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Abstract

Simple observations on diophantine definability over finite commutative rings lead to a
characterization of those rings in terms of their diophantine behavior.
A.M.S. Classification: 13M10, 11T06, 03G99.

1 Introduction

Questions of diophantine definability in the language of rings can be often reduced to diophantine
definability of disjunctions, conjunctions or negations of polynomial equations. Over the ring of
rational integers Z these logical relations admit diophantine definitions: x = 0 ∨ y = 0 ⇔ xy = 0,
x = 0 ∧ y = 0 ⇔ x2 + y2 = 0 and x 6= 0 ⇔ ∃ t, s tx = (2s− 1)(3s− 1). All these definitions play
an important role in Matiyasevich’ construction of an universal diophantine equation, see [2].

The first definition is true over all domains. Definitions similar to the second one are possible over
all domains having not algebraically closed fields of quotients with suitable polynomials f(x, y).
The third definition, basing here on the Chinese Remainder Theorem, has a more difficult nature.
For examples of domains of arbitrary characteristic that do not accept at all existential positive
definitions for the complement of 0 see [3] and [4].

The aim of this note is to investigate diophantine definability of these relations in a class of
commutative rings containing not just domains, namely in the class of all finite commutative rings
with 1.

Definition: Let R be a commutative ring with 1. A relation R(~x) ⊂ Rk will be called diophan-
tine if there is a polynomial P ∈ R[~x,~λ] such that:

R |= ∀~x (R(~x)↔ ∃~λ P (~x,~λ) = 0 ).

2 Some Commutative Algebra

We recall here the algebraic facts that will be used in this note.

Definition: Let R be a commutative ring with 1. An element e ∈ R is called non-trivial idem-
potent if e2 = e and e 6= 0, 1.

In this case 1 − e 6= e is another non-trivial idempotent. We observe that e(1 − e) = 0, thus the
idempotent elements e and 1− e cannot be units. They always belong to different maximal ideals.
We will often tacitly use the following identity:

(ae+ b(1− e))(ce+ d(1− e)) = ace+ bd(1− e).

Lemma 2.1 Let R be a commutative ring with 1. There are non-trivial rings R1 and R2 such
that R ' R1 ×R2 if and only if there exists a non-trivial idempotent e ∈ R. In this case one can
choose R1 = Re and R2 = R(1− e).
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For a proof, see the Exercise 2.26 in [1]. According to this Lemma, if we consider a finite com-
mutative ring with 1 containing idempotent elements, we can write it as product of two rings.
We continue the process until we get only idempotent-free rings. The process will always stop,
because R is finite.

Definition: A finite commutative ring with 1 will be called irreducible if it does not contain
non-trivial idempotent elements. R is irreducible if and only if R is not isomorphic with the
product of other non-trivial commutative rings with 1.

The following statement generalizes the representation of natural numbers as product of primes.

Lemma 2.2 Every non-trivial finite commutative ring with 1 has a unique representation as a
product of non-trivial irreducible commutative rings with 1.

Proof: There is only to prove that the representation as product of irreducible rings is unique.
Let R be a ring with n elements. We make an induction over n. If n ∈ {2, 3} then there exists
only one ring with n elements. Both rings are irreducible, so the property is verified. Let n be
> 3. We assume that we have already proven that all finite commutative rings with less than n
elements admit a unique representation. If R is irreducible then the property is again trivially
verified. We assume now that R is not irreducible and consider two possible decompositions of R
in irreducible factors:

R ' R1 ×R2 × · · · ×Rk ' R′1 ×R′2 × · · · ×R′l.

It is immediate to see that the idempotent elements of a product R1×R2×· · ·×Rk are the elements
(f1, . . . , fk), where for all i, fi ∈ {0, 1} ∪ { non-trivial idempotents in Ri }. No Ri contains any
non-trivial idempotent, so there are exactly 2k = 2l idempotent elements in R, and k = l.

