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We investigate the dynamics of a nonautonomous stochastic SIS epidemic model with nonlinear incidence rate and double epidemic
hypothesis. By constructing suitable stochastic Lyapunov functions and using Has'minskii theory, we prove that there exists at least
one nontrivial positive periodic solution of the system. Moreover, the sufficient conditions for extinction of the disease are obtained
by using the theory of nonautonomous stochastic differential equations. Finally, numerical simulations are utilized to illustrate our

theoretical analysis.

1. Introduction

The SIS (Susceptible-Infected-Susceptible) model is a basic
biological mathematical model describing susceptible and
infected epidemic process and is first introduced by Kermack
and McKendrick [1]. The SIS model is defined in that indi-
viduals start off susceptible, at some stage catch the disease,
and after a short infectious period become susceptible again
[2]. Therefore, some deterministic SIS epidemic models have
been studied by many authors [3-10]. Recently, the authors
of [11-13] investigated the epidemic model with double
epidemic hypothesis which has two epidemic diseases caused
by two different viruses. For example, the deterministic SIS
epidemic model with nonlinear saturated incidence rate and
double epidemic hypothesis can be expressed as follows [11]:
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where S(t), I, (t), and I,(t) represent the number of suscepti-
bles and infected individuals with viruses A and B at time ¢,
respectively. The parameters in model (1) have the following
meanings: A is the total input susceptible population size, d
represents the natural death rate of S, I}, and I,, f3; represents
the disease transmission coefficient between compartments
Sand I; i = 1,2), r, and r, are the recovery rates of
the two diseases, and «; and o, are mortality rates due
to diseases, respectively. Functions S,S(t)I,(t)/(a, + L(t))
and ,S(t)1,(t)/(a, + L,(t)) represent two different types of
saturated incidence rates for the two epidemic diseases I ()
and L (t). All parameter values are nonnegative.

In the real world, population systems and epidemic sys-
tems are inevitably infected by some uncertain environmental
disturbances. Hence, many authors have introduced stochas-
tic interferences into differential systems, and the stochastic
dynamics of such systems were widely investigated (see [14-
28]). Moreover, numerous scholars have investigated some
stochastic epidemic models (see [29-34]). For example, in [11,
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30] they obtained thresholds of the stochastic system which
determines the extinction and persistence of the epidemic.
Zhang et al. [29] proved that there is a unique ergodic station-
ary distribution of his model. We assume that environment
fluctuations will manifest themselves mainly as fluctuations
in the saturated response rate, so that ﬁiS(t)Ii(t) [(a;+1,(t)) —
BSOL®/ (@, + L) + (0 SOL®)/(a; + LONBE) (i = 1,2),
where B(t) = (B,(t), B,(t)) is a standard Brownian motion
with intensity o; > 0 (i = 1,2). Therefore, a stochastic model
is described by [11]
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However, many infectious diseases of human fluctuate
over time and often show the seasonal morbidity. Therefore,
the existence of periodic solutions of some nonautonomous
epidemic models was explored [35-37]. Recently, many
scholars focused on nonautonomous stochastic periodic
systems. With the development of stochastic differential
equations and application of Has'minskii theory, the existence
of stochastic periodic solution has been studied [23, 38,
39]. In [23], Zhang et al. considered a nonautonomous
stochastic Lotka-Volterra predator-prey model with impul-
sive effects; they got thresholds for stochastic persistence and
extinction of the system. Authors of [38-40] investigated
periodic solution of a stochastic nonautonomous epidemic
model.

Based on the discussion above, in this paper, we consider
a nonautonomous stochastic SIS model with periodic coefti-
cients
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where the parameter functions A(t), d(t), 5;(t), a;(t), r;(t),
a;(t), o;(t) (i = 1,2) are positive, nonconstant, and contin-
uous periodic functions with positive period T

To the best of our knowledge, there are only few
works on research of nonautonomous stochastic epidemic
models with nonlinear saturated incidence rate and double
epidemic hypothesis. Therefore, based on an autonomous
stochastic epidemic model, we propose a nonautonomous
stochastic model and investigate the existence of stochastic
periodic solution and the extinction of the two epidemic
diseases.

