
A Geometrical Procedure for Computing Relaxation ?

Gabriele Pulcini

Département d’Informatique de l’École Normale Supérieure
45, rue d’Ulm – F-75230 Paris Cedex 05 – France

pulcini@di.ens.fr

Abstract. Permutative logic is a non-commutative conservative extension of linear logic suggested by
some investigations on the topology of linear proofs. In order to syntactically reflect the fundamental
topological structure of orientable surfaces with boundary, permutative sequents turn out to be shaped
like q-permutations. Relaxation is the relation induced on q-permutations by the two structural rules
divide and merge; a decision procedure for relaxation has been already provided by stressing some
standard achievements in theory of permutations. In these pages, we provide a parallel procedure in
which the problem at issue is approached from the point of view afforded by geometry of 2-manifolds
and solved by making specific surfaces interact.

Keywords: non-commutative linear logic, permutative logic.

1 Introduction

Permutative logic (PL) [3, 11] is a non-commutative variant of linear logic [7] suggested by some topological
investigations on the geometry of linear proofs [4, 10, 6]. In order to syntactically reflect the basic topological
information concerning orientable surfaces with boundary, permutative sequents turn out to be shaped like
q-permutations: very simple combinatorial structures essentially consisting in a permutation σ indexed with
a non-negative integer q [3, 12]. The structure of q-permutations is rooted in the well-known statement of
the classification theorem which ensures that any orientable surface (possibly with boundary) is always
homeomorphic either to a sphere or to a connected sum of tori (possibly with boundary) [8]. Roughly
speaking, in a q-permutation σq, σ denotes, cycle by cycle, each boundary component, whereas the index
q works as a counter for the number of tori involved in the connected sum to which the surface at issue is
homeomorphic (q = 0 in case of a sphere).

PL is a non-commutative deductive system in the sense that some non-trivial exchanges can be performed
only by letting the topology of the surfaces expressed by sequents evolve. At syntactical level, this specific
kind of topological evolution is taken into account by two structural rules, divide and merge, and relaxation
is the binary relation induced by these transformations on the set of q-permutations. Unlike other non-
commutative variants of linear logic (cyclic logic [13], non-commutative logic [2], planar logic [9]) – for which
the decision of relaxation is just a trivial question – the problem of checking whether two q-permutations are
in relation of relaxation constitutes an interesting mathematical problem. A decision procedure for relaxation
has been already provided by stressing some standard results in the theory of permutations [3].

The original contribution here proposed is rooted on a previous work devoted to q-permutations and
derived structures as instruments for handling with surfaces and polygonal presentations [12]. In particular –
as far as orientable surfaces are concerned – q-permutations have been shown able to induce a very effective
algorithm for computing the quotient surface associates with any polygonal presentation. By stressing this
achievement, we introduce a parallel procedure in which the problem of relaxation is approached from the
point of view afforded by geometry of 2-manifolds and solved by making surfaces interact.

This specific contribution should be seen in the line of a wider project centred on a dialogue between
geometry and logical structures which has been inaugurated by the already-mentioned investigations on the
topology of linear proofs and more recently further developed through the works on Permutative Logic [3,
11] and combinatorial approaches to geometry of surfaces [12].
? Research supported by the Mairie de Paris.

2 Orientable surfaces and q-Permutations

2.1 Surfaces and Polygonal Presentations

We deal with compact and connected 2-dimensional manifolds [8]; in the sequel of this paper, we will simply
call them surfaces. It is a well-known achievement in algebraic topology that, thanks to the triangularisation
theorem, any surface S can be univocally determined by a polygonWS (which is not unique, but depending
on the specific triangularisation performed on S); in particular, WS is such that:

– the perimeter of WS is constituted by labelled and oriented edges;
– no more than two edges can have the same label;
– the quotient surface associated with WS and obtained through identification of paired edges, is the just

S (considered up to homeomorphisms) [8] .

Since given a clockwise or an anticlockwise orientation, any polygonW turns out to be completely determined
by its perimeter, namely by a cycle of oriented edges. Edges having orientation opposite to the fixed one are
usually indicated by raising them at the minus one power. Therefore, a polygon is usually written as of word
on an alphabet A ∪ A−1, where A = {a, b, c, . . .} and A−1 = {a−1, b−1, c−1, . . .}, considered up to circular
permutations. In the sequel of this paper we will adopt the simplified notation x and x̄ (x ∈ A), for a pair
of edges labeled with x having opposite orientations; the bar-operation (¯) is clearly an involution without
fixed point, namely, for any x ∈ A, ¯̄x = x and x 6= x̄.