Now let e be the non-trivial idempotent of R given by (1, 0, . . . , 0) in the first decomposition. Then
1− e is given by (0, 1, . . . , 1), Re ' R1 and R(1− e) ' R2×· · ·×Rk. In the second decomposition
e has some form (f1, . . . , fk) ∈ {0, 1}k and 1 − e = (1 − f1, . . . , 1 − fk). So Re ' ⊗R′i and
R(1− e) ' ⊗R′j , where i exhausts the set {s | fs = 1} and j the set {s | fs = 0}. But Re ' R1 is
irreducible. Thus exactly one fi, say f1 = 1 and R1 ' R′1. On the other side R(1− e) has strictly
less elements than R so according to our hypothesis R(1 − e) admits only one representation as
product of irreducible rings. Thus modulo a permutation of the rings R2 ' R′2, . . . , Rk ' R′k,
and we have proved that R has a unique decomposition in irreducible factors. 2

Definition: We call Spectrum of a ring R the set of all its non-trivial prime ideals p. The
Spectrum of R will be denoted by Spec R. A subset X ⊂ Spec R is called closed if there is an
ideal I of R such that X = {p | I ⊆ p }. This defines the Zariski topology over Spec R.

Lemma 2.3 Spec R is a disconnected topological space if and only if there exists a non-trivial
idempotent e ∈ R.

For a proof, see the Exercise 2.25 in [1].

We avoid in the following statement the notion of local ring because most of the rings in question
are not domains.

Lemma 2.4 A finite commutative ring R with 1 is irreducible if and only if R contains only one
maximal ideal m. In this case R \m is the set of units of R.

Proof: We make the following observation: if p is a prime ideal of R, the ring R/p is a finite
commutative domain. But finite commutative domains are always fields, so p must already have
been a maximal ideal. Therefore, in finite commutative rings with 1 all prime ideals are maximal.
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Let R be a finite commutative ring with maximal ideals m1, ...,ms. Then Spec R = {m1, ...,ms}.
Any singleton set {mi} is a basic clopen set, so Spec R is homeomorphic with the discrete topo-
logical space with s elements and is connected if and only if s = 1. We recall that R is irreducible
if and only if Spec R is connected.

R \ m is a finite monoid with 1 and simplification, thus it is a multiplicative group. Indeed, if
for some elements in R \ m holds xy = zy, then (x − z)y = 0 and x = z follows, because all
zero-divisors are in m. In this case R \m is the set of units of R. 2

Lemma 2.5 Let R be a finite commutative ring with 1. R is irreducible if and only if there is a
natural number k > 0 such that for all x ∈ R, xk ∈ {0, 1}. In this case, one has:

xk =

{
0 if x ∈ m,

1 if x ∈ R \m.

Proof: If R is not irreducible, such a number k cannot exist, because for an idempotent e /∈ {0, 1},
ek = e. Assume that R is irreducible.

Let x be in m. The geometric sequence x, x2, x3, . . . ranges in the finite set m, so it must become
periodic. If xs = xs+v then xs(1 − xv) = 0. But 1 − xv is a unit, so xs = 0. For the finite set m
there is m ∈ N such that xm = 0 for all x ∈ m. On the other hand, let u be the order of the finite
group R \m. We take k to be a multiple of u which is ≥ m. 2

Corollary 2.6 A finite field Fq with q = ps elements is an irreducible ring. Its unique maximal
ideal is {0} and one can take k = ps − 1.

Proof: The crucial property necessary in order to apply Lemma 2.4 for Fq is that {0} is the
unique ideal of a field. The multiplicative group of the field is cyclic, so there are elements of order
ps − 1. We cannot give a smaller k. 2

Corollary 2.7 Z/nZ is irreducible if and only if n is a prime-power. In this case, if n = ps, the
maximal ideal is m = (p) and one can take k = ps − ps−1.

Proof: We may apply again Lemma 2.4 because the only one maximal ideal of Z/psZ is (p).
For the converse, if p1 and p2 are different primes dividing n then both ideals (p1) and (p2) are
maximal. An ideal p strictly containing (p1) would contain also an element y which is not the rest
of some multiple of tp1 modulo n. There are integers u and v such that up1 + vy = 1. Modulo n
this means that 1 ∈ p, which is a contradiction.

The commutative group of units of Z/psZ has order ps−ps−1. On the other hand for all x ∈ m = (p)
one has xs = 0. We observe that ps − ps−1 = ps−1(p − 1) ≥ ps−1 ≥ s. The last inequality is
true for all natural numbers p ≥ 2 and s ≥ 1. For s = 1 the rings Z/pZ are special finite fields.
Observe that Corollary 2.6 and Corollary 2.7 make for this special case the same statements. 2

3 Disjunction

Theorem 3.1 Let R be a finite commutative ring with 1. The binary relation x = 0 ∨ y = 0 is
diophantine in R if and only if R is irreducible.

