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One of the most important aspects in semisupervised learning is training set creation among a limited amount of labeled data in
such a way as to maximize the representational capability and efficacy of the learning framework. In this paper, we scrutinize
the effectiveness of different labeled sample selection approaches for training set creation, to be used in semisupervised learning
approaches for complex visual pattern recognition problems. We propose and explore a variety of combinatory sampling
approaches that are based on sparse representative instances selection (SMRS), OPTICS algorithm, k-means clustering
algorithm, and random selection. These approaches are explored in the context of four semisupervised learning techniques, i.e.,
graph-based approaches (harmonic functions and anchor graph), low-density separation, and smoothness-based multiple
regressors, and evaluated in two real-world challenging computer vision applications: image-based concrete defect recognition
on tunnel surfaces and video-based activity recognition for industrial workflow monitoring.

1. Introduction

The proliferation of data generated in today’s industry and
economy raises the expectations for approaching towards
the solutions of data-driven problems through state-of-the-
art machine learning and data science techniques. One of
the obstacles towards this direction, especially apparent
in complex real-world applications, is the insufficient avail-
ability of ground truth, which is necessary for training and
fine-tuning supervised machine learning (including deep
learning) models. In this context, semisupervised learning
(SSL) appears as an interesting and effective paradigm. Semi-
supervised learning approaches make use of both labeled and
unlabeled data to create a suitable learning model given
a specific problem (usually a classification problem) and
related constraints. The acquisition of labeled data, for most
learning problems, often requires a skilled human agent
(e.g., to annotate background in an image, segment, and label
video sequences for action recognition) or a physical experi-
ment (e.g., determining the 3D structure of a protein). The

cost associated with the labeling process, thus, may render a
fully labeled training set infeasible, whereas acquisition of
unlabeled data is relatively inexpensive. In such situations,
SSL can be of great practical value.

One major advantage is the easy implementation on
existing techniques; SSL can be directly or indirectly incorpo-
rated in any machine-learning task. Semisupervised SVMs
approaches are a classical example of direct usage of SSL
assumptions into the minimization function [1]. Indirect uti-
lization of SSL can be found in multiobjective optimization
(MOO) frameworks [2, 3]. In MOO, we have multiple fitness
evaluation functions; many of them are based on SSL
assumptions. Then, from a large pool of possible solution,
we peak those over the Pareto front. Thus, SSL is involved
in the best individual selection procedure.

In real life, there are several fields of SSL testing, assum-
ing that there is data availability. The work of [4] evaluates
the foundation piles structural condition using graph-based
approaches. A scalable graph-based approach was utilized
in [5] for the initialization of a maritime surveillance system.
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The SSL cluster assumption was used in [6] for the initializa-
tion of a fall detection system for elderly people. A self-
training approach is adopted in [7] for industrial workflow
surveillance purposes in an automobile manufacturer pro-
duction line. In cultural heritage, SSL has been leveraged
in [8] to develop image retrieval schemes suitable to user
preferences [9].

Regarding the limitations and requirements pertaining to
the selection of labeled data in SSL, there is a set of desirable
properties that the utilized data should have: Firstly, repre-
sentative samples are needed. The labeled samples should
be able to describe (or reproduce) the original data set in
the best possible way. Secondly, at least one sample per clas-
sification category is required, so that model can be able to
adjust to the class properties. Finally, the existence of outliers
should be considered, given that most data sets contain out-
liers which could lead to poor performance especially when
used as labeled data (all by themselves).

In this paper, we provide a deeper insight on the effective-
ness of different data sampling approaches for labeled
dataset creation to be used in SSL. The data sampling
approaches explored are based on sampling techniques
including KenStone algorithm [10], sparse representative
modeling selection (SMRS) [11], Ordering Points To Identify
the Clustering Structure (OPTICS) algorithm output-based
approach [12], and k-means [13] centroids and random
selection. Each of the described data selection approaches is
scrutinized with respect to different SSL techniques, includ-
ing low-density separation [14], harmonic functions [15],
pseudo-Laplacian graph regularization [16], and semisuper-
vised regressors [17]. Our contribution lies in the investiga-
tion of two aspects on the SSL field: how can we interpret
the term “few data” and how we select them in an effective
manner. A preliminary version of the work presented in this
paper appeared in [18]. The present work scrutinizes addi-
tional SSL techniques. Furthermore, the experimental evalua-
tion is more thorough and extensive, including a more formal
method of cluster determination, additional experiments
with a different visual recognition task and dataset, and sup-
plementary comparisons with supervised techniques as well.

