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Abstract

We show that the least number principle for Σ̂b
k (strict Σb

k) formulas can be character-
ized by the existence of alternating minima and maxima of length k. We show simple
prenex forms of these formulas whose herbrandizations (by polynomial time functions)
are ∀Σ̂b

1 formulas that characterize ∀Σ̂b
1 theorems of the levels T k

2 of the Bounded Arith-
metic Hierarchy, and we derive from this another characterization, in terms of a search
problem about finding pure Nash equilibria in k-turn games.

Introduction

One of the main objects in proof-complexity is the Bounded Arithmetic Hierarchy. This is
the proof-complexity counterpart of the Polynomial Hierarchy which is studied in computa-
tional complexity. The theories in the Bounded Arithmetic Hierarchy are essentially Peano
Arithmetic with induction limited to bounded formulas with k alternations of bounded quan-
tifiers, where k is the level in the hierarchy. More precisely, in order to define T k

2 , the theory
on the k-th level, one chooses a suitable set of bounded formulas Σ̂b

k that define precisely the
sets in the complexity class Σp

k. The theory T k
2 is axiomatized by a finite set of basic axioms

and the induction schema for Σ̂b
k formulas. It is well-known that induction can be replaced

by various other principles, in particular by the least number principle.
In this paper we will introduce another principle. Our principle says that, for a polynomial

time computable function v(p, x1, . . . , xk), for each p there exists

min
x1

max
x2

min
x3

. . . v(p, x1, . . . , xk),

where the minima and maxima are over x1, . . . , xk ≤ p. This simple result is proved in order
to derive another one, which is the essence of this paper: we give new characterizations of
the ∀Σ̂b

1 sentences (these are, essentially, sentences with a universal quantifier followed by
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an existential bounded quantifier) that are provable in T k
2 , for k = 1, 2, . . .. The alternating

minima and maxima serve not only to prove these characterizations, but also to help us to
more fully understand the meaning of the sentences used in these characterizations.

The study of provable ∀Σ̂b
1 sentences is an active research area in proof complexity.

These sentences are interesting for two reasons. In proof complexity we associate theories
with classes defined in computational complexity by postulating induction for classes of
formulas that define these complexity classes. If S and T are theories associated with some
natural complexity classes C and D (respectively) and it is conjectured that C 6= D, we also
conjecture that (the sets of theorems of) S and T are different. It also seems likely that in
such a case S and T should differ in their provable ∀Σ̂b

1 sentences. To look at a particular
example, we do not know if T k+1

2 is strictly stronger than T k
2 , but one can prove this using

the assumption that the Polynomial Hierarchy is strictly increasing, and one can also show
that relativized versions of these theories are different. However, the separations obtained
in these results are by sentences of increasing complexity. Whether one can improve these
separations to ∀Σ̂b

1 sentences is still an open problem.
The second reason for studying these sentences is that the set of all true ∀Σ̂b

1 sentences
defines exactly the class of total polynomial search problems, denoted TFNP (standing
for ‘total functional NP’). Various subclasses of TFNP have been studied in computational
complexity theory. Proof complexity provides tools for showing separations of the relativized
versions of these classes. Proof complexity is also a source of new subclasses of TFNP.

By a characterization of the ∀Σ̂b
1 sentences provable in the theories T k

2 we mean an ex-
plicitly defined set of ∀Σ̂b

1 sentences that are provable in T k
2 and from which all provable

∀Σ̂b
1 sentences are derivable over the base theory T 0

2 (in fact our characterizations are in
terms of a slightly stronger notion, search problem reducibility, which we explain in Section
2 below). Such characterizations for all k were obtained fairly recently [13, 16, 15, 3]. Pre-
viously they were known only for k = 0, 1 and 2 [5, 9]. While we do not have a clue how to
prove conditional separations, it seems that the standard method of proof complexity should
work for relativized separations. This method is based on translating the sentences into
sequences of tautologies and proving lower bounds on the lengths of proofs of these tautolo-
gies. Unfortunately, the application of this method is hindered by the extreme complexity
of the combinatorial problems that have to be solved. Therefore, researchers are looking for
characterizations by simpler sentences than the known ones. This is also the main aim of
this paper.

We will present here two new characterizations of the ∀Σ̂b
1 sentences provable in the

theories T k
2 . In the first one our sentences are similar to those in [16, 3], but simpler.

Their simplicity may help to prove relativized separations. We obtain the sentences by first
writing the principle of alternating minima and maxima in a suitable prenex form and then
taking a herbrandization by polynomial time computable functions. This means that we
eliminate the universal quantifiers of the prenex formula by introducing function symbols,
as in Herbrand’s Theorem, and then use this as a schema in which the new function symbols
represent polynomial time computable functions. We discovered these sentences several years
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ago and conjectured that they characterize the ∀Σ̂b
1 sentences provable in the theories T k

2 .
But we only recently realized that there is a reduction of the Game Induction Principle of
[16] to our sentences.

The second characterization is as a problem about finding equilibrium strategies for
a game. It was recently shown [6, 7] that the general problem of finding a mixed Nash
equilibrium is complete for the search problem class PPAD, and there is active ongoing
research into the computational complexity of game theory. In this setting, the standard
way to present a game is in strategic form, where essentially each player has only one move
and all players move simultaneously, and the standard way to input such a game to a machine
is as an explicitly given table of payoffs. In contrast, our games are in sequential form, where
we think of the (two) players as taking turns to move, and they are zero-sum, with the
players having opposite payoffs; it is straightforward to show that a pure Nash equilibrium
always exists (so we do not have to consider probabilistic strategies). Furthermore our payoff
functions are given succinctly, by a polynomial time function rather than a table – having
such a table as input would put the problem trivially into polynomial time. Similar kinds
of games are considered in [1] where it is shown that many decision problems about such
games are PSPACE-complete. The general question of how hard it is to find pure equilibria
in games where they are known to exist is raised in [8], where it is shown that for congestion
games this problem is complete for the class PLS (however the setting there is different, and
this seems to be unconnected to our results about PLS in this paper).

