Ion Patrascu, Florentin Smarandache, The Reciprocal of Butterfly Theorem, Octogon Mathematical Magazine, Vol. 30, No. 2, pages 966-970, October 2022.

The Reciprocal of The Butterfly Theorem

Ion Pătrașcu
"Frații Buzești" National College, Craiova, Romania
Florentin Smarandache, PhD, PostDoc University of New Mexico, Gallup Campus, NM 87301, SUA

In this paper, we present two proofs of the reciprocal butterfly theorem.

The statement of the butterfly theorem is:
Let us consider a chord $P Q$ of midpoint M in the circle $\Omega(O)$. Through M, two other chords $A B$ and $C D$ are drawn, such that A and C are on the same side of $P Q$. We denote by X and U the intersection of $A D$ respectively $C B$ with $P Q$. Consequently, $X M=Y M$.

For the proof of this theorem, see [1].

The reciprocal of the butterfly theorem has the following statement:
In the circle $\Omega(O)$, let us consider the chords $P Q, A B$ and $C D$ which are concurrent in the point $M \neq O$, such as the points A and C are on the same side of the line $P Q$. Let X and Y respectively be the intersections of the chord $P Q$ with $A D$ and $B C$ respectively. If $X M=Y M$, then M is the middle of the chord $P Q$.

Proof 1.

We construct the circumscribed circle of the isosceles triangle $B O D$ and denote by E and F the points where $A B$ and $C D$ cut again the circle (see Fig. 1).

The quadrilateral $D B E F$ being inscribed, we have that $\Varangle C D B \equiv \Varangle B E F$. But $\Varangle C D B \equiv$ $\Varangle B A C$, therefore we obtain that $\Varangle B A C \equiv \Varangle B E F$, with the consequence $A C \| E F(1)$.

We denote by N the second point of intersection of the circumscribed circles of the triangles $A X M$ and $C Y M$.

The quadrilaterals $A X M N$ and $C Y M N$ being inscribed, we have that $\Varangle X A M \equiv \Varangle X N M$ and $\Varangle Y C M \equiv \Varangle Y N M$. Because $\Varangle X A M \equiv \Varangle Y C M$ (ADBC being an inscribed quadrilateral), previous relations lead to $\Varangle X N M \equiv \Varangle Y N M$. This relation, along with the condition from the hypothesis $X M=Y M$, shows that, in the triangle $N X Y, N M$ is both median and bisector, therefore this triangle is isosceles, and $N M \perp X Y$. (2)

Figure 1

The relation (2) implies $\mathrm{m}(\widehat{N C B})=90^{\circ}$ and $\mathrm{m}(\widehat{N A X})=90^{\circ}$. But $\mathrm{m}(\widehat{N C B})=\mathrm{m}(\widehat{N C M})+$ $\mathrm{m}(\widehat{D C B})=90^{\circ}$.

On the other hand, $\mathrm{m}(\widehat{D C B})+\mathrm{m}(\widehat{O B D})=90^{\circ}$, because $\mathrm{m}(\widehat{D C B})=\frac{1}{2} \mathrm{~m}(\widehat{D O B})$.
We also have that $\mathrm{m}(\widehat{O D B})=\mathrm{m}(\widehat{O F D})$, because the quadrilateral $F D O B$ is inscribed.
These relations lead to $\Varangle N C M \equiv \Varangle O F D$, which further implies $N C \| O F$ (3).

Analogously it is shown that $N A \| O E$ (4).
Relations (1), (3) and (4) show that the triangles NAC and $O E F$ have respectively parallel sides, therefore they are homothetic, the center of homothety being the point $\{M\}=C F \cap A E$.

Then the homothetic points N and O are collinear with M, having $N M \perp P Q$, it follows as well that $O M \perp P Q$, consequently M is the middle of the chord $P Q$.

The relation (2) implies $m(\widehat{N C B})=90^{\circ}$ and $m(\widehat{N A X})=90^{\circ}$.
But $m(\widehat{N C B})=m(\widehat{N C M})+m(\widehat{D C B})=90^{\circ}$.
On the other hand, $m(\widehat{D C B})+m(\widehat{O B D})=90^{\circ}$, because $m(\widehat{D C B})=\frac{1}{2} m(\widehat{D O B})$.

Proof 2.

Assuming the opposite, $P M \neq Q M$, therefore $O M$ is not perpendicular on $P Q$.
We construct the perpendicular in M on $O M$ and denote by U and V its intersections with the circle $\Omega(O)$.

We denote by R and S the intersections of the chord $U V$ with $A D$ and $C B$ respectively (see Fig. 2).

Figure 2

Because M is the middle of the chord $U V$, applying the butterfly theorem, we have that $M R=M S$.

We obtain that $\triangle M X R \equiv \triangle M Y S$ (side-angle-side), and consequently $\Varangle X R M \equiv \Varangle Y S M$, therefore $A D \| B C$.

The condition $A D \| B C$ leads to two possibilities for the quadrilateral $A D B C$. This can be an isosceles trapezoid if $A D \neq B C$, or rectangle if $A D=B C$.

We eliminate the possibility $A D B C$ - rectangle, because this rectangle would have the center M and it should be that $M=O$.

Let us consider $A D B C$ - isosceles trapezoid with $A D$ the small base. In this case, we observe that M - the intersection of the diagonals of the trapezoid, and O are on the axis of symmetry of the trapezoid, and $U V \perp O M$ contradicts the fact that the points A and C must be on the same side of the right $U V$.

The contradictions show that M must be the middle of the chord $P Q$.

Bibliography

[1] Nguyen Tien Dung. Three Syntetic Proofs of the Butterfly Theory. Forum Geometricorum, vol. 17 (2017), 355-358.
[2] Florentin Smarandache, Ion Pătrașcu. The Geometry of Homological Triangles. The Educational Publisher, Columbus - USA, 2012.