The typical data selection approach in several SSL
techniques, including the aforementioned ones, is, to our
knowledge, the random selection of the training set. Usually,
a small portion of the data, i.e., less than 40% is selected
(and considered labeled); as the amount of available data
increases, the fraction of the required labeled instances
decreases [19, 20]. At this point, two problems become
apparent: (i) the number of selected instances is subjective
to the expert’s view and (ii) random selection does not guar-
antee that the major sources of variance appear in the labeled
data set. In this paper, we adopt data-driven approaches for
data sampling, trying to identify appropriate sampling selec-
tion techniques for SSL models.

The remainder of this paper is structured as follows: In
Section 2, we first briefly present four known techniques used
in the bibliography for clustering and/or sampling, which we
then combine to derive seven data selection approaches. The
efficacy of these approaches as labeled data generators for the
SSL techniques presented in Section 3 will be evaluated in

the context of two complex multiclass visual classification
problems, i.e., defect recognition on concrete tunnel surfaces
and activity recognition in industrial workflow monitoring.
The related experimental results are presented and discussed
in Section 4. Finally, Section 5 concludes the paper with a
summary of findings.

2. Labeled Sample Selection Approaches for
Training Data Set Creation

Given a set of feature values for a data sample, a two-step
process is adopted in the analysis conducted in this study.
The first step involves data sampling, i.e., the selection of
the most descriptive representatives in the available data
set. The second step employs popular data mining algo-
rithms; i.e., predictive models are trained over the descriptive
subsets of the previous step.

The main purpose of data sampling is the selection of
appropriate representative samples to provide a good
training set and, thus, improve the classification performance
of predictive models. In this section, we present seven (7)
data sampling approaches, which are based on the combi-
nation or adaptation of four (4) main known sampling
techniques [21].

2.1. Main Techniques. The most important factor in data
selection is the definition of distance function. For any two
given data points xi and x j, x ∈ℝm let d xi, x j denote the
distance between them. Let A ∈ℝm×m be a symmetric matrix.
The distance measure defined as

dA xi, xj = xi − x j
TA xi − x j 1

Most of the proposed approaches are based on the
Euclidean distance (i.e., A = I). Sampling algorithms are used
over the entire data set X and create a new set, Xr ⊂X ,
according to the data relationships, as described by the
distance among them. In this study, we need at least one
observation from every possible class.

2.1.1. OPTICS Algorithm. Ordering Points to Identify the
Clustering Structure (OPTICS) is an algorithm for finding
density-based clusters in spatial data [22], i.e., detect mean-
ingful clusters in data of varying density. The points of the
database are (linearly) ordered such that points which are
spatially closest become neighbors in the ordering.

OPTICS requires two parameters: the maximum distance
(radius) to consider (ε) and the number of points required to
form a cluster (MinPts) MinPts. A point p is a core point if at
least MinPts points are found within its ε-neighborhood,
Nε p . Once the initial clustering is formed, we may pro-
ceed with any sampling approach (e.g., random selection
among clusters).

2.1.2. k-Means Algorithm. k-means clustering [13] aims to
partition n observations into k clusters, such that each obser-
vation is assigned to the cluster it is most similar to (with the
cluster centroid serving as a prototype of the cluster). It is a
classical approach that can be implemented in many ways
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and for various distance metrics. The main drawback is that
the number of clusters should be known a priori.

2.1.3. Sparse Modeling for Representative Selection. Sparse
modeling representative selection (SMRS) focuses on the
identification of representative objects through the solution
of the following optimization problem [11]:

min  λ C 1,q +
1
2 X − XC 2

F

s t   1TC = 1T ,
2

where X and C refer to data points and coefficient matrix,
respectively. This optimization problem can also be viewed
as a compression scheme, where we want to choose a few rep-
resentatives that can reconstruct the available data set.

2.1.4. Kennard–Stone Algorithm. Using the classic KenStone
algorithm, we can cover the experimental area in a uniform
way, since it provides a flat data distribution. The algorithm’s
main idea is that to select the next sample, it opts for the sam-
ple whose distance to those that have been previously chosen
(called calibration samples) is the greatest.

