact motivates us to
look closely at possible estimates of 𝑝𝑐.
3.4. Estimate for the Attack Tolerance Critical Connectivity.
Noticing that 𝑃𝑀𝐹𝐹|𝑉 (𝑧) is nothing else than the cumulative
distribution function for the binomial 𝐵(𝑘 − 1, 𝑝), we use the
normal approximation for the binomial distribution as

𝑃𝑀𝐹𝐹|𝑉 (𝑧) ≈ 12 [1 + 𝐸𝑟𝑓 (𝐴 (𝑝))] , (11)
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Figure 6: Mean field approximation to the blockchain performance
for𝑁 = 60 and 𝑧 = 2. Starting from the complete graph limit in the
top right corner, as connectivity 𝑝 decreases and attack strength 𝜓
increases, the network match decreases according to (10). The black
line represents the𝑀𝑜 upper bound limit. The vertical dotted line at𝑝 = 0.66 represents an estimate (see the last part of Section 3.3) for
the limit ⟨𝑀⟩ → 𝑀0 where performance starts to be independent
of 𝜓. The inset shows a zoom for the cut 𝑝 ∈ [0.5, 0.6].

where 𝐸𝑟𝑓(𝑥) is the error function and

𝐴 (𝑝, 𝑧) = ⌊𝑘/𝑧⌋ − 𝑝 (𝑘 − 1)
(2𝑝 (1 − 𝑝) (𝑘 − 1))1/2 . (12)

If 𝜖 ∈ R denotes a small quantity, we inquire the conditions
under which ⟨𝑀⟩ tends to𝑀0, or more specifically |⟨𝑀⟩ −𝑀0| ≤ 𝜖𝑀0. To this end, we derive conditions for equality in
this expression from (11) and (12). Also, by using the log(1 −𝜖) ≈ −𝜖 approximation, the following condition holds:

𝐴 (𝑝, 𝑧) = 𝐸𝑟𝑓−1 (2𝑝𝜖𝜓 − 1) . (13)

In the large𝑁 limit 𝑘 ≈ 𝑝𝑁 and also assuming ⌊𝑘/𝑧⌋ ≈ 𝑘/𝑧,𝐴(𝑝, 𝑧) can be approximated as

𝐴 (𝑝, 𝑧) ≈ 1 − 𝑝𝑁 +𝑁/𝑧√2𝑁 (1 − 𝑝) . (14)

From (14) one could attempt to solve (13) for 𝜖,𝑁, 𝑝, and𝜓. But this is not possible because the function 𝐸𝑟𝑓−1(𝑥 − 1)
diverges for 𝑥 = 0. Still, an interesting case occurs when𝜖 = 𝜓/(2𝑝). At this limit, (13) only makes sense if 𝐴(𝑝, 𝑧)
vanishes, or, the equivalent, if 𝑝 = 𝑝∗ ≡ (1/𝑧 + 1/𝑁).
However, this value does not provide the asymptotic limit we
are looking for.
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If we express 𝜖 in terms of 𝛼 ∈ N through the rescaling𝜖 ≡ 𝜓/(𝑝𝛼) and we also rewrite (13) in terms of 𝑝 − 𝑝∗ we
obtain

𝑝 − 𝑝∗
√1 − 𝑝 = Φ (𝛼) , (15)

where we have introduced the function: Φ(𝛼) ≡(2/𝑁)1/2𝐸𝑟𝑓−1(1 − 2/𝛼).
An operative approximation is possible by consideringΦ(𝛼)2 ≪ 1. Then, by using the corresponding solution 𝑝 ≈𝑝∗ + Φ(𝛼) and for large𝑁 we find

𝑝𝑐 = 1𝑧 + √
2
𝑁𝐸𝑟𝑓−1 (1 −

2
𝛼) . (16)

This is nothingmore than a useful parametrisation of (13). For𝛼 = 2 we recover the case 𝑝𝑐 = 𝑝∗. However, larger 𝛼 values
allow us to explore the limit ⟨𝑀⟩ → 𝑀0 closely. For instance,
for 𝛼 = 10, 𝑁 = 60, and 𝑧 = 2 we arrive at the solution𝑝𝑐 = 0.66. This means that, for maximum attach strength
(𝜓 = 1), beyond 𝑝 = 𝑝𝑐, the percentage of the deviation of⟨𝑀⟩ from𝑀0 with respect to𝑀0 is lower than 15%. By setting
other attack tolerance thresholds the 𝑝𝑐 value can be adjusted
in different realisations of the blockchain network. The value𝑝𝑐 = 0.66 represented in Figure 6 can then be conceived as
a reasonable threshold for minimum network connectivity
ensuring attack tolerance with the above parameters.

