Alexej P. Pynko

MINIMAL SEQUENT CALCULI FOR ŁUKASIEWICZ'S FINITELY-VALUED LOGICS*

Keywords: Sequent calculus, Łukasiewicz's logics.

Abstract

The primary objective of this paper, which is an addendum to the author's [8], is to apply the general study of the latter to Łukasiewicz's n-valued logics [4]. The paper provides an analytical expression of a $2(n-1)$-place sequent calculus (in the sense of $[10,9])$ with the cut-elimination property and a strong completeness with respect to the logic involved which is most compact among similar calculi in the sense of a complexity of systems of premises of introduction rules. This together with a quite effective procedure of construction of an equality determinant (in the sense of [5]) for the logics involved to be extracted from the constructive proof of Proposition 6.10 of [6] yields an equally effective procedure of construction of both Gentzen-style [2] (i.e., 2-place) and Tait-style [11] (i.e., 1-place) minimal sequent calculi following the method of translations described in Subsection 4.2 of [7].

1. Introduction

Here we entirely follow the general study [8] extending it to Łukasiewicz's finitely-valued logics [4] in addition to Dunn's finitely-valued normal extensions of $R M$ [1] as well as Gödel's finitely-valued logics [3] completely

[^0]studied in [8]. Łukasiewicz's logics do deserve a particular emphasis because, as opposed to Dunn's and Gödel's logics, they do all have both equality determinant (in the sense of [5]) and singularity determinant (in the sense of [7])(cf. Proposition 6.10 of [6] and Corollary 6.2 of [7] for positive results as well as Propositions 6.5 and 6.8 therein for negative ones), in which case many-place sequent calculi (in the sense of $[10,9]$) to be constructed following [8] for the former logics are naturally translated into both Gentzen-style [2](i.e., 2-place) and Tait-style [11] (i.e., 1-place) sequent calculi according to Subsections 4.2 .1 and 4.2 .2 of [7].

2. Main results

$L=\{\neg, \wedge, \vee, \supset\}$. Take any $n \geqslant 2$. Here we deal with the matrix underlying algebra \mathfrak{A}_{n} specified as follows. The carrier A_{n} of \mathfrak{A}_{n} is set to be n. Finally, operations of \mathfrak{A}_{n} are defined as follows:

$$
\begin{aligned}
\neg^{\mathfrak{A}_{n}} a & \triangleq n-1-a \\
a \wedge^{\mathfrak{A}_{n}} b & \triangleq \min (a, b) \\
a \vee^{\mathfrak{A}_{n}} b & \triangleq \max (a, b) \\
a \supset^{\mathfrak{A}_{n}} b & \triangleq \min (n-1, n-1-a+b)
\end{aligned}
$$

for all $a, b \in A_{n}$.
Lemma 2.1. For any $i \in n \backslash\{0\}$ and any $j \in n \backslash\{n-1\}$, we have the following introduction rules for $\mathcal{M}^{\mathfrak{A}_{n}}$:

$$
\begin{gathered}
\frac{\left\{\left\{I_{n-1-i}: p_{0}\right\}\right\}}{\left\{F_{i}: \neg p_{0}\right\}} \quad \frac{\left\{\left\{F_{n-1-j}: p_{0}\right\}\right\}}{\left\{I_{j}: \neg p_{0}\right\}} \\
\frac{\left\{\left\{F_{i}: p_{0}\right\},\left\{F_{i}: p_{1}\right\}\right\}}{\left\{F_{i}:\left(p_{0} \wedge p_{1}\right)\right\}} \\
\frac{\left\{\left\{F_{i}: p_{0}, F_{i}: p_{1}\right\}\right\}}{\left\{F_{i}:\left(p_{0} \vee p_{1}\right)\right\}} \quad \frac{\left\{\left\{I_{j}: p_{0}, I_{j}: p_{1}\right\}\right\}}{\left\{I_{j}:\left(p_{0} \wedge p_{1}\right)\right\}} \\
\frac{\left\{\left\{I_{n-2-k}: p_{0}\right\},\left\{I_{j}: p_{1}\right\}\right\}}{\left\{I_{j}:\left(p_{0} \vee p_{1}\right)\right\}} \\
\left\{F_{i}:\left(p_{0} \supset p_{1}\right\} \mid 0 \leqslant k<i\right\} \\
\left\{\left\{p_{n-l}\right)\right\} \\
\frac{\left.\left\{p_{0}, I_{j-l}: p_{1}\right\} \mid 0<l \leqslant j\right\} \cup\left\{\left\{F_{n-1-j}: p_{0}\right\},\left\{I_{j}: p_{1}\right\}\right\}}{}
\end{gathered}
$$