The well-known classification theorem establishes that any surface (possibly with boundary) turns out
to be homeomorphic to exactly one of the following surfaces: a sphere, a finite connected sum of tori, or
a finite connected sum of projective planes (possibly with boundary). Sphere and connected sums of tori
are orientable surfaces, whereas connected sums of projective planes are non-orientable [8]. Below, we recall
some basic results concerning polygonal presentations:

– If in WS occurs a letter z which is not paired, then S is bordered (z constitutes a "residual" edge which
has to occur on the boundary).

– If in WS all paired edges have opposite orientations, then S is orientable; otherwise it is non-orientable.

In this work we will limited our attention to orientable surfaces. We just recall two basic polygonal configu-
rations concerning this kind of surfaces: sphere aāaāaā, torus abāb̄abāb̄abāb̄ (see Figure 1).

Fig. 1. Forming a torus.

ab b

a

a

a

a

b

2.2 q-Permutations

Let S be the quotient surface associated with a polygon WS ; we respectively denote with ∂WS the set of
non-paired edges occurring on the perimeter of WS . It has already been remarked that: if ∂WS 6= ∅, then
S is a bordered surface and, moreover: (i) all and only the edges in ∂WS appear on the boundary, (ii) each

2

Fig. 2. Torus with boundary decomposed into two components.

a

b

c

boundary component is formed by at least one edge. We denote with ∂S the set of edges occurring on the
boundary of S ; since given an orientation, we can notice that S induces a cyclic order on each of the disjoint
subsets of ∂S corresponding to boundary-components: in this way, we obtain a permutation σ on ∂S . The
idea leading to the notion of q-permutation is that the basic information concerning any orientable surface
S can always be encoded by a very easy mathematical structure consisting in a permutation σ (denoting,
cycle by cycle, each boundary-component) indexed with a q ∈ N (used for counting tori in the connected
sum to which S is homeomorphic). We report below a more formal definition for q-permutations.

Definition 1 (q-permutation). A q-permutation α is an ordered triple (X,σ, q), where X is a finite sup-
port in which any letter may occur at most twice and paired edges have always opposite orientations, σ is a
permutation on X and q a non-negative integer. Limit cases of q-permutations are those ones of the shape
(∅, ε, q), where ε denotes the permutation having empty domain.

Notation. q-Permutations are indicated with small Greek letters α, β, γ, Big Greek letters Γ,∆,Λ, . . .
and Σ,Ξ, . . . respectively denote finite lists of elements (Γ = a1, a2, . . . , an) and finite sets of lists Σ =
{(Γ1), (Γ2), . . . , (Γn)}. As usual in algebra, when a list is included between brackets, it is intended to form a cy-
cle and permutations are represented as products of disjoint cycles. When the specification of the domain is su-
perfluous, q-permutations will be simply written as indexed permutations α = {(Γ1), (Γ2), . . . , (Γn)}q. More-
over: if Γ = a1, a2, . . . , an and Σ = {(Γ1), (Γ2), . . . , (Γn)}, then Γ̄ = ān, ān−1, . . . , ā1 and Σ̄ = Γ̄1, Γ̄2, . . . , Γ̄n.

In [3, 12], q-permutations have been shown able to constitute a structure alternative to the classical one based
on words; in fact, q-permutations, like words, are able to encode the basic topological information concerning
orientable surfaces possibly with boundary (where each boundary-component is shaped like a polygon). In
particular, an oriented surface S homeomorphic to the connected sum of q tori and having the boundary
decomposed into k components Γ1, Γ2, . . . , Γk induces the q-permutation αS = {(Γ1), (Γ2), . . . , (Γk)}q; vice
versa a q-permutation α = {(Γ1), (Γ2), . . . , (Γk)}q denotes an oriented surface Sα homeomorphic to the
connected sum of q tori and having the boundary decomposed into k components Γ1, Γ2, . . . , Γk.

Example 1. The surface proposed in Figure 2 is homeomorphic to a torus and its boundary is decomposed
into two components: "(a, b)" and "(c)". Therefore, its corresponding q-permutation is {(a, b), (c)}1.

We remark that q-permutations have to be considered modulo the transformation {Σ}q ∼ {Σ̄}q which
expresses the fact that the orientation according to which we decide to "read" the boundary of S is absolutely
arbitrary.

2.3 Computing Surfaces via q-Permutations

q-Permutations have been recently shown able to induce a very easy and natural algorithm for computing the
quotient surface S associated with any given polygonal presentation WS [12]. As far as orientable surfaces
are concerned, the reader can find the procedure at issue summarised below.