4. Proof-of-Concept Example

Notice that the mathematical model addressed in this work
abstracts the specifics about transactions, blocks, network
architectures, communication protocols, and so on. The
implementer must therefore provide definitions for (a) what
is a transaction, (b) criterion for consistent ordering of
transactions (this is equivalent to defining the analogous to
the double-spending problem), (c) how transactions can be
packed into blocks, and (d) how is the information spread
over the network. When these specifications are provided
there are at least two possible scenarios where the findings
addressed in this work can be applied: Wireless Sensor Net-
works and the Internet-of-Things.

As stressed, there are fundamental discrepancies between
the proposed model and the current blockchain protocol
implementation in cryptocurrencies. In particular, in our
approach the information is not transmitted immediately to
the miners once blocks are created; it is sequentially diffused
as shown in Figure 4.This has its pros and cons depending on
the application domain.

When there is no Proof-of-Work requirement the block
mining lags tend to zero and the verification and generation
delays become comparable. This way the blockchain con-
struction speed is dominated by network latency. Therefore,
in the absence of POW, one can reschedule agent’s diffusion
to save network operations. In the following examplewe show
a proof-of-concept example in the IoT domain where we
compare our model with an asynchronous diffusion scheme
akin to the conventional blockchain implementation. In the
context of IoT consider the problem of human mobility

tracking where two individuals leave rooms A and B to
reach rooms D, E through hall C (Figure 7). Five presence
sensors A–D are continuously capturing data of the form𝑥𝑖 = {𝑆ID, 𝑡, V} where 𝑆ID identifies the sensor, 𝑡 represent the
measurement time, and V ∈ {0, 1} stands for the presence
event. Measures are collected at Δ𝑇 intervals and then
checked for consistency. Within Δ𝑇, time is split into 𝛿𝑡
length subintervals. These quantities represent the minimum
displacement time between home areas or any other relevant
time scale. In general theywill be functions of the sensor sam-
pling rates. Therefore, we discretise the continuous variable 𝑡
into measurement epochs 𝑛 implicitly defined as

0 ≤ ( 𝛿𝑡Δ𝑇) 𝑡 − 𝑛 ≤ 1. (17)

This allows preprocessing raw data 𝑥𝑖 into a dataset D with
entries of the form {𝑆ID, 𝑛} ∈ D, where we also drop V = 0
values. Maintaining our cryptocurrency metaphor, we define
transactions as ordered pairs in D × D: 𝑒𝑛𝑘𝑋𝑌 ≡ ((𝑋, 𝑛), (𝑌, 𝑘)).
For instance, 𝑒12AC = ((A, 1), (C, 2)) represents the movement
of a person from room A at epoch 1 to the hall C at epoch 2.
Some transactions do not represent realmovement (e.g., 𝑒22AB).
A possible criterion for the validness of a transaction 𝑒𝑛𝑘𝑋𝑌 is𝑋 ̸= 𝑌 if 𝑘 > 𝑛. This restricts the type of movements allowed
in a specific way, but any other criterion can also be defined.

Next we define a 𝑝𝑎𝑡ℎ 𝑃 as an ordered sequence of
transactions. If 𝐸 denotes the set of possible transactions
among the measurements in D collected in Δ𝑇, consider two
possible paths:

𝑃 : (𝑒01AC, 𝑒12CD, 𝑒23BC, 𝑒34CE) ,
𝑃󸀠 : (𝑒01AC, 𝑒12CD, 𝑒23CE, 𝑒34BC) .

(18)

Both paths represent the movement of two individuals from
A, B to D, E. However, 𝑃󸀠 is not consistent, since the person
in B intends to move from C to E before reaching C.

Since we neglect POW,we can consider blocks containing
one transaction only which can therefore be generated imme-
diately. The order criterion provides means for building the
information chain avoiding the type of order inconsistencies
commented above.

We also consider aminimal set of three distributed agents
(miners in our analogy) which will build the chain. Depend-
ing on the network architecture and the communication
protocol the information flow among agents can be defined
in different ways. However, the model provided in Section 2
allows a considerable reduction of network operations which
is more amenable for an IoT implementation. In the bot-
tom panel of Figure 7 we use simplified sequence diagrams
to compare the information flow of blockchain (a) and
sequential diffusion (b) models as we did in Figure 4. In the
lower part, we have also included a summary of the local
information stored at each node.