Proof: Suppose that ∃~λ P (x, y, ~λ) = 0 is a diophantine definition for the relation x = 0 ∨ y = 0
and that e, 1− e ∈ R are non-trivial idempotents. So there are ~λ,~λ′ ∈ R such that:

P (0, 1− e, ~λ) = 0, P (e, 0, ~λ′) = 0.
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Multiplying with the respective idempotent we get:

(1− e)P (0, 1− e, (1− e)~λ) = 0, eP (e, 0, e~λ′) = 0.

Because e(1− e) = 0, it must be also true that:

(1− e)P (e, 1− e, (1− e)~λ) = 0, eP (e, 1− e, e~λ′) = 0.

Now we take λ′′i := (1− e)λi + eλ′i for all i. Then:

P (e, 1− e, ~λ′′) = (1− e)P (e, 1− e, (1− e)~λ) + eP (e, 1− e, e~λ′) = 0 + 0 = 0,

but both e, 1− e 6= 0. This is a contradiction, so R must be irreducible.

On the other hand, if R is irreducible and k > 0 is given by Lemma 2.5, then the formula:

∃λ (1− λk)x+ λky = 0

defines x = 0 ∨ y = 0. 2

Corollary 3.2 The relation x = 0 ∨ y = 0 is diophantine over Z/nZ if and only if n is a
prime-power.

Example:
Z/8Z |= x = 0 ∨ y = 0⇔ ∃λ (1− λ4)x+ λ4y = 0.

4 Negation

Theorem 4.1 Let R be a finite commutative ring with 1. The unary relation t 6= 0 is diophantine
in R if and only if R is irreducible.

Proof: Suppose that ∃~λ P (t, ~λ) = 0 is a diophantine definition for the relation t 6= 0 and that
e, 1− e ∈ R are non-trivial idempotents. So there are ~λ,~λ′ ∈ R such that:

P (e, ~λ) = 0, P (1− e, ~λ′) = 0.

Multiplying with the respectively complementary idempotent we get:

(1− e)P (0, (1− e)~λ) = 0, eP (0, e~λ′) = 0.

Now we already take λ′′i := (1− e)λi + eλ′i for all i. Then:

P (0, ~λ′′) = (1− e)P (0, (1− e)~λ) + eP (0, e~λ′) = 0 + 0 = 0,

so we get 0 6= 0, which is a contradiction. Thus R must be irreducible.

On the other hand, if R is finite and irreducible then we can list the set R \ {0} like a1, . . . , ar−1

and then observe that:
x 6= 0 ⇔ x = a1 ∨ . . . ∨ x = ar−1.

Now we apply the Theorem 3.1 finitely many times in order to get an equivalent formula which is
diophantine. 2

Corollary 4.2 The relation t 6= 0 is diophantine over Z/nZ if and only if n is a prime-power.

Remark 4.3 If n = ps, the relation t 6= 0 is over Z/nZ equivalent with:

∃~λ
ps−2∑
i=1

λps−ps−1

i + t+ 1 = 0.

Example:
Z/4Z |= t 6= 0 ⇔ ∃λ, µ λ2 + µ2 + t+ 1 = 0.
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5 Conjunction

The case of conjunction is quite different from disjunction and negation. It leads to a class of rings
which is heuristically ”orthogonal” to the class of irreducible rings.

Theorem 5.1 Let R be a finite commutative ring with 1. The binary relation x = 0 ∧ y = 0 is
diophantine over R if and only if R is a product of not necessarily different finite fields.

Remark: If the relation x = 0 ∧ y = 0 has a diophantine definition over some ring, then it
has also a quantifier-free diophantine definition. Indeed, if ∃~λ P (x, y, ~λ) = 0 is a diophantine
definition, and ~λ0 ∈ R are elements so that P (0, 0, ~λ0) = 0, then we define Q(x, y) := P (x, y, ~λ0).
So Q ∈ R[x, y] and x = 0 ∧ y = 0 if and only if Q(x, y) = 0.

The following Lemma reduces the problem to the case of irreducible rings:

Lemma 5.2 Let R be a finite commutative ring with 1 and R1 × · · · × Rn the decomposition of
R in irreducible factors. Then the relation x = 0 ∧ y = 0 is diophantine over R if and only if
similar relations x = 0 ∧ y = 0 are diophantine over every irreducible factor Ri.

