
Synthese (2015) 192:1199–1220
DOI 10.1007/s11229-014-0610-3

On malfunctioning software

Luciano Floridi · Nir Fresco · Giuseppe Primiero

Received: 30 March 2014 / Accepted: 13 November 2014 / Published online: 3 December 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Artefacts do not always do what they are supposed to, due to a variety of
reasons, including manufacturing problems, poor maintenance, and normal wear-and-
tear. Since software is an artefact, it should be subject to malfunctioning in the same
sense in which other artefacts can malfunction. Yet, whether software is on a par with
other artefacts when it comes to malfunctioning crucially depends on the abstraction
used in the analysis. We distinguish between “negative” and “positive” notions of
malfunction. A negative malfunction, or dysfunction, occurs when an artefact token
either does not (sometimes) or cannot (ever) do what it is supposed to. A positive
malfunction, or misfunction, occurs when an artefact token may do what is supposed
to but, at least occasionally, it also yields some unintended and undesirable effects. We
argue that software, understood as type, may misfunction in some limited sense, but
cannot dysfunction. Accordingly, one should distinguish software from other technical
artefacts, in view of their design that makes dysfunction impossible for the former,
while possible for the latter.

Keywords Artefact · Design · Dysfunction · Function · Misfunction · Software

L. Floridi (B)
Oxford Internet Institute, University of Oxford, 1 St Giles, Oxford OX1 3JS, UK
e-mail: luciano.floridi@oii.ox.ac.uk

N. Fresco
Sidney M. Edelstein Centre, The Hebrew University of Jerusalem, Jerusalem, Israel

G. Primiero
Department of Computer Science, Middlesex University, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-014-0610-3&domain=pdf


1200 Synthese (2015) 192:1199–1220

1 Introduction

It is a platitude that software is a human construct devised to perform a task.
As such, it is artificial and has a function, in the teleological sense, rather than
in the mathematical one. These two properties—human artificiality and teleologi-
cal functionality—are often considered to be common to artefacts in general, and
perhaps characteristic of them.1 So a description of software as a teleologically-
functional artefact suggests that one may understand it by adapting current analy-
ses of artefacts from the philosophy of engineering.2 Functional categories are the
characterising element of artefacts, which are defined by what they are designed to
do.3 If software were essentially different from other technical artefacts, this would
show that some function-bearing human products are not artefacts in the sense just
specified.

Philosophical research on the nature of software has mainly focused on its rather
peculiar ontology and on the nature of the scientific methodology that software may
drive. In both cases, the twofold nature of software as an engineered as well as an
abstract artefact is salient. This has led several authors to investigate the following
topics: the autonomous nature of software as a pattern independent from both data
and information (Suber 1988); the concrete as well as abstract nature of software
(Colburn 1999); the specificity of the epistemology, ontology and methodology of
software engineering as a field of investigation in its own right (Northover et al. 2008)
as opposed to the more general paradigm of computer science (Gruner 2011); and
the mode of “existence” and “persistence” of software as compared to music (Irmak
2012). The methodology of software driven science has also been a recent focus of
philosophical investigation, in particular concerning the role of models (Fetzer 1999)
and simulations (Winsberg 1999), the relevance of software for scientific explanations
(Symons 2008) as well as prediction (Symons and Boschetti 2013), and the nature of
experiments in computing (Schiaffonati and Verdicchio 2014). Within this very rich
context, we focus here, specifically, on understanding software as a human-made and
teleological artefact in order to investigate the nature of malfunctioning.

Artefacts do not always do what they are supposed to. Whether because of manu-
facturing problems, poor maintenance, normal wear-and-tear or other reasons, some-
times tokens, that is, particular physical instances of an artefact type—for example
this screwdriver, or that software program to calculate the factorial of integers—fail
to exercise their function completely, or as well as they should. This fact has occa-
sionally served as a kind of litmus test for theories of function: an acceptable theory
must be able to account for the fact that a token may have functions in theory (as

1 Admittedly, some artefacts are not obviously function-bearing. For instance, one may be reluctant to
attribute a function to some artworks or decorations. But similar exceptions may be disregarded as outside
the scope of our analysis.
2 See e.g., Hansson (2006) and Houkes and Vermaas (2010).
3 Karen Neander writes, “Most (if not all) physiological categories are functional categories […] (This
should seem a familiar idea, because categories of artefacts are similar: a brake is a brake in virtue of what
it is supposed to do—was intended or designed to do—not in virtue of having some specific structure or
disposition.…)” (1995, p. 117).

123



Synthese (2015) 192:1199–1220 1201

a token of that type) that it does not exercise in practice (as this particular token).4

Consequently, if software is an artefact, it should, at least prima facie, be capable of
malfunctioning in the same sense in which other artefacts can malfunction. Indeed,
according to Millikan, software should be capable of malfunctioning just by virtue of
having a function—and there should be no doubt that software tokens have functions.

Current theories of technical malfunctioning5 correctly identify failure of design
and failure of exercising a function as causes of malfunctioning. Correspondingly, it
has been argued in [Fresco and Primiero (2013)] that a theory of miscomputation has
to account for, respectively, errors of design and errors of functioning (also referred to
as cases of operational malfunction), where errors of the former kind should only be
attributed to some external agent, i.e., the producer of the computational system, and
be traced through various levels of abstraction. The question whether software is on a
par with other artefacts when it comes to malfunctioning needs to be better qualified
in terms of the level of abstraction or LoA [Floridi (2011), ch. 3] considered.

This crucial point about LoAs connects our research with two other philosophical
issues relevant to computer science. First, the requirement that software malfunc-
tioning be defined taking into account the various LoAs involved in the software
production cycle reflects the important role that abstraction plays in the conceptual
understanding of computational systems. Computer science focuses on information
processing and data manipulation and, therefore, it has abstraction at its core (Colburn
and Shute 2007). This feature characterises software development as the evolution of
programming paradigms and its relation with data modelling (Colburn 1998). Sec-
ond, formal verification of software is fundamentally affected by the method of LoAs,
for both technical and theoretical reasons (Angius 2013). This is important for the
implications that software malfunctioning has in practice. In particular, the testing
of software for verifying requirements satisfiability demands an accurate and precise
definition of falsifiable hypotheses about software systems that are being evaluated,
and this depends on the LoA adopted (Angius 2014). Accordingly, an appropriate
definition of malfunctioning for software needs to start from a correct characterisation
of the LoA concerned, which can help the comparison with other technical artefacts.

The article is organised as follows. In Sect. 2, we introduce an essential distinction
between dysfunction and misfunction. In Sect. 3, we outline the production cycles for
traditional technical artefacts and software artefacts, identifying for each of these two
kinds of artefact the possible source of malfunctioning at the correct LoA. Having
provided this background, in Sects. 4 and 5 we analyse dysfunction and misfunction,
respectively, in technical artefacts. In Sect. 6, we apply to software the characterisation

4 Neander raises this criticism regardingWright (1973) in (2004) andRuthMillikandoes the same forRobert
Cummins’ causal-role functions in (1989). Paul Davies turns the criticism around, claiming that historical
functions provide no better account of malfunction than causal-role functions in (2000a,b). Indeed,Millikan
has argued that this fact applies to functional categories in general, and not just to artefactual and biological
types: “it is of the essence of purposes and intentions [and hence, of functions] that they are not always
fulfilled” (1989, p. 294).
5 See, for example, Houkes and Vermaas (2010), and Jespersen and Carrara (2011).

