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Aiming at multiple attributes group decision-making (MAGDM) problems that characterize uncertainty nature and decision
hesitancy, firstly, we propose the interval-valued dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) in which two
sets of interval-valued hesitant fuzzy membership degrees and nonmembership degrees are employed to supplement the most
preferred unbalanced linguistic term, as an effective hybrid expression tool to elicit complicate preferences of decision-makers
more comprehensively and flexibly than existing tools based on classic linguistic term set. Basic operations for IVDHFUBLS are
further defined; also a novel distance measure is developed to avoid potential information distortion that could be brought about
by traditional complementingmethodology for hesitant fuzzy set and its derivatives. In view of the fundamental role of aggregation
operators in MAGDMmodelling, we next develop some extended power aggregation operators for IVDHFUBLS, including power
aggregation operator, weighted power aggregation operator, and induced power ordered weighted aggregation operator; their
desirable properties and special cases are also analyzed theoretically. Subsequently, with support of the above methods, we develop
two effective approaches for our targeted complex decision-making problems and verify their effectiveness and practicality by
numerical studies.

1. Introduction

Aiming at improving competitiveness and business perfor-
mance in volatile and unpredictable market environments,
firms are always required to achieve product innovativeness
by exploiting power of organizations [1]. Complexity theory
perceives the organizations as complex adaptive systems
(CAS) [2] and treats activities of product innovation as their
responses to changing competitive environments [3]. Obvi-
ously, product design plays a vital role in firms’ innovative
research [4]; thus Chiva-Gomez [3] proposed four funda-
mental instructions for effective product designmanagement
from perspective of CAS, including (i) fostering a mecha-
nism to obtain information from outside environments, (ii)
fostering collaboration among designing and nondesigning
agents in a firm, (iii) maximizing information flow in both

quantitative and qualitative formation, and (iv) promoting
heterogeneous participation during design decision-making.

In alignment with these instructions, customer-centric
strategy has been integrated with intelligent decision-making
systems [5] to achieve better understanding of customers’
preferences and requirements from outside markets [6, 7].
Representatively, Brintrup et al. [8] developed an ergonomic
design system based on interactive genetic algorithms (IGA)
which can include customers or other participators in prod-
uct design to provide preferences as qualitative inputs.Mok et
al. [6] studied a customized fashion design systemwhere IGA
were employed to construct fashion design sketches. Dou et
al. [9] constructed a collaborative product design system in
which they used interval fitness values to depict customers’
decision hesitancy. Although these intelligent design systems
provide platforms that incorporate customers’ preferences as
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guidance of IGA to search optimal design alternatives, rigid
preference expressions as crisp values [6–8] or interval values
[9] apparently are incapable of effectively eliciting complicate
opinions of customers and thus cannot maximize qualitative
information flow from customers to organizations [3]. In
addition, to accommodate heterogeneous participation in
activity of design evaluation, proper group decision-making
(GDM) approaches should also be developed and integrated.

Actually, the methodologies of multiple attributes group
decision-making (MAGDM) [10, 11] are capable of providing
effective approaches to product design evaluation in the
above-mentioned intelligent interactive systems, especially
for scenarios that inevitably rely on participators’ qualitative
assessments, such as those fuzzy MAGDM approaches based
on fuzzy set and its extensions [12, 13] and those approaches
based on linguistic variables [14, 15]. In order to maximize
qualitative information flow [3] into the intelligent design
systems through helping participators express their real
assessments more accurately and completely, linguistic vari-
ables attain greater efficiency than fuzzy numbers by direct
use of natural language and thus are capable of relieving user
fatigue [6–8] during iterative interaction in intelligent design
systems. In literature, most linguistic MAGDM approaches
were developed based on rigidly uniform or symmetrical
linguistic term sets [14, 15]; however, practical studies [16, 17]
have revealed that decision-makers are inclined to express
their complicate assessments more precisely and objectively
by use of nonuniform or asymmetric linguistic term set, that
is, the unbalanced linguistic term set (ULTS) [18]. Meng
and Pei [19] and Dong et al. [20] investigated MAGDM
approaches based on ULTS and verified that ULTS attains
better adaptability and flexibility. Nevertheless, regarding the
decision hesitancy [21, 22] revealed during users’ evaluation
in intelligent design systems [9], there is still a lack of
investigation on preference expression tools that manage to
take advantage of ULTS and simultaneously address decision
hesitancy.

Therefore, in this paper, on the strength of ULTS and
dual hesitant fuzzy set [23], we develop a hybrid prefer-
ence expression tool, called interval-valued dual hesitant
fuzzy unbalanced linguistic set (IVDHFUBLS). IVDHFUBLS
holds a compound element structure of (𝑥, 𝑠, ℎ̃(𝑥), 𝑔(𝑥)) that
comprises the most preferred unbalanced linguistic term 𝑠
and its supplementing interval-valued dual hesitant fuzzy
element in which ℎ̃(𝑥) and 𝑔(𝑥) are two interval-valued fuzzy
sets for denoting possible membership and nonmembership
degrees of evaluating fuzzy object 𝑥 to 𝑠. IVDHFUBLS is
capable of not only depicting fuzzy properties of evaluating
object to the designated linguistic term more completely, but
also attaining flexibility in fitting various complex decision-
making scenarios.

When MAGDM tackles various decision-making sce-
narios of high uncertainty, aggregation operators play an
imperative role in support of computing with complicate
preference expressions [24, 25], such as weighted aggregation
operators [26], ordered weighted aggregation operators [27],
hybrid operators, and 𝜆-generalized operators [28]. Espe-
cially, regarding those complex fashion design evaluation

problems that heavily rely on human judgements and assess-
ments [5], interdependences among attribute usually exist
[29], and weighting information for participators from inside
of firm organizations and outside customers cannot be
determined in advance [30]. The power average aggregation
operators proposed by Yager [31] are capable of objectively
determining unknown weighting information by utilizing
supportive interrelations among attribute values, thus provid-
ing a fundamental effective way to model practical complex
problems. Since then, the practicality and effectiveness of
power average operator have been verified under different
decision-making situations [11, 32, 33]. Moreover, when the
group of participators reach additional decision informa-
tion, such as agreed ideal solutions and partial relations
among attributes, Yager’s induced aggregation operator [34]
perceives those important information as order-inducing
vectors and thus enables its based MAGDM approaches to
exploit decision scenarios more completely than other classic
methodologies [34, 35].

Consequently, in order to construct effective MAGDM
approaches based on our newly proposed expression tool of
IVDHFUBLS, we further focus on developing power average
aggregation operators and induced aggregation operators
for IVDHFUBLS, including a weighted interval-valued dual
hesitant fuzzy unbalanced linguistic power aggregation (W-
IVDHFUBL-PA) operator, an interval-valued dual hesitant
fuzzy unbalanced linguistic power aggregation (IVDHFUBL-
PA) operator, and an induced interval-valued dual hesitant
fuzzy unbalanced linguistic power ordered weighted aggre-
gation (I-IVDHFUBL-POWA) operator. Then we analyze
their desirable properties and discuss their special cases.
Furthermore, to avoid potential information distortionwhich
could be brought forward by conventional complementing
measures [36, 37], we also develop a novel distance measure
for IVDHFUBLS. Subsequently, on the strength of the above-
developed aggregation operators and distance measure, two
effective approaches are constructed to tackle MAGDMwith
uncertainty and decision hesitancy.

The remainder of this paper is organized as follows.
Section 2 briefly reviews some preliminary conceptions.
Section 3 defines the hybrid expression tool of interval-valued
dual hesitant fuzzy unbalanced linguistic set (IVDHFUBLS),
for which operational rules and a new distance measure
are studied. Further, we investigate some power aggregation
operators for IVDHFUBLS and their properties as well as
special cases. In Section 4, two MAGDM approaches based
on the developed power aggregation operators are con-
structed in detail; we then conduct numerical studies to verify
effectiveness and practicality of the proposed approaches.
Finally, conclusions and future research directions are given
in Section 5.

2. Preliminaries

2.1. Representation of Unbalanced Linguistic Variables

2.1.1. Unbalanced Linguistic Term Set. Suppose 𝑆 = {𝑠𝑗 |𝑗 = 0, 1, . . . , 𝑔 − 1} is a finite and totally ordered discrete
linguistic term set, where 𝑠𝑗 represent possible values for a
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linguistic variable and 𝑔 is an odd cardinality. Dong et al. [38]
introduced the following combined definition for balanced
and unbalanced linguistic term set.

Definition 1 (see [38]). Let 𝑆 = {𝑠0, 𝑠1, . . . , 𝑠𝑔−1} be a definite
linguistic term set, 𝑆𝐶 be the midterm, and 𝑁𝑆 : 𝑆 → 𝑅
be a 𝑁𝑆 of 𝑆. 𝑆 is uniformly and symmetrically distributed
if the following two conditions are satisfied: (1) There exists
a unique constant 𝜆 > 0 such that𝑁𝑆(𝑠𝑖) − 𝑁𝑆(𝑠𝑗) = 𝑙(𝑖 − 𝑗)
for all 𝑖, 𝑗 = 0, 1, . . . , 𝑔 − 1; (2) let 𝑆𝑅 = {𝑠 | 𝑠 ∈ 𝑆, 𝑠 > 𝑆𝐶}
and 𝑆𝐿 = {𝑠 | 𝑠 ∈ 𝑆, 𝑠 < 𝑆𝐶}. Let C(𝑆𝑅) and C(𝑆𝐿) be the
cardinality of 𝑆𝑅 and 𝑆𝐿; thenC(𝑆𝑅) = C(𝑆𝐿). If 𝑆 is uniformly
and symmetrically distributed, then 𝑆 is called a balanced
linguistic term set. Otherwise, 𝑆 is called an unbalanced
linguistic term set.

2.1.2. 2-Tuple Fuzzy Linguistic Representation Model. The fol-
lowing 2-tuple fuzzy linguistic representation model extends
traditional linguistic term set to a continuous case so as to
facilitate computing with linguistic variables.

Definition 2 (see [18]). Let 𝑆 = {𝑠0, 𝑠1, . . . , 𝑠𝑔−1} be a linguistic
term set, and 𝛽 ∈ [0, 𝑔]. Then a 2-tuple fuzzy linguistic
variable expresses the equivalent information to 𝛽 defined as

Δ : [0, 𝑔] 󳨀→ 𝑆 × [−0.5, 0.5) , (1)

Δ (𝛽) = (𝑠𝑖, 𝛼) ,
with

{{{
𝑠𝑖, 𝑖 = round (𝛽)𝛼 = 𝛽 − 𝑖, 𝛼 ∈ [−0.5, 0.5) ,

(2)

Δ−1 (𝑠𝑖, 𝛼) = 𝑖 + 𝛼 = 𝛽, (3)

where round(⋅) is the usual rounding operation and𝛼 is called
symbolic translation.

2.1.3. Linguistic Hierarchies (𝐿𝐻). To obtain 2-tuple fuzzy
linguistic representations of unbalanced linguistic terms, the
concept of linguistic hierarchies, that is, LH = ⋃𝑡 𝑙(𝑡, 𝑛(𝑡)), is
used. 𝑙(𝑡, 𝑛(𝑡)) is a linguistic hierarchy with 𝑡 indicating the
level of hierarchy and 𝑛(𝑡) denoting the granularity of the
linguistic term set of 𝑡. Herrera et al. [18] defined the following
transformation functions between labels from different levels
in multigranular linguistic information contexts without loss
of information.