For our search problems to be in TFNP, we also need to weaken the definition of a Nash
equilibrium, in what we feel is a natural way. The usual definition of a pure equilibrium
is a pair of strategies for players A and B, such that neither player can improve his payoff
by unilaterally switching to a new strategy. We will weaken this by adding the condition
that any new strategy must be derivable from the old strategies, considered as oracles, by a
polynomial time algorithm. We show that the existence of such equilibria in k-turn games
characterizes the ∀Σ̂b

1 sentences provable in the theory T k
2 .

In the first two sections below we give some basic definitions of Bounded Arithmetic and
search problems. In Sections 3, 4 and 5 we introduce our sentences involving alternating
maxima and minima, and show that they can be used to axiomatize theories of Bounded
Arithmetic. In Section 6 we define a family GPLSk of search problems, arising from the
herbrandizations of these sentences, and prove that they characterize the ∀Σ̂b

1 consequences
of T k

2 - this is Theorem 6.1. In Section 7 we define a family PEk of search problems about
finding Nash equilibria and show in Theorem 7.2, using the earlier result, that these also
characterize the ∀Σ̂b

1 consequences of T k
2 .

1 The Bounded Arithmetic Hierarchy

The theories T k
2 , for k ≥ 0 were defined by Buss [4] (although our formalization is slightly

different from his; see the last paragraphs of this section). They are formalized in the lan-

The sentences were presented at the Prague-Vienna workshop on Proof Theory and Proof Complexity,
Prague, 2006; they were not published.
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guage with primitive symbols 0, 1, +,×, |x|, #, bx/2c,≤. The intended interpretations of |x|
is dlog2(x + 1)e (which is the length of the binary expansion of x, if x > 0); the interpreta-
tion of x#y is 2|x|·|y|; and the interpretations of the other symbols are standard. The richer
language is needed because the theories have restricted induction schemes. In particular,
the function # enables us to construct, from a number x, the number x#(x# . . . (x#x) . . .)
(with x occurring `-times) whose length is equal to the length of x raised to the `th power.
This is needed for formalizing polynomial time computations.

The theories T k
2 are axiomatized by a finite set of axioms that fixes the interpretation of

the basic notions and by the usual scheme of induction for Σ̂b
k formulas. This class of formulas

is defined as follows. First one defines bounded formulas in the usual way. Sharply bounded
quantifiers are defined by the condition that the outermost term is | . . . |; thus they have forms
∀x ≤ |t| and ∃x ≤ |t|, where t is a term. Formulas with only sharply bounded quantifiers are
called sharply bounded formulas. A Σ̂b

k formula consist of at most k alternations of bounded
quantifiers, with the first one existential, followed by a sharply bounded formula.

In the theory T 0
2 , as defined by Buss, the induction scheme is restricted to formulas with

only sharply bounded quantifiers. Since this theory is very weak, Jeřábek has proposed
extending the language by the function bx/2yc and a finite number of axioms fixing its
interpretation [10]. In the resulting version of the theory T 0

2 it is possible to define polynomial
time computations by ∆̂b

1 formulas. We will use this theory as the base theory for our results.
Terms of these theories do not suffice to define all polynomial time computable functions

(even with the function bx/2yc) and sharply bounded formulas do not suffice to define all
polynomial time sets and relations. Therefore we shall allow the introduction of a new
function symbol representing a polynomial time computable function whenever it has a ∆̂b

1

definition for which T 0
2 proves that it is polynomial time computable. We shall use a similar

convention about polynomial time computable relations. In this richer language we do not
need to use sharply bounded quantifiers any more. Thus we may take the class Σ̂b

k to consist
of formulas with a quantifier-free part built from symbols for polynomial time functions
and predicates, prefixed by some bounded quantifiers. If the defined function symbols and
predicates are eliminated from such a formula by substituting their definitions, we obtain an
equivalent Σ̂b

k formula.
Buss’s original formalization in [4] is in terms of classes Σb

k in which sharply bounded

quantifiers can appear anywhere in a formula, without increasing its complexity; the Σ̂b
k

formulas then correspond to strict Σb
k formulas. However the strength of the theories T k

2 is
not changed by restricting induction to strict formulas. We note that our characterization of
the provable ∀Σ̂b

1 sentences of T k
2 also gives a characterization of the provable ∀Σb

1 sentences,
if we strengthen our base theory from T 0

2 to Buss’s theory S1
2 in which every Σb

1 formula can
be shown to be equivalent to a Σ̂b

1 formula.

2 Polynomial search problems

Definition 1 A total polynomial search problem is given by a relation R such that

1. R(x, y) ∈ P;
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2. there is a polynomial p such that R(x, y) implies |y| ≤ p(|x|);

3. ∀x∃yR(x, y).

The problem is: given input x, find y such that R(x, y).
The class of all total polynomial search problems is denoted by TFNP.