123



1202 Synthese (2015) 192:1199–1220

of malfunctioning suggested in the preceding sections and defend three main theses.
In brief, according to the first thesis, software tokens cannot disfunction; according to
the second, software tokens cannot misfunction; and according to the third, software
types only misfunction under narrow conditions. Section7 concludes the article by
summarising the results of our analysis for both technical and philosophical aspects
of software malfunctioning.

2 Two kinds of malfunction: dysfunction and misfunction

Let us distinguish between “negative” and “positive” kinds of malfunction. A neg-
ative malfunction, or dysfunction, occurs when an artefact token t either does not
(sometimes) or cannot (ever) do what it is supposed to. A positive malfunction, or
misfunction, occurs when an artefact token t may do what it is supposed to do (possi-
bly for all tokens t of a given typeT), but it also yields some unintended and undesirable
effect(s), at least occasionally. We intend to examine whether, and if so, how software
may malfunction in the sense of dysfunction or misfunction. We argue that software,
understood as type, may misfunction in some limited sense, but that it cannot dys-
function. Briefly, the reason for this is that malfunction of types is always reducible to
errors in the software design and, thus, in stricter terms, incorrectly-designed software
cannot execute the function originally intended at the functional specification level.
However, it may very well be the case that ‘malfunctioning software’ in this negative
sense works correctly for the unintended design.

Our present analysis raises important philosophical and technical issues. If one
accepts that it is a universal characteristic of functional artefacts that they are capable
of dysfunction, in the sense intended above, it should follow that software is not an
artefact in the same sense. Of course, this is not to say that software fails to qualify
as an artefact in the broadest sense of the word, i.e., in terms of being ‘a product of
human workmanship’. We argue that the latter is a trivial and uninformative qualifica-
tion (it applies to poetry as well, for example) and that a more precise sense of artefact
for software should be adopted. Accordingly, one should distinguish software from
other technical artefacts, in view of their design that makes dysfunction impossible for
the former, whilst possible for the latter. An important consequence of the following
analysis is that, since we accept that software is function-bearing, that software cat-
egories are functional categories—Millikan’s claim that members of any functional
category must be capable of dysfunction is mistaken.

3 Miscomputation and software production cycle

Before discussing the production cycle of software development, some observations
regarding miscomputation in software artefacts are in order. The teleological function
of artefacts—the fact that they are produced according to a design to perform certain
functions—serves to characterise them in virtue of the task forwhich they are designed.
An artefactA is supposed to doX and its design is correct if the design complieswith the
functional specification that (should) reflect A’s intended behaviour to do X. Similarly,
the design of a computational system, and software design in particular, is the crucial

123



Synthese (2015) 192:1199–1220 1203

part of software engineering that pertains to the functional system level (FSL) and to
the design system level (DSL).6 Software type T is produced according to a functional
specification S, for which a design D is correct if it allows any token t of type T to
do what is specified by S. At least in terms of this description, it seems that software
tokens are artefacts and that, as such, the sort of malfunctioning issues encountered
by these systems should be comparable to those of other technical artefacts.

The characterisation of malfunction in artefacts—computational or not—relies on
their correct structural description. In general, artefacts are described in terms of their
function. A screwdriver, for example, is used to turn screws and a program (more
on this later) is used to process data and instructions in a manner that determines
the behaviour of the executing computer. The purpose of the artefact is intimately
connected to its design or its usage. When the inherent function of a system, e.g., a
natural one, is conflated with an epistemologically-attributed purpose to that system,
determining its functioning becomes difficult. Consider the following example. A
biological heart pumps blood bymeans of a coordinated series of contractions, sending
blood through the body. Its purpose seems clear, but does an artificial heart that is
implanted in a human body and performs the same function have the same purpose as
a natural biological one? In the case of human-made artefacts, in general, and software
artefacts, in particular, there is always some agent involved in the background, be that
the designer or user of the artefact. Accordingly, the issue of malfunctioning stems
from any gaps that may exist between the function (as intended by the designer) and
the purpose (as perceived and experienced by the user) of the artefact.

The specification and design of artefacts determine the standards according towhich
their behaviour is deemedcorrect or incorrect.7 Anartefact of typeT functions correctly
if it does what it was designed to do and according to the intended specification S.
A correct performance of the function F, as defined by the specification, can still be
impeded by the artefact’s actual design. A violation of the functional specification is
involved in the dysfunctional sense. In this sense, the infringement of functionality is
clearly not induced by either a temporary defect or an external impediment. Rather,
the artefact is structurally unable to function as defined by its specification, at least
occasionally. If this is the case for all artefact tokens of a given type, one is compelled
to accept that an artefact t of type Twas designed to do Swhich is meant to instantiate
a function F, whilst the design D of T provides a blueprint for some function F∗
different from F. This is the case of incorrectly-designed artefacts.

Errors of functioning (or ‘operational malfunctions’ in [text omitted]) do not violate
the standards set by the specification. They can be expressed in the more ‘positive’

6 See [Fresco and Primiero (2013)] for more details. For an analysis of errors related to ethical, policy and
legal approaches to software development and maintenance, see Gotterbarn (1998).
7 The literature in both philosophy of technology and philosophy of computer science often links the
role of specification and design in determining artefacts’ correctness to a normative aspect. This link
relies on different possible understandings of normativity. For example, on one understanding, it is the
description of what an artefact does translated into the specification of what an artefact should do. On
another understanding, it is an artefact’s design that indirectly establishes the criteria for ethical and legal
evaluation of the consequences of the artefact’s use. Yet, on another understanding, it is that stable and
successful realisation of technological artefacts that requires agents to behave so as to enable their intended
functioning. For more on this see, for example, Vincenti (1990), Radder (2009) and Turner (2011).

123



1204 Synthese (2015) 192:1199–1220

Table 1 A schema of the production cycle of a screwdriver

Cycle Functional artefact

Screwdriver

Specification To turn screws

Function definition Rotational movement

Design Fit to a screw and rotate (anti-)clockwise

sense of misfunction applicable to artefacts. An artefact token t malfunctions when it
is able to perform the function F, as intended by its specification S and according to its
designD, but it also induces F∗ as an unexpected function. In the case of software, the
first condition means that malfunctioning software sometimes does not produce the
desired output—that is, the specification and design according to which the software
was produced may still be satisfied—even if only occasionally. The malfunctioning
t, at least sometimes, produces the intended output; if not, S cannot specify the right
type for t. Additionally, according to the second condition, the execution of the arte-
fact’s functionality produces side-effects that may eventually also hinder its correct
functioning.8

In order to identify the relevant malfunctions in software—as in other technical
artefacts—it is crucial to define their production cycle, so that one may establish
where malfunctions emerge and qualify the latter correctly. Consider, even if only
schematically, the production cycle of two simple artefacts: a screwdriver (see Table1)
and an elementary piece of software that we shall call factorial (see Table2).

The ability of a technical artefact to work correctly consists in a two-step process.
The first step is the choice of the appropriate function (in the case of a screwdriver,
the rotational movement) to satisfy the proposed specification (to turn screws). The
second step is the mapping of this function into the correct tool design (a tool that has
the correct tip which can be inserted into the corresponding head of the screw and that,
when rotated, can move the screw accordingly). The possibility of a malfunctioning
screwdriver is, therefore, defined by either a function that does not satisfy the specifi-
cation (e.g., an ill-defined function such as hitting the screw in order to rotate it), or a
tool-design that does not satisfy the intended function (e.g., a wrong tip that does not
correspond to the head of the screw). Finally, malfunction can originate at the level of
physical implementation. At this level, the steps involved are the choice of material
that can perform the required function (e.g., plastic and metal for a screwdriver, but
not glass) and its construction (e.g., plastic for the handle, metal for the tip). These
are what we already referred to as, respectively, forms of failure by design (incorrect
functional definition) and failure of exercising a function (incorrect tool design and
incorrect physical implementation). Table1 provides a summary.