Definition 3 (see [18]). In linguistic hierarchies LH =⋃𝑡 𝑙(𝑡, 𝑛(𝑡)) whose linguistic term sets are represented by𝑆𝑛(𝑡) = {𝑠𝑛(𝑡)0 , . . . , 𝑠𝑛(𝑡)𝑛(𝑡)−1}, the transformation function from
a linguistic label in level 𝑡 to a label in consecutive level 𝑡󸀠 is
defined as TF𝑡𝑡󸀠 : 𝑙(𝑡, 𝑛(𝑡)) → 𝑙(𝑡󸀠, 𝑛(𝑡󸀠)) such that

TF𝑡𝑡󸀠 (𝑠𝑛(𝑡)𝑖 , 𝛼𝑛(𝑡))
= Δ 𝑡󸀠 (Δ−1

𝑡 (𝑠𝑛(𝑡)𝑖 , 𝛼𝑛(𝑡)) (𝑛 (𝑡󸀠) − 1)𝑛 (𝑡) − 1 ) . (4)

By use of the above transformation function, any 2-
tuple linguistic representation can be transformed into a
term in LH. Detailed transformation procedures are listed in
Appendix A.

2.2. Interval-Valued Dual Hesitant Fuzzy Set (IVDHFS). To
manage those situations in which several values are possible
for membership function of a fuzzy set, Torra [39] proposed
the hesitant fuzzy set (HFS). Then, Zhu et al. [23] extend
HFS to the dual hesitant fuzzy set by considering both crisp
membership degrees and nonmembership degrees. However,
precise degrees of an element to a set are often hard to
specified. To overcome this barrier, Ju et al. [22] defined the
interval-valued dual hesitant fuzzy set (IVDHFS).

Definition 4 (see [22]). Let𝑋 be a fixed set; then an IVDHFS
on𝑋 is defined as

𝐷 = {⟨𝑥, ℎ̃ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (5)

where ℎ̃(𝑥) = ⋃[𝜇𝐿,𝜇𝑈]∈ℎ̃(𝑥){𝜇} = ⋃[𝜇𝐿,𝜇𝑈]∈ℎ̃(𝑥){[𝜇𝐿, 𝜇𝑈]} and𝑔(𝑥) = ⋃[]𝐿,]𝑈]∈𝑔(𝑥){]̃} = ⋃[]𝐿,]𝑈]∈𝑔(𝑥){[]𝐿, ]𝑈]} are two sets
of interval values in [0, 1], denoting possible membership
and nonmembership degrees of element 𝑥 ∈ 𝑋 to the
set 𝐷, respectively, with conditions: 𝜇, ]̃ ∈ [0, 1] and0 ≤ (𝜇𝑈)+ + (]𝑈)+ ≤ 1 and, for all 𝑥 ∈ 𝑋, (𝜇𝑈)+ ∈ℎ̃+(𝑥) = ⋃[𝜇𝐿,𝜇𝑈]∈ℎ̃(𝑥)max{𝜇𝑈}, and (]𝑈)+ ∈ 𝑔+(𝑥) =⋃[]𝐿,]𝑈]∈𝑔(𝑥)max{]𝑈}.

For convenience, normally𝑑 = {ℎ̃, 𝑔} is called an interval-
valued dual hesitant fuzzy element (IVDHFE), and 𝐷 is the
set of all IVDHFEs.

3. Interval-Valued Dual Hesitant Fuzzy
Unbalanced Linguistic Set (IVDHFUBLS)
and Its Aggregation Operators

Practical applications have revealed objective necessity of
the unbalanced linguistic term set (ULTS) [16–18]; in other
words, ULTS intrinsically can meet the habits of human cog-
nition and expression and can include traditional linguistic
term sets as special cases, thus attaining better adaptability
and flexibility. However, there is still a lack of study on
hybrid expression tools based on ULTS for accommodating
uncertain decision-making with decision hesitancy. There-
fore, we here firstly define an effective expression tool of
interval-valued dual hesitant fuzzy unbalanced linguistic
set (IVDHFUBLS) and its fundamental operational rules;
we next develop a distance measure for IVDHFUBLS that
conquers potential information distortion in conventional
methodology; then we develop some fundamental aggrega-
tion operators for IVDHFUBLS.

3.1. Definition of IVDHFUBLS

Definition 5. Let 𝑋 be a fixed set and 𝑆 be a finite and
continuous linguistic label set; then an interval-valued dual
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hesitant fuzzy unbalanced linguistic set (IVDHFUBLS) 𝑆𝐷
on𝑋 is defined as

𝑆𝐷 = {⟨𝑥, 𝑠𝑖, ℎ̃ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (6)

where 𝑠𝑖 is an unbalanced linguistic variable from predefined
unbalanced linguistic label set 𝑆 which represents decision-
makers’ judgements to an evaluated object 𝑥; ℎ̃(𝑥) =⋃[𝜇𝐿,𝜇𝑈]∈ℎ̃(𝑥){𝜇} = ⋃[𝜇𝐿,𝜇𝑈]∈ℎ̃(𝑥){[𝜇𝐿, 𝜇𝑈]} is a set of closed
interval values in [0, 1], denoting possible membership
degrees to which 𝑥 belongs to 𝑠𝑖; and 𝑔(𝑥) = ⋃[]𝐿,]𝑈]∈𝑔(𝑥){]̃} =⋃[]𝐿,]𝑈]∈𝑔(𝑥){[]𝐿, ]𝑈]} is a set of closed interval values in[0, 1], denoting possible nonmembership degrees to which 𝑥

belongs to 𝑠𝑖. In ℎ̃(𝑥) and 𝑔(𝑥), 𝜇, ]̃ ∈ [0, 1] and 0 ≤ (𝜇𝑈)+ +(]𝑈)+ ≤ 1, where (𝜇𝑈)+ ∈ ℎ̃+(𝑥) = ⋃[𝜇𝐿,𝜇𝑈]∈ℎ̃(𝑥)max{𝜇𝑈} and(]𝑈)+ ∈ 𝑔+(𝑥) = ⋃[]𝐿,]𝑈]∈𝑔(𝑥)max{]𝑈} for all 𝑥 ∈ 𝑋.

For convenience, 𝑠𝑑 = (𝑠𝑖, ℎ̃, 𝑔) is called an interval-
valued dual hesitant fuzzy unbalanced linguistic number
(IVDHFUBLN).

3.2. Operational Rules for IVDHFUBLS

Definition 6. Let 𝑠𝑑 = (𝑠𝑘, ℎ̃, 𝑔), 𝑠𝑑1 = (𝑠𝑖, ℎ̃1, 𝑔1), and 𝑠𝑑2 =(𝑠𝑗, ℎ̃2, 𝑔2) be any three IVDHFUBLNs, 𝜆 ∈ [0, 1]; some
operations on these IVDHFUBLNs are defined by

(1) 𝜆𝑠𝑑 = ⋃
(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
𝜆Δ−1𝑡0 (TF

𝑡𝑘
𝑡0
(𝜓(𝑠𝑘)))

, ⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[1 − (1 − 𝜇𝐿)𝜆 , 1 − (1 − 𝜇𝑈)𝜆]} , {[(]𝐿)𝜆 , (]𝑈)𝜆]}}) ;
(2) 𝑠𝑑𝜆 = ⋃

(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
(Δ−1𝑡0 (TF

𝑡𝑘
𝑡0
(𝜓(𝑠𝑘))))

𝜆 , ⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[(𝜇𝐿)𝜆 , (𝜇𝑈)𝜆]} , {[1 − (1 − ]𝐿)𝜆 , 1 − (1 − ]𝑈)𝜆]}}) ;
(3) 𝑠𝑑1 ⊕ 𝑠𝑑2

= ⋃
(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1 ,(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖)))+Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

, ⋃
[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1 ,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[𝜇𝐿1 + 𝜇𝐿2 − 𝜇𝐿1𝜇𝐿2 , 𝜇𝑈1 + 𝜇𝑈2 − 𝜇𝑈1 𝜇𝑈2 ]} , {[]𝐿1]𝐿2 , ]𝑈1 ]𝑈2 ]}}) ;
(4) 𝑠𝑑1 ⊗ 𝑠𝑑2
= ⋃

(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1 ,(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖)))×Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

, ⋃
[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1 ,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[𝜇𝐿1𝜇𝐿2 , 𝜇𝑈1 𝜇𝑈2 ]} , {[]𝐿1 + ]𝐿2 − ]𝐿1]
𝐿
2 , ]𝑈1 + ]𝑈2 − ]𝑈1 ]

𝑈
2 ]}}) .

(7)

Theorem 7. Let 𝑠𝑑 = (𝑠𝑘, ℎ̃, 𝑔), 𝑠𝑑1 = (𝑠𝑖, ℎ̃1, 𝑔1), and 𝑠𝑑2 =(𝑠𝑗, ℎ̃2, 𝑔2) be any three IVDHFUBLNs; then the following
properties are true:

(1) 𝑠𝑑1 ⊕ 𝑠𝑑2 = 𝑠𝑑2 ⊕ 𝑠𝑑1.
(2) 𝑠𝑑1 ⊗ 𝑠𝑑2 = 𝑠𝑑2 ⊗ 𝑠𝑑1.
(3) 𝜆(𝑠𝑑1 ⊕ 𝑠𝑑2) = 𝜆𝑠𝑑1 ⊕ 𝜆𝑠𝑑2, 𝜆 ∈ [0, 1].
(4) 𝑠𝑑1𝜆 ⊗ 𝑠𝑑2𝜆 = (𝑠𝑑1 ⊗ 𝑠𝑑2)𝜆, 𝜆 ∈ [0, 1].
(5) 𝜆1𝑠𝑑 ⊕ 𝜆2𝑠𝑑 = (𝜆1 + 𝜆2)𝑠𝑑, 𝜆1, 𝜆2 ∈ [0, 1].
(6) 𝑠𝑑𝜆1 ⊗ 𝑠𝑑𝜆2 = 𝑠𝑑𝜆1+𝜆2 , 𝜆1, 𝜆2 ∈ [0, 1].

Proof. See Appendix B.

In Definition 6 andTheorem 7, 𝑡𝑘, 𝑡𝑖, 𝑡𝑗 are corresponding
levels of 𝑠𝑘, 𝑠𝑖, 𝑠𝑗 in LH, respectively. 𝑡0 is the maximum level
of 𝑠𝑘, 𝑠𝑖, 𝑠𝑗 in LH.

In order to compare two IVDHFUBLNs, we define
the following score function and accuracy function, based
on which a comparison method for two IVDHFUBLNs is
presented.