This paper is organized as follows. In Section 2, we give
some definitions and known results. In Section 3, we prove
that system (3) has a unique global positive solution. In
Section 4, we present sufficient condition for the existence
a nontrivial positive periodic solution of system (3). In
Section 5, we obtain the sufficient conditions of system (3)
for extinction of the two epidemic diseases. In Section 6, we
carry out a series of numerical simulations to illustrate our
theoretical findings.

2. Preliminaries

Throughout this paper, let (Q, %,P) be a complete prob-
ability space with a filtration {F},,, satisfying the usual
conditions (i.e., it is increasing and right continuous while %,
contains all P-null sets). The function B;(t) (i = 1,2,3,4) is
defined on this complete probability space.

For simplicity, some notations are given first. If f(t) is
an integrable function defined on [0,00), define (f), =

(1/1) Jot f(s)ds, t > 0.1If f(t) is a bounded function on

[0, c0), define f' = infyc(o,00) f (£) and f* = sup;c(g,00) f (£)-
Here we present some basic theory in stochastic differen-
tial equations which are introduced in [41].
In general, consider the /-dimensional stochastic differ-
ential equation

dX (1) = fF(X@®),0dt+g(X @), dB(t), t>ty (4)

with initial value x(¢t,) = x, € R'. B(t) stands for a
I-dimensional standard Brownian motion defined on the
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complete probability space (Q,F,{F},.,P). Denote by
C*'(R' x [ty, 00]; R, ) the family of all nonnegative functions
V(X,t) defined on R'x [t,, 00] such that they are continuously
twice differentiable in X and once in t. The differential
operator L of (4) is defined by [41]
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If L acts on a function V € C*' (R x [ty,00]; R,), then
LV (X,t) =V, (X,t) + Vx (X,1) f (X, 1)
(6)

+ %trace [gT (X, 1) Vgx (X, 1) g (X, t)] ,

where V, = 0V/ot, Vy = (0V/0x,,...,0V/0x;), and Vi =
(an/aXian)lxl. In view of It&’s formula, if X(t) € R/, then
dV (X (t),t) = LV (x (t),t) dt
(7)
+Vx (X (8),t) g(X (t),t)dB(t).

Definition 1 (see [42]). A stochastic process &(tf) =
&(t,w) (—00 < t < +00) is said to be periodic with period
T if for every finite sequence of numbers ,,t,, ..., t, the joint
distribution of random variables &(¢, + h), &(t, + h), ..., &E(t, +
h) is independent of h, where h = kT, k = £1,+2,....

It is shown in [42] that a Markov process x(t) is T-
periodic if and only if its transition probability function is T'-
periodic and the function P, (t, A) = P{x(t) € A} satisfies the
equation

Py (s, A) = J I[P’O (s, dx)P (s, x,s+T,A)
R

(8)
=Py (s+T,A).
Consider the following equation:
t
X=X () + | bs.x()ds
tO
9)

kot
+y L 0, (s, X (s))dB,(s), XeR.

Lemma 2 (see [42]). Suppose that coefficients of (9) are T-
periodic in t and satisfy the condition

k
|b(s,x)=b(s,y)| + Z o, (s,x) =0, (s, )]

r=1

<Plx-yl, (10)

k
b(s,x)| + Y |o, (s, )| < P(1+]x]),
r=1

in every cylinder I x U, where P is a constant. And suppose
further that there exists a function V (t, x) € C* in RY which is
T-periodic in t and satisfies the following conditions:

(Ay) inf, g V(t,x) > c0asR — co.

(A,) LV(t,x) < -1 outside some compact set, where the
operator L is given by
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k . .
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Then there exists a solution of (9) which is a T-periodic Markov
process.

Lemma 3 (see [2], strong law of large numbers). Let M =

{M,}, = 0 be a real-valued continuous local martingale
vanishing at t = 0.
Then
lim (M,M), =00 as. =
t—00
o (12)
lim L =0 as.
t—00 (M, M>t
and also
M, M
lim supg <00 as. =
t—00
(13)
.M,
lim— =0 a.s.
t—oo f

3. Existence and Uniqueness of the
Global Positive Solution

In this section, we prove that system (3) has a unique global
positive solution.