Therefore, among all possible points, the algorithm
selects the point which is furthest from those already
selected and adds it to the set of calibration points. To this
end, the distance is calculated between each candidate
point x0 to each point x which has already been selected.
In the sequel, we determine which one is the smallest, i.e.,
min

i
d x, x0 . Among these, we choose the point for which

the distance is maximal:

dselected = max
i0

min
i
d xi, x0 3

2.2. Combinatory Sampling Approaches. The primary goal
of sampling approaches is the removal of redundant and
uninformative data. Using the algorithms described earlier
in Section 2.1 as a basis, we propose six (6) combinatory sam-
pling approaches. A brief description of each one, along with
the baseline random selection method, follows:

(i) OPTICS extrema: after employing the OPTICS
algorithm on the entire data set, the calculated
reachability distances are plotted in the same order
as data were processed. Over the generated wave-
form, we locate local maxima and minima. All the
identified extrema cases are considered as labeled
instances and the rest as unlabeled. This approach
results in a very limited training set.

(ii) Sparse modeling representative selection (SMRS): the
SMRS technique is employed over the entire data
set, resulting in a very limited training set, although
larger than the one obtained with OPTICS. In con-
trast to OPTICS, the selected points are located only
on the exterior cell of the available data volume.

(iii) Combination of k-means and SMRS (k-means
SMRS): we first divide the set into k subclusters.
For each subcluster, we run the SMRS algorithm to
get the representative samples among each subclus-
ter. As such, the outcome provides points surround-
ing each subcluster. The number of clusters, k, was
defined using the Silhouette score for all k values,
k ∈ 2,u + 4 , where u is a heuristic approach
estimating the number of clusters, defined as u =

n/2 , and n denotes the number of available data
instances (observations).

(iv) Combination of OPTICS and SMRS (OPTICS-
SMRS): SMRS is performed to the subclusters
obtained through the OPTICS algorithm. This
approach is similar to the work of [19]. A subset is
created of representative samples from each sub-
cluster obtained by OPTICS algorithm. The mini-
mum number of data within a cluster, required by
OPTICS, was defined as MinPts = min n/k , 8 .

(v) Kennard and Stone (KenStone) sampling data
points: after executing the KenStone algorithm, we
have data entries spanning uniformly the entire
data space.

(vi) Random selection: a random selection that picks
p% of the available data as training data, this is
the baseline data selection method used in the con-
text of most SSL techniques.

(vii) Improved random selection: an alternative approach
is the creation of k clusters (using k-means) and a
random selection of nk samples from each cluster
(k-means random). It is an improvement of random
selection, without involving any advanced tech-
niques. Similar instances are likely to be clustered
together. Thus, the few random samples from each
cluster are expected to provide adequate informa-
tion over the data set.

All of the proposed approaches are applied over all
available data, labeled or not. As such, it is possible for
many of the selected training data to be unlabeled. In that
case, an expert would be summoned to annotate the selected
data, as would have been the case in any annotation attempt.
However, in this case, the annotation effort will be less con-
siderable compared to traditional supervised approaches,
which use a significantly higher percentage of the available
data for training purposes.

3. Semisupervised Learning Techniques

In this work, four of the most popular types of SSL tech-
niques will be considered: two graph-based approaches,
along with low-density separation, and multiple smoothness
assumption-related regressors.

3.1. Graph-Based Approaches. Graph-based semisupervised
methods define a graph over the entire data set, X = XL ∪
XU, where XL = x1, y1 ,… , xl, yl is the labeled data set
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and XU = xl+1,… , xl+u the unlabeled data set. Feature
vectors, xi ∈ℝm, i = 1,… , l + u, are available for all the
observations and yi ∈ℝC , i = 1,… , l are the corresponding
classes of the labeled ones, in a vector form; C denotes
the available classes.

The nodes represent the labeled and unlabeled examples
in the dataset; edges reflect the similarity among examples. In
order to quantify the edges (i.e., assign a similarity value), an
adjacency matrix A is calculated, where

A ij =
1 if xi close to x j
0 otherwise

4

Practically, each label is only connected to its k closest
labels, so that ∑n

j=0A ij = k. The information of the labeled
nodes propagates to the unlabeled nodes via paths defined
on existing edges provided by A.

Graph methods are nonparametric, discriminative, and
transductive in nature. Intuitively speaking, in a graph that
various data points are connected, the greater the similarity,
the greater the probability of having similar labels. Thus,
the information (of labels) propagates from the labeled
points to the unlabeled ones. These methods usually assume
label smoothness over the graph. That is, if two instances are
connected by a strong edge, their labels tend to be the same.

