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Abstract

Classical results of additive number theory lead to the undecidability of the existence of
solutions for diophantine equations in given special sets of integers. Those sets which are
images of polynomials are covered by a more general result in the second section. In contrast,
restricting diophantine equations to images of exponential functions with natural bases leads
to decidable problems, as proved in the third section.

A.M.S. Classification: 03D40.

1 Introduction

We start by recalling some facts about Hilbert’s Tenth Problem and its restrictions. Let R be a
commutative ring with 1 and let A C R any subset. We denote the ring Z[X1, X2, ..., Xp,...] in
countably many variables by Z[w].

Definition: Hilbert’s Tenth Problem restricted to the set A is the set:

HTP [A] := {P € Zw]|Ine NIF € A" P(z) =0}.

For all rings R and subsets A one can put the question of the decidability of the set HTP [A].
Hilbert’s Tenth Problem in its original form was if HTP [N] is decidable. This has been answered
negatively by Matiyasevich, see [8], the same for HTP [Z].

A lot of work has been put in proving that equations with coefficients in Ok are undecidable
for rings of algebraic integers Ok in number fields K (finite extensions of the field of rational
numbers @Q), but only some cases have been proved so far, see [2], [3], [4], [11], [15], [16]. All
these results have been achieved by constructing diophantine definitions with coefficients in O g
for the ring of integers Z in O k. But it is easy to prove that if Z has a diophantine definition in
Ok with coefficients in Ok, then it has also a diophantine definition in Ok with coefficients in
Z. Further one has to relativize all unknowns occuring in polynomials in Z|[w] to this definition
and to repeatedly use a special polynomial p € Z[z,y] (in Ok holds that p(z,y) = 0 is equivalent
with £ = y = 0), in order to transform systems of equations in individual equations. So we have
many examples of number fields K such that HTP [Ok] is undecidable, but we do not know this
in general.

The problem about the decidability of HTP [Q] is also open and very difficult.

In this paper we will consider problems of the form HTP [A] for some special subsets A of the
ring Z of the integers. In order to motivate our work we display a general principle permitting us
to apply results of the additive number theory for cases of HTP [A]. Start with a short Remark:
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Remark 1.1 Hilbert’s Tenth Problem restricted to ideals in Z: and to arithmetic progressions, that
is HTP [kZ] and HTP [a + kN] (with k # 0), are undecidable.

Proof:
IfelZ P@=0 & \/ 3jekzZ PH+i)=0.
ref{o,...,k—1}m
So deciding the solvability of an equation with m unknowns over Z is equivalent to deciding the
solvability of k™ many equations over the ideal kZ. If HTP [kZ] was decidable, one could decide

if the equation P(Z) = 0 has solutions in Z by repeating the decision algorithm for HTP [kZ] for
k™ times. Contradiction.

For the arithmetic progressions we observe that:

JjekZ P@{=0 & 3dd,7ca+kN P(@—7) =0.

We observe that for all £ € N\ {0}, the set kNU {0, 1} is an additive basis of order k for N.

Definition: Let B be a set such that {0,1} C B C N. B is called additive basis of order k¥ > 1
for the set Nif Vne N3zy,...,2, € B n=2x1 +---+ 2. Similarly we define additive bases for
Z or for arbitrary rings.

Definition: For some A C Z and s € Z we denote by A, the set {x € A|z > s}. With the
similar meaning we use Ac;.

Remark 1.2 Let A C N and k > 1 be such that AU {0,1} is an additive basis of order k for N.
Then all the problems HTP [A>;] are undecidable.

Proof: The set A, is some finite set of natural numbers, say {a;,as,...,a,}. One has the
equivalence:
koo k
3JZeN P@) =0 & \V 7€ Ase P (D v, uh)=0.
yi€{0,1}UAL . U{z1} J=t J=1

ko
Here z; are new variables, and every old unknown z; is substituted by a sum ) y/ of constants
j=1
in {0,1} U A< or new unknowns z;. Hence, deciding the solvability of some equation with m
unknowns in N reduces to get the answer for < (n + 3)™* equations in As,. If this second task
would be decidable, then the existence of solutions in N would have been decidable too. a

Definition: For m > 3 and k,! € N we denote the number (1/2)(m —2)k(k—1) + k by pn, (k) and
call it the k-th. m-polygonal number. For m = 3,4,5 this gives the popular triangular numbers,
squares, penthagonal numbers, respectively.