3

Definition 2 (system P). The rewriting system P is formed by q-permutations (terms) and by the following
two rewriting rules:

– cylinder: {Σ, (Γ, a,∆, ā)}q → {Σ, (Γ), (∆)}q
– torus: {Σ, (Γ, a), (ā, ∆)}q → {Σ, (Γ,∆)}q+1.

In [12], P has been shown able to enjoy both the strong normalisation property and the uniqueness of the
normal form.

Definition 3. By stressing the fact that a polygon is homeomorphic to a sphere with connected boundary,
we can associate with any polygon WS a q-permutation αWS in the following way:

if WS = a1a2 . . . an, then αWS = {(a1, a2, . . . , an)}0.

Theorem 1. Let WS be a polygonal presentation associated with the surface S and α′WS
the normal form

of αWS (in symbols: αWS
∗
P α

′
WS

). α′WS
exactly denotes S .

Proof. Essentially obtained by remarking that the system P works by faithfully following, step by step, the
process of forming a surface through identification of paired edges. The reader can find all the details in [12].

This theorem provides a very easy and effective procedure for computing the quotient surface associated
with any given polygonal presentation; some examples are afforded below.

Example 2. The process of forming a torus illustrated in Figure 1 can be reproduced in terms of q-permutations
as follows:

{(b̄, ā, b, a)}0 →cyl. {(ā), (a)}0 →torus ε1.

Example 3. Wa aim to compute the surface presented by the polygon ab̄c̄zbāc. According to Theorem 1, we
rewrite the q-permutation {(a, b̄, c̄, z, b, ā, c)}0 as indicated below. The resulting surface is that one charac-
terized by {(z)}1, i.e. a torus with an unique boundary-component "(z)".

{(a, b̄, c̄, z, b, ā, c)}0 →cyl.

→cyl. {(b̄, c̄, z, b), (c)}0 →torus

→torus {(b̄, z, b)}1 →cyl. {(z)}1

z

3 Relaxation in Permutative Logic

In order to syntactically reflect the fundamental structure of orientable surfaces with boundary, PL sequents
turn out to be shaped like q-permutations. In PL, the surface expressed by q-permutations can be evolved
through two structural rules: divide and merge.

Definition 4. S is the rewriting system on q-permutations formed by the four following structural rules:

{Σ, (Γ,∆)}q divide,
{Σ, (Γ), (∆)}q

{Σ, (Γ)}q empty divide,
{Σ, (Γ), ()}q

{Σ, (Γ), (∆)}q merge,
{Σ, (Γ,∆)}q+1

{Σ, (Γ), ()}q empty merge.
{Σ, (Γ)}q+1

On the one hand, the divide operation consists in evolving the topology of a bordered surface by identifying
two new opposite edges, a and ā, opened on the same boundary component (see Figure 3). On the other
hand, in case of a merge-evolution, new opposite edges are opened on two different boundary-components
and so their identification produces a new handle on the surface, i.e. one more torus in the connected sum
(see Figure 3).

4

{Σ, (Γ,∆)}q
divide{Σ, (Γ), (∆)}q

∼=
{Σ, (Γ,∆)}q. insert new edges
{Σ, (Γ, a,∆, ā)}q cylinder
{Σ, (Γ), (∆)}q

{Σ, (Γ), (∆)}q merge
{Σ, (Γ,∆)}q+1

∼=
{Σ, (Γ), (∆)}q. insert new edges
{Σ, (Γ, a), (ā, ∆)}q

torus{Σ, (Γ,∆)}q+1

Fig. 3. Evolution through a divide rule.

Γ ∆a

a

a
Γ Γ∆ ∆

Fig. 4. Evolution through a torus rule.

∆

∆

∆

Γ

ΓΓa

a

a

Definition 5. Given two q-permutations α and β, we say that α relaxes to β (α � β) if, and only if, there
exists a chain C : α S β.

Example 4. It is easy to check that whereas {(a, b), (c)}1 � {(a, c), (b)}2, the q-permutation {(a, c), (b)}1
cannot relax to {(a, b), (c)}1.

Because of the fact that each single application of divide or merge on a q-permutation α increases the rank
of the denoted surface Sα, we have that relaxation induces a partial order on the set of q-permutations [3].

The following definition is based on the obvious remark that, by removing the superfluous information
concerning indices, S can be seen as a rewriting system working directly on permutations.