8 Notoriously, in computer science the notion of a side-effect is not a negative one. It is used to refer to
the ability of a program to modify the state of a system or produce an observable interaction with the
environment, besides returning an appropriate value of the function called. In the ensuing discussion, we
use the term side-effect in its common sense of an unexpected result of an action.

123



Synthese (2015) 192:1199–1220 1205

Table 2 A schema of the production cycle of a piece of software called factorial

Cycle Functional artefact

Factorial

Specification To obtain the factorial of an integer

Function definition Integers to integers

Algorithm design Return 1 if input is 0; otherwise return the result of multiplying the
input by the recursive application of this very same function on
the input reduced by 1

Software programming C commands: if-else; return; ==; *;-

Physical implementation Choice of material for best fit (sufficient RAM)

Next, consider the production cycle of factorial. A description of the program
is as follows.

)nint(factoriallong
{ 
if (n == 0) 

return 1; 
else 
 return(n * factorial(n-1)); 

}

In this program, the type of allowed objects is defined as integer. The conditional
statement declares the result of applying factorial to be 1 when the value of the
argument n is 0; otherwise, it returns the argument multiplied by a recursive call to the
function on n-1. Table2 describes the production cycle of the software implementing
this program.

The description and definition of design is what distinguishes software artefacts
from other technical artefacts. For the latter, design is understood as a direct implemen-
tation of the function identified to satisfy the specification. Program design requires
more than that. First, it requires the design of the algorithm or the logical rule(s) sat-
isfying the function specified at FSL. Then it requires the implementation of such a
rule (or rules) in a given programming language. The translation required by software
programming is peculiar in that it involves an additional language. When considering
malfunctioning in a program, we can partially recover some of the steps considered
above for other technical artefacts. For example, a function may not satisfy the spec-
ification, e.g., an ill-defined function type, such as factorial for type real (i.e.,
real numbers), or an algorithm may not satisfy the function, e.g., use a sum function
in the recursive call. An additional step is present in software artefacts, too, namely
program design. A choice of the programming language is required and the formula-
tion of code for instantiating the algorithm designed to satisfy the identified function.
In our case, the C language, defined over integer-objects, requires the commands:
if − else;return; ==; ∗; −; in order to implement the algorithm. Finally, in

123



1206 Synthese (2015) 192:1199–1220

the case of software artefacts, the level of physical implementation is the source of
operational malfunctions.

This brief and simplifiedoverviewof the production cycles of technical and software
artefacts already suffices to identify the different LoAs where malfunction can occur.
It also identifies where, within the cycle, lies the difference between software artefacts
and other technical artefacts, namely at the programming level. Our next task is to
consider whether such a distinction can explain different forms of malfunctioning
affecting software and other technical artefacts.

4 Dysfunction

For the most part, discussions of artefact malfunction have focused on whether an
artefact can do what it is supposed to. The focus has been on whether the artefact
exercises its function by bringing about the desired outcome whenever used properly.
This common view is expressed more or less explicitly by Millikan (1989, p. 295):

[A]n obvious fact about function categories is that their members can always be
defective…hence unable to perform the very functions by which they get their
names.

Neander (1995, p. 11) echoes this claim:

[A] biological part functions properly when it can do what it was selected for
and malfunctions when it cannot.9

Presumably the situation is similar for artefacts, although two potential pitfalls need
to be avoided.

First, it is not the artefact’s actual performance in one or more uses, but its capacity.
Artefactsmay function properly and nonetheless fail to accomplish their tasks, aswhen
a well-functioning10 anti-aircraft missile misses its target. However, if the anti-aircraft
missile cannot (rather than did not) hit its target, then it is a dysfunctioning missile.11

As Preston (2000, p. 26) remarks, judgments about well- and malfunctioning imply “a
justified expectation of capacity or disposition”. That is, such judgments also imply a
counterfactual assessment, in suitable type-situations, of what the artefact would do,
if it were used in an appropriate situation, rather than only an assessment of what it
did do in some particular situation.

Second, it is also generally accepted that dysfunction applies only to proper func-
tions and not to accidental uses. If one uses an artefact in a manner not intended by
its designer nor sanctioned by common usage, then its inadequacy to perform as one
wishes is not a symptom of dysfunction. A telephone may be used as a doorstop, but

9 Neander refines this rough definition later by specifying that “what it was selected for” should be inter-
preted as the “lowest level of description” applicable.
10 We use the terms “well-functioning” and “properly functioning” interchangeably throughout.
11 We assume that its target is one that the missile is designed and reasonably expected to hit. If the missile
is designed for slow-moving aircraft, then the fact that it cannot strike a modern jet fighter is irrelevant to
whether it is functioning properly.

123



Synthese (2015) 192:1199–1220 1207

if it does not serve this use well, then it would be incorrect to classify it as a dysfunc-
tioning doorstop. It is not a doorstop at all, but it is merely being used as though it
were one. In Franssen’s terminology (2006), the telephone “is not and does notmake”
a doorstop. This restriction may be legally problematic in more complex scenarios
(who is accountable for the misuse of a tool, for example?), but is harmless to our
considerations, since we are evaluating software in terms of its proper functions.

According to the previous analysis of an artefact production cycle, malfunctioning
by inability to perform the intended and designed task can be addressed at different
levels. First, it can be addressed at FSL, if the intended specification is unattainable,
e.g., because it is ill-defined. Second, it can be addressed at DSL, if the design offered
does not match the required specification, e.g., because it satisfies an entirely different
sort of function. Third, it can be addressed at the physical implementation level, when
it is impossible to satisfy the design and/or the specification, whenever either the
physical implementation or the choice of material prevents the performance of the
required task. The first and second type of problem affect artefact types, whilst the
third affects artefact tokens. As the above quotes by Millikan and Neander suggest,
the kind of malfunction we consider here applies to artefact tokens rather than types.
Either an individual artefact token can perform as it should (by virtue of being a token
of its type) or it cannot. In the former case, it functions properly, whereas in the latter
it dysfunctions.

Indeed, one needs the artefact type to provide the right context for the proper
evaluation or, more precisely, to select the right LoA needed for one’s evaluation.
Thus, a cheap dart gun may not hit its target often, but as long as it hits its target as
often as other guns of the same type do, it is not dysfunctional. We do not expect
the cheap dart gun to be as accurate as a more expensive professional gun, but only
as accurate as similar tokens. Certainly, some caution needs to be exercised when
interpreting the reference class “similar tokens”, for one would not want to compare
a broken dart gun to other broken dart guns and conclude that it is well-functioning.
Yet, these issues do not hinder the development of a proper theory of dysfunction.