Corollary 1.3 The following problems HTP [A], HTP [A>,] are undecidable:

e A C N with Schnirelmann density §(A) > 0.
e A=1p,(N), the set of m-polygonal numbers for m > 3.
o A= (N)9 :={n9|n € N}, the set of g-th. powers of natural numbers.

o A =9, the set of natural prime numbers.



Proof: Generally, if {0,1} C A C N with §(A4) > 0 then A is an additive basis of N, see [14], [9]
or [7]. For example, an arithmetic progression extended with the elements 0 and 1 is a set with
positive density. Also, if we denote by A the set of square-free natural numbers then §(A) = 53/88
as proven in [12]. The other examples in 1.3 are sets with zero density.

It has been conjectured by Fermat that the sets p,,(N) are additive bases for the naturals. After
partial solutions by Lagrange and Gauss, this has been proved by Cauchy, [1].

The conjecture that the sets N9 are additive bases for the naturals was known as Waring’s Problem.
This was proved by Hilbert in 1908, see [5].

According to Schnirelmann, the set U {0,1} is an additive basis of N and we apply the Remark
1.2. See [14], [18] or [9]. Alternatively, according to Vinogradov [18] sufficiently large natural
numbers are sums of three primes, so arbitrary integers are sum and difference of six primes.

All proofs can be also found in the monograph [9]. m|

With these results we exhausted the possibilities given by the classical additive number theory
together with the Remark 1.2. Our goal in this paper is to generalize those results in 1.1 and
1.3 concerning images of polynomial functions and to give a shorter, self-contained proof for this
generalization.

2 Images of polynomials

Because of the m-polygonal numbers in 1.3, for generalizing 1.1 and 1.3 it is not sufficient to
restrict ourselves to images of polynomials with coefficients in Z.

Definition: We denote by R the ring of those polynomials f € Q[t] such that f(Z) C Z. R is
called the ring of integral-valued polynomials.

Definition: By an infinite interval of integers we understand an element I of the set
{Z}U{a+N|a € Z}U{a—N|a € Z}.

We observe that HTP [f(I)] corresponds also to a syntactical restriction of Hilbert’s Tenth Prob-
lem. It is asked about the existence of solutions in I for equations P(Z) = 0 with polynomials

P e Z[f(Xl)Jf(X2)77f(Xn)7]

Theorem 2.1 Let f € R\ Z be a non-constant polynomial and let I C Z be an infinite interval
of integers. Then the restricted Hilbert’s Tenth Problem HTP [f(I)] is undecidable.

For the proof, a small machinery based on polynomial identities shall be developed. The following
Lemma is an algebraic identity given by Tardy in 1851, see [17]. This identity has been used by
Sierpinski to prove that for all powers n, the set (Z)™U —(Z)™ is an additive basis for Z, see [13],
page 399.

Lemma 2.2 The following identity holds:

Z (_l)élai (i(—l)mﬂ%‘) ' =2"-nl- 7179 ... 7.

Fe{0,1}n i=1

Proof: Consider some monomial Z% different from z1zs . ..z, occurring in the development of
the left hand side. At least one variable z;, say x,, is missing, so a, = 0. One gets:

caf&< 3 (_1),2101- (_1)21%@):0&93&( > (_1);5%)@):

ae{0,1}™ 7e{0,1}



= caj’&( Z (_1)j=ill(ai+1)tn 3 Z (_l)jg_ll(aﬁl)fn) _0

Fc{0,1}»~1x {0} Fe{0,1}—1x{1}

For the monomial 2,25 ...z, we get cg = n! and the sign (—1)(22‘”) =1 exactly 2" times. O

Lemma 2.3 For all numbers k with 0 < k < n the following identity holds:

3 (—1)21 " (i(—l)%z)k — 0.

ae{0,1}n i=1

Proof: In every occurring monomial is at least one missing variable because k£ < n. We proceed
like in the precedent proof. m|

Lemma 2.4 Let f = apt™ + --- + a1t + ag be a polynomial with a, # 0. Then the following
identity holds:

Z (—l)Elai - f (i(—l)‘”m,) =2"-nl-an, -T1272...20.

ge{0,1}n i=1

Proof: According to Lemma 2.2 the leading coefficient has the given contribution in the sum.
According to Lemma 2.3 the other coefficients have not any contribution. O

Lemma 2.5 Let f € R\ Z be some polynomial. Then the set
fZ)u-f(zZ)u{o,1}

is an additive basis of finite order for the ring 7Z.