Definition 6. The minimum number of applications of the merge rule needed for rewriting a permutation
σ into another permutation τ (σ, τ ∈ Sn), is called the distance between σ and τ and denoted with d(σ, τ).

5

Remark 1. – d is a total function, namely, given any couple of permutations σ, τ ∈ Sn, there always exists
a chain carrying σ into τ : it is sufficient to consider the limit case in which a series of divide applications
detaches each single element of σ into a cycle, then τ can be constructed element by element through a
final series of merge rules.

– Although d(σ, τ) is a nonsymmetric function, it enjoys the triangle inequality and therefore it deserves
to be called a distance.

Theorem 2 (computing the distance). Let σ, τ ∈ Sn be two permutations. We have:

d(σ, τ) =
n− (σ−1τ)• + σ• − τ•

2
,

where σ• and τ• respectively denote the number of cycles of σ and τ .

Proposition 1. Let α = σd and β = τe two q-permutations: α � β if, and only if, d(σ, τ) 6 e− d.

The decision procedure provided in [3] is obtained by combining Proposition 1 and Theorem 2. Below we
propose a concrete application of this algorithm.

Example 5. We draw on the two cases already analysed in Example 4. By applying Theorem 2, it is easy to
check that for rewriting σ = (a, b)(c) into τ = (a, c)(b) at least one application of the merge rule is needed,
in other words, d(σ, τ) = 1. Therefore, by Proposition 1, we have that {(a, b), (c)}1 � {(a, c), (b)}2, but
{(a, b), (c)}1 � {(a, c), (b)}1.

4 A Geometrical Decision Procedure for Relaxation

4.1 An Intermediate Procedure

Notation. With S? we denote the system S fitted to permutations, namely S? is obtained from S just
by forgetting indices. The length of a chain C of S? (i.e. the number of S?-transformations occurring in
C) is indicated by lh(C). div(C) and mer(C) respectively denote the number of divide and merge rules
occurring in a chain C ; div∗(C) and mer∗(C) respectively denote the number of non-empty divide and
merge applications in C .

Proposition 2. In any S?-chain C : σ τ , div∗(C)−mer∗(C) = τ• − σ•.

Lemma 1. Consider two permutations σ, τ ∈ Sn. A chain C : σ S? τ is such that mer(C) = d(σ, τ) if,
and only if, lh(C) is minimal.

Proof. Simply by Proposition 2 and by remarking that lh(C) = mer(C) + div(C).

Thanks to the previous lemma, the problem of computing the distance between two permutations turns out
to be equivalent to that one of producing a minimal S?-chain from σ to τ .

Theorem 3. Given two permutations σ, τ ∈ Sn, any chain C : σ S? τ produced through arbitrary appli-
cations of the following two specific applications of divide and merge,

Σ, (Γ, a,∆, b)
if τ(a) = b : divide

Σ, (Γ, a, b), (∆)

Σ, (Γ, a), (b,∆)
if τ(a) = b : merge,

Σ, (Γ, a, b,∆)

is such that m(C) = d(σ, τ).

6

Example 6. In order to better understand the mechanism of the just provided procedure, we produce a chain
from σ = (a0, a1, a3)(a5, a4, a2, a6) to τ = (a0, a4, a3)(a2, a5)(a1, a6).

(a0, a1, a3), (a5, a4, a2, a6)
merge (in fact: τ(a0) = a4)

(a0, a4, a2, a6, a5, a1, a3)
divide (in fact: τ(a4) = a3)

(a0, a4, a3), (a2, a6, a5, a1)
divide (in fact: τ(a2) = a5)

(a0, a4, a3), (a2, a5, a1), (a6)
divide (in fact: τ(a5) = a2)

(a0, a4, a3), (a2, a5), (a1), (a6)
merge (in fact: τ(a1) = a6)

(a0, a4, a3), (a2, a5), (a1, a6)

Proof. We remark that, for permutations, divide and merge are inverse of each other and their applications
correspond to multiply by an appropriate transposition:

Σ(x, Γ, y,∆) · (x, y) = Σ(x, Γ)(y,∆),

Σ(x, Γ)(y,∆) · (x, y) = Σ(x, Γ, y,∆).