Definition 2 For i = 1, 2, let Si be a search problem determined by Ri(x, y). Then S1 is
polynomially many-one reducible to S2 if there exist polynomial time computable functions
f and g such that given x, f computes some string f(x) = x′ such that if R2(x

′, y′) for some
y′, then R1(x, g(x, y′)).

Various classes of TFNP problems closed under polynomial reductions have been studied
and several separations of relativized classes have been shown (see e.g. [2]).

Clearly, a TFNP problem is associated with a true ∀Σ̂b
1 sentence (the universal closure

of a Σ̂b
1 formula) and, vice versa, every true ∀Σ̂b

1 formula determines a TFNP problem.
Furthermore the definition of many-one reducibility of a search problem S1 to a search
problem S2 can be read as a strong (skolemized) version of logical implication of the sentence
for S2 from the sentence for S1. Hence our goal will be to show that a scheme Γ characterizes
the set of ∀Σ̂b

1 consequences of a theory over T 0
2 in a strong way, by explicitly showing how

each search problem for a sentence in the set can be reduced to a search problem for a
sentence in Γ by a many-one reduction that can be formalized in T 0

2 .
It has been proved that all polynomial search problems for which the totality condition

3. is provable in T 0
2 are computable in polynomial time (this is essentially Buss’s result from

[4]). Wilkie showed (reported in [12]) that if the totality is provable in T 0
2 extended by a

surjective version of the weak pigeonhole principle, then the search problem can be solved in
probabilistic polynomial time. The first characterization of ∀Σ̂b

1 sentences provable at a level
of the hierarchy above T 0

2 was due to Buss and Kraj́ıček [5]. They proved that the provably
total polynomial search problems in T 1

2 are polynomially reducible to problems from the class
PLS (standing for polynomial local search [11]), and used this to give a relativized separation
of T 1

2 and T 2
2 by a ∀Σ̂b

1 sentence. A simplified version of the definition of polynomial local
search is given in Section 6. It is a special case of the polynomial search problems which we
will use to characterize the ∀Σ̂b

1 sentences provable in theories T k
2 . For this reason we call

our principles and search problems Generalized Polynomial Local Search.

3 Some useful sentences

In this section we present some sentences equivalent to the existence of the least number
satisfying a certain k-quantifier formula. In Section 5 we will use these sentences to state
corresponding axiom schemes and show that they axiomatize the theories T k

2 .
The equivalences that we are going to prove can be proved in a very weak theory. Thus

in this section we will only use pure logic and the assumption that ≤ is a discrete linear
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ordering and that v(p, x1, . . . , xk) is an arbitrary function of k + 1 variables. The condition
that ≤ is discrete means that

∀x(∃y(y < x) → ∃x−(x− < x ∧ ∀y(y < x → y ≤ x−))),

and the dual. We shall denote the predecessor (successor) of x, if it exists, by x− (x+).
Thus we work in the theory of discrete linear orderings, with the ordering relation denoted

by <; the theory is extended by a function symbol v(p, x1, . . . , xk) about which there are no
assumptions. Note that all basic theories studied in bounded arithmetic prove that natural
numbers are a discrete linear ordering. Thus our results are applicable to any function v
definable in these theories.

The meaning of the expression

z = min
x1

max
x2

min
x3

. . . v(p, x1, . . . , xk),

with k mins and maxs, is clear when all the minima and maxima exist. Since we will deal
with situations in which some maxima and minima are not defined, we have to be more
careful when using such expressions.

Therefore, assuming k is even (and similarly for k odd), we will use such an expression
only if the existence of all minima and maxima is guaranteed for all suffixes

min
xi

. . . max
xk−1

min
xk

v(p, x1, . . . , xk)

for all p, x1, . . . , xi−1 and all odd i, and

max
xj

. . . max
xk−1

min
xk

v(p, x1, . . . , xk)

for all p, x1, . . . , xj−1 and all even j. Thus, in particular,

∃z (z = min
x1

max
x2

min
x3

. . . v(p, x1, . . . , xk))

is an abbreviation for the formula where the existence is stated for all suffixes as above.
The variable p serves only as a parameter, therefore in the rest of this section it will be

omitted. Note that the results below have duals in which max and min are switched and ≤
is reversed. We shall use the dual versions without comment when needed.

Theorem 3.1 The following two sentences are equivalent:

∃u (u = min{w; ∃x1∀x2∃x3 . . . v(x1, . . . , xk) ≤ w}), (1)

∃x1∀y1∃y2∀x2∃x3∀y3 . . . (v(x1, . . . , xk) ≤ v(y1, . . . , yk)). (2)

(The last two quantifiers in (2) are ∃xk∀yk if k is odd, and ∃yk∀xk if k is even.)

Furthermore, if for all x1, maxx2 minx3 . . . v(x1, . . . , xk) exists, then (1) and (2) are equi-
valent to

∃u (u = min
x1

max
x2

min
x3

. . . v(x1, . . . , xk)). (3)
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The diagram below illustrates the order of quantifiers in (2).

∃x1 ∀x2 → ∃x3 . . .
↓ ↑ ↓
∀y1 → ∃y2 ∀y3 → . . .

(4)

We will prove the theorem by a sequence of lemmas.

Lemma 3.2 Sentence (1) is equivalent to the following sentence (5):

∃w [∃x1∀x2∃x3 . . . (v(x1, . . . , xk) ≤ w) ∧ ∀y1∃y2∀y3 . . . (v(y1, . . . , yk) ≥ w)]. (5)

Proof. Sentence (5) is clearly as strong as the existence of the minimum. For the opposite
direction, we shall use the discreteness of ≤. Let w = min{w; ∃x1∀x2∃x3 . . . v(x1, . . . , xk) ≤
w}. The first part of (5) is immediate. To get the second part, observe that w satisfies:

∀u (u < w → ∀y1∃y2∀y3 . . . (v(y1, . . . , yk) > u)).