An artefact type incapable of doing what it is supposed to do means that unex-
ceptional tokens of that type will be unable to perform their function. The analysis
here should not address specification design as the relevant LoAwhere dysfunctioning
takes place: one may call a ball-pen, which does not write at all, badly designed. One
should not say that the tokens of a badly designed type, for example, a ball-pen that
writes very poorly on most kinds of paper, dysfunctions. They behave as well as one
can expect for that type, namely, badly. Finally, one would also be reluctant to say that
such tokens are functioning properly, since they cannot achieve their functional goal.
The terms ‘proper’ and ‘well’ convey an approval of the token’s capacity that would
be unwarranted in this case. We say ‘reluctant’ because some exceptional tokens of a
badly designed type may actually work effectively enough to warrant a more positive
assessment and qualify as well-functioning, if only fortuitously.

There are two ways in which a particular token t can perform comparatively poorly
with regard to its function.

(1) An artefact token t may be less likely to bring about the desired outcome. For
instance, an automobile starter motor with a few missing teeth will start the car

123



1208 Synthese (2015) 192:1199–1220

more often than not, but occasionally, when the missing teeth are aligned with
the flywheel, it will fail to do so. Because it fails to start the car more often than
“normal” starter motors of the same type do, it is dysfunctional. When a token is
less likely to bring about the desired outcome than one justifiably expects for its
type, we say that the token is unreliable.

(2) In someartefact tokens, functions are realised to a greater or lesser degree.A starter
motor either starts the car or it does not, but windshield wipers can produce either
a well-cleaned surface or a streaked and dirty surface (or anything in between).
If an artefact token t is incapable of achieving its goal as well as one justifiably
expects, then it is an ineffective token. An old and cracked wiper that cannot clean
the windshield as well as we reasonably expect is dysfunctioning because it is
ineffective.

With this terminology clarified, we can now give a preliminary definition of dys-
function.

Definition 1 (Dysfunction) An artefact token t dysfunctions if and only if it is less
reliable or effective in performing its function F than one justifiably expects for tokens
of its type T.

Because tokensmay bemembers of several different types (eachwith possiblymultiple
functions), this definition should be taken as relative to a selected LoA, identifying the
function and artefact type under consideration. To give a full account of the definition,
we would need to make explicit the notion of justifiable expectations. But let us
postpone a fuller analysis and accept this as our working sketch of dysfunction so that
we may proceed to define misfunction.

5 Misfunction

Roughly, an artefact token dysfunctions when it is incapable of performing as well
as it can reasonably be expected. That is, we have certain justified expectations about
how tokens of type T perform, but this particular token t of type T fails to meet those
expectations. In these cases, we reasonably claim that t is malfunctioning. There is
another way in which artefacts may malfunction.

Rather than failing to do what they should do, an artefact may malfunction by
doing something that it was not intended to do, whilst still having the capacity to do
what it should. Consider a film camera that overheats when turned on, but otherwise
functions normally.12 The overheating does not affect the camera’s capacity to take
pictures, but it does pose a risk to the user, namely, that she may be burned when
using the camera. In this case, the camera is not dysfunctioning, since the assumption
is that it can take perfectly good pictures when used appropriately. Nonetheless, it is
malfunctioning—or more precisely, misfunctioning—since a proper usage poses an
unintended risk to the user. An artefact misfunctions when its proper usage produces

12 This example is drawn from the recall notice for certain models of Olympus film cameras (http://www.
cpsc.gov/cpscpub/prerel/prhtml06/06250.html). These cameras were prone to overheat due to defects in
the flash circuit. The recall notice reports no other symptoms.

123

http://www.cpsc.gov/cpscpub/prerel/prhtml06/06250.html
http://www.cpsc.gov/cpscpub/prerel/prhtml06/06250.html


Synthese (2015) 192:1199–1220 1209

an undesirable, and at least in principle unrelated, side effect. We clarify this initial
definition in this section.

The distinction between dys- and misfunction is subtle, since the misfunction of
an artefact token may be due to a dysfunction of some component. A water heater
that emits carbon monoxide into its surrounding environment is misfunctioning, since
it produces an undesirable effect when performing its function. But modern water
heaters come with components designed to prevent such emissions (such as seals or
air filter doors) and so, typically, this undesirable effect is a symptom that at least
one of these components are dysfunctioning, a seal that is supposed to prevent carbon
monoxide emissions is failing to fulfil its function.

It is common that an artefact misfunctions due to a dysfunction of some component.
To take another example, an automobile that functions adequately, yet produces an
annoying squeal, is misfunctioning. Such squeals are commonly symptoms that a
component is not performing as it should—say, that the serpentine belt is slipping,
due to age ormisadjustment of the belt tensioner. The car may nonetheless be a reliable
means of transportation, and so the artefact itself is not dysfunctioning, but rather is
producing an undesirable effect when performing its (intended) function. Because
misfunction is often a symptom of a related dysfunction, the distinction between the
two conditions may easily be overlooked. Nevertheless, producing an undesirable side
effect is clearly different from being unable to perform a function. Usually a careful
handling of the LoA at which the artefact is analysed facilitates the identification of
what is misfunctioning and what is dysfunctioning.

Onemay object that this distinction is in fact mistaken, merely due to an incomplete
description of the relevant function. After all, it is reasonable to suppose that cameras
have the function of taking pictures without causing harm to the user. If the proper
function of a camera includes this restriction, then the overheating cameras are dys-
functioning, since they are likely to harm the user. According to this objection, then,
misfunction is subsumed by dysfunction. A complete description of the function of a
camera, for example, is that it takes pictures without harming its user, interfering with
other appliances, producing distracting noises, smoke, foul odors, and so on.

Our reply to this objection is that it simply demands too much from the concept
of function. To put it more technically, it pretends to work in an LoA-free context,
thus generating a slippery slope problem. Because there is no limit to the sorts of
undesirable side-effects that an artefact may cause, a full list of them is always going
to be inevitably incomplete or too generic, if no LoA is fixed. Thus, if we attempt to
broaden the notion of function to exclude negative effects, our functional ascriptions
will always end with a “and so on” or a “and the like”. In order to deny that there are
two distinct kinds of malfunction, the notion of “function” would be encumbered to
the point that it is practically unusable.

Instead, the desire that the camera works without overheating produces a con-
straint on how the artefact should perform its function. An artefact’s function is the
positive effect that its use should bring about. In this case, the camera is supposed to
record images without burning the photographer, but this condition simply restricts
the manner in which it should realise its function. Thus, it is a constraint on, rather
than a component of, the artefact’s function. Failing to satisfy such constraints can be
evidence of misfunction rather than dysfunction.

123



1210 Synthese (2015) 192:1199–1220

The proposed distinction between dys- and misfunction is important, not least
because it has legal implications in terms of standard practices of recalling faulty
products. Dysfunction claims apply to tokens, rather than types, since our judgment
about artefact capacities is a comparative one: does the token concerned perform
as well as normal tokens of the same type? Misfunction does not depend on such
comparisons. What is at stake is whether an artefact produces a negative effect that
is inessential for its function. This condition may apply to types as well as to tokens.
When it applies to tokens, misfunctions are symptoms of hidden dysfunctions; when
misfunctions apply to types, they are not further reducible to dysfunctions but rather
attributable to poor design. If every Olympus Infinity Twin failed to take pictures, it
would not be dysfunctioning per se, but rather that typewould have failed to be properly
designed. Alternatively, one may say that that particular type would be dysfunctioning
when compared to the more general type ‘camera’. On the contrary, if every Olympus
Infinity Twin overheated each time it was turned on, then the type itself would be
misfunctioning, because it was poorly designed and would have to be recalled rather
than merely repaired.