Definition 8. Let 𝑠𝑑 = (𝑠𝑖, ℎ̃, 𝑔) be an IVDHFUBLN; then
score function 𝑆(𝑠𝑑) can be represented by

𝑆 (𝑠𝑑) = Δ−1
𝑡0
(TF𝑡𝑖𝑡0 (𝜓 (𝑠𝑖))) × 12 ( 1𝑙 (ℎ̃) ∑

[𝜇𝐿,𝜇𝑈]∈ℎ̃

𝜇𝐿
− 1𝑙 (𝑔) ∑

[]𝐿,]𝑈]∈𝑔

]𝐿 + 1𝑙 (ℎ̃) ∑
[𝜇𝐿,𝜇𝑈]∈ℎ̃

𝜇𝑈
− 1𝑙 (𝑔) ∑

[]𝐿,]𝑈]∈𝑔

]𝑈) ,
(8)

where 𝑙(ℎ̃) and 𝑙(𝑔) are numbers of interval values in ℎ̃ and 𝑔,
respectively, 𝑡𝑖 is the corresponding level of 𝑠𝑖 in LH, and 𝑡0 is
the maximum level of 𝑡𝑖 in LH.

Definition 9. Let 𝑠𝑑 = (𝑠𝑖, ℎ̃, 𝑔) be an IVDHFUBLN; then
accuracy function 𝑃(𝑠𝑑) can be represented by

𝑃 (𝑠𝑑) = Δ−1
𝑡0
(TF𝑡𝑖𝑡0 (𝜓 (𝑠𝑖))) × 12 ( 1𝑙 (ℎ̃) ∑

[𝜇𝐿,𝜇𝑈]∈ℎ̃

𝜇𝐿
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+ 1𝑙 (𝑔) ∑
[]𝐿,]𝑈]∈𝑔

]𝐿 + 1𝑙 (ℎ̃) ∑
[𝜇𝐿,𝜇𝑈]∈ℎ̃

𝜇𝑈
+ 1𝑙 (𝑔) ∑

[]𝐿,]𝑈]∈𝑔

]𝑈) ,
(9)

where 𝑙(ℎ̃) and 𝑙(𝑔) are numbers of interval values in ℎ̃ and 𝑔,
respectively, 𝑡𝑖 is the corresponding level of 𝑠𝑖 in the LH, and𝑡0 is the maximum level of 𝑡𝑖 in LH.

Definition 10. Given any two IVDHFUBLNs 𝑠𝑑1 = (𝑠𝑖, ℎ̃1, 𝑔1)
and 𝑠𝑑2 = (𝑠𝑗, ℎ̃2, 𝑔2), then based on the former score
function and accuracy function, we have the following:

(1) If 𝑆(𝑠𝑑1) < 𝑆(𝑠𝑑2), then 𝑠𝑑1 < 𝑠𝑑2.
(2) If 𝑆(𝑠𝑑1) = 𝑆(𝑠𝑑2), then

(a) if 𝑃(𝑠𝑑1) = 𝑃(𝑠𝑑2), then 𝑠𝑑1 = 𝑠𝑑2;
(b) if 𝑃(𝑠𝑑1) < 𝑃(𝑠𝑑2), then 𝑠𝑑1 < 𝑠𝑑2.

3.3. Proposed Distance Measure for IVDHFUBLS. When
measuring distances between two hesitant fuzzy numbers,
appropriate strategies should be determined for handling
unequal lengths of membership set or nonmembership set
[37]. Generally, the complementing strategies have been
widely adopted [36, 37], which appends more elements to the
membership set or nonmembership set with shorter length
till matching. However, the complementing methods hold
their own circumscribed perspectives and thus will poten-
tially bring about information distortion to some extent. In
order to avoid the potential information distortion, we here
define a novel distance measure for IVDHFUBLS, which
as shown in the following Definition 11 manages to bypass
the artificial filling process and objectively compute distance
among two numbers in the form of IVDHFUBLS.

Definition 11. Let two IVDHFUBLNs 𝑠𝑑1 = (𝑠𝑖, ℎ̃1, 𝑔1) and𝑠𝑑2 = (𝑠𝑗, ℎ̃2, 𝑔2); 𝑙ℎ̃1 , 𝑙ℎ̃2 , 𝑙𝑔1 , and 𝑙𝑔2 are the lengths of ℎ̃1, ℎ̃2,𝑔1, and 𝑔2, respectively, which represent number of elements
in the sets of ℎ̃1, ℎ̃2, 𝑔1, and 𝑔2. Suppose 𝐼1 = (1/(𝑛(𝑡𝑖) −1))Δ−1

𝑡0
(TF𝑡𝑖𝑡0(𝜓(𝑠𝑖))) and 𝐼2 = (1/(𝑛(𝑡𝑗) − 1))Δ−1

𝑡0
(TF𝑡𝑗𝑡0(𝜓(𝑠𝑗))),

where 𝑡𝑖 and 𝑡𝑗 are the corresponding levels of unbalanced
linguistic terms 𝑠𝑖 and 𝑠𝑗 in the linguistic hierarchy LH and 𝑡0
is the maximum level of 𝑠𝑖 and 𝑠𝑗 in LH. Then based on the
widely adopted normalized Euclidean distance, we define a
distance measure 𝑑 for IVDHFUBLNs as follows.

Situation 1.When 𝑙ℎ̃1 = 𝑙ℎ̃2 = 𝑙1 and 𝑙𝑔1 = 𝑙𝑔2 = 𝑙2, then
𝑑 (𝑠𝑑1, 𝑠𝑑2) = (12 ( 1𝑙1

⋅ 𝑙1∑
𝑘=1

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐼1𝜇𝐿𝑗ℎ̃1 − 𝐼2𝜇𝐿𝑘ℎ̃2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐼1𝜇𝑈𝑗ℎ̃1 − 𝐼2𝜇𝑈𝑘ℎ̃2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨2) + 1𝑙2

⋅ 𝑙2∑
𝑘=1

(󵄨󵄨󵄨󵄨󵄨󵄨𝐼1]𝐿𝑗𝑔1 − 𝐼2]𝐿𝑘𝑔2 󵄨󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨𝐼1]𝑈𝑗𝑔1 − 𝐼2]𝑈𝑘𝑔2 󵄨󵄨󵄨󵄨󵄨󵄨2)))
1/2 .

(10)

Situation 2.When 𝑙ℎ̃1 ̸= 𝑙ℎ̃2 or 𝑙𝑔1 ̸= 𝑙𝑔2 , then
𝑑 (𝑠𝑑1, 𝑠𝑑2) = (12 ( 1𝑙ℎ̃1 𝑙ℎ̃2

⋅ 𝑙ℎ̃1∑
𝑗=1

𝑙ℎ̃2∑
𝑘=1

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐼1𝜇𝐿𝑗ℎ̃1 − 𝐼2𝜇𝐿𝑘ℎ̃2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐼1𝜇𝑈𝑗ℎ̃1 − 𝐼2𝜇𝑈𝑘ℎ̃2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)
+ 1𝑙𝑔1 𝑙𝑔2
⋅ 𝑙𝑔1∑
𝑗=1

𝑙𝑔2∑
𝑘=1

(󵄨󵄨󵄨󵄨󵄨󵄨𝐼1]𝐿𝑗𝑔1 − 𝐼2]𝐿𝑘𝑔2 󵄨󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨𝐼1]𝑈𝑗𝑔1 − 𝐼2]𝑈𝑘𝑔2 󵄨󵄨󵄨󵄨󵄨󵄨2))
1/2 .

(11)

Theorem 12. The distance measure for IVDHFUBLNs 𝑑 also
satisfies the following properties:

(1) 0 ≤ 𝑑(𝑠𝑑1, 𝑠𝑑2) ≤ 1.
(2) 𝑑(𝑠𝑑1, 𝑠𝑑2) = 0 if and only if 𝐼1 = 𝐼2, ℎ̃1 = ℎ̃2, and𝑔1 = 𝑔2.
(3) 𝑑(𝑠𝑑1, 𝑠𝑑2) = 𝑑(𝑠𝑑2, 𝑠𝑑1).

Definition 13. Given two IVDHFUBLNs, 𝑠𝑑1 = (𝑠𝑖, ℎ̃1, 𝑔1)
and 𝑠𝑑2 = (𝑠𝑗, ℎ̃2, 𝑔2), when 𝑠𝑖 and 𝑠𝑗 happen to be from two
balanced linguistic term sets in LH but with different linguis-
tic granularities, 𝐼1 and 𝐼2 should be calculated according to

𝐼1 = 1𝑛 (𝑡𝑖) − 1Δ−1
𝑡0
(TF𝑡𝑖𝑡0 (𝑠𝑖)) ,

𝐼2 = 1𝑛 (𝑡𝑗) − 1Δ−1
𝑡0
(TF𝑡𝑗𝑡0 (𝑠𝑗)) . (12)

Then for this type of cases, based on the normalizedEuclidean
distance and (12), the distance measure 𝑑 for IVDHFUBLNs
can be written as the same Situations 1 and 2 in Definition 11.

3.4. Proposed Aggregation Operators for IVDHFUBLS. In this
section, based on the above-proposed distance measures,
we develop some fundamental aggregation operators for
IVDHFUBLS.

3.4.1. Weighted Interval-Valued Dual Hesitant Fuzzy
Unbalanced Linguistic Power Aggregation Operator

Definition 14. For a collection of IVDHFUBLNs 𝑠𝑑𝑗 (𝑗 =1, 2, . . . , 𝑛), a weighted interval-valued dual hesitant fuzzy
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unbalanced linguistic power average (W-IVDHFUBL-PA)
operator is a mapping 𝑆𝑛 → 𝑆:

W-IVDHFUBL-PA𝜔 (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)
= ⨁𝑛

𝑗=1 (𝜔𝑗 (1 + 𝑇 (𝑠𝑑𝑗)) 𝑠𝑑𝑗)∑𝑛
𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) , (13)

where

𝑇 (𝑠𝑑𝑗) = 𝑛∑
𝑘=1,𝑘 ̸=𝑗

𝜔𝑘 sup (𝑠𝑑𝑗, 𝑠𝑑𝑘) . (14)

𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 is the weighting vector for 𝑠𝑑𝑗 with𝜔𝑗 ∈[0, 1] and∑𝑛
𝑗=1 𝜔𝑗 = 1. sup(𝑠𝑑𝑗, 𝑠𝑑𝑘) is the support degrees for𝑠𝑑𝑗 from 𝑠𝑑𝑘, which satisfy the following three properties:

(1) sup(𝑠𝑑𝑗, 𝑠𝑑𝑘) ∈ [0, 1].
(2) sup(𝑠𝑑𝑗, 𝑠𝑑𝑘) = sup(𝑠𝑑𝑘, 𝑠𝑑𝑗).
(3) sup(𝑠𝑑𝑗, 𝑠𝑑𝑘) ≥ sup(𝑠𝑑𝑖, 𝑠𝑑𝑠), if 𝑑(𝑠𝑑𝑗, 𝑠𝑑𝑘) <𝑑(𝑠𝑑𝑖, 𝑠𝑑𝑠), where 𝑑 is the distance measure between

two IVDHFUBLNs.