In this way, any chain C : σ S? τ constitutes a decomposition of σ−1τ into a product of transpositions
(x1, y1)(x2, y2) . . . (xlh(C), ylh(C)). Hence, the problem of checking the minimality of C becomes the problem
of checking whether C provides a minimal decomposition for σ−1τ . We stress a standard result in the theory
of permutations which establishes that if a product of transpositions (x1, y1)(x2, y2) . . . (xn, yn) = ρ is such
that, for each i, yi does not appear in all the successive transpositions (xi+1, yi+1) . . . (xn, yn), then it is a
minimal decomposition for ρ [5]. In the specific case of the two rules reported in the statement of our theorem,
the corresponding transpositions are in order (b,∆1), where ∆1 is the first element of ∆, and (b, Γ1), where
Γ1 is the first element of Γ : in both the cases we have the occurrences of a b which is the element we aim to
put in the right place, just after a. So, it is clear that b cannot appear in the successive transpositions and
by Lemma 1 we have the statement of our theorem.

4.2 Geometrical Interpretation

In this final paragraph, we provide a geometrical procedure for computing the distance between two given
permutations σ, τ ∈ Sn. The idea is that any permutation σ = (Γ1)(Γ2) . . . (Γk) can be topologically conceived
as an oriented disk (lower topological complexity) having the boundary decomposed into k components
(Γ1), (Γ2), . . . , (Γk). We show that the composition (as usual, through identification of paired edges) of the
two disks topological counterparts of σ and τ , induces a quotient surface whose topological complexity
provides the information needed for computing the distance d(σ, τ). Such a procedure is stated in Theorem
5 and proved by stressing Theorem 3. Theorem 3 says in fact that the procedure which consists in putting
each single element in the right place produces geodesic trajectories from σ to τ , and the same mechanism
can be recognised in the process of topological composition just mentioned.

Notation. |α| and |σ| denote the support of, respectively, the q-permutation α and the permutation σ.

Definition 7. We consider two q-permutations α = {Σ, (Γ, z)}e and β = {Ξ, (∆, z̄)}f such that |α| = |β|.
The ∗-composition between α and β is obtained by "gluing" them along an arbitrary edge z of their supports:
α ∗z β = {Σ,Ξ, (Γ,∆)}e+f .

Definition 8. ασ is the q-permutation associated with the permutation σ in the following way: if σ =
(Γ1)(Γ2) . . . (Γn), then ασ = {(Γ1), (Γ2), . . . , (Γn)}0.

Procedure 4 We circumscribe a specific procedure for normalising q-permutations of the form ασ ∗z ατ .
Suppose that ασ = {(Γ1, z1), (Γ2), . . . , (Γσ•)}e and ατ = {(∆1, z1), (∆2, z2), . . . , (∆τ• , zτ•)}f . Together with
the usual torus rule we stress the following decomposed versions of cylinder and torus:

7

{Σ, (Γ, a,∆, ā)}q
cylinder∗

{Σ, (Γ), (∆)}q
7→

{Σ, (Γ, a,∆, ā)}q
divide{Σ, (Γ, a, ā), (∆)}q trivial cylinder,

{Σ, (Γ), (∆)}q

{Σ, (Γ, a), (∆, ā)}q
torus∗{Σ, (Γ,∆)}q+1

7→
{Σ, (Γ, a), (∆, ā)}q merge
{Σ, (Γ, a, ā,∆)}q+1 trivial cylinder.
{Σ, (Γ,∆)}q+1

We normalise ασ ∗z1 ατ = {(∆̄τ• , z̄τ•), . . . , (∆̄2, z̄2), (∆̄1, Γ1), (Γ2), . . . , (Γσ•)}0 as follows.

1. Suppose that ∆1 = a1, a2, . . . , ar. At first, we "consume" the segment ∆̄1 by identifying, in order, the
edges labelled with a1, a2, . . . , an:

{(∆̄τ• , z̄τ•), . . . , (∆̄2, z̄2), (ār, ār−1, . . . , ā1, Γ1), (Γ2), . . . , (Γσ•)}0
cylinder∗/torus∗.

{(∆̄τ• , z̄τ•), . . . , (∆̄2, z̄2), (Γ ′1), (Γ ′2), . . . , (Γ ′k)}q

2. Now suppose that Γ ′1 = Γ ′′, z2. We "activate" the second cycle (∆̄2, z̄2) of τ by identifying the z2-edges
through an usual torus rule:

{(∆̄τ• , z̄τ•), . . . , (∆̄2, z̄2), (ār, ār−1, . . . , ā1, Γ1), (Γ2), . . . , (Γσ•)}0
cylinder∗/torus∗

{(∆̄τ• , z̄τ•), . . . , (∆̄2, z̄2), (Γ ′′, z2), (Γ ′2), . . . , (Γ ′k)}q (activating) torus.
{(∆̄τ• , z̄τ•), . . . , (∆̄2, Γ

′′), (Γ ′2), . . . , (Γ ′k)}q+1

3. We iterate steps 1 and 2 until we reach the normal form.

Example 7. According to Procedure 4 we normalise the q-permutation

ασ ∗a0 ατ = {(ā1, ā6), (ā2, ā5), (ā3, ā4, a1, a3), (a5, a4, a2, a6)}0

coming from σ = (a0, a1, a3)(a5, a4, a2, a6) and τ = (a0, a4, a3)(a2, a5)(a1, a6).