If there is no u < w then the second part is clear. Otherwise w− < w, so

∀y1∃y2∀y3 . . . (v(y1, . . . , yk) > w−),

whence
∀y1∃y2∀y3 . . . (v(y1, . . . , yk) ≥ w).

Notice that we have shown that if w is the minimum in (1), then it satisfies the inequalities
in (5).

To prove (1)⇔(3) we prove the following slightly stronger lemma.

Lemma 3.3 Suppose that for all x1, maxx2 minx3 . . . v(x1, . . . , xk) exists. If furthermore one
of the two numbers defined by the expressions in the following equality exists, then the other
exists too and they are equal:

min
x1

max
x2

min
x3

. . . v(x1, . . . , xk) = min{w; ∃x1∀x2∃x3 . . . v(x1, . . . , xk) ≤ w}.

Proof. We shall use the following easy fact: if min X exists and

∀x ∈ X∃y ∈ Y (y ≤ x) ∧ ∀y ∈ Y ∃x ∈ X(x ≤ y), (6)

then min Y exists and min X = min Y .
We prove the lemma by induction on k. The base case k = 1 is trivial:

min
x1

v(x1) = min{w; ∃x1 v(x1) ≤ w}.

By induction (applied to the dual statement), we can assume that for every x1

max
x2

min
x3

. . . v(x1, . . . , xk) = max{w; ∃x2∀x3 . . . v(x1, . . . , xk) ≥ w}.
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Thus we need to prove that if one of the two numbers defined by the expressions in the
following equality exists, then the other exists too and they are equal:

min
x1

max{w; ∃x2∀x3 . . . v(x1, . . . , xk) ≥ w} = min{w; ∃x1∀x2∃x3 . . . v(x1, . . . , xk) ≤ w}.

Thus it suffices to prove (6) for

X = {w; ∃x1∀x2∃x3 . . . v(x1, . . . , xk) ≤ w}
and Y = {u; ∃x1 u = max{z; ∃x2∀x3 . . . v(x1, . . . , xk) ≥ z}}.

To prove the first part of (6), let w ∈ X and let b be such that

∀x2∃x3 . . . v(b, x2, . . . , xk) ≤ w.

Let u = max{u; ∃x2∀x3 . . . v(b, x2, . . . , xk) ≥ u} ∈ Y . If u > w, then

∃x2∀x3 . . . v(b, x2, . . . , xk) > w,

which is in contradiction with the condition above. Thus u ≤ w.
For the second part of (6), let u ∈ Y , so

u = max{u; ∃x2∀x3 . . . v(a, x2, . . . , xk) ≥ u}

for some a. As we observed in the proof of Lemma 3.2, u satisfies ∀x2∃x3 . . . v(a, x2, . . . , xk) ≤
u. Hence u ∈ X.

Finally for (1)⇔(2) it is sufficient to prove the following.

Lemma 3.4 Sentence (5) is equivalent to (2).

Proof. For (5)⇒(2), transform (5) into the following prenex form

∃w∃x1∀y1∃y2∀x2∃x3∀y3 . . . (v(x1, . . . , xk) ≤ w ∧ w ≤ v(y1, . . . , yk)),

which, clearly, implies (2).
For (2)⇒(5) we shall use induction over k. For k = 1, there is nothing to prove, because

(2) says that there is a minimum of v(x1).
Suppose that the theorem is true for k − 1. Let (2) be true and a be such that

∀y1∃y2∀x2∃x3∀y3 . . . (v(a, x2, . . . , xk) ≤ v(y1, y2, . . . , yk)). (7)

Thus we have
∃y2∀x2∃x3∀y3 . . . (v(a, x2, . . . , xk) ≤ v(a, y2, . . . , yk)).

By the (dual of the) induction assumption, this implies

∃w [∃y2∀y3 . . . (v(a, y2, . . . , yk) ≥ w) ∧ ∀x2∃x3 . . . (v(a, x2, . . . , xk) ≤ w)].

8



Let c be such a w, i.e., we have (8) and (9) below:

∃y2∀y3 . . . (v(a, y2, . . . , yk) ≥ c), (8)

∀x2∃x3 . . . (v(a, x2, . . . , xk) ≤ c). (9)

We shall show that (10) and (11) below also hold

∃x1∀x2∃x3 . . . (v(x1, . . . , xk) ≤ c) (10)

∀y1∃y2∀y3 . . . (v(y1, . . . , yk) ≥ c), (11)

which will finish the proof.
First, (10) is an immediate consequence of (9). To prove (11) we shall argue by contra-

diction. Suppose it is false. Take the conjunction of (8), with ys renamed to xs, with the
negation of (11)

∃x2∀x3 . . . (v(a, x2, . . . , xk) ≥ c) ∧ ∃y1∀y2∃y3 . . . (v(y1, . . . , yk) < c)

and put it into the prenex form

∃y1∀y2∃x2∀x3∃y3 . . . (v(a, x2, . . . , xk) ≥ c ∧ v(y1, . . . , yk) < c).

This is in contradiction with (7). Hence (11) is true.