Theorem 15. Let 𝑠𝑑𝑗 = (𝑠𝑗, ℎ̃𝑗, 𝑔𝑗) be a collection of
IVDHFUBLNs; then aggregation results by Definition 14 are
transformed to the form of interval-valued dual hesitant fuzzy
balanced linguistic (IVDHFBL) variables, and

𝑊-𝐼𝑉𝐷𝐻𝐹𝑈𝐵𝐿-𝑃𝐴 (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)
= ⋃

(𝑠𝑗 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑𝑗

(𝑠
∑𝑛𝑗=1(𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑

𝑛
𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,
⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗 ,[]

𝐿
𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{{{
{{{[[1 −

𝑛∏
𝑗=1

(1 − 𝜇𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖)) ,
1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖))]]
}}} ,

{{{[[
𝑛∏
𝑗=1

(]𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖)) ,
𝑛∏
𝑗=1

(]𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖))]]
}}}
}}}) ,

(15)

where 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 is the weight vector of 𝑠𝑑𝑗 with𝜔𝑗 ∈ [0, 1] and ∑𝑛
𝑗=1 𝜔𝑗 = 1.

Proof. See Appendix C.

Theorem 16. The W-IVDHFUBL-PA operator holds the fol-
lowing properties:

(1) Idempotency: let 𝑠𝑑𝑗 = 𝑠𝑑, for all 𝑗 = 1, 2, . . . , 𝑛; then
W-IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) = 𝑠𝑑. (16)

(2) Bounded: theW-IVDHFUBL-PA operator lies between
the max and min operators:

𝑠𝑑− ≤ W-IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) ≤ 𝑠𝑑+. (17)

Proof. See Appendix D.

3.4.2. Interval-Valued Dual Hesitant Fuzzy Unbalanced
Linguistic Power Aggregation Operator

Definition 17. For a collection of IVDHFUBLNs 𝑠𝑑𝑗 (𝑗 =1, 2, . . . , 𝑛), an interval-valued dual hesitant fuzzy unbalanced
linguistic power average (IVDHFUBL-PA) operator is a
mapping 𝑆𝑛 → 𝑆:

IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)
= ⨁𝑛

𝑗=1 (1 + 𝑇 (𝑠𝑑𝑗)) 𝑠𝑑𝑗∑𝑛
𝑖=1 (1 + 𝑇 (𝑠𝑑𝑖)) , (18)

where

𝑇 (𝑠𝑑𝑗) = 𝑛∑
𝑘=1,𝑘 ̸=𝑗

sup (𝑠𝑑𝑗, 𝑠𝑑𝑘) . (19)

sup(𝑠𝑑𝑗, 𝑠𝑑𝑘) is the support degrees of 𝑠𝑑𝑗 from 𝑠𝑑𝑘.
Theorem 18. Let 𝑠𝑑𝑗 = (𝑠𝑗, ℎ̃𝑗, 𝑔𝑗) be a collection of IVD-
HFUBLNs; then aggregation results from Definition 17 are
transformed to the form of IVDHFBL variables, and

𝐼𝑉𝐷𝐻𝐹𝑈𝐵𝐿-𝑃𝐴 (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)
= ⋃

(𝑠𝑗 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑𝑗

(𝑠
∑𝑛𝑗=1((1+𝑇(𝑠𝑑𝑗))/∑

𝑛
𝑖=1(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,
⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗 ,[]

𝐿
𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{{{
{{{[[1 −

𝑛∏
𝑗=1

(1 − 𝜇𝐿𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)) ,
1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))]]
}}} ,

{{{[[
𝑛∏
𝑗=1

(]𝐿𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)) ,
𝑛∏
𝑗=1

(]𝑈𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))]]
}}}
}}}) .

(20)

Proof. It is omitted here for conciseness.

Theorem 19. IVDHFUBL-PA operator holds following prop-
erties:

(1) Commutativity: let (𝑠𝑑1∗, 𝑠𝑑2∗, . . . , 𝑠𝑑𝑛∗) be any per-
mutation of (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛); then
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IVDHFUBL-PA (𝑠𝑑1∗, 𝑠𝑑2∗, . . . , 𝑠𝑑𝑛∗)= IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) . (21)

(2) Idempotency: let 𝑠𝑑𝑗 = 𝑠𝑑, for all 𝑗 = 1, 2, . . . , 𝑛; then
IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) = 𝑠𝑑. (22)

Proof. See Appendix E.

Theorem 20. For a collection of IVDHFUBLNs 𝑠𝑑𝑗 = (𝑠𝑗, ℎ̃𝑗,𝑔𝑗), if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the W-IVDHFUBL-PA
operator reduces to the IVDHFUBL-PA operator.

Theorem 21. For a collection of IVDHFUBLNs 𝑠𝑑𝑗 =(𝑠𝑗, ℎ̃𝑗, 𝑔𝑗), if sup(𝑠𝑑𝑖, 𝑠𝑑𝑗) = 𝑘 for all 𝑖 ̸= 𝑗, then the
IVDHFUBL-PA operator reduces to the interval-valued dual
hesitant fuzzy unbalanced linguistic average (IVDHFUBLA)
operator:

IVDHFUBLA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) = ⋃
(𝑠𝑗 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑𝑗

(𝑠
(1/𝑛)∑𝑛𝑗=1 Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,

⋃
[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗 ,[]

𝐿
𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{{{
{{{[[1 −

𝑛∏
𝑗=1

(1 − 𝜇𝐿𝑗 )1/𝑛 , 1 − 𝑛∏
𝑗=1

(1 − 𝜇𝑈𝑗 )1/𝑛]]
}}} ,{{{[[

𝑛∏
𝑗=1

(]𝐿𝑗 )1/𝑛 , 𝑛∏
𝑗=1

(]𝑈𝑗 )1/𝑛]]
}}}
}}}).

(23)

Theorem 22. For a collection of IVDHFUBLNs 𝑠𝑑𝑗 =(𝑠𝑗, ℎ̃𝑗, 𝑔𝑗), if 𝑠𝑗 in 𝑠𝑑𝑗 reduces to the form of balanced linguistic
variable, 𝑠𝑑𝑗 (𝑗 = 1, 2, . . . , 𝑛) reduces to a collection of interval-
value dual hesitant fuzzy balanced linguistic numbers (IVD-
HFBLNs) 𝑠𝑑𝑗 (𝑗 = 1, 2, . . . , 𝑛). Suppose 𝑠𝑑𝑗 (𝑗 = 1, 2, . . . , 𝑛)
have different linguistic granularities; then the IVDHFUBL-
PA reduces to the following interval-valued dual hesitant fuzzy
linguistic power average (IVDHFL-PA) operator:

𝐼𝑉𝐷𝐻𝐹𝐿-𝑃𝐴 (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)
= ⋃

(𝑠𝑗 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑𝑗

(𝑠
∑𝑛𝑗=1((1+𝑇(𝑠𝑑𝑗))/∑

𝑛
𝑖=1(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝑠𝑗))

,

⋃
[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗 ,[]

𝐿
𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{{{
{{{[[1 −

𝑛∏
𝑗=1

(1 − 𝜇𝐿𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)) ,

1 − 𝑛∏
𝑗=1

(1 − 𝜇𝑈𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))]]
}}} ,

{{{[[
𝑛∏
𝑗=1

(]𝐿𝑗 )(1+𝑇(𝑠𝑑𝑗)𝑠𝑑𝑗)/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)) ,
𝑛∏
𝑗=1

(]𝑈𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))]]
}}}
}}}) .

(24)

3.4.3. Induced Interval-Valued Dual Hesitant Fuzzy
Unbalanced Linguistic Power Ordered Weighted
Aggregation Operators

Definition 23. For a collection of IVDHFUBLNs 𝑠𝑑𝑗, an
induced interval-valued dual hesitant fuzzy unbalanced

linguistic power ordered weighted average (I-IVDHFUBL-
POWA) operator can be defined as a mapping 𝑆𝑛 →𝑆:

I-IVDHFUBL-POWA (⟨𝑢1, 𝑠𝑑1⟩ , ⟨𝑢2, 𝑠𝑑2⟩ , . . . ,
⟨𝑢𝑛, 𝑠𝑑𝑛⟩) = 𝑛⨁

𝑗=1

(𝑤𝑗𝑠𝑑𝜎(𝑗)) , (25)

where 𝑠𝑑𝜎(𝑗) is the 𝑗th largest or smallest of them, 𝑢𝑖 in⟨𝑢𝑖, 𝑠𝑑𝑖⟩ is referred to as the order-inducing vector 𝑢 =(𝑢1, 𝑢2, . . . , 𝑢𝑛) that can be determined by decision-makers’
expertise attitudes, and 𝑤𝑗 = 𝑔(𝑅𝑗/𝑇𝑉) − 𝑔(𝑅𝑗−1/𝑇𝑉) is
constrained by 𝑤𝑗 ∈ [0, 1] and ∑𝑛

𝑗=1 𝑤𝑗 = 1, 𝑅𝑗 = ∑𝑗

𝑘=1 𝑉𝜎(𝑘),𝑇𝑉 = ∑𝑛
𝑗=1 𝑉𝜎(𝑗), where

𝑉𝜎(𝑗) = 1 + 𝑇 (𝑠𝑑𝜎(𝑗)) ,
𝑇 (𝑠𝑑𝜎(𝑗)) = 𝑛∑

𝑘=1,𝑘 ̸=𝑗

sup (𝑠𝑑𝜎(𝑗), 𝑠𝑑𝜎(𝑘)) . (26)

In (26), 𝑇(𝑠𝑑𝜎(𝑗)) denotes support of 𝑗th largest
or smallest argument by all the other arguments, and
sup(𝑠𝑑𝜎(𝑗), 𝑠𝑑𝜎(𝑘)) indicates support for 𝑠𝑑𝜎(𝑗) from 𝑠𝑑𝜎(𝑘).𝑔 : [0, 1] → [0, 1] is a basic unit interval monotonic (BUM)
function which satisfies 𝑔(0) = 0, 𝑔(1) = 1, and 𝑔(𝑥) ≥ 𝑔(𝑦)
if 𝑥 > 𝑦.
Theorem 24. Let 𝑠𝑑𝑗 = (𝑠𝑗, ℎ̃𝑗, 𝑔𝑗) be a collection of
IVDHFUBLNs; aggregation results from Definition 23 are
transformed to the form of interval-valued dual hesitant fuzzy
balanced linguistic variables, and
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I-IVDHFUBL-POWA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) = ⋃
(𝑠𝜎(𝑗) ,ℎ̃𝜎(𝑗) ,𝑔𝜎(𝑗))∈𝑠𝑑𝜎(𝑗)

(𝑠
∑𝑛𝑗=1 𝑤𝑗Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝜎(𝑗))))

,

⋃
[𝜇𝐿
𝜎(𝑗)

,𝜇𝑈
𝜎(𝑗)

]∈ℎ̃𝜎(𝑗) ,[]𝐿𝜎(𝑗) ,]
𝑈
𝜎(𝑗)

]∈𝑔𝜎(𝑗)

{{{
{{{[[1 −

𝑛∏
𝑗=1

(1 − 𝜇𝐿𝜎(𝑗))𝑤𝑗 , 1 − 𝑛∏
𝑗=1

(1 − 𝜇𝑈𝜎(𝑗))𝑤𝑗]]
}}} ,{{{[[

𝑛∏
𝑗=1

(]𝐿𝜎(𝑗))𝑤𝑗 , 𝑛∏
𝑗=1

(]𝑈𝜎(𝑗))𝑤𝑗]]
}}}
}}}),

(27)

where𝑤𝑗 satisfies (26) and 𝑠𝑑𝜎(𝑗) = (𝑠𝜎(𝑗), ℎ̃𝜎(𝑗), 𝑔𝜎(𝑗)) is the 𝑗th
largest or smallest of 𝑠𝑑𝑗 (𝑗 = 1, 2, . . . , 𝑛) reordered according
to the order-inducing variable 𝑢𝑗.
Proof. It is omitted for conciseness.