Theorem 4. For any initial value (S(0),1,(0),1,(0)) € Ri,
there is a unique positive solution (S(t), I,(t), L,(t)) of (3) on
t > 0 and the solution will remain in R with probability one.

Proof. From system (3), we can get

d(S() +1,(t) + 1, (1)

dt
=AMt)-d@®)(SE)+ I, () + L, (1))
(O, (1) + oy (O) L, (£)) (14)
SAH-dOSH+L O+ L Q1)
<A -d (SO +1, (1) +L{1).
Then
AM
hm SH+LO+L ()<= (15)

a’
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Since the coefficients of system (3) satisfy the local
Lipschitz conditions, then for any given initial value
(5(0),1,(0), I,(0)) € Ri, there is a unique local solution
(S(t), I,(t), I,(t)) ont € [0, 7,), where 7, is the explosion time.
To demonstrate that this solution is global, we only need to
prove that 7, = co a.s.
Let k, > 0 be sufficiently large for any initial value
$(0),1,(0), and L,(0) lying within the interval [1/k,, k]. For
each integer k > k,, define the following stopping time:

7, = inf {t e[0,7): min{S®). 1, (1), L, (1)}
. 17)
< ¢ ormax{S (.1, (). L, (0} > k},
where we set inf @ = oo (as usual @ denotes the empty set).
Clearly, 7 is increasing as k — 00. Let 7, = lim;_, 7;; hence
Ty, < T a.s. Next, we only need to verify 7., = co a.s. If this

statement is false, then there exist two constants T' > 0 and
€ € (0,1) such that

P{r, <T}>e. (18)
Thus there is an integer k; > k such that
Pl <T}>e, k=>k,. (19)
Define a C*-function V: R’ — R, as follows:
V(SI,L)=S-1-InS+1; -1-Inl; + 1, -1
(20)
—Inl;

the nonnegativity of this function can be obtained from

u—-1-Inu=>0, u>0. (21)
Applying Ito’s formula yields
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where K is a positive constant.
So we have
dv (S, II,IZ) < Kdt
oy (t)
+ (28I, -S-1,) ——"—dB, (t
( 1 1) al (t)+11 1( ) (24)
o, (t)
+ (28I, -S-1,) —2—2—dB, (1).
( 2 2) 02 (t) + 12 2( )

Integrating (24) from 0 to 7, A T and taking expectations on
both sides yield

EV(S(tAT), L (e AT), L (1. AT)) 25)
<V (S(0),1,(0),I,(0)) + KT.

Let O, = {1, < T}; from inequality (25) we can see that
P(Q;) > €. We have

V(S(r AT), I, (1, AT, I, (7, A T))
1 1 (26)
> (k—l—lnk)/\(E—l—lnE>.
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By (25) and (26), one has

V(S(0),1,(0),1,(0)) + KT > E [1Q (w)
VS@AT) L (5 AT), L(m AT 2e(k  (27)
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where 1€, is the indicator function of Q.

5

Let k — oo0; we have
00>V (5(0),1,(0),1,(0)) + KT = co. (28)
So we obtain 7, = c0. The proof is completed. O

4, Existence of Nontrivial T-Periodic Solution

In this section, we verify that system (3) admits at least one
nontrivial positive T-periodic solution. Define

Aa;
n-3 T &
(d+ o+ 1+ 07 AM2a2d?)  (d + 02 /2 + 03/2) . (A + aya; +ay0)
Theorem 5. When (a,(t) ﬁl(t) a t)d(t))) > A”/dl where
and (a,(t)r,(t)/(B,(t) - az(t)d(t))) > A*/d" hold, if R > 1,
then there exists a nontrivial positive T-periodic solution of A= (A+ae +a0), (R-1),
system (3).
Proof. Define a C?-function V : [0, 00) X Ri - R,: D= sup {(du +ay +13) 1
(SI;,1,)€R
V(t,S1,L,)=M(~(e; +e,)InS—¢ InI, — ¢, In1, )
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and 0 < 6 < min{1,d"/(6? + 02*)}; M is a sufficiently large
positive constant and satisfies the following conditions:

d -0(o}" +03") >0,
(32)
—MA + max {D, E} < —

Next we prove that condition (A;) in Lemma 2 holds. It is
easy to check that V(t,S, 1, 1,) is a T-periodic function in ¢
and satisfies

lim inf

V(S I,,1,) = o,
K—00,(S,I;,1,)€R3\Uy ( ! 2) (35)

where U, = (1/k,k) x (1/k,k) x (1/k,k) and k > 1isa
sufficiently large number.
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= -,