Take another example: a recently manufactured gas range lacked an adequate heat
shield beneath the oven.13 As a result, these ranges tended to scorch the floor beneath.
This is clearly not a case of dysfunction, since the oven cooked food as it is supposed
to. Furthermore, it is not a case of misfunction caused by a dysfunctioning component:
it was not that the heat shield failed to perform as it should, but rather that no heat
shield was installed. Due to this design oversight, normal usage of the oven damaged
the floor. Hence, the artefact typemisfunctions due to a poor design: awell-functioning
oven should not damage the floor underneath.

Our discussion has thus far focused on the distinction between dys- and misfunc-
tion, but there is another distinction that should be examined. What is the difference
between a well-functioning artefact that nonetheless produces negative effects and a
misfunctioning artefact? An automobile produces pollutants when used as intended.
There is no doubt that these pollutants are undesirable; we would much prefer cars
that do not pollute. Nevertheless, we do not claim that because cars pollute, they mis-
function. How do we distinguish the negative effects of a polluting automobile from
the negative effects of a floor-scorching oven?

Both effects are undesirable and neither effect is an intended consequence of the
artefact’s design. All cars produce pollutants and, clearly, most ovens do not damage
the floor. So,wemay conjecture that because the oven’s negative effect is an aberration,
the oven is malfunctioning whilst the car is not. Indeed, this seems to point in the right
direction, but we argue that the distinction between the two cases is more than merely
statistical.

Whilst the production of pollutants was not intended by the car’s designers, it was
certainly foreseeable. Modern automotive engineers are well aware that cars produce
pollutants and they choose to manufacture them nevertheless. In fact, modern auto-
mobiles are designed to reduce pollution compared to earlier models.14 It is hard to

13 See http://www.cpsc.gov/cpscpub/prerel/prhtml06/06181.html.
14 It may be that pollution controls are primarily motivated by regulation rather than consumer interest,
but this is beside our main point.

123

http://www.cpsc.gov/cpscpub/prerel/prhtml06/06181.html


Synthese (2015) 192:1199–1220 1211

imagine that one would, in normal circumstances, manufacture or purchase an oven
that knowingly damages the kitchen floor. The potential damage produces a decisive
practical reason not to use the oven (a warning against use is also included in the
recall notice), while the pollutants produced by a vehicle apparently do not produce a
similarly strong reason against using the car.

This comparison suggests that normal, undesirable side effects can be distinguished
frommisfunction in terms of the practical reasons they produce (in the sense specified
below), an approach first presented in Franssen (2006). Franssen offers the following
definition of malfunction (p. 5):

Definition 2 (Franssen’s Malfunction) ‘x is a malfunctioning K’ expresses the nor-
mative fact that x has certain features f and that because of these features, if a person
p wishes to achieve the result of K-ing, then p has a reason not to use x for K-ing.

This definition is notable for its flexibility. It includes both dys- and misfunction.
Unfortunately, it is still insufficient to distinguish the two cases presented above. The
fact that our car pollutes is a prima facie practical reason not to use the car. How strong
must the reason be in order to count? One may suggest reading Franssen’s definition
in terms of decisive reasons and assume that the threat of property damage is more
decisive than the contribution of pollution. If the assumption is correct, one may
seem to have drawn a distinction between the two cases. However, this strengthening
excludes too much. An automobile that produces a horrible squealing noise may still
be a useful means of transportation. The fact that it produces an annoying noise may
easily not be a decisive practical reason to avoid driving it. Nonetheless, we would
not hesitate to classify this automobile as misfunctioning: it should not produce such
awful noise. The strengthened version of Franssen’s criterion still yields a doubtful
judgment about the car, as, by that criterion, the car is not malfunctioning.

Instead, we suggest that the difference betweenmis- and well-functioning ismodal,
and concerns the inevitability of the deleterious effects. A car that produces an awful
noise misfunctions, because we know that cars do not have to make that noise in
performing their function. Similarly, we know that ovens do not have to damage the
kitchen floor in cooking and that cameras do not have to produce so much heat in
taking a photo. We know this in part because we are familiar with well-functioning
cars, ovens and cameras. So, the aforementioned statistical argument was persuasive,
but its conclusion was misplaced. The evaluations about misfunction do not refer to
how the majority of tokens behave. Instead, an artefact misfunctions if the negative
effect it produces is avoidable. In our example, we know that other ovens do not
damage the floor, so we know that this effect is actually avoidable. On the other hand,
locomotion by gas combustion induces pollution, so the fact that our cars pollute is
not evidence that they misfunction.15

The concept of “avoidability” must allow for alternatives to be both available with-
out extraordinary effort, and comparable in their utility. For vehicles, a comparable
alternative would include, for instance, an extant infrastructure for fuel delivery—as

15 Of course, one could still claim that standard cars do misfunction by polluting, when comparing them
to other locomotion means that satisfy the same functions without polluting. The point is whether this
evaluation is clear (it is), not whether it is justified (it may not be).

123



1212 Synthese (2015) 192:1199–1220

long as constructing such infrastructure would require significant effort, we are likely
to accept automobile pollution as unavoidable, rather than a form of misfunction.
However, the situation regarding polluting locomotion is changing and vehicles that
emit little or no pollution have been becoming widely available at comparable costs.
Accordingly, it is possible that our attitudes towards pollution emissions will change
in the foreseeable future. Pollution emissions will not merely be a regrettable feature,
but rather a form of misfunction—an avoidable and deleterious effect. What we argue
will have changed, not the evaluation, but the choice of the correct LoA at which the
evaluation is conducted.

All these considerations lead to the following definitions of token and type mis-
functions.

Definition 3 (Token Misfunction) An artefact token t misfunctions if and only if it
satisfies the following three conditions:

(1) using t produces some specific side-effects e of type E;
(2) because of e, one has reason not to use t; and
(3) other (“normal”) tokens of the same type do not produce the same side-effects of

type E.

Definition 4 (Type Misfunction) An artefact type T misfunctions if and only if it
satisfies the following three conditions:

(1) using tokens of type T typically produces some specific side-effects of type E;
(2) because of those side-effects of type E, one has reason not to use tokens of type

T; and
(3) there are in principle other comparable artefact typeswith the same functionwhich

do not produce the same side-effects of type E.

The comparability of artefact types with the same function immediately fixes the
reference to the artefact specification and design, which lies at a higher LoA than just
the collection of all artefacts of the same type. In particular, the reference is made
to a well-designed artefact type. To see this, consider two artefact types X and Y that
realise the same function. Type X produces an undesirable effect a. Type Y produces
an undesirable effect b. X and Y are comparable, but neither of them is useful to
establish misfunctioning. Because there is another type (namely Y) with the same
function as X but without effect a, our definition suggests that Xmisfunctions. But the
exact same reasoning suggests that Ymisfunctions, too. This is possible only in terms
of a comparison with the design according to which X is not intended to produce a
and Y is not intended to produce b. Counterfactually, if there were a type Z satisfying
such design without undesirable effects, it would be the one against which both X and
Y would be judged as misfunctioning. Note that the token-type relation is recursive:
types can, in their turn, be token of other, “higher” types, in the same Russellian sense
in which sets can be members of other sets. In our case, the comparison of X and Y
is only possible because of some common type S making the comparison a tertiary,
rather than a binary, relation. This point will be discussed in detail in the next section.