Theorem 25. For a collection of IVDHFUBLNs 𝑠𝑑𝑗 =(𝑠𝑗, ℎ̃𝑗, 𝑔𝑗), if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then I-IVDHFUBL-
POWA operator reduces to the interval-valued dual hesitant
fuzzy unbalanced linguistic average (IVDHFUBLA) operator
described in Theorem 21.

4. MAGDM Approaches Based on IVDHFUBLS
and Numerical Studies

4.1. Approaches for MAGDM under Interval-Valued Dual
Hesitant Fuzzy Unbalanced Linguistic Environments. In this
section, we apply the afore-developed aggregation opera-
tors to construct effective approaches for MAGDM under
interval-valued dual hesitant fuzzy unbalanced linguistic
environments.

Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑚} be a set of alternatives and 𝐶 ={𝐶1, 𝐶2, . . . , 𝐶𝑛} be a set of attributes. 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇
denotes the weighting vector for attribute vector𝐶, where, for
all 𝑖 = 1, 2, . . . , 𝑛, 𝜔𝑖 ≥ 0 and ∑𝑛

𝑖=1 𝜔𝑖 = 1. 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑡}
represents a set of decision-makers and 𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑡)
is the weighting vector for experts in 𝐷, with 𝜂𝑘 ≥ 0 (𝑘 =1, 2, . . . , 𝑡) and ∑𝑡

𝑘=1 𝜂𝑘 = 1. Suppose that 𝑅𝑘 = (𝑟𝑘𝑖𝑗)𝑛×𝑚 is
the decision matrix given by decision-maker 𝑑𝑘 based on an
unbalanced linguistic term set 𝑆𝑘 regarding alternative 𝐴𝑗

under attribute 𝐶𝑖, where 𝑟𝑘𝑖𝑗 = (𝑠𝑘𝛼𝑖𝑗 , ℎ̃𝑘𝑖𝑗, 𝑔𝑘𝑖𝑗), 𝑠𝑘𝛼𝑖𝑗 ∈ 𝑆𝑘, takes
the form of interval-valued dual hesitant fuzzy unbalanced
linguistic numbers (IVDHFUBLNs).

Now, according to specific complex scenarios whether
comprising attributes weights, experts weights, and addi-
tional expertise attitudes or not, we construct two effective
MAGDM approaches based on the above-developed power
aggregation operators to accommodate Cases 1 and 2, respec-
tively.

Case 1. Considering that weighting vectors for both decision-
makers and attributes are known in advance, we apply
the W-IVDHFUBL-PA operator denoted in Definition 14
to structure Approach 1 for multiple attributes group

decision-making under interval-valued dual hesitant fuzzy
unbalanced linguistic environment.

Approach 1. The first approach is MAGDM based on IVDH-
FUBLS: with known weighting information for both expert
weights and attribute weights.

Step 1.1. Calculate support degrees of attribute values in each
individual decision matrix. Here, taking the decision matrix𝑅𝑘 = (𝑟𝑘𝑖𝑗)𝑛×𝑚 by the 𝑘th decision-maker as example, the
support degrees sup(𝑟𝑘𝑖𝑗, 𝑟𝑘𝑝𝑗) can be computed according to

sup (𝑟𝑘𝑖𝑗, 𝑟𝑘𝑝𝑗) = 1 − 𝑑 (𝑟𝑘𝑖𝑗, 𝑟𝑘𝑝𝑗) ,𝑖, 𝑝 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑡; 𝑖 ̸= 𝑝, (28)

which satisfies support degrees conditions (1)∼(3) listed in
Definition 14.𝑑(𝑟𝑘𝑖𝑗, 𝑟𝑘𝑝𝑗) is the distancemeasure defined in (10)
and (11).

Step 1.2. By use of attributes weighting vector 𝜔 =(𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇, calculate theweighted support degree𝑇(𝑟𝑘𝑖𝑗)
of IVDHFUBLN 𝑟𝑘𝑖𝑗 by other IVDHFUBLNs 𝑟𝑘𝑝𝑗 (𝑝 =1, 2, . . . , 𝑛; 𝑝 ̸= 𝑖), where

𝑇 (𝑟𝑘𝑖𝑗) = 𝑛∑
𝑝=1,𝑝 ̸=𝑖

𝜔𝑝 sup (𝑟𝑘𝑖𝑗, 𝑟𝑘𝑝𝑗) . (29)

Step 1.3. Utilize weights 𝜂𝑘 (𝑘 = 1, 2, . . . , 𝑡) for decision-
makers 𝑑𝑘 to calculate weights 𝜉𝑘𝑖𝑗 associated with the IVD-
HFUBLN 𝑟𝑘𝑖𝑗:

𝜉𝑘𝑖𝑗 = 𝜂𝑘 (1 + 𝑇 (𝑟𝑘𝑖𝑗))∑𝑡
𝑘=1 𝜂𝑘 (1 + 𝑇 (𝑟𝑘𝑖𝑗)) , 𝑘 = 1, 2, . . . , 𝑡, (30)

where 𝜉𝑘𝑖𝑗 ≥ 0 and ∑𝑡
𝑘=1 𝜉𝑘𝑖𝑗 = 1.

Step 1.4. Aggregate individual decision matrix 𝑅𝑘 =(𝑟𝑘𝑖𝑗)𝑛×𝑚 (𝑘 = 1, 2, . . . , 𝑡) into group decision matrix 𝑅 =(𝑟𝑖𝑗)𝑛×𝑚 by W-IVDHFUBL-PA operator, where
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𝑟𝑖𝑗 = W-IVDHFUBL-PA (𝑟1𝑖𝑗, 𝑟2𝑖𝑗, . . . , 𝑟𝑡𝑖𝑗) = ⋃
(𝑠𝑘𝛼𝑖𝑗 ,ℎ

𝑘
𝑖𝑗 ,𝑔
𝑘
𝑖𝑗)∈𝑟
𝑘
𝑖𝑗

(𝑠
∑𝑡𝑘=1 𝜉

𝑘
𝑖𝑗Δ
−1
𝑡𝑖𝑗
(TF
𝑡𝑘
𝑖𝑗
𝑡𝑖𝑗
(𝜓(𝑠𝑘𝛼𝑖𝑗 )))

,
⋃

[𝜇𝐿𝑘𝑖𝑗 ,𝜇
𝑈𝑘
𝑖𝑗 ]∈ℎ̃

𝑘
𝑖𝑗 ,[]
𝐿𝑘
𝑖𝑗 ,]
𝑈𝑘
𝑖𝑗 ]∈𝑔

𝑘
𝑖𝑗

{{[1 − 𝑡∏
𝑘=1

(1 − 𝜇𝐿𝑘𝑖𝑗 )𝜉𝑘𝑖𝑗 , 1 − 𝑡∏
𝑘=1

(1 − 𝜇𝑈𝑘𝑖𝑗 )𝜉𝑘𝑖𝑗]} ,{[ 𝑡∏
𝑘=1

(]𝐿𝑘𝑖𝑗 )𝜉𝑘𝑖𝑗 , 𝑡∏
𝑘=1

(]𝑈𝑘𝑖𝑗 )𝜉𝑘𝑖𝑗]}}) ,
(31)

where 𝑡𝑘𝑖𝑗 is the level of LH(𝑠𝑘𝛼𝑖𝑗) and 𝑡𝑖𝑗 is the maximum level
of 𝑡𝑘𝑖𝑗 in all the LH(𝑠𝑘𝛼𝑖𝑗) (𝑘 = 1, 2, . . . , 𝑡). And now, 𝑟𝑖𝑗 reduces
to the form of interval-valued dual hesitant fuzzy balanced
linguistic numbers but with different granularity.
Step 1.5. Calculate support degrees sup(𝑟𝑖𝑗, 𝑟𝑝𝑗):
supp (𝑟𝑖𝑗, 𝑟𝑝𝑗) = 1 − 𝑑 (𝑟𝑖𝑗, 𝑟𝑝𝑗) ,𝑖, 𝑝 = 1, 2, . . . , 𝑛; 𝑖 ̸= 𝑝; 𝑗 = 1, 2, . . . , 𝑚, (32)

which satisfy support conditions (1)∼(3) in Definition 14.
Here, 𝑑(𝑟𝑖𝑗, 𝑟𝑝𝑗) are calculated by (18), (19), and (20).

Step 1.6. Calculate support degree 𝑇(𝑟𝑖𝑗) of 𝑟𝑖𝑗 by another𝑟𝑝𝑗 (𝑝 = 1, 2, . . . , 𝑛; 𝑝 ̸= 𝑖), where

𝑇 (𝑟𝑖𝑗) = 𝑛∑
𝑝=1,𝑝 ̸=𝑖

𝜔𝑝 supp (𝑟𝑖𝑗, 𝑟𝑝𝑗) . (33)

Step 1.7 Calculate weighting vector 𝑤𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑛; 𝑗 =1, 2, . . . , 𝑚) associated with 𝑟𝑖𝑗:
𝑤𝑖𝑗 = 𝜔𝑖 (1 + 𝑇 (𝑟𝑖𝑗))∑𝑛

𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑟𝑖𝑗)) . (34)

Step 1.8. Use W-IVDHFUBL-PA operator to aggregate all𝑟𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚) into overall evaluation
values 𝑟𝑗 corresponding to each alternative 𝐴𝑗:

𝑟𝑗 = W-IVDHFUBL-PA (𝑟1𝑗, 𝑟2𝑗, . . . , 𝑟𝑛𝑗) = ⋃
(𝑠𝛼𝑖𝑗 ,ℎ̃𝑖𝑗 ,𝑔𝑖𝑗)∈𝑟𝑖𝑗

(𝑠
∑𝑛𝑖=1 𝑤𝑖𝑗Δ

−1
𝑡𝑗
(TF
𝑡𝑖𝑗
𝑡𝑗
(𝑠𝛼𝑖𝑗 ))

,

⋃
[𝜇𝐿𝑖𝑗 ,𝜇
𝑈
𝑖𝑗 ]∈ℎ̃𝑖𝑗 ,[]

𝐿
𝑖𝑗 ,]
𝑈
𝑖𝑗 ]∈𝑔𝑖𝑗

{{[1 − 𝑛∏
𝑖=1

(1 − 𝜇𝐿𝑖𝑗)𝑤𝑖𝑗 , 1 − 𝑛∏
𝑖=1

(1 − 𝜇𝑈𝑖𝑗 )𝑤𝑖𝑗]} ,{[ 𝑛∏
𝑖=1

(]𝐿𝑖𝑗)𝑤𝑖𝑗 , 𝑛∏
𝑖=1

(]𝑈𝑖𝑗)𝑤𝑖𝑗]}}) ,
(35)

where 𝑡𝑖𝑗 is the level of LH(𝑠𝛼𝑖𝑗) and 𝑡𝑗 is the maximum level
in all the attributes levels of LH(𝑠𝛼𝑖𝑗) (𝑖 = 1, 2, . . . , 𝑛).
Step 1.9. According toDefinition 8, calculate scores 𝑠(𝑟𝑗) of the
overall values 𝑟𝑗 regarding alternatives 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑚).
Step 1.10. Based on Definition 10, rank all alternatives𝐴𝑗 (𝑗 =1, 2, . . . , 𝑚) and select themost desirable one(s) in accordance
with the rank orders of 𝑟𝑗 (𝑗 = 1, 2, . . . , 𝑚).
Case 2. Suppose that the exact weighting vectors for both
decision-makers and attributes are totally unknown due to
problem complexity, but expertise attitudes on the relative
importance among attributes, denoted as the order-inducing
vector 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛), can be determined according to
collective opinions of all decision-makers. Therefore, based
on individual decision matrices and the order-inducing
vector 𝑢, we here utilize the I-IVDHFUBL-POWA operator
to construct another approach for complex MAGDM under

interval-valued dual hesitant fuzzy unbalanced linguistic
environments, as described in Approach 2.