Applying It6’s formula, we can also have
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Now, we are in the position to construct a compact subset
U such that A, in Lemma 2 holds. Define the following
bounded closed set:

1 1
Uz{(s,ll,lz)eRi:esSs—,esll_—,eslz

€ €
4
< - 5>
€

where € > 0 is a sufficiently small number. In the set R?\U,
we can choose € sufficiently small such that

(44)

Al
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-MA+(d" +a5 +1))e+E<-1, (47)

MA- 3 (d -0 +o3)) G +C -l ()
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€0+1

+H < -1, (50)

1 u u
-MA - (d' - 0(of" +03"))

€6+1

where C, D, E, G, and H are positive constants which can be
found from the following inequations (52), (54), (56), (59),
and (61), respectively. For the sake of convenience, we divide
into six domains,



($.1,L,) € R}, 0<S<ef,

(S1,L) R}, 0< 1, <ef,

(S,1,,1,) € R, 0<Iz<e},

(51)

=1

2=

=1

(S,I,L,) eR>, S !

o fogest o2}

{511,12eR 11>1},
€

Ug = {(3,11,12) eR’, I, > 1}.
€

Next we will prove that LV (S, I}, I,) < =1 on R?\U, which
is equivalent to proving it on the above six domains.

Case 1.1f (S, 1;, I,) € U;, one can see that
1

— A
LVS—M/\—;+(al”+oc'f+r;‘)l1
+o, +1y) ],

+(d

-2 (d -0 (a +o3)) 1
1
2

(52)
- (d -0 (ot + oj“)) I ro+d+p
2u 2u 1
o o A
+B+ L+ 2 <-MA-—+C
2 2 S
Al
<-MA-— +C,
€
where
C= sup {(d” +o +r ) +(d" +ay +13) L,
(SI.L)eR]
1
-3 (dl 0 (af" + ag”)) If”
(53)
1
- - (dl—G(of”+a§”))129“ +O+d" + B+ 5
af” . 05”
2 2

According to (45), we have LV < —1 forall (S, 1, I,) € U,.
Case 2.1f (S, 1,,1,) € U,, one can get that
LV <-MA+(d +of +7) [+ (d" + o +75) L,
1 1 2u
- (@ -0(e

2u O_;u (54)

+ By + 5

<-MA+(d"+af +7)I, +D

+ 05”)) Ig” +0+d" + B

<-MA+(d"+af +1{)e+D,

Complexity

where

D= sup
(SI,L,)eR}

{(d” +oy + 1)1,

2y ag”))IZGJr1 +O+d" + Bl +py (55

In view of (46), we can obtain that LV < -1 for all
S I,,L) e U,.

Case 3.1 (S, 1, I,) € U;, we have

LV <-MA+(d" +af +15) 1, +

-2 (@ -0(a

(d" +o) +7)) 1,

+ cr;“)) 116“ +0+d" + B

2u 2u
o 56
T "

<-MA+(d"+a; +1y)) L +E
-MA+(d" +a; +1y)e+E,

where

E= sup
(S.I;.L,)€R}

1((1” +af +1) L

2y aﬁ”)) If“ +O+d" +pi+py (57)

By (47), we can conclude that LV < —1forall (S, I,L,) €
U,.

Case 4.1f (S, I, I,) € U,, one can derive that
LV < -MA- = (d CART A ) Dt

+( @ +a+r) 1

-2 (@ -0 (ot o)) 1

+(d +ay+1y) L,

- % (dl ~0 (ot + aﬁ”))lf“ +O0+d" + B (58)
2u 2u
+ B+ % + 0;
—MA——(d 0 (o +03*)) " +C
MA- 3 (d -0 (01 + 03)) p +C.