3.1.1. Harmonic Functions. An indicative paradigm of graph-
based SSL is the harmonic function approach [23]. This
approach estimates a function f on the graph which satisfies
two conditions. Firstly, f has the same values as given labels
on the labeled data, i.e., f xi = yi, i = 1,… , l. Secondly, f sat-
isfies the weighted average property on the unlabeled data:

f x j =
∑l+u

k=1wjk f x j

∑l+u
k=1wjk f

, j = l + 1,… , l + u, 5

wherewij denotes the edge weight. Those two conditions lead
to the following problem:

min
f f x ∈ℝ

  〠
l+u

i,j=1
wij f xi − f x j

2

s t   f xi = yi, i = 1,… , l
6

The problem has an explicit solution, which allows a
soft label estimation for all the edges of the graph, i.e.,
investigated cases.

3.1.2. Anchor Graph. Anchor graph estimates a labeling
prediction function f ℝm →ℝ defined on the samples
of X; by using a subset U = uk

p
k ⊂ XL of the labeled data,

the label prediction function can be expressed as a convex
combination [16]:

f xi = 〠
p

k=1
Zik · g uk , 7

where Zik denotes sample-adaptive weights, which must
satisfy the constraints ∑l

k=1Zik = 1 and Zik ≥ 0 (convex com-
bination constraints). By defining vectors g and a, respec-
tively, as g = g f 1 ,… , g f n

T and a = g x1 ,… , g xp
T ,

(7) can be rewritten as g = Zαwhere Z ∈ℝn×p.
The designing of matrix Z, which measures the underly-

ing relationship between the samples of XU and samples XL,
is based on weight optimization; i.e., nonparametric regres-
sion. Thus, the reconstruction for any data point is a convex
combination of its closest representative samples.

Nevertheless, the creation of matrix Z is not sufficient, as
it does not assure a smooth function g. There is always the
possibility of inconsistencies in segmentation, i.e., different
samples with almost identical attributes belong to different
classes. In order to deal with such cases, the following SSL
framework is employed:

min
A= a1,…,ac

 Q A = 1
2 ZA − Y 2

F +
γ

2 trace ATL̂A , 8

where L̂ = ZTLZ is a memory-wise and computationally
tractable alternative of the Laplacian matrix L. Matrix
A = a1,… , ac ∈ℝp×c is the soft label matrix for the repre-
sentative samples, in which each column vector accounts
for a class. The matrix Y = y1,… , yc ∈ℝn×c is a class indica-
tor matrix on ambiguously labeled samples with Yij = 1 if the
label li of sample i is equal to j and Yij = 0 otherwise.

The Laplacian matrix L is calculated as L =D −W , where
D ∈ℝn×n is a diagonal degree matrix andW is approximated
as W = ZΛ−1ZT . Matrix Λ ∈ℝp×p is defined as Λ =∑n

i=1Zik.
The solution of (8) has the form

A∗ = ZTZ + γL̂ □
TY 9

Each sample label is, then, given by

l̂ i = arg max
j∈ 1,…,c

Ziaj
λj

, 10

where Zi ∈ℝ1×p denotes the i-th row of Z, and the normali-
zation factor λj = 1T Z αj balances skewed class distributions.

3.2. Low-Density Separation. The low-density separation
assumption pushes the decision boundary in regions where
there are few data points (labeled or unlabeled). The most
common approach to achieving this goal is to use a maxi-
mum margin algorithm such as support vector machines.
The method of maximizing the margin for unlabeled as well
as labeled points is called the transductive SVM (TSVM).
However, the corresponding problem is nonconvex and thus
difficult to solve [24].

Low-density separation (LDS) is a combination of
TSVMs [25], trained using gradient descend, and traditional
SVMs using an appropriate kernel defined over a graph using
SSL assumptions [14]. Like the SVM approach, the TSVM
maximizes the class-separating margin.
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The problem can be stated in the following form, which
allows for a standard gradient-based approach:

min
w,b

1
2w

2 + C〠
l

i=1
L2 yi w

Txi + b + C∗ 〠
l+u

j=l+1
L∗ wTx j + b ,

11

where w ∈ℝn is the parameter vector that specifies the
orientation and scale of the decision boundary and b ∈ℝ is
an offset parameter. The above formulation exploits both
labeled XL and unlabeled XU data. Finally, let us denote as
L t =max 0, 1 − t and L∗ t = exp −3t2 .