4 An interpretation in terms of games

We can interpret the concepts introduced above in terms of games. Given a function
v(x1, x2, . . . , xk) of k variables, consider the game G in which two players A and B alternate
in choosing values for x1, x2, . . . , xk. After playing these numbers the game ends and A loses
v(x1, x2, . . . , xk) and B gains v(x1, x2, . . . , xk). Thus the aim of A, who starts, is to minimize
the payoff, while B tries to maximize it (we will come back to this game in Section 7). The
number

w = min
x1

max
x2

min
x3

. . . v(x1, x2, . . . , xk),

has the properties:

• there exists a strategy for A not to lose more than w;

• there exists a strategy for B to gain at least w.

In particular, the two strategies form an equilibrium.
The existence of such a w (the sentence (3) in Theorem 3.1) in general may be not

provable if the theory is too weak.
For sentence (2), consider the game H in which two players C and D play two copies of

G simultaneously. C plays as A in the first copy and as B in the second copy. The order of
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moves is shown in the diagram (4), with C playing as the existential quantifier and D the
universal. If x̄ and ȳ are the moves from the first and second copy, C wins H if v(x̄) ≤ v(ȳ).
The sentence (2) expresses that C can always win H; this is true if the value w above exists.

If (2) is true, then C can in particular still win H if D’s moves are played according to
some fixed strategy S; but now the universal quantifiers for D’s moves disappear and the
sentence becomes purely existential. This is essentially the principle GPLSk considered in
Section 6.

Principles based on the idea of two players playing simultaneously several games was
considered in [15]. The games considered in that paper had only two possible values, which
was the reason why those principles were much more complicated.

5 Schemes axiomatizing T k
2

The sentences from Section 3 can be used to axiomatize theories in Bounded Arithmetic. In
this setting, we will let v range over polynomial time functions and let minima and maxima
be defined over the interval [0, p], where p is the parameter.

Theorem 5.1 For every k ≥ 1, the theory T k
2 can be axiomatized by the axioms of T 0

2

together with any of the following three schemes:

S1(k): ∀p∃z z = minw≤p{w; ∃x1 ≤ p∀x2 ≤ p∃x3 ≤ p∀x4 ≤ p . . . v(p, x1, . . . , xk) ≤ w};

S2(k): ∀p∃x1 ≤ p∀y1 ≤ p∃y2 ≤ p∀x2 ≤ p . . . v(p, x1, . . . , xk) ≤ v(p, y1, . . . , yk);

S3(k): ∀p∃z z = minx1≤p maxx2≤p minx3≤p maxx4≤p . . . v(p, x1, . . . , xk).

Here v denotes a formalization of a polynomial time computable function in T 0
2 such that

v(p, x1, . . . , xk) ≤ p for all p, x1, . . . , xk.

Proof. Note that schemes S1(k) and S2(k) imply S1(j) and S2(j) for all j ≤ k. Hence by
Theorem 3.1, the schemes S1(k), S2(k) and S3(k) are equivalent. We will show that S1(k)
is equivalent to the least number principle for Π̂b

k−1 formulas, which is the following scheme

∀p (∃y ≤ p∀x1 ≤ p∃x2 ≤ p∀x3 ≤ p . . . φ(p, y, x1, . . . , xk−1) →

∃z ≤ p z = min
y≤p

{y; ∀x1 ≤ p∃x2 ≤ p∀x3 ≤ p . . . φ(p, y, x1, . . . , xk−1)}),

for every polynomial time (in T 0
2 ) predicate φ. It is well-known that this axiomatizes T k

2 ,
and in particular that the least number principle for Σ̂b

k formulas follows from it, cf. [4].

First observe that S1(k) is a special case of the least number principle for Σ̂b
k formulas,

giving us one direction of the theorem. For the other direction, let φ(p, y, x1, . . . , xk−1) be
given. We define a polynomial time function v(p, y, x1, . . . , xk−1) by

v(p, y, x1, . . . , xk−1) =

{
y if y ≤ p and φ(p, y, x1, . . . , xk−1),
p otherwise.
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Let us write Φ(p, y) for

∀x1 ≤ p∃x2 ≤ p∀x3 ≤ p . . . φ(p, y, x1, . . . , xk−1).

Then we have, for all y < p,

∀x1 ≤ p∃x2 ≤ p∀x3 ≤ p . . . v(p, y, x1, . . . , xk−1) ≤ y ⇔ Φ(p, y). (12)

Let z be the minimum given by S1(k), that is,

z = min
w≤p

{w; ∃y ≤ p∀x1 ≤ p∃x2 ≤ p∀x3 ≤ p . . . v(p, y, x1, . . . , xk−1) ≤ w}.

We claim that
¬∃y < zΦ(p, y), (13)

because if there were such y we would obtain

∃y ≤ p∀x1 ≤ p∃x2 ≤ p∀x3 ≤ p . . . v(p, y, x1, . . . , xk−1) ≤ y

from (12), contradicting the minimality of z in S1(k). Suppose also that the antecedent of
the least number principle is true, that is,

∃y ≤ p Φ(p, y). (14)

Now consider two cases. First, suppose that z = p. Then by (14) and (13), p is the least
y satisfying Φ(p, y). Second, suppose that z < p. Then z satisfies Φ(p, z) by (12), and is the
least number satisfying this by (13).

6 Generalized Polynomial Local Search

In this section we shall show that the herbrandization of (2) (more precisely, of the sentences
S3(k) of Theorem 5.1) characterizes the ∀Σ̂b

1 theorems of T k
2 . The herbrandization of (2) is:

∃x1∃y2∃x3 . . . v(x1, h2(x1, y2), x3, . . .) ≤ v(h1(x1), y2, h3(x1, y2, x3), . . .).