{(ā1, ā6), (ā2, ā5), (ā3, ā4, a1, a3), (a5, a4, a2, a6)}0 merge
{(ā1, ā6), (ā2, ā5), (ā3, ā4, a4, a2, a6, a5, a1, a3)}1 trivial cylinder
{(ā1, ā6), (ā2, ā5), (ā3, a2, a6, a5, a1, a3)}1

divide{(ā1, ā6), (ā2, ā5), (ā3, a3), (a2, a6, a5, a1)}1 trivial cylinder
{(ā1, ā6), (ā2, ā5), (a2, a6, a5, a1)}1 (activating) torus
{(ā1, ā6), (ā5, a6, a5, a1)}2

divide{(ā1, ā6), (ā5, a5, a1), (a6)}2 trivial cylinder
{(ā1, ā6), (a1), (a6)}2 (activating) torus
{(ā6), (a6)}3 merge
{(ā6, a6)}4 trivial cylinder

ε4

Lemma 2. If C is a chain afforded by Procedure 4, then in C torus and trivial cylinder applications permute
downwards with both merge and divide applications.

Proof. Some basic commutations are reported in Table 1.

8

{Σ, (∆̄, b̄, ā, a, Γ ′, b, Γ ′′), Ξ}q
trivial cylinder

{Σ, (∆̄, b̄, Γ ′, b, Γ ′′), Ξ}q
divide

{Σ, (∆̄, b̄, b, Γ ′′), (Γ ′), Ξ}q
trivial cylinder

{Σ, (∆̄, Γ ′′), (Γ ′), Ξ}q

7→

{Σ, (∆̄, b̄, ā, a, Γ ′, b, Γ ′′), Ξ}q
divide

{Σ, (∆̄, b̄, ā, a, b, Γ ′′), (Γ ′), Ξ}q
trivial cylinder

{Σ, (∆̄, b̄, b, Γ ′′), (Γ ′), Ξ}q
trivial cylinder

{Σ, (∆̄, Γ ′′), (Γ ′), Ξ}q

{Σ, (∆̄, b̄, ā, a, Γ ′), (b, Γ ′′), Ξ}q
trivial cylinder

{Σ, (∆̄, b̄, Γ ′), (b, Γ ′′), Ξ}q merge
{Σ, (∆̄, b̄, b, Γ ′′, Γ ′), Ξ}q+1

trivial cylinder
{Σ, (∆̄, Γ ′′, Γ ′), Ξ}q+1

7→

{Σ, (∆̄, b̄, ā, a, Γ ′), (b, Γ ′′), Ξ}q merge
{Σ, (∆̄, b̄, ā, a, b, Γ ′′, Γ ′), Ξ}q+1

trivial cylinder
{Σ, (∆̄, b̄, b, Γ ′′, Γ ′), Ξ}q+1

trivial cylinder
{Σ, (∆̄, Γ ′′, Γ ′), Ξ}q+1

{Σ, (∆̄, b̄, ā), (a, Γ ′, b, Γ ′′), Ξ}q
(act.) torus

{Σ, (∆̄, b̄, Γ ′, b, Γ ′′), Ξ}q+1
divide

{Σ, (∆̄, b̄, b, Γ ′′), (Γ ′), Ξ}q+1

7→
{Σ, (∆̄, b̄, ā), (a, Γ ′, b, Γ ′′), Ξ}q

divide
{Σ, (∆̄, b̄, ā), (a, b, Γ ′′), (Γ ′), Ξ}q

(act.) torus
{Σ, (∆̄, b̄, b, Γ ′′), (Γ ′), Ξ}q+1

{Σ, (∆̄, b̄, ā), (a, Γ ′), (b, Γ ′′), Ξ}q
(act.) torus

{Σ, (∆̄, b̄, Γ ′), (b, Γ ′′), Ξ}q+1 merge
{Σ, (∆̄, b̄, b, Γ ′′, Γ ′), Ξ}q+2

7→

{Σ, (∆̄, b̄, ā), (a, Γ ′), (b, Γ ′′), Ξ}q merge
{Σ, (∆̄, b̄, ā), (a, b, Γ ′′, Γ ′), Ξ}q+1

(act.) torus
{Σ, (∆̄, b̄, b, Γ ′′, Γ ′), Ξ}q+2

Table 1. Basic commutations.