Proof: We identify R with R1 × · · · × Rn and for each i we consider the canonical projection
πi : R→ Ri. If Q defines (0, 0) over R in the form Q(x, y) = 0, then πi(Q) similarly defines (0, 0)
in Ri. On the other side, if for all i the two-variable polynomial Qi ∈ Ri[x, y] defines (0, 0) in
Ri, then there is a unique pull-back Q ∈ R[x, y] such that πi(Q) = Qi that defines (0, 0) in R. If
the coefficient of xayb in Qi is ciab, then the coefficient of xayb in Q is (c1ab, . . . , c

n
ab). Only finitely

many monomials have coefficients which are not ~0. 2

The following fact ends the proof of Theorem 5.1.

Lemma 5.3 An irreducible finite commutative ring R with 1 admits a diophantine definition of
x = 0 ∧ y = 0 if and only if R is a finite field.

Proof: Let R be an irreducible finite commutative ring and Q ∈ R[x, y] a polynomial such that
Q(x, y) = 0 if and only if x = y = 0. Assume that R is not a finite field, or equivalently that the
maximal ideal m 6= 0. We write Q(x, y) = S(x, y) +ax+ by, where all monomials in S have degree
≥ 2.

If b = 0, we take an y ∈ m such that y 6= 0 but y2 = 0 and see that Q(0, y) = S(0, y) = 0, which
is a contradiction. Now, if b ∈ m \ {0} then we choose an n ∈ N such that bn−1 6= 0 but bn = 0.
Then Q(0, bn−1) = S(0, bn−1) + bn = 0. This can be done independently for a.

So such a definition is possible only if a, b ∈ R \ m. Now, if a and b are units, the polynomial
Q(a−1x, b−1y) defines (0, 0) if and only if Q(x, y) does it. Thus we may assume:

Q(x, y) = S(x, y) + x+ y.

Take again x ∈ m \ {0} with x2 = 0. Then Q(x,−x) = 0. Contradiction.

On the other side, if R is a finite field, there is a non-constant polynomial f ∈ R[u] such that 0 /∈
f(R). (Recall that all functions F : R → R are in this case polynomial.) Let f̃ be ydeg(f)f(x/y).
Then f̃(x, y) = 0 only for x = y = 0. 2

Corollary 5.4 The relation x = 0 ∧ y = 0 is diophantine over Z/nZ if and only if n is square-free.

Example:
Z/6Z |= x = 0 ∧ y = 0 ⇔ (x− y)2 = xy.
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Proof of the Corollary: If a, b ≥ 2 and gcd(a, b) = 1 then Z/abZ ' Z/aZ × Z/bZ. Let
n = ps1

1 . . . psl

l be the decomposition of n as a product of primes. We get the isomorphism:

Z/nZ ' Z/ps1
1 Z× · · · × Z/psl

l Z.

According to Corollary 2.7 all these rings are irreducible, so we have just written down the unique
representation of Z/nZ as a product of irreducible rings. Now, if n is square-free then all the
powers s1 = · · · = sl = 1 and Z/nZ is a product of fields. Conversely, if Z/nZ is a product of
fields then we get that all Z/psi

i Z must be fields because all fields are irreducible rings according
to Corollary 2.6. But this is true if and only if all si = 1. 2

As we observe, the rings Z/nZ that admit a diophantine definition for x = 0 ∧ y = 0 are product
of necessarily different finite fields. This is not true in general. See for example F2 × F2, where
the relation is defined by x+ y + xy = 0.

6 Kronecker’s Symbol and the Finite Fields

Definition: Let R be a finite commutative ring with 1. We call Kronecker’s Symbol over R the
function δ : R2 → R given by:

δxy :=

{
0 if x 6= y,
1 if x = y.

Theorem 6.1 Let R be a finite commutative ring with 1. Kronecker’s Symbol δxy = z is dio-
phantine over R if and only if R is a finite field.

Proof: Indeed, if R = Fq is the field with q elements then δxy = z is given by z + (x− y)q−1 = 1
because the multiplicative group Fq \ 0 is a cyclic group of order q − 1.

Now let R be a commutative ring with 1 and let P ∈ R[x, y, z, ~λ] be a polynomial giving a definition
of δxy = z. Let Q(u, z, ~λ) be P (0, u, z, ~λ). It follows:

u 6= 0 ⇔ ∃~λ Q(u, 0, ~λ) = 0.

This means that the relation u 6= 0 is diophantine in R, hence R is irreducible according to the
Theorem 4.1. Take now S(u, z, ~λ) := Q(u, 1− z, ~λ). Then:

∃~λ S(u, z, ~λ) = 0 ⇔ (u = 0 ∧ z = 0) ∨ (u 6= 0 ∧ z = 1).