The analysis above and the corresponding four definitions suffice to establish the
following two claims:

123



Synthese (2015) 192:1199–1220 1213

(1) a misfunction is a deleterious, avoidable effect of normal usage rather than an
incapacity; and

(2) misfunction applies to both types and tokens.

Next, we apply the two claims to the analysis of malfunctioning software.

6 Software

A characteristic feature of artefacts—and perhaps function-bearers in general—is that
they can dysfunction (Wright 1973; Millikan 1989; Preston 2000, p. 24). This seems
to be the case for artefact types: if type T has the function F, then it is possible that
a token t of type T is less reliable or effective in performing F. Misfunction, on the
other hand, remains largely unanalysed in the literature. To the best of our knowledge,
nobody has suggested to date that the possibility of misfunction is an important feature
of artefacts. However, this is a crucial fact in understanding software.

For present purposes,we adopt the following broad terminological conventions.16 A
program is usually a single, complete and self-contained ordered sequence of instruc-
tions. The logical unity of this sequence need not correspond to a single physical
unity. For a program may consist of different routines distributed over different physi-
cal devices (e.g., a remote server and a local machine) andmay require some additional
components (e.g., from a software library) in order to be executable in principle. For
simplicity, we identify a particular program with the source code that implements a
given algorithm in a specific programming language. The source code implementation
imposes restrictions on the operation types and data types defined at the algorithm level
(e.g., dealing with variable of data type ‘int’, which can store integers in the range
−32,767 to 32,767). A program, then, is identified with a source code in a textual
form. The Skype program, for example, is equivalent to its source code implementa-
tion. Because the medium on which the source code is stored does not seem to have
any particular import for evaluating the correctness of the program itself, even a piece
of paper with the instructions printed on it counts as a program as long as it is well
formed. An algorithm x, which has the teleological function F, that is implemented
using two different programming languages, L1 and L2, yields two different source
codes, sc1 and sc2, respectively. We say that sc1 and sc2 are two program tokens
of the same program type, which is defined by F.17 A program, thus defined, is not
executable yet. This brings us to software.

Software is any ordered sequence ofmachine executable instructions. Its execution
typically changes some machine state, which can be loosely viewed as a set consisting
of one or more memory banks and/or the controllers of the executing machine. A
source code in a textual formneeds to be converted first into the correspondingmachine
language instructions in a process of compilation. The program is compiled into one or
more object files for a particular machine architecture (e.g., a Mac computer running

16 As a disclaimer, it should be noted that there are many subtleties in the distinctions made here that exceed
the scope of the article.
17 x is a mathematical entity and as such it can be identified with a mathematical function. We do not offer
a taxonomy of programs and software based on this property.

123



1214 Synthese (2015) 192:1199–1220

MacOS-Xver 10.9 or a PC runningWindows 8.1). But, even at that point, the compiled
program, which can be identified as software type, is still not executable in that format
on the particular operating system.18 The compiled program has to be converted into
an executable through the process of linking, in which a single executable file is
created from (possibly) multiple object files. A particular copy of an executable (e.g.,
Skype.exe for Windows 8.1 or Skype {Unix Executable File} on Mac OS-X ver 10.9)
is a software token.19

According to our definition, an artefact token t dysfunctions if it is incapable of
performing as well as we expect for tokens of its type T. For physical artefacts, the
type/token distinction is relatively unproblematic: artefacts can be distinguished by
design, structure, function, etc., yielding the types, while tokens are physical instan-
tiations of the various types. But for software the issue is subtler due to the tricky
ontological nature of software. Even a program requires some physical medium (e.g.,
some paper) on which the text of the program is inscribed. A software token is mani-
fested via a physical file that is stored on some physical medium (e.g., a hard drive, a
USB flash drive or a CD-ROM). Yet, if a CD-ROM, for example, is scratched such that
a particular machine instruction gets corrupted and causes an undesirable side effect
when the software token—that is, a particular copy of an executable—is executed, is
it the software itself that malfunctions?

When one considers a software type, its tokens are all implementations of the same
underlying program. A software token corresponds to what is standardly called in
industry a software copy. Such copies are, for example, different installable software
packages of the same program intended to run on different machines, where each
one is typically assigned a unique serial number and, in case of proprietary software,
a licence code. When considering comparable software types that perform a similar
task20—for example, two text-editors (such asMS-Word forWindows andOpenOffice
Writer) or two audio/video chat programs (such as Skype and Google Hangouts)—we
shall talk of distributions. Whilst Skype and Google Hangouts are implemented using
different algorithms and different source codes and are, therefore, of different software
types, they may be considered comparable artefact types for the present purposes.21

Our three main theses can now be stated more precisely. We start with the thesis
concerning software dysfunction.

18 Here, there is another subtle distinction that should be made between compiled and interpreted program-
ming languages. We do not include it, because it is not significant for the remaining discussion.
19 The type/token distinction can be approached differently if another LoA is considered. For example, if
one takes into account only the machine code and not the source code (which is essential for our analysis),
one could consider the executable as a type and its copies as tokens. The LoA is crucial to our formulation of
Thesis 3. For an accessible discussion of some curious features of programs and software see, for example,
Berry (2011, Chaps. 2 and 4).
20 Since we are no longer dealing with mathematical functions, but teleological functions, we might say
that MS-Word forWindows and OpenOfficeWriter have a similar, but not the same, basic function, namely,
word processing. But they implement different sets of features, only some of which overlap.
21 One could add here a further classification to refer to the different instances of the same distribution
by talking of software versions. For example, the ordered numbered—or sometimes alphabetically
named—instances of the same software or program issued during a given period of time. The problem
is that software versions are not necessarily instances of the sameunderlying algorithmdesign. For a program

123



Synthese (2015) 192:1199–1220 1215

Thesis 1 (Software Dysfunction) A software token t cannot dysfunction, since it can-
not be less reliable or effective in performing its function F compared with other tokens
of the same type T independently of the supporting hardware used to run it.

To help clarify the peculiar dual ontological nature of software and its implica-
tions for malfunction classification, consider, more broadly, operational malfunction
in physical computational systems. An operational malfunction in a computational
system occurs whenever some piece of hardware fails in some way. For example, a
cooling fan that stops working unexpectedly can eventually allow the CPU to over-
heat and melt down. Any such mechanical failure that adversely affects the expected
behaviour of the computational system induces a physical miscomputation (Fresco
and Primiero 2013).

On the one hand, software is intimately linked to the underlying abstract algorithm
that is implemented in a particular programming language. On the other hand, software
is physically realised as a computer file and occupies physical memory space. It is
debatable whether a case where a physical register, which contains some software
instruction, goes awry—thereby causing the software not to produce the “expected”
behaviour—qualifies as a software malfunction. If such a physical malfunction is
indeed always attributable to the hardware used to run the software token, rather
than to the software itself, then there is a very limited sense in which software can
malfunction. Different software tokens of the same software type will only perform
the expected function reliably or effectively, if physical hardware malfunctions do not
occur.

In this sense, software tokens do not, and cannot, dysfunction. The evaluation of
the correctness of a software token is done on the basis of the underlying algorithm
implemented. But once the algorithm is implemented using some programming lan-
guage, the function of the software is fixed by its type. Any potential error in the
implementation process can only be attributed to the implementation of the algorithm
(cf. Fresco and Primiero (2013)).