Proof: In Lemma 2.4 set £ = 3 = --- = x,, = 1. We get that v :=2"-n!-a, € Z\ {0}. Now
take 1 = x2 =---=x,_1 = 1 and x,, = ¢ € Z arbitrary. It follows that all elements in the ideal
vZ are sums of 2" many elements of the set f(Z)U — f(Z). But this means that all elements in Z
are sums of 2" + |v| many elements of the set f(Z)U —f(Z)U {0,1}. O

Lemma 2.6 Let f € R\ Z be some polynomial and I C Z be an infinite interval of integers. Then
the set

fHu—-f(I)u{o,1}

is an additive basis of finite order for the ring 7.

Proof: For the case I = Z we have just shown it. By substituting f(t) € R with f(t —a) € R,
it is enough to consider the cases I = N and I = —N. If T = N then let h(t) := f(t?) € R. Then
h(Z) C f(N), so also

Mz) U —h(z)U{0,1} € f(N) U—f(N) U{0,1},

and a superset of an additive basis of a ring is an additive basis of at most the same order for this
ring. If I = —N then take h(t) := f(—t?) € R and repeat the argument with h(Z) C f(-N). O

Proof of the theorem 2.1: Let P(Z) = 0 an equation with m unknowns and let k = 2" + |v|
be the order of the additive basis f(I) U—f(I)U{0,1} for Z. It holds that:

k k
37eZ P@) =0 o \/ Aze f() P(D vl Y vh)=0.
yie{0,1}u{z}u{-=} J=1 =1

So arbitrary equations over Z are equivalent with disjunctions of < 4™ many equations over f(I).
If HTP [f(I)] would have been decidable, so was also HTP [Z]. Contradiction. O



Corollary 2.7 Let be f € R a non-constant polynomial. It is undecidable if arbitrary diophantine
equations P(Z) = 0 with polynomials P € Z[f(X1), f(X2),..., f(Xn),...] have solutions in Z or
in some infinite interval of integers I.

Remark 2.8 All these results generalize trivially to polynomials in more than one variable, be-
cause the image of such a non-constant polynomial contains the image of a non-constant polynomial
in one variable.

Another syntactic restriction of Hilbert’s Tenth Problem can be defined: HTPS [A], Hilbert’s
Tenth Problem over A for symmetric polynomials:

HTPS [A] := {P € Z|w] | P symmetric and In e NIZ¥ € A" P(Z)=0}.
For some polynomial P € Z[X1,...,X,] let the polynomial SP be defined by:

SP(X):= [[ P(X)),

oES,
where o(X) := (Xo(1),--+>Xo(n))- If the ring R is a domain and A C R then it holds:
AZe A" P(#) =0 +— ITe A SPZ) =0.

Remark 2.9 For all integral domains R and subsets A C R, the problem HTP [A] is undecidable
if and only if the problem HTPS [A] is undecidable.

3 Images of exponential functions

One should not believe that any restriction of HTP to some infinite recursive subset of N is
undecidable. We are going to see some decidable restrictions of Hilbert’s Tenth Problem, in
contrast with the results in Section 2.

Definition: Let k € N be a number with k > 2. We denote by k" the set {k™ |n € N}.

We observe that HTP [kN] corresponds also to a syntactical restriction of Hilbert’s Tenth Problem,
because the recursive set kN has a diophantine definition in Z.

Theorem 3.1 The problems HTP [kN] and HTP [kNs,] are decidable.

First proof: The theorem follows directly from the result proved by van den Dries in [6]. He
proved there that the structure (R, +, —,-, <, A(-)) (with an unary predicate A(-) to be satisfied
only by the elements of k%) is decidable. It is immediate to see that the fact that some diophantine
equation has a solution in &N is equivalent with a formal statement over this structure. O

Van den Dries proved that the theory RCF of real closed fields together with the axioms: A is
a multiplicative subgroup consisting of positive elements, A(k), Vz (1 < z < k —» —A(z)) and
Vz (z>0-3y A(y) Ay <z < ky) is a complete theory with a recursive axiomatization, hence
decidable. His proof doesn’t give any concrete decision procedure.