Let k ∈ N be given by Lemma 2.5. We define the relation:

R(x, y) :⇔ ∃~λ S(xky − x− y, yk − y, ~λ) = 0.

If R(x, y) is true, then yk − y ∈ {0, 1}. The equation yk − y = 1 hasn’t any solution in R
:y ∈ m ⇒ y = −1 and y unit ⇒ y = 0. Hence yk − y = 0 must be true and y ∈ {0, 1}. Because
of the properties of S, xky − x− y = 0 must hold. If y = 1 we get again the impossible equation
xk − x = 1, so y = 0 and x = 0. Thus the relation x = 0 ∧ y = 0 has also a diophantine definition
over R irreducible, hence R must be a finite field according to Lemma 5.3. 2

Corollary 6.2 Kronecker’s Symbol δxy = z is diophantine in Z/nZ if and only if n is a prime.

Since an irreducible product of fields is a field, Theorems 3.1, 4.1, 5.1 and 6.1 give the following
characterization of finite fields:
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Corollary 6.3 Let R be a finite commutative ring with 1. The following statements are equivalent:

(1) x = 0 ∨ y = 0 and x = 0 ∧ y = 0 are diophantine over R.

(2) t 6= 0 and x = 0 ∧ y = 0 are diophantine over R.

(3) Kronecker’s Symbol is diophantine over R.

(4) Every existentially definable relation is diophantine over R. In other words, every existentially
definable relation is a projection of a basic algebraic set.

(5) R is a finite field.

7 Quantifier-free Diophantine Definitions

The following statements do not only give another characterization of finite fields, but also stress
a situation where disjunction and negation behave differently.

We recall that according to the Definition given in the Introduction some relation R of arity k has
a quantifier-free diophantine definition over a ring R if and only if R is an algebraic subset of Rk

and can be defined over Rk using only one equation Q(x1, . . . , xk) = 0, where Q is a polynomial
in R[x1, . . . , xk]. According to the geometric language already used in Corollary 6.3, R is a basic
algebraic set.

Theorem 7.1 Let R be a finite commutative ring with 1.

• R admits a quantifier-free diophantine definition for x = 0 ∨ y = 0 if and only if R is a
finite field.

• R admits a quantifier-free diophantine definition for x = 0 ∧ y = 0 if and only if R is a
product of finite fields.

Proof: If R is a finite field, then R is a domain and x = 0 ∨ y = 0 is trivially equivalent with
xy = 0. Conversely, R must be irreducible according to Theorem 3.1. Let Q ∈ R[x, y] be a
polynomial such that x = 0 ∨ y = 0 is equivalent with Q(x, y) = 0. Because Q(0, 0) = 0, we can
write Q(x, y) in the form xyP (x, y) + xX(x) + yY (y). Setting (0, y) and (x, 0) we observe that
xX(x) and yY (y) must be identically 0, hence Q(x, y) = xyP (x, y). If the maximal ideal m 6= 0,
there must be an a ∈ m \ {0} with a2 = 0. It follows Q(a, a) = 0, which is a contradiction. Thus
m = 0 and R is a field.

The statement about conjunction has already been proven in Section 5. 2

What about the relation t 6= 0? We observe that the following holds:

Z/4Z |= t 6= 0 ⇔ t3 + 2t2 − t+ 2 = 0,

but Z/4Z is not a field. Consider also the ring:

F2[a] := {0, a, 1, 1 + a},

defined as the quotient of the polynomial ring F2[X] modulo the ideal (X2). F2[a] models a2 = 0.
F2[a] is not a domain, but is an irreducible finite commutative ring because there is no idempotent
inside. The maximal ideal is m = (a) = {0, a} and the units are {1, 1 + a} because (1 + a)2 = 1.
F2[a] is not isomorphic with Z/4Z because its additive group is the four-element group of Klein.
One has:

F2[a] |= t 6= 0 ⇔ t3 + at2 + t+ a = 0.

Theorem 7.2 Let R be a finite commutative ring with 1. The relation x 6= 0 has a quantifier-free
diophantine definition f(x) = 0 for some f ∈ R[x] if and only if R is one of the following rings:
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• An arbitrary finite field Fq. In this case f(x) = xq−1 − 1.

• The ring Z/4Z. In this case f(x) = x3 + 2x2 − x+ 2.

• The ring F2[a] with a 6= 0 but a2 = 0. In this case f(x) = x3 + ax2 + x+ a.