Example 8. We consider the chain reported in the previous example and we perform the permutations
indicated by Lemma 2.

{(ā1, ā6), (ā2, ā5), (ā3, ā4, a1, a3), (a5, a4, a2, a6)}0 merge
{(ā1, ā6), (ā2, ā5), (ā3, ā4, a4, a2, a6, a5, a1, a3)}1

divide{(ā1, ā6), (ā2, ā5), (ā3, ā4, a4, a3), (a2, a6, a5, a1)}1
divide{(ā1, ā6), (ā2, ā5), (ā3, ā4, a4, a3), (a2, a5, a1), (a6)}1 merge

{(ā1, ā6), (ā2, ā5), (ā3, ā4, a4, a3), (a2, a5, a1, a6)}2
trivial cylinder

{(ā1, ā6), (ā2, ā5), (a2, a5, a1, a6)}2 (activating) torus
{(ā1, ā6), (ā5, a5, a1, a6)}3 trivial cylinder
{(ā1, ā6), (a1, a6)}3 (activating) torus
{(ā6, a6)}4 trivial cylinder

ε4

Theorem 5 (computing distance). Let σ and τ be two permutations such that |σ| = |τ | and z ∈ |σ|. We
have: ασ ∗z ατ ∗P εd(σ,τ)+τ•−1.

Proof. Let C : ασ ∗z ατ εq be a chain afforded by Procedure 4 and C ′ the chain obtained from C by
performing the commutations indicated in Lemma 2. By remarking that the number of (activating) tori is
always equal to τ• − 1, C ′ will have the form:

{(∆̄τ•), . . . , (∆̄2), (∆̄1, Γ1), (Γ2), . . . , (Γσ•)}0
divide/merge

{(∆̄τ•), . . . , (∆̄2), (∆̄1, ∆1), (∆2), . . . , (∆τ•)}q′
trivial cylinder/(act.) torus.

εq′+τ•−1

Now, we consider the first part of C ′: that one formed by divide and merge applications. By shrinking the
segment

[
∆̄τ•), . . . , (∆̄2), (∆̄1

]
into the unique element z we obtain the S-chain:

9

{(z, Γ1), (Γ2), . . . , (Γσ•)}0
divide/merge

{(z,∆1), (∆2), . . . , (∆τ•)}q′

which can be seen – by the mechanism itself of Procedure 4 – as produced according to Theorem 3 (modulo
some final divide applications) and so q′ = d(σ, τ).

Example 9. As a final step we show that the chain obtained in Example 8 induces a minimal chain rewriting
σ = (a0, a1, a3)(a5, a4, a2, a6) into τ = (a0, a4, a3)(a2, a5)(a1, a6).

{(
[
ā1, ā6), (ā2, ā5), (ā3, ā4

]
, a1, a3), (a5, a4, a2, a6)}0

merge
{(

[
ā1, ā6), (ā2, ā5), (ā3, ā4

]
, a4, a2, a6, a5, a1, a3)}1

divide
{(

[
ā1, ā6), (ā2, ā5), (ā3, ā4

]
, a4, a3), (a2, a6, a5, a1)}1

divide
{(

[
ā1, ā6), (ā2, ā5), (ā3, ā4

]
, a4, a3), (a2, a5, a1), (a6)}1

merge
{(

[
ā1, ā6), (ā2, ā5), (ā3, ā4

]
, a4, a3), (a2, a5, a1, a6)}2

7→

7→

{(a0, a1, a3), (a5, a4, a2, a6)}0 merge
{(a0, a4, a2, a6, a5, a1, a3)}1

divide{(a0, a4, a3), (a2, a6, a5, a1)}1
divide{(a0, a4, a3), (a2, a5, a1), (a6)}1 merge

{(a0, a4, a3), (a2, a5, a1, a6)}2
divide{(a0, a4, a3), (a2, a5), (a1, a6)}2

Figure 5 directly indicates the geometrical version of the procedure stated by Theorem 5. We consider the
concrete case proposed in the previous example: the geometrical interpretations of τ and σ respectively consist
in a disk having perimeter "a4a3a0" and two boundary-components "a2a5" and "a1a6", and in a disk having
perimeter "a0a1a3" and one boundary-component "a5a4a2a6". In order to compute the distance between σ
and τ , we compose their geometrical configurations obtaining an unique bordered polygon representing the
connected sum of 4 tori. Hence, τ• = 3 and so d(σ, τ) = 4− 3 + 1 = 2.