We shall call the computational versions of these sentences GPLSk problems. Here is a
formal definition (with the parameter p explicitly mentioned).

Definition 3 A GPLSk problem is defined by polynomial time functions v depending on
k + 1 variables and h1, . . . , hk depending on 2, 3, 4, . . . , k + 1 variables respectively (the first
variable is a parameter). An instance of the problem is given by a number a, a value of the
parameter. The goal is to find numbers b1, c2, b3, c4, . . . ≤ a, values of x1, y2, x1, y2, . . ., such
that

v(a, b1, h2(a, b1, c2), b3, . . .) ≤ v(a, h1(a, b1), c2, h3(a, b1, c2, b3), . . .). (15)

The formalization of this GPLSk problem in Bounded Arithmetic is the sentence

∀p∃x1 ≤ p∃y2 ≤ p∃x3 ≤ p . . .

v(p, x1, h2(p, x1, y2), x3, . . .) ≤ v(p, h1(p, x1), y2, h3(p, x1, y2, x3), . . .).

The GPLSk scheme is the set of these sentences.
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In particular, if k = 1 these problems are special cases of PLS problems: v is the cost
function, h1 is the neighborhood function and every x1 ≤ a is a feasible solution; the goal is,
for a given parameter a, to find a feasible solution b1 such that the neighborhood function
h1 does not decrease the cost, i.e., v(a, b1) ≤ v(a, h1(a, b1)).

Theorem 6.1 The GPLSk scheme characterizes over T 0
2 the ∀Σ̂b

1 sentences provable in T k
2 ,

in the strong sense that

1. The GPLSk scheme is provable in T k
2 ;

2. Every search polynomial search problem provably total in T k
2 is reducible to a GPLSk

problem, and the reduction can be formalized in T 0
2 .

Proof. For 1., by Theorem 5.1, T k
2 proves all the sentences of the scheme S3(k). Since every

sentence implies its herbrandizations, T k
2 also proves the sentences of the GPLSk scheme.

For 2., we will reduce the k-Game Induction principle GIk of [16] to GPLSk. This
is sufficient, since it was proved in [16] that the total polynomial search problems of T k

2

are reducible to the k-Game Induction principle (considered as a class of search problems),
provably in T 0

2 .
In the Game Induction principle games with only two values 0 (lose) and 1 (win) are

used. Let G(x1, . . . , xk) be a function representing such a game. A winning strategy for the
first (respectively, second) player is a string of functions s1, s3, . . . (t2, t4, . . .) such that

∀x2∀x4 . . . G(s1(), x2, s3(x2), . . .) = 1,

respectively,
∀x1∀x3 . . . G(x1, t2(x1), x3, t4(x1, x3), . . .) = 0.

A reduction of a game G to a game H is a strategy to play G as the first player assuming
that we know how to play H as the first player. Formally, it is a string of functions f1, . . . , fk

such that

∀x1∀y2∀x3 . . . H(x1, f2(x1, y2), x3, . . .) ≤ G(f1(x1), y2, f3(x1, y2, x3), . . .).

The principle GIk states that it is impossible to have games G0, G1, . . . , Ga and

1. a winning strategy for the first player in G0,

2. reductions of Gi+1 to Gi for i = 0, . . . , a− 1, and

3. a winning strategy for the second player in Ga.

The principle naturally gives rise to a class GIk of search problems by letting the games,
strategies and reductions be given by polynomial time functions and bounding all moves by
the parameter a. In what follows functions s1(a), s3(a, x2), s5(a, x2, x4), . . . will denote the
winning strategy for the first player in G0, function g(a, i, x1, . . . , xk) will denote the payoff
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of Gi and functions t2(a, x1), t4(a, x1, x3), . . . will denote the winning strategy for the second
player in Ga.

We describe a reduction of GIk to GPLSk. W.l.o.g. we can assume that the first
argument in v in a GPLSk problem is encoding a pair (i, x1) of numbers ≤ a. We will also
assume that for a given parameter a the value of v is bounded by 2a + 1. Given an instance
of GIk, define an instance of GPLSk as follows (we omit the parameter a for the sake of
readability):

v((i, x1), x2, . . . , xk) := 2a + 1− (a + 1)g(i, x1, x2, . . . , xk)− i,

h1((i, x1)) :=

 (i + 1, f1(i, x1)) if i < a,

(0, s1()) if i = a,

and for j = 2, . . . , k,

hj((i, x1), x2, . . . , xj) :=


fj(i, x1, x2, . . . , xj) if i < a,

sj(x2, x4, . . . , xj−1) if i = a and j is odd,

tj(x1, x3, . . . , xj−1) if i = a and j is even.

First let us observe that for i < a,

v((i, x1), x2, . . . , xk) ≤ v((i + 1, y1), y2, . . . , yk) ⇔

−(a + 1)g(i, x1, x2, . . . , xk)− i ≤ −(a + 1)g(i + 1, y1, y2, . . . , yk)− (i + 1) ⇔

g(i, x1, x2, . . . , xk) > g(i + 1, y1, y2, . . . , yk).

(16)

Also

v((a, x1), x2, . . . , xk) ≤ v((0, y1), y2, . . . , yk) ⇔

−(a + 1)g(a, x1, x2, . . . , xk)− a ≤ −(a + 1)g(0, y1, y2, . . . , yk) ⇔

g(a, x1, x2, . . . , xk) = 1 or g(0, y1, y2, . . . , yk) = 0.