Without loss of generality the mining ordering can be
mapped to nodes 1–3 (again, as in Figure 4, we use a single
thread for verification and mining processes in the nodes,
since mining times are much larger than verification times).
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Figure 7: Schematic of a possible application of the model developed in this work. Five presence sensors monitor the movement from rooms
A, B to D, E (top left panel). A minimal network of three distributed agents—miners (top right panel)—build consistent orderer aggregations
of measurements. In the bottom panel we compare the sequence diagrams from the real blockchain and the sequential model.

In (a), first 𝑀1 extracts and validates transaction 𝑒01AC from𝐸 and broadcasts the corresponding block to the network (1-
2). After validating the block, 𝑀2 in turn forwards it to𝑀3
(3-4). At a later time, 𝑀2 validates 𝑒12CD, adds it to its local
copy (5), and distributes the information among other nodes
(6, 7). Next node 3 has itself mined 𝑒23BC (8) which is then
validated and sent to the network (9–11). Finally, node 1 only
finds it consistent to add 𝑒34CE to its local chain (12) and then
it broadcasts the information to the network for its validation
and transmission (13–15).

However in the sequential diffusion model (b), as
stressed, agents do not immediately forward transactions/
blocks as they receive them; nodes propagate information
when they generate new blocks. In the absence of POW,
agents can synchronise to save unnecessary communication
processes.This way, node 2 does not forward 𝑒01AC (2󸀠) to node
3 after receiving it from node 1 (1󸀠); the information is sent
when packing 𝑒12CD (3󸀠) and so on. This reduces the network
traffic considerably. When a miners round is completed node𝑀2 sends a syncmessage (dotted line from8󸀠 to 9󸀠) to the next
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first mining node (𝑀1 in this case) until there are no more
transactions to verify. If there are𝑁𝑀 agents and transactions,
the number of messages grows as𝑂(𝑁2𝑀) in (a) and as∑𝑁𝑀𝑖 𝑘𝑖
in (b), where 𝑘𝑖 is the degree of each node in the agents’
network. The maximum overhead is attained for the full
graph where 𝑘𝑖 = 𝑁𝑀 − 1 and both models coincide.

Since WSNs and IoT have in general very low battery
capacities, this dramatically limits the size of network traffic.
Therefore the model addressed here can add value to these
situations.

5. Summary and Discussion

In this paper we have analysed, both theoretically and numer-
ically, the conditions under which distributed sequential
consensus is possible in presence of partial connectivity
and uncertainty. A minimum sequential diffusion model
consisting of the superposition of a ring lattice with a
random graph along with ordered infection rules allowed
us to capture key blockchain elements: partial connectivity,
sequential diffusion, and failure spreading.

In our setting a mean field approximation for network
degree was helpful in deriving closed-form expressions for
the probability of chain verification once errors are detected.
We found that verifications grow exponentially with attack.
As expected, graph connectivity reduces verification rates.
This is a remarkable result because a large number of veri-
fication steps translate directly to cost and efficiency in real
implementations.

We have also provided expressions for the probability of
network breakdown when consensus is not possible. To this
end, we have investigated analytically the constituents of the
consensus problem in blockchains. We found that clustering
dominates over random infection in the large network size
limit. This allowed us to derive an expression for the average
network performance as a function of connectivity and
failure strength.We validated this expression byMonte Carlo
simulation. As expected, 100% performance—blockchain
limit—can only be achieved for full connectivity. Further-
more, there is an upper bound for network match for partial
connectivity. Stronger attack strategies result in lower perfor-
mance.

The resulting expressions allow us to derive connectivity
thresholds above which networks can tolerate attack. Beyond
that, lower bound consensus is only limited by information
spreading and not by failure. A set of reasonable assumptions
and algebraic manipulations allowed us to derive operational
expressions for this bound. Specifically, for 𝑁 = 60 simple
majority based consensus, we arrived at the solution; 𝑝𝑐 =0.66. This means that in a scenario with maximum attach
strength, beyond 𝑝𝑐, the percentage deviation of blockchain
consensus with respect to the upper connectivity bound is
lower than 15%.

Clearly this contribution is just a first step in the under-
standing of partially connected blockchains; the problem still
needs further elaboration in order to foster more robust
implementations. For instance, we have neglected some com-
munication issues such as delay or bandwidth limitations. In
a future work we will research other topological models such

as scale-free and spatial networks with heterogeneous links.
Multiplex networks will also allow us to inquire into different
attack patterns and the possible counterattacking strategies.
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