Proof: Let $i \in n \backslash\{0\}$ and $j \in n \backslash\{n-1\}$. Checking (1) of [8] for the introduction rules of types $s: \gamma$, where $s \in\left\{F_{i}, I_{j}\right\}$ and $\gamma \in\{\neg, \wedge, \vee\}$, is trivial. As for those of types $s: \supset$, where $s \in\left\{F_{i}, I_{j}\right\}$, take any $a, b \in n$. Remark that $\left(a \supset^{\mathfrak{A}_{n}} b\right) \in F_{i} \Leftrightarrow n-1-a+b \geqslant i$. Likewise, $\left(a \supset^{\mathfrak{A}_{n}} b\right) \in$ $I_{j} \Leftrightarrow n-1-a+b \leqslant j$.

Suppose $n-1-a+b \geqslant i$, that is, $n-1-i+b \geqslant a$. Consider any $0 \leqslant k<i$. Suppose $a \in F_{n-1-k}=n \backslash I_{n-2-k}$, that is, $a \geqslant n-1-k$. Combining two inequalities, we get $k \geqslant i-b$, that is, $b \in F_{i-k}$.

Conversely, assume $n-1-a+b<i$, in which case $n-1-a<i$ too. As $0 \leqslant n-1-a$, we can choose $k \triangleq n-1-a$. If a was in I_{n-2-k}, we would have $0 \leqslant-1$. Likewise, by the inequality under assumption, if b was in F_{i-k}, we would have $b>b$. Thus, both $a \notin I_{n-2-k}$ and $b \notin F_{i-k}$.

Remark that (1) of [8] for the introduction rule of type I_{j} : \supset is equivalent to the following condition:

$$
\begin{equation*}
n-1-a+b \leqslant j \Leftrightarrow \forall l \in(j+2): a \leqslant n-l-1 \Rightarrow b \leqslant j-l \tag{2.1}
\end{equation*}
$$

for all $a, b \in A_{n}$.
First, suppose $n-1-a+b \leqslant j$, that is, $n-1-j+b \leqslant a$. Consider any $l \in(j+2)$. Assume $a \leqslant n-l-1$. Combining two inequalities, we get $b \leqslant j-l$ as required.

Finally, assume $n-1-a+b>j$. Put $l \triangleq \min (n-1-a, j+1)$. Then, $l \in(j+2)$. Moreover, $a \leqslant n-l-1$. If b was not greater than $j-l$, we would have $l+b \leqslant j$, in which case $l \leqslant j$, and so $l=n-1-a$, in which case $n-1-a+b \leqslant j$. The contradiction with the inequality under assumption shows that $b>j-l$. Thus, (2.1) holds. This completes the argument.