5 Future Work

In [12], the notion of q-permutation has been extended to that one of pq-permutation which allows to over-
come the limit of orientability and so to characterise the whole range of topological surfaces, non-orientable
included. Roughly speaking, pq-permutations are simply obtained from q-permutations by replacing the
single index q with an ordered couple 〈p, q〉 of positive integers. Whereas the first index counts, as usual,
the number of tori, the second one indicates projective planes. In order to deal with this kind of more
general combinatorial structures, the rewriting system P turns out to be enriched with the following two
"non-orientable" transformations:

{Σ, (Γ, a,∆, a)}〈p,q〉 Mobius {Σ, (Γ, ∆̄)}〈p,q+1〉

and
{Σ, (Γ, a), (a,∆)}〈p,q〉 Klein {Σ, (Γ, ∆̄)}〈p,q+2〉,

which respectively induce the two following structural transformations:

{Σ, (Γ,∆)}〈p,q〉
Möbius

{Σ, (Γ, ∆̄)}〈p,q+1〉
and

{Σ, (Γ), (∆)}〈p,q〉
Klein.

{Σ, (Γ, ∆̄)}〈p,q+2〉

10

4

3

0

0

1

3

2

5 1
6

5 6

4 2

στ

σ ∗ τ

Sσ∗τ

4

3

2

5 1
6

1

3

5 6

4 2

0

Fig. 5. Computing the distance through composition of surfaces.

11

We pose the problem of deciding relaxation when it is geometrically completed with "non-orientable" trans-
formations. Because of the global features of Möbius and Klein rules, there is no hope to decide our extended
notion of relaxation by stressing the theory of permutations. On the contrary, the geometrical procedure
illustrated in these pages affords a global approach to relaxation which is guessed to be able to provide a
neat solution for the problem at issue. This kind of result would be of interest in the specific field of surface
morphing in which the notion of optimal strategy in topological evolution is absolutely central. Moreover, it
could constitute a first step in the completely unexplored direction concerning the study of non-orientable
features in non-commutative logical proofs.

Acknowledgments. I am grateful to Paul Ruet, who suggested me the idea of computing the distance by
composing topological surfaces, and to the anonymous referee for his precious comments and suggestions.

References

1. V. M. Abrusci. Lambek calculus, cyclic linear logic, noncommutative linear logic: language and sequent calculus.
In Proofs and Linguistic Categories. Cooperativa Libraria Universitaria Editrice Bologna: 21-48. 1997.

2. V. M. Abrusci and P. Ruet. Non-commutative logic I: the multiplicative fragment. Annals of Pure and Applied
Logic, 101(1):29–64, 2000.

3. J.-M. Andreoli, G. Pulcini and P. Ruet. Permutative Logic. Computer Science Logic. Springer LNCS 3634:
184-199, 2005.

4. G. Bellin and A. Fleury. Planar and braided proof-nets for multiplicative linear logic with mix. Archive for
Mathematical Logic, 37(5-6):309–325, 1998.

5. R. D. Carmichael. Introduction to Theory of Groups of Finite Order. Dover Publications Inc., 2000.
6. C. Gaubert. Two-dimensional proof-structures and the exchange rule. Mathematical Structures in Computer

Science, 14(1):73–96, 2004.
7. J.-Y. Girard. Linear Logic: its syntax and semantics. Advances in Linear Logic, London Mathematical Society

Lecture Note Series 222:1–42. Cambridge University Press, 1995.
8. W. S. Massey. A basic course in algebraic topology. Springer, 1991.
9. P.-A. Melliès. A topological correctness criterion for multiplicative non-commutative logic. In Linear logic in

computer science, volume 316 of London Mathematical Society Lecture Notes Series. Cambridge University Press,
2004.

10. F. Métayer. Implicit exchange in multiplicative proofnets. Mathematical Structures in Computer Science,
11(2):261–272, 2001.

11. G. Pulcini. Permutative Additives and Exponentials. Logic for Programming, Artificial Intelligence and Reason-
ing. Springer LNAI 4790: 469-483, 2007.

12. G. Pulcini. Computing Surfaces via pq-Permutation. Chapter in the volume Image Analysis - From Theory to
Applications, Research Publishing Services, 2008.

13. D.N. Yetter. Quantales and (non-commutative) linear logic. Journal of Symbolic Logic, 55(1), 1990.

12