Complexity

Together with (48), we can deduce that LV < -1 forall
S.I,,1,) € U,

Case 5.1f (S, 1;, I,) € Us, it follows that
LV < -MA - —(d’ 0 (07" +03*)) 1"
+(d +a +r) 1

- (@ -0 (ot o)) 1
+(d”
1
2

u u
+oy +1y) L,

- (dl 0 (of” + ag“)) 129“ +O0+d" + B (59)
2u 2u

e

< -MA - ;11 (d'-6(c7" +0; ))11‘%1 +G

<-MA- 2 (d - 0o + o)) 61+1 +G,

where
G= sup <l(d” +af +1)
(SI;,1,)€R}

+0; ))I?+1 +(d"+ay+1)) 1,

- (@ -0 (o

(60)
1
- E(dl 9(01 +0, ))Ig“ +O0+d" + 3 + B,
Lo, o
2 2
By virtue of (49), we can deduce that LV < -1 for all

(S, I, 1,) € Us.
Case 6.1f (S,1,, I,) € Uy, we obtain
LV < —MA——(d 0 (o7 +03*)) 1"
+(d +af +1))
1/ 0
-3 (d'-0(ot" +03)) 17"

+(d +ay+1y) L,

- i (dl - O(Gf“ + 05“))129+1 +O0+d" + B (61)
2u

+[3’2+7+0§

—MA——(d (o +03")) 3" +H

1 1
<-MA - 1 (dl -0 ("fu + Ugu)) o1 T H,

9
where
H= sup {(d” +af +r)
(S.I,,L,)eR?
1
-3 (d' =0 (o +03)) 1] + (d" + oy +15) I,
(62)

- }1 (d' - 6(o2

2u 2u

o (o}

2
2 2

+ 05”))129“ +O0+d"+ B+,

It follows from (50) that LV < —1 for all (S, I,,1,) € Ug.
Clearly, one can see from (52), (54), (56), (58), (59), and
(61) that, for a sufficiently small ¢,

LV (S,1,1,) < -1,
\ (63)
(S,I,,1,) e R2\U.

Hence A, in Lemma 2 is satisfied. This completes the proof
of Theorem 5. O

5. Extinction

In this section, we investigate the conditions for the extinc-
tion of the two infectious diseases of system (3).
Let

A (By)r
d (ay)p(d+a, +1),;
B A <af>T
2d% (a2) (d+ oy +11)p
A (o)
d' (ay)p (d+ay +1);
A <o§>
C2dY (@) (d+oy+ry),

Theorem 6. Let (S(t),I,(t), I,(t)) be a solution of system (3)
with initial value (S(0),1,(0), 1,(0)) € R.
Then if

R, =

(64)

R, =

2
(of)RL i=12 (65

2(d" + ol + r})T’
or
Gi): &, < 1,

RAGRCY

<‘7i2>T T A (a), (66)

i=1,2,
hold, the two infectious diseases of system (3) go to extinction

a.s.; that is,

tEIPooIi t)=0, i=1,2. (67)
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Proof. Applying Itd’s formula to system (3), we have
o Bi@®)S®)
dint6) = (al- O+1L,0
2 (4 Q2
2(a; )+ ;1))

—(d )+ o (t) +1, (1)

o; (t)S(t)
a; (t) + I; (t)

i=1,2.

Case (i). Integrating (68) from 0 to ¢ and dividing ¢ on both
sides, we obtain

Ing(t) o () r Sy
t - 2t Jo\ g (1) +1;(7)

! Jt (d@) +a;(r) +7;(1))dr
t Jo

2
B; (1) ) dr

o7 (1)

[3 (1) M; () InI(0)
Jo 20 (T)d o t " t (69)
2
—<d+ai+ri—ﬁ—i2> +Mi—(t)
207 /, t
+lnIi(0).
t

Case (ii). Integrating (68) from 0 to ¢ first and then dividing
by t on both sides yield