(17)

Now suppose that a, i, b1, c2, b3, c4, . . . ≤ a is a solution of the GPLSk problem. Thus

v((i, b1), h2((i, b1), c2), b3, . . .) ≤ v(h1((i, b1)), c2, h3((i, b1), c2, b3), . . .).

If i < a, then by (16) and the definition of the functions hj,

g(i, b1, f2(i, b1, c2), b3, . . .) > g(i + 1, f1(i, b1), c2, f3(i, b1, c2, b3), . . .),

which shows that the functions fj(i, . . .) are not a reduction of Gi+1 to Gi.
If i = a, then by (17) and the definition of the functions hj,

g(a, b1, t2(b1), b3, . . .) = 1 or g(0, s1(), c2, s3(c2), . . .) = 0,
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which shows that either t2, t4, . . . is not a winning strategy for the second player in Ga, or
s1, s3, . . . is not a winning strategy for the first player in G0.

Finally note that this reduction only uses elementary operations with polynomial time
computable functions, hence can be formalized in T 0

2 . Thus in T 0
2 the existence of a solution

of an instance of GIk follows from the existence of a solution of an instance of GPLSk.

We note that we can slightly simplify the formal definition of GPLSk problems by as-
suming that v defines a game in which each move encodes all previous moves. We can force
players to only play such moves by punishing the first one to deviate from this rule. Formally,
it means that we replace a value function v by another one v̂ defined by

v̂(a, x1, (x1, x2), (x1, x2, x3), . . .) := v(a, x1, x2, x3, . . .),

and
v̂(a, y1, y2, y3, . . .) = 0 (respectively, = a),

if y1 = x1, y2 = (x1, x2), . . . , yj−1 = (x1, x2, . . . , xj−1), where x1, x2, . . . , xj−1 ≤ a, but yj does
not have this form and j is even (respectively, j is odd).

In such games the herbrand functions h2, . . . , hk can formally depend only on two moves
(and the parameter). Thus the principle gets the following form:

∀p∃x1 ≤ p∃y2 ≤ p∃x3 ≤ py4 ≤ p . . .

v(p, x1, h2(p, x1, y2), x3, h4(p, x3, y4), . . .) ≤ v(p, h1(p, x1), y2, h3(p, y2, x3), y4, . . .).

7 Pure Nash equilibria in sequential games

Definition 4 A payoff function is a polynomial time function v(z, x1, . . . , xk), where we
think of z as a parameter and of x1, . . . , xk as moves in a game, which must be numbers less
than or equal to z. A game consists of players A and B alternately making moves. A’s goal
is to minimize the final value of the payoff function and B’s is to maximize it.

The next definition is in the context of a fixed assignment of a value a to the parameter
z, defining a particular game.

Definition 5 A strategy S for player A is a tuple (S1, S3, S5, . . .) of functions telling A
which move to make at each of his turns given the history of the game so far, with each Si

a function with domain ai−1 and range a. A strategy T for B is defined dually. Strategies
should be thought of as oracles, with arguments and values bounded by the parameter; there
is no requirement that they are polynomial time computable. We write v[S, T ] for the payoff
of the game in which A plays with strategy S and B plays with strategy T .

The existence of a pure Nash equilibrium (S, T ) can now be written as a formula with
“second-order” quantifiers over oracles:

∃S, T ∀S ′, T ′ (v[S ′, T ] ≥ v[S, T ] ∧ v[S, T ′] ≤ v[S, T ]).
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That is, A cannot reduce the payoff by unilaterally changing his strategy, and B cannot
increase the payoff by unilaterally changing his strategy.

Theorem 7.1 [14] Every such game has a pure Nash equilibrium.

Proof. Suppose that k is even. The proof for odd k is similar. We will exhibit two strategies
S and T . We define Tk, the last function in B’s strategy, by choosing Tk(x1, . . . , xk−1) to be
the number xk which maximizes the payoff v(a, x1, . . . , xk−1, xk). If there is more than one
such xk, we pick the least one. The last function Sk−1 in A’s strategy is then chosen as the
least xk−1 which minimizes v(a, x1, . . . , xk−2, xk−1, Tk(x1, . . . , xk−1)). We carry on defining
the strategies in this way, backwards from the end of the game, alternating maxima and
minima. Notice that these strategies can be given by polynomial time functions with Σp

k

oracles.
Now let S ′ be a strategy for A different from S. Replace the first function S1 of S with

S ′
1, leaving S otherwise the same. By construction of S1, this change cannot decrease the

payoff. Now also replace the second function S3 of S with S ′
3; similarly this cannot decrease

the payoff. Continuing in this way shows that S ′ does not do better than S for A. A similar
argument works for T and B.

Definition 6 An improvement function IA for player A is a tuple (I1, I3, . . .) of polynomial
time machines. Each Ii takes a parameter a and inputs x1, . . . , xi−1, can query oracles S and
T for strategies, and outputs a move xk ≤ a. Clearly, given a, S and T , an improvement
function defines a strategy IA(a, S, T ) for A (when writing this strategy we will usually omit
the parameter a). An improvement function IB for B is defined similarly.

Definition 7 Given a parameter a and improvement functions IA and IB, an equilibrium
with respect to IA, IB is a pair (S, T ) of strategies satisfying

v[IA(S, T ), T ] ≥ v[S, T ] ∧ v[S, IB(S, T )] ≤ v[S, T ]. (18)

This expresses the idea that neither A nor B can unilaterally improve his strategy in
polynomial time, even given knowledge of the other player’s strategy.