Such a formulation allows the use of a nonlinear ker-
nel, calculated over a fully connected matrix, W , which
is formed aswij = exp ρ − dist i, j − 1. Dijkstra’s algorithm
is employed to compute the shortest path lengths, dSP i, j for
all pairs of points. The matrixD of squared ρ-path distances
is calculated for all pairs of points as

Dij =
1
ρ
log 1 + dSP i, j

2
12

The final step towards the kernel’s creation involves
multidimensional scaling [23], or MDS, to find a Euclidean
embedding of Dρ (in order to obtain a positive definite
kernel). The embedding found by the classical MDS are
the eigenvectors corresponding to the positive eigenvalues
UΛUT = −HDρH, where Hij = δij − 1/ l + u . The final
representation of xi is xik =Uik√λk, 1 ≤ k ≤ p.

3.3. Semisupervised Regression. The safe semisupervised
regression (SAFER) approach [17] tries to learn a prediction
from several semisupervised regressors. Specifically, let f 1,
… , f b be multiple SSR predictions and f 0 be the prediction
of a direct supervised learner, where f i ∈ℝU , i = 1,… , r
and r refers to the number of regressors. Supposing there
is no knowledge with regard to the reliabilities of learners,
SAFER optimizes the performance gain of g f 1,… , f b, f 0
against f 0, when the weights of SSR learners come from a
convex set.

The problem lies in the solution of the following
equation:

max
f ∈ℝU

min
α∈
ℳ

 〠
r

i=1
αi f 0 − f i

2 − f − f i
2 , 13

where α = α1,… , αr , αi ≥ 0, are the weights of individual
regressors. Equation (12) is concave to f and convex to
α. Thus, it is recognized as saddle-point convex-concave
optimization [26].

4. Experimental Evaluation

We will hereby examine the applicability and effectiveness of
each of the above-described data selection techniques for the
SSL approaches presented. SSL is particularly useful in cases
where there is limited availability of labeled data and/or the

creation of appropriately sized labeled data sets requires a
prohibitive amount of resources, as is the case in real-world
visual classification problems. Two prominent examples of
such applications are (a) automated image-based detection
and classification of defects on concrete surfaces in the
context of visual inspection of tunnels [27] and (b) human
activity recognition from video, e.g., the monitoring of work-
flow in industrial assembly lines [28, 29].

MATLAB software has been used for the implementation
of the proposed approaches. The SSL approaches code, i.e.,
Harmonic functions, Anchor graph, LDS, and SAFER, were
provided by the corresponding authors of [14, 16, 17, 23].
OPTICS, KenStone, and SMRS as well as code implementa-
tions were provided by [11, 22, 30], respectively.

4.1. Defect Recognition on Tunnel Concrete Surfaces. The
tunnel defect recognition dataset (henceforth referred to
in this paper as the Tunnel dataset) consists of images
acquired by a robot inside a tunnel of Egnatia Motorway,
in Greece, in the context of ROBO-SPECT project [27].
Images were used for detecting and recognizing defects on
the concrete surfaces. Raw captured tunnel and annotated
ground truth images of resolution 600× 900 pixels were
provided. Figure 1 shows some examples from the Tunnel
dataset displaying cracked areas on the concrete surface.

To represent each pixel, we use the same low-level fea-
ture extraction techniques as in [27]; in particular, each pixel
pxy is described by a feature vector sxy = s1,xy,… , sk,xy T ,
where s are scalars corresponding to the presence and mag-
nitude of the low-level features detected at location (x, y).
Figure 2 displays the extracted low-level features. Feature
vectors along with the class labels of every pixel are used to
form a data set. There are five different classes of defects:
(1) crack, (2) staining, (3) spalling, (4) calcium leaching,
and (5) unclassified.

We, hereby, briefly describe the features used to form
vector sxy. First, we take the edges denoted by a pixel-wise
multiplication of the Canny and Sobel operators. Secondly,
frequency is calculated as ℱI = ∇2I. Thirdly, we calculate
the entropy in order to separate homogenous regions from
textured ones. Texture was described using twelve Gabor
filters with orientations 0°, 30°, 60°, and 90° and frequencies
0.0, 0.1, and 0.4. The Histogram of Oriented Gradients
(HOG) was also calculated. By combining these features with
the raw pixels’ intensity, feature vector sxy takes the form of a
1× 17 vector containing visual information that characterizes
each one of the image pixels.