Approach 2. The second approach is MAGDM based on
IVDHFUBLS: with totally unknown weighting information
but reaching expertise attitudes on the relative importance
among attributes.

Step 2.1. Taking the perceived relative importance among
attributes as order-inducing vector 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛),
rearrange all the IVDHFUBLNs 𝑟𝑘𝑖𝑗 (𝑘 = 1, 2, 3) in individual
decision matrix 𝑅(𝑘) according to 𝑢 and then obtain the
reordered individual decision matrix 𝑅𝜎(𝑘).
Step 2.2. Calculate support degree 𝑇(𝑅𝜎(𝑘)) of the 𝑘th
reordered individual decision matrix 𝑅𝜎(𝑘) from other
reordered individual decision matrices 𝑅𝜎(𝑙) (𝑙 = 1, 2, . . . , 𝑡;𝑙 ̸= 𝑘), where
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𝑇 (𝑅𝜎(𝑘)) = 1𝑚𝑛 (𝑡 − 1) 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑡∑
𝑙=1,𝑙 ̸=𝑡

sup (𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) , (36)

where

sup (𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) = 1 − 𝑑 (𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) ,
𝑘, 𝑙 = 1, 2, . . . , 𝑡; 𝑘 ̸= 𝑙; 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚, (37)

which satisfies conditions (1)–(3) in Definition 14.𝑑(𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) is calculated by normalized Euclidean distance
measure defined in (10) and (11).

Step 2.3. Calculate the power weights 𝜉𝑘 for decision-makers𝑑𝑘 (𝑘 = 1, 2, . . . , 𝑡) based on the support degree of reordered
individual decision matrix 𝑅𝜎(𝑘), according to

𝜉𝑘 = (1 + 𝑇 (𝑅𝜎(𝑘)))∑𝑡
𝑘=1 (1 + 𝑇 (𝑅𝜎(𝑘))) , 𝑘 = 1, 2, . . . , 𝑡. (38)

Step 2.4. Calculate support degrees of attributes in each
reordered individual decision matrix:

sup (𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) = 1 − 𝑑 (𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) ,
𝑘, 𝑙 = 1, 2, . . . , 𝑡; 𝑘 ̸= 𝑙; 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚, (39)

which satisfies the conditions listed in Definition 14.𝑑(𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) is calculated by normalized Euclidean distance
measure in (10) and (11).

Step 2.5. Calculate support degree 𝑇(𝑟𝜎(𝑘)𝑖𝑗 ) of 𝑟𝜎(𝑘)𝑖𝑗 from𝑟𝜎(𝑙)𝑖𝑗 (𝑙 = 1, 2, . . . , 𝑡; 𝑙 ̸= 𝑘) in each reordered individual
decision matrix 𝑅𝜎(𝑘), where

𝑇 (𝑟𝜎(𝑘)𝑖𝑗 ) = 𝑡∑
𝑙=1,𝑙 ̸=𝑘

sup (𝑟𝜎(𝑘)𝑖𝑗 , 𝑟𝜎(𝑙)𝑖𝑗 ) . (40)

Step 2.6. Utilize (26) to calculate weights 𝜂𝜎(𝑘)𝑖𝑗 associated
with 𝑟𝜎(𝑘)𝑖𝑗 in each reordered individual decision matrix 𝑅𝜎(𝑘),
where

𝜂𝜎(𝑘)𝑖𝑗 = 𝑔( 󵱰𝑅𝑘𝑇𝑉) − 𝑔( 󵱰𝑅𝑘−1𝑇𝑉 )
with 𝜂𝑘𝑖𝑗 ∈ [0, 1] , 𝑡∑

𝑘=1

𝜂𝑘𝑖𝑗 = 1, 𝑔 is the BUM function,

󵱰𝑅𝑘 = 𝑘∑
𝑙=1

𝑉𝜎(𝑙)
𝑖𝑗 ,

𝑇𝑉𝑖𝑗 = 𝑡∑
𝑙=1

𝑉𝜎(𝑙)
𝑖𝑗 ,

𝑉𝜎(𝑙)
𝑖𝑗 = 1 + 𝑇 (𝑟𝜎(𝑙)𝑖𝑗 ) .

(41)

Step 2.7. Aggregate each reordered individual decisionmatrix𝑅𝜎(𝑘) = (𝑟𝜎(𝑘)𝑖𝑗 )𝑛×𝑚 (𝑘 = 1, 2, . . . , 𝑡) into its overall decision

matrix 𝑅𝑘 = (𝑟𝑘𝑗 )1×𝑚 (𝑘 = 1, 2, . . . , 𝑡), respectively, by use of
the I-IVDHFUBL-POWA operator:

𝑟𝑘𝑗 = I-IVDHFUBL-POWA (𝑟𝜎(𝑘)1𝑗 , 𝑟𝜎(𝑘)2𝑗 , . . . , 𝑟𝜎(𝑘)𝑛𝑗 ) = ⋃
(𝑠𝜎(𝑘)𝛼𝑖𝑗 ,ℎ̃

𝜎(𝑘)
𝑖𝑗 ,𝑔𝜎(𝑘)𝑖𝑗 )∈𝑟𝜎(𝑘)𝑖𝑗

(𝑠
∑𝑛𝑖=1 𝜂

𝜎(𝑘)
𝑖𝑗 Δ−1(TF

𝑡
𝜎(𝑘)
𝑖𝑗

𝑡
𝜎(𝑘)
𝑗

(𝜓(𝑠𝜎(𝑘)𝛼𝑖𝑗 )))

,
⋃

[𝜇𝐿𝜎(𝑘)𝑖𝑗 ,𝜇𝑈𝜎(𝑘)𝑖𝑗 ]∈ℎ̃𝜎(𝑘)𝑖𝑗 ,[]𝐿𝜎(𝑘)𝑖𝑗 ,]𝑈𝜎(𝑘)𝑖𝑗 ]∈𝑔𝜎(𝑘)𝑖𝑗

{{[1 − 𝑛∏
𝑖=1

(1 − 𝜇𝐿𝜎(𝑘)𝑖𝑗 )𝜂𝜎(𝑘)𝑖𝑗 , 1 − 𝑛∏
𝑖=1

(1 − 𝜇𝑈𝜎(𝑘)𝑖𝑗 )𝜂𝜎(𝑘)𝑖𝑗 ]} ,{[ 𝑛∏
𝑖=1

(]𝐿𝜎(𝑘)𝑖𝑗 )𝜂𝜎(𝑘)𝑖𝑗 , 𝑛∏
𝑖=1

(]𝑈𝜎(𝑘)𝑖𝑗 )𝜂𝜎(𝑘)𝑖𝑗 ]}}) ,
(42)

where 𝑡𝜎(𝑘)𝑖𝑗 is the level of LH(𝑠𝜎(𝑘)𝛼𝑖𝑗
) and 𝑡𝜎(𝑘)𝑗 is the maxi-

mum level of 𝑡𝜎(𝑘)𝑖𝑗 in all attributes levels of LH(𝑠𝜎(𝑘)𝛼𝑖𝑗
) (𝑖 =1, 2, . . . , 𝑛).

Step 2.8. Utilize the IVDHFL-PAoperator described in (24) to
aggregate all the individual overall evaluation values 𝑟𝑘𝑗 (𝑘 =1, 2, . . . , 𝑡; 𝑗 = 1, 2, . . . , 𝑚) into the group overall evaluation
values 𝑟𝑗 (𝑗 = 1, 2, . . . , 𝑚) of each alternative 𝐴𝑗 (𝑗 =1, 2, . . . , 𝑚):

𝑟𝑗 = IVDHFL-PA (𝑟1𝑗 , 𝑟2𝑗 , . . . , 𝑟𝑡𝑗) = ⋃
(𝑠
𝛼𝑘
𝑗
,ℎ̃𝑘𝑗 ,𝑔
𝑘
𝑗 )∈𝑟
𝑘
𝑗

(𝑠
∑𝑡𝑘=1 𝜉

𝑘Δ−1𝑡0 (TF
𝑡𝑘
𝑗
𝑡0
(𝑠
𝛼𝑘
𝑗
))
,

⋃
[𝜇𝑘𝐿𝑗 ,𝜇

𝑘𝑈
𝑗 ]∈ℎ̃

𝑘
𝑗 ,[]
𝑘𝐿
𝑗 ,]
𝑘𝑈
𝑗 ]∈𝑔

𝑘
𝑗

{{{
{{{[[1 −

𝑡∏
𝑘=1

(1 − 𝜇𝑘𝐿𝑗 )𝜉𝑘 , 1 − 𝑚∏
𝑗=1

(1 − 𝜇𝑘𝑈𝑗 )𝜉𝑘]]
}}} ,{[ 𝑡∏

𝑘=1

(]𝑘𝐿𝑗 )𝜉𝑘 , 𝑡∏
𝑘=1

(]𝑘𝑈𝑗 )𝜉𝑘]}}}}) ,
(43)
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Figure 1: Unbalanced linguistic term sets (𝑆1 and 𝑆2) and their mapping in linguistic hierarchies.

where 𝑡𝑘𝑗 is the level of LH(𝑠𝛼𝑘𝑗 ) and 𝑡0 is the maximum in all
levels of LH(𝑠𝛼1𝑗 ), LH(𝑠𝛼2𝑗 ), . . . , LH(𝑠𝛼𝑘𝑗 ) (𝑘 = 1, 2, . . . , 𝑡).
Step 2.9. Calculate scores 𝑠(𝑟𝑗) of the group overall evaluation
values 𝑟𝑗 (𝑗 = 1, 2, . . . , 𝑚) corresponding to alternatives𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑚) according to Definition 8.

Step 2.10. Based on the rules described in Definition 10, rank
all the alternatives 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑚) and select the most
desirable one(s) in accordance with the rank orders of 𝑟𝑗 (𝑗 =1, 2, . . . , 𝑚).
4.2. Illustrative Example. In this section, we adapt the fashion
design evaluation problem in [40] as illustrative study to
verify our proposed MAGDM approaches.