Evaluating (18) is polynomial-time in a, S, T . In particular if p(|a|) is a bound on the
running time of the machines making up IA and IB, then evaluating (18) uses at most
2kp(|a|) + 2k queries to each of S and T . This means that to find an equilibrium, we do not
need to find total strategies S and T , defined on all possible game histories. It is enough to
find partial strategies, as long as they are defined on all queries made in (18), and satisfy
it; this is because we could extend them arbitrarily to total strategies, and they would
still satisfy it. Since this is only a polynomial number of queries, we can code such partial
strategies as numbers less than a2kp(|a|)+2k (the number of possible sequences of oracle replies).
Quantifying over them thus collapses to normal “first-order” bounded quantification. This
allows us to turn the principle that an equilibrium exists into a search problem in TFNP.
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Definition 8 A PEk search problem (standing for polynomial time equilibrium) is defined
by a payoff function v and improvement functions IA and IB. The problem is: given a
parameter a, find a pair of partial strategies S and T which are in equilibrium with respect
to IA and IB.

Theorem 7.2 The class PEk of search problems characterizes the ∀Σ̂b
1 sentences provable

in T k
2 , by reductions formalizable in T 0

2 .

Proof. One direction is immediate: T k
2 proves everything we need about alternating minima

and maxima of length k, and in fact is strong enough to formalize polynomial time functions
with Σp

k oracles. So in a model of T k
2 we can simulate a computation of (18) using the true

equilibrium min-maxing strategies of Theorem 7.1. We store every oracle query and reply
made to S and T in this computation, and these lists of queries and replies give us our partial
strategies.

For the other direction, we will give a reduction of GPLSk to PEk. Suppose that an
instance of GPLSk is given by functions v, h1, . . . , hk. Recall that the problem is, given
a parameter a (which every function takes as a first argument, but which we will leave
unwritten for clarity), to find x1, x3, . . . and y2, y4, . . . such that

v(x1, h2(x1, y2), x3, h4(x1, y2, x3, y4), . . .) ≤ v(h1(x1), y2, h3(x1, y2, x3), y4, . . .).

We define an instance of PEk. The payoff function will be exactly v (again we will not
write the first argument a). The improvement function IA = (I1, I3, . . .) for A will only
query A’s strategy S = (S1, S3, . . .) and will not use B’s strategy. The idea is that for each
(odd) j the function Ij is, roughly speaking, the composition hj ◦ Sj ◦ hj−1. More precisely,
Ij(y2, y4, . . . , yj−1) is calculated as follows, in j + 1 steps:

• At step 1, set x1 = S1();

• At step 2, set x2 = h2(x1, y2);

• Then at odd steps i = 3, . . . , j, set xi = Si(x2, x4, . . . , xi−1);

• And at even steps i = 4, . . . , j − 1, set xi = hi(x1, y2, . . . , yi);

• Finally at step j + 1 output hj(x1, y2, . . . , yj−1, xj).

Similarly the idea for the improvement function IB = (I2, I4, . . .) for B is that for each (even)
j, the function Ij is the composition hj ◦Tj ◦hj−1. Precisely, Ij(x1, x3, . . . , xj−1) is calculated
as follows, in j + 1 steps:

• At odd steps i = 1, . . . , j − 1, set yi = hi(x1, y2, . . . , xi);

• At even steps i = 2, . . . , j, set yi = Ti(y1, y3, . . . , yi−1);

• Finally at step j + 1 output hj(x1, y2, . . . , xj−1, yj).
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Now suppose (S, T ) is an equilibrium for IA and IB. Let ȳ be a play of IA against T , and
let x̄ be the internal values used by IA as described in the definition of IA above. Then we
have the following (in item 2, yj is the output of Ij(y2, . . . , yj−1)):

1. For each odd j, xj = Si(x2, x4, . . . , xj−1);

2. For each odd j, yj = hj(x1, y2, . . . , yj−1, xj);

3. For each even j, yj = Tj(y1, y3, . . . , yj−1);

4. For each even j, xj = hj(x1, y2, . . . , xj−1, yj).

Since S and T are in equilibrium, v(ȳ) = v[IA, T ] ≥ v[S, T ]. On the other hand, if
we let x̄ be a play of S against IB and let ȳ be the internal values used by IB, then x̄
and ȳ will have exactly the same values as above, and by equilibrium we get that v(x̄) =
v[S, IB] ≤ v[S, T ]. Thus we have sequences x̄ and ȳ such that v(x̄) ≤ v(ȳ) and where each
even xj = hj(x1, y2, . . . , yj) and each odd yj = hj(x1, y2, . . . , xj), exactly as required for a
solution of our instance of GPLSk.

This theorem relativizes (as does Theorem 6.1). Hence to prove a relativized separation
of the ∀Σ̂b

1 consequences of T k+1
2 from those of T k

2 it is sufficient to find an oracle with respect
to which finding a feasible equilibrium is strictly harder for (k + 1)-turn games than it is for
k-turn games.

From the proof we can also draw the corollary that the general problem of finding a poly-
nomial time equilibrium is always reducible to an instance where the improvement functions
have the rather simple form that arises from GPLSk.
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[10] E. Jeřábek. The strength of sharply bounded induction, Mathematical Logic Quarterly
52(6), 2006, pp. 613-624.

[11] D.S. Johnson, C.H. Papadimitriou and M. Yannakakis. How easy is local search? Jour-
nal of Computer and System Sciences 37, 1988, pp. 79-100.
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