A typical K-fold validation approach is adopted, resulting
in eight (approximately) equal partitions, i.e., disjoint sub-
sets, of the n observations. The training set size is limited
at 3% of sample population, when random techniques and
KenStone algorithm were applied.

4.2. Activity Recognition from Video for Industrial Workflow
Recognition. Action or activity recognition from video is a
very popular computer vision application. A significant
application domain is automatic video surveillance, e.g., for
safety, security, and quality assurance reasons. In this

5Complexity



experiment, we will make use of real-world video sequences
from the surveillance camera of a major automobile man-
ufacturer (NISSAN) [31], captured in the context of the
SCOVIS EU project in the publicly available Workflow
Recognition (WR) dataset [32].

The production cycle on the industrial line included tasks
of picking several parts from racks and placing them on a
designated cell some meters away, where welding took place.
Each of the above tasks was regarded as a class of behavioral
patterns that had to be recognized. The activities (tasks) we
were aiming to model in the examined application are briefly
the following:

(1) One worker picks part #1 from rack #1 and places it
on the welding cell

(2) Two workers pick part #2a from rack #2 and place it
on the welding cell

(3) Two workers pick part #2b from rack #3 and place it
on the welding cell

(4) One worker picks up parts #3a and #3b from rack #4
and places them on the welding cell

(5) One worker picks up part #4 from rack #1 and places
it on the welding cell

(6) Two workers pick up part #5 from rack #5 and place
it on the welding cell

(7) Workers were idle or absent (null task)

TheWR dataset includes twenty full cycles, each contain-
ing occurrences of the above tasks. Figure 3 depicts a typical
example of an execution of Task 2. The visual classification
problem in this case is to automatically recognize which task
is executed at every time instance.

(a) (b) (c)

(d) (e) (f)

Figure 2: Illustration of the extracted low-level features in the Tunnel dataset: (a) original image, (b) edges, (c) frequency, (d) entropy,
(e) texture, and (f) HOG.

(a) (b) (c) (d)

(e)

Figure 1: Examples of cracked areas from the Tunnel dataset.
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In all video segments, holistic features such as Pixel
Change History (PCH) are used. These features remedy the
drawbacks of local features, while also necessitating a far less
tedious computational procedure for their extraction [33]. A
very positive attribute of such representations is that they
can easily capture the history of a task that is being executed.
These images can then transform to a vector-based represen-
tation using the Zernike moments (up to sixth order, in our
case) as applied in [33, 34]. The video features, once exported,
had a two-dimensional matrix representation of the form
m × l, where m denotes the size of the 1×m vectors created
using Zernike moments and l the number of such vectors.

4.3. Experimental Results. Each of the seven data sampling
approaches described in Section 2.2 was paired with each

of the four SSL techniques presented in Section 3 as well
as two well-known supervised approaches, i.e., SVM and
kNN, resulting in 42 combinations in total. Table 1 illus-
trates the training data set size generated in the case of
each data selection approach applied for the two datasets.
It is interesting to note here that the OPTICS-SMRS
approach provides significantly more data than any other
approach.

The classification results in terms of averaged accu-
racy and F-measure for each combination are depicted
in Figure 4 for defect recognition (Tunnel dataset) and
Figure 5 for activity recognition (WR dataset). At first look,
it appears that among SSL techniques, it is harmonic func-
tions that tend to provide higher accuracy rates, while con-
cerning data sampling approaches, cluster-based selection

Table 1: Illustration of the training set data size per sampling approach (averages over all tests).

Row labels KenStone kmeansRandom kmeansSMRS OPTICS extrema OPTICS-SMRS Random SMRS Entire set

WR 156 181.25 422.37 289.75 532.39 156 23.62 5199

Tunnel 36.37 38 37.75 55 141.76 36.37 14.12 1200

Figure 3: Indicative example of key-frames corresponding to the execution of a task (Task 2).
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(centroid or density-based) appears to give overall better
results. Figure 6 provides an example confusion matrix for
each visual recognition problem, acquired for OPTICS-
SMRS data selection method.

Figure 4 illustrates the performance of the combina-
tory models in the tunnel surface defect recognition task.
Cluster-based selection (OPTICS-SMRS followed by k-
means random) appears to be the data selection techniques
that lead to the best performance rates. Additionally,
graph-based classifiers tend to perform better in most cases.
The low performance scores for all the cases can be put
down to the extremely challenging nature of the problem,
as well as the feature quality; it is very likely for various defect
types to have similar feature values when using low-level
features [35].