Suppose that an apparel firm is considering its fash-
ion design for forthcoming season. Choose eight attributes𝐶𝑖 (𝑖 = 1, 2, . . . , 8) [40] which have been determined
to evaluate three design solutions 𝐴𝑗 (𝑗 = 1, 2, 3) after
screening: 𝐶1: Opponent Ability; 𝐶2: Fashion Forecast; 𝐶3:
Product Position; 𝐶4: Consumer Cognition; 𝐶5: Consumer
Lifestyle; 𝐶6: Brand Image; 𝐶7: New Idea; 𝐶8: Theme Story.
A panel of three decision-makers 𝐷𝑘 (𝑘 = 1, 2, 3), including
a filtered customer, a marketing expert, and a firm’s fashion
designer, has been organized to provide their preferences on
response solutions 𝐴𝑗 (𝑗 = 1, 2, 3), by use of the developed
tool of IVDHFUBLS.

The corresponding linguistic variables are chosen
from two unbalanced linguistic term sets 𝑆1 and 𝑆2,
where 𝑆1 = {𝑁, 𝐿,𝑀,𝐴𝐻,𝐻,𝑄𝐻,𝑉𝐻,𝐴𝑇, 𝑇} and𝑆2 = {𝑁,𝑀,𝐻,𝑉𝐻, 𝑇}.The relationship between unbalanced
linguistic term sets 𝑆1, 𝑆2 and linguistic hierarchies is
shown in Figure 1. Decision-makers 𝐷1 and 𝐷2 evaluate

three emergency response solutions by the unbalanced
linguistic term set 𝑆1, while 𝐷3 utilize the unbalanced
linguistic term set 𝑆2. Then, three decision matrices, that is,𝑅𝑘 = (𝑟𝑘𝑖𝑗)8×3 (𝑘 = 1, 2, 3), are collected and shown in Tables
1–3.

Subsequently, we apply Approaches 1 and 2 to resolve this
evaluation problem.

As for Approach 1, we suppose weighting vectors
for both decision-makers and attributes are already
known: the weighting vector 𝜂 = (0.3, 0.4, 0.3)𝑇 for
the three decision-makers and the weighting vector𝜔 = (0.1, 0.1, 0.05, 0.1, 0.05, 0.2, 0.2, 0.2)𝑇 for the eight
attributes.

RegardingApproach 2, we suppose theweighting vector 𝜂
for decision-makers and the weighting vector 𝜔 for attributes
are totally unknown. After comprehensively recognizing
actual decision scenarios, the panel of three decision-makers
reaches a consensus on the relative importance of the eight
attributes, that is, 𝐶8 ≻ 𝐶7 ≻ 𝐶6 ≻ 𝐶2 ≻ 𝐶1 ≻ 𝐶4 ≻𝐶5 ≻ 𝐶3. To include these expertise attitudes, we take the
relative importance among attributes as an order-inducing
vector 𝑢 = (8, 7, 6, 2, 1, 4, 5, 3) for Approach 2.

The ranking results by Approaches 1 and 2 have been
listed in Table 4 for comparison. As can be seen from Table 4,
Approaches 1 and 2 unanimously identified the ranking order
of 𝐴2 ≻ 𝐴3 ≻ 𝐴1 for the three design solutions, while,
according to the score values yielded by the two approaches,
Approach 2 can tell apart the superiority of solution 𝐴2

and inferiority of solution 𝐴1 more clearly than Approach
1. Reasons can be basically observed from the facts shown
in Table 4. Referring to scores for all response solutions
obtained by the two approaches, 𝐴1 is obviously inferior to
the other two solutions and 𝐴2 is obviously superior to the
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Table 1: Decision matrix 𝑅1 with IVDHFUBLNs.𝐴1 𝐴2 𝐴3𝐶1
(𝑉𝐻, {[0.2, 0.3]},{[0.2, 0.4], [0.3, 0.4]}) (𝐴𝑇, {[0.4, 0.5], [0.5, 0.6]},{[0.2, 0.3], [0.2, 0.4]}) (𝐿, {[0.1, 0.2], [0.1, 0.3]},{[0.6, 0.7]})𝐶2
(𝐻, {[0.5, 0.6]},{[0.2, 0.3]}) (𝑇, {[0.6, 0.7]},{[0.1, 0.2]}) (𝐻, {[0.2, 0.3]},{[0.5, 0.6], [0.6, 0.7]})𝐶3
(𝑀, {[0.3, 0.4]},{[0.4, 0.5], [0.5, 0.6]}) (𝐿, {[0.6, 0.7], [0.7, 0.8]},{[0.1, 0.2]}) (𝐴𝐻, {[0.4, 0.5]},{[0.2, 0.3]})𝐶4
(𝑇, {[0.2, 0.4]},{[0.5, 0.6]}) (𝑄𝐻, {[0.3, 0.5]},{[0.2, 0.3]}) (𝑉𝐻, {[0.6, 0.7]},{[0.1, 0.2], [0.2, 0.3]})𝐶5
(𝐿, {[0.4, 0.5]},{[0.1, 0.2], [0.4, 0.5]}) (𝑀, {[0.6, 0.7]},{[0.1, 0.2]}) (𝑀, {[0.4, 0.5], [0.6, 0.7]},{[0.1, 0.3]})𝐶6

(𝑀, {[0.1, 0.2], [0.3, 0.5]},{[0.3, 0.5]}) (𝑉𝐻, {[0.2, 0.4], [0.5, 0.6]},{[0.2, 0.3]}) (𝐻, {[0.3, 0.4]},{[0.4, 0.5]})𝐶7
(𝐴𝐻, {[0.4, 0.5], [0.5, 0.6]},{[0.2, 0.3], [0.2, 0.4]}) (𝐿, {[0.5, 0.6], [0.7, 0.8]},{[0.1, 0.2]}) (𝑄𝐻, {[0.4, 0.5], [0.5, 0.6]},{[0.3, 0.4]})𝐶8

(𝐿, {[0.1, 0.3]},{[0.4, 0.6]}) (𝐻, {[0.5, 0.7]},{[0.1, 0.2], [0.2, 0.3]}) (𝑉𝐻, {[0.4, 0.6]},{[0.3, 0.4]})
Table 2: Decision matrix 𝑅2 with IVDHFUBLNs.𝐴1 𝐴2 𝐴3𝐶1

(𝑀, {[0.3, 0.5]},{[0.1, 0.2]}) (𝐴𝑇, {[0.4, 0.7]},{[0.2, 0.3]}) (𝐴𝑇, {[0.6, 0.8]},{[0.1, 0.2]})𝐶2
(𝐴𝐻, {[0.1, 0.4]},{[0.2, 0.3], [0.3, 0.4]}) (𝐿, {[0.5, 0.6]},{[0.1, 0.2]}) (𝐻, {[0.4, 0.5]},{[0.3, 0.4], [0.4, 0.5]})𝐶3
(𝐻, {[0.2, 0.4]},{[0.4, 0.5]}) (𝐴𝐻, {[0.6, 0.7], [0.7, 0.8]},{[0.1, 0.2]}) (𝐻, {[0.4, 0.5]},{[0.2, 0.3]})𝐶4
(𝑄𝐻, {[0.2, 0.4]},{[0.5, 0.6]}) (𝑀, {[0.2, 0.3]},{[0.5, 0.6], [0.6, 0.7]}) (𝐴𝐻, {[0.4, 0.5]},{[0.2, 0.3]})𝐶5

(𝑀, {[0.1, 0.2], [0.2, 0.3]},{[0.1, 0.2]}) (𝑉𝐻, {[0.6, 0.7]},{[0.1, 0.2]}) (𝑄𝐻, {[0.4, 0.5]},{[0.3, 0.4]})𝐶6
(𝐿, {[0.6, 0.7]},{[0.1, 0.2]}) (𝐴𝑇, {[0.2, 0.3]},{[0.5, 0.7]}) (𝐿, {[0.7, 0.8]},{[0.1, 0.2]})𝐶7
(𝐻, {[0.3, 0.4]},{[0.2, 0.3], [0.4, 0.5]}) (𝐻, {[0.5, 0.8]},{[0.1, 0.2]}) (𝑉𝐻, {[0.2, 0.5]},{[0.3, 0.4]})𝐶8
(𝑀, {[0.5, 0.7]},{[0.2, 0.3]}) (𝐴𝑇, {[0.3, 0.5]},{[0.3, 0.4]}) (𝐻, {[0.3, 0.5]},{[0.3, 0.4]})

Table 3: Decision matrix 𝑅3 with IVDHFUBLNs.𝐴1 𝐴2 𝐴3𝐶1
(𝑀, {[0.6, 0.8]},{[0.1, 0.2]}) (𝑇, {[0.3, 0.4]},{[0.4, 0.6]}) (𝑉𝐻, {[0.4, 0.5]},{[0.1, 0.2], [0.3, 0.4]})𝐶2
(𝐻, {[0.4, 0.5]},{[0.4, 0.5]}) (𝑀, {[0.4, 0.5], [0.5, 0.6]},{[0.2, 0.3]}) (𝑉𝐻, {[0.7, 0.8]},{[0.1, 0.2]})𝐶3

(𝐻, {[0.2, 0.4], [0.3, 0.4]},{[0.2, 0.3]}) (𝑉𝐻, {[0.6, 0.7]},{[0.1, 0.3]}) (𝐻, {[0.6, 0.8]},{[0.1, 0.2]})𝐶4
(𝑀, {[0.7, 0.8]},{[0.1, 0.2]}) (𝐻, {[0.1, 0.3], [0.2, 0.4]},{[0.3, 0.5]}) (𝑀, {[0.6, 0.7]},{[0.1, 0.3]})𝐶5
(𝑇, {[0.2, 0.5]},{[0.3, 0.5]}) (𝑀, {[0.4, 0.6], [0.5, 0.7]},{[0.1, 0.2]}) (𝑉𝐻, {[0.6, 0.7]},{[0.1, 0.2]})𝐶6
(𝑉𝐻, {[0.6, 0.7]},{[0.2, 0.3]}) (𝑉𝐻, {[0.3, 0.6]},{[0.1, 0.3], [0.2, 0.4]}) (𝑀, {[0.5, 0.6]},{[0.3, 0.4]})𝐶7
(𝑀, {[0.1, 0.2]},{[0.5, 0.8]}) (𝐻, {[0.4, 0.6]},{[0.3, 0.4]}) (𝐻, {[0.3, 0.5]},{[0.4, 0.5]})𝐶8
(𝑉𝐻, {[0.3, 0.4]},{[0.1, 0.3], [0.2, 0.5]}) (𝑉𝐻, {[0.7, 0.8]},{[0.1, 0.2]}) (𝐻, {[0.6, 0.7]},{[0.1, 0.3]})
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Table 4: Comparisons between Approaches 1 and 2 on their ranking results and accepted relative importance among attributes.