Proof: Since for all finite fields the statement is evident, let us suppose that R is not a field.
According to Theorem 4.1 R must be a finite irreducible commutative ring. Let m 6= 0 be its
unique maximal ideal. We write f(x) = x2g(x) + bx + a and observe that a = f(0) 6= 0. If
a ∈ R \m, we choose an x ∈ m \ {0} and get the contradiction a ∈ m. Thus a ∈ m \ {0}.
Now, if b = 0, we choose an x 6= 0 in m with x2 = 0 and get the contradiction a = 0. If b ∈ m is
not 0, we find an n > 1 such that bn−1 6= 0 and bn = 0. Again f(bn−1) = a, contradiction. So b
must be a unit. The polynomial f(−b−1x) defines also R \ {0} if f does, thus we consider that f
has the form x2g(x)− x+ a.

For all a ∈ m there is also an n > 1 with an−1 6= 0 and an = 0. We get f(an−1) = −an−1 + a = 0,
hence a = an−1. We multiply with a and get a2 = 0.

By substituting again x with −x in f we may assume that f(x) has the form x2g(x) +x+a. This
implies that f(a) = a+ a = 0, thus 2a = 0.

Let b 6= 0 be another element of m with b2 = 0. Then f(b) = b + a = 0, thus b = a. We have
proved that a is the only one element x 6= 0 such that x2 = 0.

Let x ∈ R be an arbitrary element. Because (ax)2 = 0, ax must be 0 or a.

Take some x ∈ m. If ax = a, then a(1 + x) = 0. But 1 + x is a unit, so one has a = 0, which is a
contradiction. Thus am = 0.

Similarly, if x is a unit then ax cannot be 0. So a(R \m) = a.

Now look again at the elements y ∈ m. We know that the sequence y, y2, y3, . . . is ultimately 0,
so there is a biggest k > 0 with yk 6= 0 and (yk)2 = 0. But a is the only one element with a2 = 0.
We see that for all y ∈ m \ {0, a} there is a k > 0 such that yk = a.

Now we assume that m 6= {0, a} and fix an element y ∈ m \ {0, a}. We choose k ≥ 2 minimal
such that yk = a. We observe that k ≥ 2 is equivalent with 2k − 2 ≥ k. Compute the value of:

f(yk−1) = y2k−2g(y) + yk−1 + a = 0.

If k = 2 then 2k − 2 = 2 and we get ag(y) + y + a = 0. If g(y) ∈ m then ag(y) = 0 and y = a,
in contradiction with the assumption y 6= a. If g(y) ∈ R \ m then ag(y) = a and it follows
a+ y + a = 0, so y = 0, which is a new contradiction.

If k > 2 then 2k− 2 > k and y2k−2g(y) = ayk−2g(y) ∈ amg(y) = {0}. So we get yk−1 + a = 0 and
yk−1 = a, in contradiction with the fact that k ≥ 2 has been chosen minimal with the property
yk = a.

Therefore m = {0, a}. Now we consider the finite field R/m. If its characteristic is different from
two, then 1 + 1 ∈ R \m and we have:

0 = a+ a = a(1 + 1) = a,

and m = {0}. In this case R must be a field and this is a contradiction.

Thus R/m is a field of characteristic 2, so R/m = F2s for some s. If R/m has more than two
elements, then there are u, v ∈ R/m such that all u, v, u+ v are different from 0. If ũ, ṽ in R are
respectively pull-backs, all ũ, ṽ, ũ+ ṽ belong to R \m. This means:

0 = a+ a = aũ+ aṽ = a(ũ+ ṽ) = a,

which is the same contradiction like before.
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So we have seen that R/m = F2 and |R | = 4. The elements {0, 1, a, 1 + a} must belong to R and
must be pairwise different.

If 1 + 1 = 0 then the additive group of R is isomorphic with Klein’s four-element group and R
turns out to be F2[a] with a 6= 0 and a2 = 0.

If 1 + 1 = a then 1 + (1 + a) = 0 and the additive group of R is cyclic. In this case R is Z/4Z. 2

In the proof of Theorem 3.1 we have got a diophantine formula for x = 0 ∨ y = 0 holding over
irreducible rings and containing just one existential quantifier. Theorem 7.1 implies that if the ring
is not a field, there will be no definition without quantifiers. Thus, the formula got in the proof
of Theorem 3.1 is in a sense the best possible. We know also that for irreducible rings different
from the rings listed in Theorem 7.2 we need quantifiers in order to give diophantine definitions
for t 6= 0 but we cannot say anything about their minimal number.
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