Figure 5 illustrates the performance for the combinatory
models in the WR dataset. Again, OPTICS-SMRS sampler
appears to lead to the best performance rates, especially when
using harmonic functions as SSL technique. It is interesting
to note that, when using most of the proposed data selection
techniques for training set creation, graph-based SSL tech-
niques (harmonic functions and anchor graph) outperform
not only the remaining SSL techniques but also the super-
vised methods examined, i.e., kNN and SVM. This can be
explained by the lower number of training samples used
compared to the usual training set sizes in such supervised
learning methods.

4.4. Statistical Tests. In order to derive further conclusions
regarding the results and the relative performance of the
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Figure 6: Confusion matrices for OPTICS-SMRS sampling in (a) Tunnel dataset, using anchor graph and (b) WR dataset, using
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technique combinations explored, we performed an analysis
of variance (ANOVA) on the F1 scores for the test samples.
ANOVA permits the statistical evaluation of the effects of
the two main design factors of this analysis (i.e., the sampling
schemes and the SSL techniques). As shown in Table 2, both
the sampling scheme and the choice of classifier are strongly
significant for explaining variations in F1 scores. The dataset
impact is also significant; i.e., performance variations should
be expected in other datasets.

Apart from the above basic ANOVA results, we use the
Tukey honest significant difference (HSD) post hoc test so as
to derive conclusions about the best performing approaches,
taking into account the statistical significance of the variations
in the values of metrics presented. Figures 7 and 8 illustrate the
results for the SSL techniques and the sampling schemes,
respectively, for the entirety of experiments conducted.

As far as SSL techniques are concerned, harmonic
functions and anchor graph appear to have a statistically
significant superiority over all alternatives. The outcome
verifies previous analysis outcomes (see Figures 4 and 5)
suggesting that graph-based approaches result in better
rates compared to the other SSL (or even supervised learn-
ing) alternatives (see Figure 7). The low overall performance
scores in the comparison of learning techniques can be
explained by the challenging nature of both examined prob-
lems as well as by the fact that all configurations have been
taken into consideration including those yielding very low
performance rates.

Finally, as regards data selection techniques, we observe
that the OPTICS-based approach combined with SMRS
creates training sets that lead to clearly the highest perfor-
mance rates among all examined techniques, including the

traditionally used random sampling. Furthermore, we can
see that cluster-based samplers in general yield results that
are at least as good as random sampling. On the other
hand, SMRS alone provides results significantly worse than
all competing schemes.

5. Conclusion

The creation of a training set of labeled data is of great
importance for semisupervised learning methods. In this
work, we explored the effectiveness of different data sam-
pling approaches for labeled data generation to be used
in SSL models in the context of complex real-world com-
puter vision applications. We compared seven sampling
approaches, some of which we proposed in this paper, all
based on OPTICS, k-means, SMRS, and KenStone algorithm.
The proposed data selection approaches were used to create
labeled data sets to be used in the context of four SSL tech-
niques, i.e., anchor graph, harmonic functions, low-density
separation, and semisupervised regression. Extensive experi-
ments were carried out in two different and very challenging
real-world visual recognition scenarios: image-based con-
crete defect recognition on tunnel surfaces and video-based
activity recognition for industrial workflow monitoring.
The results indicate that SSL data selection schemes, using
density-based clustering prior to sampling, such as a combi-
nation of OPTICS and SMRS algorithms, provide better
performance results compared to traditional sampling
approaches, such as random selection. Finally, as regards
the SSL techniques studied, graph-based approaches (har-
monic functions and anchor graph) appeared to have a
statistically significant superiority for the two visual recog-
nition problems examined.

Table 2: ANOVA results.

Source Sum sq. d.f. Mean sq. F p value

Sampling 3.5488 6 0.5915 167.0981 0

Classifier 3.1569 5 0.6314 178.2768 0

Number of classes 0.2687 1 0.2687 75.9157 0

Sampling × classifier 0.3766 30 0.0126 3.5469 0

Sampling × num of classes 0.7855 6 0.1309 36.9865 0

Classifier × num of classes 0.4715 5 0.0943 26.6411 0

Error 2.1769 615 0.0035

Total 10.7920 668
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SVM
kNN

SAFER
Harm

Anchor
LDS

Comparison of population marginal means among classifiers

F1 scores

Figure 7: F1 scores by classification method.
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