InL () 1 Jf( Bi (1) S (7)

t  th\a@+I @

—(d@) +a (1) +71,(1)

o? (1) 8* (1) > M;(t)  In], (0)
5 dr +
2(a; (7) + I; (1) t
B 2A2 (70)
A" " M, (t)
ad —(d+a;+71;) 2a2d2’ >
O < ) (- 1)+ MO
. InI; (0))
t
where M;(t) = [ 0,()S(1)/(a,(7) + L(©)dB,(x), i = 1,2,

which is a local continuous martingale with M;(0) = 0. By
Lemma 3, we have

. M; (@)
lim

t—+oo

=0, i=1,2. (71)

Taking the limit superior of both sides of (69) leads to

In; (¢t ;
lim supn—’() <—(d+o+r - P <0, (72)
t Lt 20/,

2
t—+00 i

which implies lim,_,, I;(t) = 0

Complexity

Taking the superior limit of both sides of (70) leads to

lim sup <(d+o;+1) (R -1) <0, (73)

InI; (t)
t—+00 t
which implies lim,_,,  I;(t) = 0, i = 1, 2. This completes the
proof. O

Remark 7. Theorem 6 shows that the two diseases will die
out if the white noise disturbance is large or the white noise
disturbance is not large and %; < 1. When (07); >
{[5’12 )T/2(dl + cxf + rf ) the two infectious diseases of system
(3) die out almost surely; that is to say, large white noise
stochastic disturbance can lead to the two epidemics being
extinct.

6. Numerical Simulations

Now we introduce some numerical simulations examples
which illustrate our theoretical results.

Example 8. In model (3), let

A(t) =0.5+0.1sin7t,
a, (t) = 0.3 +0.1sint,
a, (t) = 0.31 + 0.1 sin ¢,
B (t) = 0.62 + 0.1sin 7t,
B, (t) = 0.62 + 0.1sin 7t,
ry (t) = 0.2 + 0.1sin 7t,
. (74)
r, (t) = 0.35 + 0.1 sin ¢,

d(t) = 0.2 + 0.1 sin7t,

«, (t) = 0.2 + 0.1 sin 7t,
a, (£) = 0.25 + 0.1 sin 7rt,
o, (t) = 0.1 + 0.05sin 7tt,

0, (t) = 0.1 + 0.05 sin 7zt.

Note that R > 1, a,(t)r (t)/(B,(t) — a,(1)d(t)) > A*/d,
and a,(t)r,(1)/(By(t) — a,()d(t)) > A“/d" hold; that is,
the conditions of Theorem 5 hold. Hence, system (3) has a
positive periodic solution with T' = 1. Figure 1(a) shows the
periodicity of the nonautonomous stochastic model (3) with
0, = 0 and o, = 0. Figure 1(b) shows that solution of the
nonautonomous stochastic model (3) with the initial value
(S(t), I, (t), I,(t)) = (0.3,0.15,0.15) tends to a periodic orbit
in the sense of joint distribution.

Example 9. Choose the parameters in model (3) as follows:

A(t) =02 +0.2sin7t,
a, (t) = 0.23 + 0.2 sin 7tt,
a, (t) = 0.25 + 0.2 sin 7tt,

B, (t) = 0.2 + 0.2 sint,



Complexity

S(8), 1, (8), I ()

S(), 1, (1), I (t)

1
2 2
1.5} 1.5t
<
1} =1
=
5
0 ' s s 0 ' s s
0 50 100 150 200 0 50 100 150 200
t t
S(t) S(1)
— I,(t) — Li(®)
— L(t) — L)
() (b)
FIGURE 1: The solution (S(t), I, (t), I,(¢)) = (1,0.2,0.2) to the nonautonomous stochastic model (3).
2 1.4
0.82 0.82
15} 0.8 14108
0.78 . 0.78
59 60 61 ) 59 60 61
1t e 2
ot
1
0.5} Lr
0 \\ 0 &U\ 2. L L ;
0 25 50 75 100 0 > >0 & 00
t
t
S(t) S(t)
— L) — L)
— L) — L{®
(a) (b)

FIGURE 2: The solution (S(¢), I, (¢), I, (¢)) = (0.3,0.25,0.25) to the nonautonomous stochastic model (3).