Typically, “software malfunctions” are simply design errors for which only the
designer can be deemed responsible.22 Suppose that a program with variables (x, y)
of type intwas intended to calculate (x ∗ y), but in the way it was inadvertently written
it actually calculates (x + y) instead. Strictly, a software token of this program should
be evaluated against the function (x + y), rather than (x ∗ y). This software token does
notmalfunction, because it computes the former function. Other tokens of the software
type will not be either more reliable or effective in performing the expected function.
All software tokens of this type will compute the same function, namely (x + y). This
token does not, and cannot, dysfunction.

It could be argued that the performance of a software token is also related to other
non-physical processes, such as compilers and linkers. In this sense, the possible
malfunctioning of a software token is not just induced either by the design or by the
hardware. Rather, it can result from a bug in other elements involved in the running

Footnote 21 continued
version 1.1 might contain modification to the design of version 1.0, such that the two versions can no longer
be considered instances of the same algorithm.
22 See also Fresco and Primiero (2013).

123



1216 Synthese (2015) 192:1199–1220

of software, e.g., a compiler-specific bug. Yet, such elements are entirely analogous
to other software tokens and Thesis1 is equally applicable. Assume the existence of
source code sc which is correctly designed to perform a certain function F and a
compiler C such that C(sc) does not result in a correct compilation of F in the target
language L. As a result the execution of sc in L fails, by stipulation. While the original
formulation of F in sc was correct and the hardware is not at fault, the end result is
still a malfunction that should be attributed to C.

Thesis 2 (Software TokenMisfunction) Software tokens of a given type T in isolation
do not misfunction, since they all inherit a single software design D and are not
comparable with other “normal” tokens of the same type T.

To understand the plausibility of Thesis 2, consider the bug from 2008 in the multi-
player online video game EVE Online. A software patch, developed and deployed
for EVE Online, used a file in the software library named boot.ini, which is the same
file name used by the operating system for the standard boot instruction file. As a
result, when installed and run, the patch caused several thousands computers not to
start up. While the malfunction manifested itself at a token level, its root cause should
be traced back to the level of algorithm design. The software engineer defined (some
of) the routines or (parts of) the code underlying the program incorrectly or did not
follow correctly the practice related to software design (as in the case of conflicting
file names), such that every token of that type would malfunction. This clearly shows
that there are no other “normal” tokens of the same type (EVE Online) that do not
produce the undesirable effects in question. Software tokens of EVE Online, and of
similar software types, cannot be described as misfunctioning.

Thesis 3 (Software Type Misfunction) A software type Tx misfunctions only compar-
atively, when its tokens produce a side effect that is not produced by software tokens
of (a possible) type Ty, where Tx and Ty are tokens of a higher order type (supertype)
T0.

Let us see how some cases of software malfunction can be correctly described as
type misfunction in accordance with Thesis3. Suppose that a particular version of
MS-Word for Windows (call it type W) restarted (call such undesirable side effect e)
every time a user executed an operation consisting in typing some text in a left to right
language, changing the input locale to a right to left language and indenting the text
to the right (call it use case c). So, by stipulation, all software tokens of type MS-
Word for Windows would restart when executed under the specified circumstance.
Suppose further that the same behaviour did not produce a similar side effect e when
using another existing software of a comparable type, e.g., OpenOfficeWriter running
on the same Windows machine (call it type O). What are the circumstances under
which a type misfunction occurs in the case of W? Using software tokens of type W
typically produces e on c, but only because every such software token would exhibit
this behaviour: it is the result of some inherent design error. Because of e occurring,
one has reason not to use software tokens of type W if one uses both left to right and
right to left languages. There is, by stipulation, at least one other comparable software
type with the same function, namely O, that does not produce e on c. In this loose
sense, software may be subject to type misfunction.

123



Synthese (2015) 192:1199–1220 1217

The comparison ofW andO is possible, as all functional requirements expressed in
W’s specification and implemented in the actual code are compatible, by stipulation,
with those expressed inO. For example, ifW has a function to change the input locale
to a right to left language, the same function exists in O. In this sense, compatibility
admits requirements extension (e.g., that W includes some function, which does not
exist in O, and yet they remain comparable at the relevant LoA), while it requires
consistency preservation (i.e., all the essential features ofW exist in O). On the other
hand, compatibility excludes a comparison between different software types, such
as Skype and MS-Word. The abstract representation comprising both specifications
for W and O is more informative than the specification of each piece of software
implementing them and it can be understood as the model (or theory specification) of
which bothW and O are tokens.23 We refer to this abstract representation of software
types specifications as their supertype.

Consider next the following objection. Imagine a world in which W were the
only existing word processing software24 and suppose further that W, in that world,
consistently restarted on c. To claim that W was malfunctioning—so the objection
continues—Thesis 3 requires the existence of some comparable software type (such
asO), which nowdoes not exist by stipulation.A possible reply is that the identification
of a misfunction in W can be grounded on the relation between W as a software type
and its correct specification, which corresponds toW but without side effects e on c.25

Unfortunately, such a reply renders the explanation vacuous: just compare the mis-
functioning software to one, which possibly does not exist, and does not misfunction.
The appropriate reply is rather that, by taking the functional requirements specifica-
tion at a higher LoA as a supertype of W, one makes it possible (by the definition of
a type) to consider the existence in principle of another token of the same supertype,
call it W ′. Software types W and W ′ behave as tokens, and the argument about soft-
ware token misfunction (following from Thesis 2) is applicable again. A misfunction
occurs if and only if an undesirable side effect occurring in W is not manifested in
W ′. If the supertype is specified in terms of other unaccounted requirements, such as
the programming language to be used and the intended machine architecture, then the
comparison between its tokens might become impossible thereby no type misfunction
can be said to occur.

The above analysis shows that, in a strict sense, it seems impossible for software to
malfunction—either by dysfunctioning or misfunctioning. Although there is a loose
sense in which software type can misfunction, this is reliant on an analysis that com-
pares programs at a very high LoA. Even then, it is unclear that such “malfunctions”
count as a genuine case of misfunction. For these malfunctions are not induced by

23 For more details, see, for example, Hodges (1993, 1995), Kirchner and Mosses (2001), and Turner
(2005).
24 We thank an anonymous referee for this important objection.
25 In the example above, c may be initially overlooked when the functional requirements for W are docu-
mented. It will, thus, escape the normal testing process that is common in software engineering practice. If,
at some point, this is discovered, W will be deemed to malfunction (as indicated by the eventual fixing of
W, the adding of c to the requirements specification and the adding of an appropriate test case). This clearly
shows that software cannot be “blamed” for malfunctioning, as it always results from some design error.

123



1218 Synthese (2015) 192:1199–1220

software issues per se, rather they can always be reduced to design- and specification-
related errors.

7 Conclusions

We started from the trivial observation that software is a human construct produced
for a particular task and that, as such, it is an artefact by definition. We have stressed,
though, that such commonality of definition with technical artefacts is also qualified
in terms of the specific production cycle that makes them differ. On the one hand, the
ability of technical artefacts to work well is the result of the choice of the appropri-
ate function for the intended specification, and the mapping of the correct design to
such function. On the other hand, software is identified by an additional step in its
production cycle, by which well-functioning also requires that the choice of program-
ming language to implement the designed algorithm be adequate and that the actual
implementation of the algorithm be correct.

We have suggested that software should be considered at the LoA of execution,
if one wants to analyse the phenomenon of software malfunctioning. Here, too, one
needs to consider whether the algorithm execution indeed matches its design, whether
the latter is consistent with the specification, and whether it is internally coherent.
Only in the first case can one correctly analyse malfunctioning software in the proper
sense. We have shown how this conclusion matches our definitions of token- and type
misfunction.