Notice that each of the sets of premises of rules involved in the formulation of Lemma 2.1 consists of functional S_{n}-signed \emptyset-sequents of some type $V \subseteq$ Var and forms an anti-chain with respect to \preccurlyeq. Then, by Theorem 2.15 (ii) of [8], Lemma 2.1 yields

Theorem 2.2. For any $i \in n \backslash\{0\}$ and any $j \in n \backslash\{n-1\}$:

$$
\begin{aligned}
P_{\left.F_{i}:\right\urcorner}^{\mathfrak{A}_{n}} & =\left\{\left\{I_{n-1-i}: p_{0}\right\}\right\}, \\
P_{\left.I_{j}:\right\urcorner}^{\mathfrak{A}_{n}} & =\left\{\left\{F_{n-1-j}: p_{0}\right\}\right\}, \\
P_{F_{i}}^{\mathfrak{A}_{n}} & =\left\{\left\{F_{i}: p_{0}\right\},\left\{F_{i}: p_{1}\right\}\right\}, \\
P_{I_{j}}^{\mathfrak{A}_{n}}: \wedge & =\left\{\left\{I_{j}: p_{0}, I_{j}: p_{1}\right\}\right\}, \\
P_{F_{i}: \vee}^{\mathfrak{A}_{n}} & =\left\{\left\{F_{i}: p_{0}, F_{i}: p_{1}\right\}\right\}, \\
P_{I_{j}: \vee}^{\mathfrak{A}_{n}} & =\left\{\left\{I_{j}: p_{0}\right\},\left\{I_{j}: p_{1}\right\}\right\}, \\
P_{F_{n}}^{\mathfrak{A}_{n}: \supset} & =\left\{\left\{I_{n-2-k}: p_{0}, F_{i-k}: p_{1}\right\} \mid 0 \leqslant k<i\right\}, \\
P_{I_{j}}^{\mathfrak{A}_{n}: \supset} & =\left\{\left\{F_{n-l}: p_{0}, I_{j-l}: p_{1}\right\} \mid 0<l \leqslant j\right\} \cup\left\{\left\{F_{n-1-j}: p_{0}\right\},\left\{I_{j}: p_{1}\right\}\right\}
\end{aligned}
$$

This provides the minimal $2(n-1)$-place sequent calculus for \mathfrak{A}_{n}. Notice that $P_{I_{n-2}: \supset}^{\mathfrak{A}}{ }_{n}$ has exactly n elements. Remark that, in case $n=2$, the resulted calculus coincides with Gentzen's classical calculus LK [2].

References

[1] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, Journal of Symbolic Logic 35 (1970), pp. 1-13.
[2] G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift 39 (1934), pp. 176-210, 405-431.
[3] K. Gödel, Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften im Wien 69 (1932), pp. 65-66.
[4] J. Łukasiewicz, O logice trójwartościowej, Ruch Filozoficzny 5 (1920), pp. 170-171.
[5] A. P. Pynko, Sequential calculi for many-valued logics with equality determinant, Bulletin of the Section of Logic 33:1 (2004), pp. 23-32.
[6] , Distributive-lattice semantics of sequent calculi with structural rules, Logica Universalis 3 (2009), no. 1, pp. 59-94.
[7] _, Many-place sequent calculi for finitely-valued logics, Logica Universalis 4 (2010), no. 1, pp. 41-66.
[8] , Minimal sequent calculi for monotonic chain finitely-valued logics, Bulletin of the Section of Logic 43:1/2 (2014), pp. 99-112.
[9] G. Rousseau, Sequents in many-valued logic I, Fundamenta Mathematicae 60 (1967), pp. 23-33.
[10] K. Schröter, Methoden zur axiomatisierung beliebiger aussagen- und prädikatenkalküle, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1 (1955), pp. 241-251.
[11] W. W. Tait, Normal derivability in classical logic, The Syntax and Semantics of Infinitary Languages (J. Barwise, ed.), Lecture Notes in Mathematics, no. 72, Springer Verlag, 1968, pp. 204-236.

Department of Digital Automata Theory (100)
V.M. Glushkov Institute of Cybernetics

Academician Glushkov prosp. 40
Kiev, 03680, Ukraine
e-mail: pynko@voliacable.com

[^0]: *2010 Mathematics Subject Classification. Primary: 03B22, 03B50, 03F05; Secondary: 03F03.
 The work is supported by the National Academy of Sciences of Ukraine.