B, (t) = 0.3 +0.2sinnt,
ry (t) = 0.2 + 0.2 sin 7t,

r, (t) = 0.3 + 0.2 sin 7t,
d(t) = 0.25 + 0.2 sin 7it,
o (t) = 0.2 + 0.2 sin 7tt,
o, (t) = 0.3 + 0.2 sin 7tt,
0, (t) = 0.4 + 0.2 sin 7t,
o, (t) = 0.5+ 0.2 sin 7t.

(75)

Note that (aiz)T > ( /31.2)T /2(d" +(xll.+rf)T. Therefore, conditions
(i) of Theorem 6 hold. Then the two infectious diseases will
go to extinction. Figure 2(a) shows that one of two diseases in
the deterministic SIS epidemic model is extinct and the other
is persistent. Figure 2(b) shows that the two diseases will die
out under the large white noise disturbance of model (3).

Example 10. Choose the parameters in model (3) as follows:

A(t) =0.2+0.2sint,
a, (t) =0.23 + 0.2 sin 7t
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15¢

S@), (1), L(t)

0.5}

N

0 25 50 75 100

S(t)
— Li(t)
— L)

(a)

Complexity

1.5+

S(8), L (6), I(¢)

0.5

A

0 25 50 75 100

S(t)
— Li()
— L(1)

(®)

FIGURE 3: The solution (S(t), I, (t), I,(¢)) = (0.3,0.25,0.25) to the nonautonomous stochastic model (3).

a, (t) = 0.25 + 0.2 sin 7tt,
B, (t) = 0.2 + 0.2 sin 7t
B, () = 0.3 +0.2sin7t,

ry (t) = 0.2 + 0.2 sin 7t,
r, (t) = 0.3 + 0.2 sin 7t,
d(t) = 0.25 + 0.2 sin 7tt,
a, (t) = 0.2 + 0.2 sin 7tt,
«, (t) = 0.3 + 0.2 sin 7t
o, (t) = 0.2 + 0.2 sin 7t,
o, (t) = 0.2 + 0.2 sin 7t

(76)

Note that #, < 1, %, < 1,and (0?); < d"(a®)(B?)r/
A"(a;)r. That is, conditions (ii) of Theorem 6 hold. Then
the two infectious diseases will go to extinction. Figure 3(a)

<A“iﬁi>T

shows that one of two diseases in the deterministic SIS
epidemic model is extinct and the other is persistent without
the white noises. Figure 3(b) shows that the two diseases will
die out under a small white noise disturbance of model (3).

7. Discussion and Conclusions

This paper explores the existence of nontrivial positive
T-periodic solution of a nonautonomous stochastic SIS
epidemic model with nonlinear growth rate and double
epidemic hypothesis. By constructing a suitable stochastic
Lyapunov function, we establish sufficient conditions for the
existence of nontrivial positive T-periodic solution of system
(3). Furthermore, the sufficient conditions for the extinction
of the two diseases are obtained. Our results are given as
follows:

(1) If @, ()7, ()/ (B, (1) = @, (DA(D)) > A[d, a,(t)ry(t)/
(B,(t) — ay(1)d(t)) > A*/d',and R > 1 hold, the SIS
model has at least one nontrivial positive T-periodic
solution, where

2
R = . 77
1.; (d+o;+r,+02A%[2a2d”)  (d +0}/2+03/2) (A+ aya + a0y, 72)
2) If (aiz)T > ([J’f)T/Z(dl + ocg + rf)T, the two infectious o A" <ﬁi>T
diseases go extinct. Tl ai>T (d+a; + Ti)T
d'a? 2 ., (78)
() If (02 < dla)riBim g R, < 1, the two A (a?)..
Aa;)r

infectious diseases also go extinct, where

S 2d¥ (@), (d+ o+ 1)y
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Some interesting questions deserve further investigation.
On the one hand, we may explore some realistic but complex
models, such as considering the effects of impulsive or
delay perturbations on system (3). On the other hand, we
can concern the dynamics of a nonautonomous stochastic
SIS epidemic model with two infectious diseases driven by
Lévy jumps. What is more, we can also investigate the
nonautonomous stochastic SIS epidemic model with two
infectious diseases by a continuous time Markov chain. We
will investigate these cases in our future work.
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