In philosophy of technology, dysfunction has been identified as the core property
of functional categories. Our analysis shows that for software, this qualification needs
to be rectified. We have argued that executed software tokens cannot dysfunction. A
software token cannot dysfunction in the sense of being less reliable or effective than
expected, because it will always satisfy its design. It is the latter that can be judged
less reliable (i.e., if it does not completely satisfy the intended specification) or less
efficient (e.g., with respect to parameters of time, space, or complexity).

Our analysis also suggests that the separation of the notions of dysfunction andmis-
function as belonging to different production cycles, or to stageswithin the same cycle,
should be taken into account whenmalfunction prevention procedures are applied. The
software production cycle is, in particular, the result of different strictly connected
levels going from functional specification to algorithm design to implementation and
execution. At DSL, where logical and engineering aspects are concerned, efficiency
and reliability are considered. This means that one should consider the design of an
algorithm against its specification (e.g., does my algorithm satisfy my specification?
Does it do so in the most reliable and efficient way?), whilst the latter can only be
evaluated against the selected relevant standards (e.g., does the specification fulfils
my intention? Does it do so in the most reliable and efficient way?). At the implemen-
tation level, where a particular programming language is concerned, the right choice
of elements (e.g., predicates, functions, but also hardware components) will offer the
same level of reliability induced at higher levels, but it cannot deviate from the given
design. Here, type misfunction can only be considered as an inter-level comparison
concerning whether a distribution has better performance values than others.

123



Synthese (2015) 192:1199–1220 1219

Acknowledgments This article was developed initially as a collaboration between Jesse Hughes (see
especially Hughes (2009)) and Luciano Floridi. We are extremely grateful to Jesse for having allowed
us to re-use his very valuable work. We would also like to acknowledge the constructive feedback of the
anonymous referees, whose comments enabled us to improve the article significantly.

References

Angius, N. (2013). Abstraction and Idealization in the formal verification of software systems. Minds and
Machines, 23(2), 211–226.

Angius, N. (2014). The problem of justification of empirical hypotheses in software testing. Philosophy
and Technology, 27, 423–439. doi:10.1007/s13347-014-0159-6.

Berry,M. D. (2011). The philosophy of software: Code andmediation in the digital age. NewYork: Palgrave
Macmillan.

Colburn, T. (1998). Information modelling aspects of software development. Minds and Machines, 8(3),
375–393.

Colburn, T. (1999). Software, abstraction and ontology. The Monist, 82(1), 3–19.
Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds and Machines, 17(2), 169–184.
Davies, P. S. (2000a). Malfunctions. Biology and Philosophy, 15(1), 19–38.
Davies, P. S. (2000b). The nature of natural norms: Why selected functions are systemic capacity functions.

Noûs, 34(1), 85–107.
Fetzer, J. (1999). The role of models in computer science. The Monist, 82, 20–36.
Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.
Franssen, M. (2006). The normativity of artefacts. Studies in History and Philosophy of Science, 37, 42–57.
Fresco, N., & Primiero, G. (2013).Miscomputation.Philosophy and Technology, 26, 253–272. doi:10.1007/

s13347-013-0112-0.
Gotterbarn, D. (1998). The uniqueness of software errors and their impact on global policy. Science and

Engineering Ethics, 4(3), 351–356.
Gruner, S. (2011). Problems for a philosophy of Software Engineering. Minds and Machines, 21(2), 275–

299.
Hansson, S. O. (2006). Defining technical function. Studies in History and Philosophy of Science, 37(1),

19–22.
Hodges,W. (1993). Themeaning of specifications II: Set-theoretic specification, Semantics of Programming

Languages and Model Theory, ed. Droste and Gurevich, Gordon and Breach, Yverdon, 1993, 43–68.
Hodges, W. (1995). The meaning of specifications I: Initial models. Theoretical Computer Science, 152,

67–89.
Houkes, W., & Vermaas, P. E. (2010). Technical functions: On the use and design of artefacts. Dordrecht:

Springer.
Hughes, J. (2009). An artifact is to use: An introduction to instrumental functions. Synthese, 168(1), 179–

199.
Irmak, N. (2012). Software is an abstract artifact. Grazer Philosophische Studien, 86(1), 55–72.
Jespersen, B., & Carrara, M. (2011). Two conceptions of technical malfunction. Theoria, 77(2), 117–138.
Kirchner, H., & Mosses, P. (2001). Algebraic specifications, higher-order types and set-theoretic models.

Journal of Logic and Computation, 11, 453–481.
Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56(2), 288–302.
Neander, K. (1995). Misrepresenting & malfunctioning. Philosophical Studies, 79(2), 109–141.
Neander, K. (2004). Teleological theories of mental content. In E. N. Zalta (Ed.), The Stanford encyclopedia

of philosophy (2012 Ed.). http://plato.stanford.edu/archives/spr2012/entries/content-teleological.
Northover, M., Kourie, D. G., Boake, A., Gruner, S., & Northover, A. (2008). Towards a philosophy of

software development: 40Years after the birth of software engineering. Journal forGeneral Philosophy
of Science, 39(1), 85–113.

Preston, B. (2000). The functions of things: A philosophical perspective on material culture. In P. G. Brown
(Ed.), Matter, materiality and modern culture (pp. 22–49). London: Routledge.

Radder,H. (2009).Why technologies are inherently normative. InA.Meijers (Ed.),Philosophy of technology
and engineering sciences. Handbook of the philosophy of science (Vol. 9, pp. 887–921). Amsterdam:
North-Holland.

123

http://dx.doi.org/10.1007/s13347-014-0159-6
http://dx.doi.org/10.1007/s13347-013-0112-0
http://dx.doi.org/10.1007/s13347-013-0112-0
http://plato.stanford.edu/archives/spr2012/entries/content-teleological


1220 Synthese (2015) 192:1199–1220

Schiaffonati, V., & Verdicchio, M. (2014). Computing and experiments: A methodological view on
the debate on the scientific nature of computing. Philosophy and Technology. doi:10.1007/
s13347-013-0126-7.

Suber, P. (1988). What is software. Journal of Speculative Philosophy, 2(2), 89–119.
Symons, J. (2008). Computational models of emergent properties. Minds and Machines, 18(4), 475–491.
Symons, J., & Boschetti, F. (2013). How computational models predict the behavior of complex systems.

Foundations of Science, 18(4), 809–821.
Turner, R. (2005). The foundations of specification. Journal of Logic and Computation, 15, 623–662.
Turner, R. (2011). Specification. Minds and Machines, 21(2), 135–152.
Vincenti, W. G. (1990). What engineers know and how they know it : Analytical studies from aeronautical

history. In Johns Hopkins studies in the history of technology. New Series No. 11. Baltimore, MD:
Johns Hopkins University Press.

Winsberg, E. (1999). Sanctioning models: The epistemology of simulation. Science in Context, 12(2),
275–292.

Wright, L. (1973). Functions. Philosophical Review, 82(2), 139–168.

123

http://dx.doi.org/10.1007/s13347-013-0126-7
http://dx.doi.org/10.1007/s13347-013-0126-7

	On malfunctioning software
	Abstract
	1 Introduction
	2 Two kinds of malfunction: dysfunction and misfunction
	3 Miscomputation and software production cycle
	4 Dysfunction
	5 Misfunction
	6 Software
	7 Conclusions
	Acknowledgments
	References