Second proof: This is a sketch of the decision procedure. Write the equation P(Z) = 0 in the
form Q(Z) = R(Z) where @), R € N[Z]. Write all the coefficients according to the k-ary system (in
the basis k¥ > 2) and put z; = k¥%. According to the k-ary representation system every monomial
cq®® looks like w00 . ..0, where W is a word in the alphabet {0,1,...,k — 1} concatenated with
a word consisting of )" a;y; many zeros. Because the only nontrivial information comes from the
k-ary representation of the coefficients and from the number of zeros, there are only finitely many
cases to check in order to decide if the equality is possible. m|



Corollary 3.2 (to the second proof). The followig set is also decidable:

|J HTPEN).
keEN

Remark 3.3 With the same methods we can prove that the problems HTP [f(k9™)] are decidable
for all f,g € ‘R.

There are some other problems of interest with analytic superexponential functions:

Open questions: What can be said about the decidability of HTP [f(N)] for (i) f(n) = n! and
(ii) f(n) =n"?

In [13] (pg. 108 - 109) Sierpinski gives infinite families of solutions for the equation XY = Z
considered in both contexts.

According to Nathanson’s results in [10] for all function f : R — R with 1i_>m f(z) = oo there
T o0

are (recursive) additive bases of order 2 for the integers such that the number of basis elements
between —z and z is bounded by f(z). Since the corresponding HTP’s are undecidable, we see
that this decidability question is not really a problem of increment-rate.

Acknowledgment: The author thanks Karin Halupczok for some conversations concerning the
classical additive number theory.

References

[1] Augustin Louis Cauchy: Démonstration du théoréme général de Fermat sur les nombres
polygones. Mem. Sci. Math. Phys. Inst. France, 14 (1), 177 - 220, 1813.

[2] Jan Denef: Hilbert Tenth Problem for quadratic rings. Proceedings of the American Math-
ematical Society, 48 (1), 214 - 220, 1975.

[3] Jan Denef: Diophantine sets over algebraic integer rings II. Transactions of the American
Mathematical Society, 257 (1), 227 - 236, 1980.

[4] Jan Denef, Leonard Lipshitz: Diophantine sets over some rings of algebraic integers.
Journal of the London Mathematical Society (Second Series), 18 (3), 385 - 391, 1978.

[5] David Hilbert: Beweis fiir die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl
nt* Potenzen (Waringsches Problem). Mathematische Annalen, 67, 281 - 300, 1909.

[6] Lou van den Dries: The field of reals with a predicate for the powers of two. Manuscripta
Mathematica 54, 187 - 195, 1985.

[7] Aleksandr Yakovlevich Khinchin: Three pearls of number theory. New edition: Dover
1998, after a copyright from 1952.

[8] Yuri Matiyasevich: Hilbert’s Tenth Problem. The MIT Press, London, 1993.

[9] Melvyn Nathanson: Additive Number Theory - The Classical Bases -. Springer Verlag,
Graduate Texts in Mathematics, 1997.

[10] Melvyn Nathanson: Unique representation bases for the integers.
arXiv:math.NT/0202137v1, 2002.



[11] Thanases Pheidas: Hilbert’s Tenth Problem for a class of rings of algebraic integers.
Proceedings of the American Mathematical Society, 104 (2), 611 - 620, 1988.

[12] Kenneth Rogers: The Schnirelmann density of squarefree integers. Proceedings of the
AM.S. 15, 515 - 516, 1964.

[13] Waclaw Sierpinski: Elementary Theory of Numbers. Polska Akademia Nauk Monografie
Matematyczne, Warszawa 1964.

[14] Lev Genrikhovich Schnirelmann: Uber additive Eigenschaften von Zahlen. Mathema-
tische Annalen, 107, 649 - 690, 1933.

[15] Harold Shapiro, Alexandra Shlapentokh: Diophantine relationship between algebraic
number fields. Communications on Pure and Applied Mathematics 42 (8), 1113 - 1122, 1989.

[16] Alexandra Shlapentokh: Extensions of Hilbert’s Tenth Problem to some algebraic number
fields. Communications on pure and Applied Mathematics 43 (8), 1055 - 1066, 1990.

[17] Placido Tardy: Transformazione di un prodotto di n fattori. Ann. Sc. Mat. e. Fis. 2, 287
- 291, 1851.

[18] Ivan Matveevich Vinogradov: Representation of an odd number as the sum of three
primes. Doklady Akad. Nauk SSSR, 15 (6 - 7), 291 - 294, 1937. English translation in
Selected Works, 101 - 106, Springer Verlag, 1985.