Approaches Ranking
results

Corresponding
scores Accepted relative importance among attributes

Approach 1 𝐴2 ≻ 𝐴3 ≻ 𝐴1

𝑠(𝑟2) = 0.2231,𝑠(𝑟3) = 0.1737,𝑠(𝑟1) = 0.093
Approach 1 accepted the known attributes

weighting vector𝑤 = (0.1, 0.1, 0.05, 0.1, 0.05, 0.2, 0.2, 0.2)𝑇,
which indicates the relative importance among

attributes as(𝐶8 = 𝐶7 = 𝐶6) ≻ (𝐶2 = 𝐶1 = 𝐶4) ≻ (𝐶5 = 𝐶3).
Approach 2 𝐴2 ≻ 𝐴3 ≻ 𝐴1

𝑠(𝑟2) = 0.2288,𝑠(𝑟3) = 0.168,𝑠(𝑟1) = 0.0926
According to collective opinions on interrelations
among assessing attributes, Approach 2 accepted

the following relative importance among
attributes:𝐶8 ≻ 𝐶7 ≻ 𝐶6 ≻ 𝐶2 ≻ 𝐶1 ≻ 𝐶4 ≻ 𝐶5 ≻ 𝐶3

as the order inducing vector.

other two; thus both ranking orders for total three solutions
are the same. Approach 2 increases the score of best solution𝐴2 from 0.2231 to 0.2288, decreases the score of 𝐴3 from
0.1737 to 0.168, and also decreases the score of worse solution𝐴1 from 0.093 to 0.0926. Along with changes in scores of
design solutions, Approaches 1 and 2 both still identify the
same disparity patterns in scores; Approach 2 reinforces the
positions of 𝐴2 and 𝐴1 as the best and worst solutions,
respectively.

From another perspective of observation, relative impor-
tance among attributes in Approach 2 was determined from
the group opinions rather than holdover from earlier expe-
rience as in Approach 1; thus Approach 2 is more pertinent
to practical problems. As shown in Table 4, the attributes
weighting vector𝑤 = (0.1, 0.1, 0.05, 0.1, 0.05, 0.2, 0.2, 0.2)𝑇 in
Approach 1 indicates a relative importance as (𝐶8 = 𝐶7 =𝐶6) ≻ (𝐶2 = 𝐶1 = 𝐶4) ≻ (𝐶5 = 𝐶3), which means
experience weighting vector𝑤, probably for general purpose,
only roughly differentiates those attributes as three groups,
where attributes share the same importance level. Interest-
ingly, however, regarding Approach 2, the panel of decision-
makers derived relative importance among attributes as 𝐶8 ≻𝐶7 ≻ 𝐶6 ≻ 𝐶2 ≻ 𝐶1 ≻ 𝐶4 ≻ 𝐶5 ≻ 𝐶3, which
not only maintains the general cognition about product
design as denoted in Approach 1, but also gives clearer
differentiation among all attributes. Therefore, Approaches
1 and 2 both identified the same worst solution and the
same best solution consistently from three alternatives, and

Approach 2 is capable of identifying their differences more
clearly with considering group opinions.

4.3. Comparative Study. To further inspect the effective-
ness of formerly developed approaches, in this subsec-
tion, we conduct comparative studies with conventional
MAGDM approaches of TOPSIS-based methodology [41]
and aggregation-operator-based methodology [42], respec-
tively.

Regarding the same case addressed by Approach 1, we
construct the aggregation-operator-based Approach 3, which
utilizes an interval-valued dual hesitant fuzzy unbalanced
linguistic weighted aggregation (IVDHFUBL-WA) operator
for information fusion. Approach 3 takes the same attributes
weighting vector 𝜔 and the same weighting vector 𝜂 for
decision-makers as in Approach 1. Detailed processing steps
in Approach 3 are shown below.

Approach 3. The third approach is MAGDM based on
IVDHFUBL-WA operator.

Step 3.1. By use of attributes weighting vector 𝜔 and the
following IVDHFUBL-WA operator, we aggregate individual
decision matrices 𝑅𝑘 = (𝑟𝑘𝑖𝑗)𝑛×𝑚 (𝑘 = 1, 2, . . . , 𝑡) into
individual overall evaluation values 𝑟𝑘𝑗 (𝑗 = 1, 2, . . . , 𝑚; 𝑘 =1, 2, . . . , 𝑡) for each alternative 𝐴𝑗. According to Xu [42], we
derive the IVDHFUBL-WA operator as

𝑟𝑘𝑗 = IVDHFUBL-WA (𝑟1𝑖𝑗, 𝑟2𝑖𝑗, . . . , 𝑟𝑡𝑖𝑗) = ⋃
(𝑠𝑘𝛼𝑖𝑗 ,ℎ

𝑘
𝑖𝑗 ,𝑔
𝑘
𝑖𝑗)∈𝑟
𝑘
𝑖𝑗

(𝑠
∑𝑛𝑖=1 𝑤𝑖Δ

−1
𝑡𝑖𝑗
(TF
𝑡𝑘
𝑖𝑗
𝑡𝑖𝑗
(𝜓(𝑠𝑘𝛼𝑖𝑗 )))

,
⋃

[𝜇𝐿𝑘𝑖𝑗 ,𝜇
𝑈𝑘
𝑖𝑗 ]∈ℎ̃

𝑘
𝑖𝑗 ,[]
𝐿𝑘
𝑖𝑗 ,]
𝑈𝑘
𝑖𝑗 ]∈𝑔

𝑘
𝑖𝑗

{{[1 − 𝑡∏
𝑘=1

(1 − 𝜇𝐿𝑘𝑖𝑗 )𝑤𝑖 , 1 − 𝑡∏
𝑘=1

(1 − 𝜇𝑈𝑘𝑖𝑗 )𝑤𝑖]} ,{[ 𝑡∏
𝑘=1

(]𝐿𝑘𝑖𝑗 )𝑤𝑖 , 𝑡∏
𝑘=1

(]𝑈𝑘𝑖𝑗 )𝑤𝑖]}}) .
(44)

Step 3.2.Use IVDHFUBL-WA operator and weighting vector𝜂 to aggregate all the individual overall evaluation values
𝑟𝑘𝑗 (𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑡) to group overall evaluation
values 𝑟𝑗 corresponding to each alternative 𝐴𝑗.
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Table 5: Comparisons on ranking results obtained by four approaches.

Approaches Ranking results Corresponding scores
Approach 1
(Case 1) 𝐴2 ≻ 𝐴3 ≻ 𝐴1 𝑠 (𝑟2) = 0.2231, 𝑠 (𝑟3) = 0.1737, 𝑠 (𝑟1) = 0.093
Approach 2
(Case 2) 𝐴2 ≻ 𝐴3 ≻ 𝐴1 𝑠 (𝑟2) = 0.2288, 𝑠 (𝑟3) = 0.168, 𝑠 (𝑟1) = 0.0926
Approach 3
(Case 1) 𝐴2 ≻ 𝐴3 ≻ 𝐴1 𝑠 (𝑟2) = 0.2309, 𝑠 (𝑟3) = 0.1648, 𝑠 (𝑟1) = 0.0902
Approach 4
(Case 2) 𝐴3 ≻ 𝐴2 ≻ 𝐴1 𝑐 (𝑟3) = 0.5919, 𝑐 (𝑟2) = 0.5622, 𝑐 (𝑟1) = 0.5424
Step 3.3. Calculate scores 𝑠(𝑟𝑗) (𝑗 = 1, 2, . . . , 𝑚) of overall
evaluation values 𝑟𝑗 of alternatives 𝐴𝑗 by Definition 8.

Step 3.4. Rank alternatives𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑚) in accordance
with the scores 𝑠(𝑟𝑗).

As for the same case addressed by Approach 2, we
construct TOPSIS-based Approach 4, which extends TOPSIS
to group decision-making situations and also accepts relative
importance relations among assessing attributes as adopted
in Approach 2. Detailed processing steps in Approach 4 are
shown below.

Approach 4. The fourth approach is MAGDM based on
TOPSIS and IVDHFUBL-WA operator.

Step 4.1. See Step 2.1 of Approach 2.

Step 4.2. According to importance relations among assessing
attributes, utilize Yager’s RIM (regular increasing mono-
tone) quantifier [43] to obtain position weighting vector
for attributes. Then by use of the IVDHFUBL-WA operator
introduced in (44), aggregate individual decision matrices𝑅𝜎(𝑘)= (𝑟𝜎(𝑘)𝑖𝑗 )

𝑛×𝑚
into individual overall evaluation values 𝑟𝑘𝑗

for each alternative 𝐴𝑗, where 𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑡.
Step 4.3. Calculate the separating measure from positive
and negative ideal solutions. Determine positive ideal solu-
tion (PIS) 𝑟+ = (𝑟+1 , 𝑟+2 , . . . , 𝑟+𝑘 , . . . , 𝑟+𝑡 ) and negative ideal
solution (NIS) 𝑟− = (𝑟−1 , 𝑟−2 , . . . , 𝑟−𝑘 , . . . , 𝑟−𝑡 ), where 𝑟+𝑘 =({[1, 1]}, {[0, 0]}) and 𝑟−𝑘 = ({[0, 0]}, {[1, 1]}). Then we can
calculate the separatingmeasures 𝑑+𝑗 and 𝑑−𝑗 from the PIS and
NIS for each alternative according to the distance measure
defined in (10), where

𝑑+𝑗 = 𝑡∑
𝑘=1

𝑑 (𝑟𝑘𝑗 , 𝑟+𝑘 ) ,
𝑑−𝑗 = 𝑡∑

𝑘=1

𝑑 (𝑟𝑘𝑗 , 𝑟−𝑘 ) .
(45)

Step 4.4. Calculate the relative closeness to the ideal solution,
where

𝑐𝑗 = 𝑑−𝑗𝑑−𝑗 + 𝑑+𝑗 . (46)

Step 4.5. Rank the emergency alternatives according to the
descending order of 𝑐𝑗.

Now we apply Approaches 3 and 4 to the cases in
Section 4.2. For more clarity, ranking results obtained by the
four approaches have been collected in Table 5.

As can be seen from Table 5, the former three approaches
clearly differentiated all three design solutions with the same
ranking order of 𝐴2 ≻ 𝐴3 ≻ 𝐴1; however, the TOPSIS-based
Approach 4 yielded different ranking result of𝐴3 ≻ 𝐴2 ≻ 𝐴1

and the differences among scores of the three alternatives are
relatively slight.

Regarding Case 1, Approaches 1 and 3 obtained the
same ranking order 𝐴2 ≻ 𝐴3 ≻ 𝐴1 for the three
solutions. Although Approach 1 comprehensively considers
supportive relations among attribute values by use of power
aggregation operator, the scores of three alternatives are in
slight difference after balancing by the sameweighting vectors𝜔 and 𝜂 during their information fusion steps.

Concerning Case 1 targeted by Approaches 2 and 4, they
both identified the solution 𝐴1 as the worst one as other
approaches did, but the ranking relations between𝐴1 and𝐴1

are different. Differing from Approach 3, the TOPSIS-based
Approach 4 adopted Yager’s artificial estimation method
to deduce attributes weighting vectors without taking into
account the supportive relations among assessments; thus
this will cause some potential information distortion. As a
result, ranking result obtained by Approach 4 is different
from other three approaches; scores of the three solutions are
rather close even for the worst solution𝐴1, while Approach 2
managed to clearly differentiate the three solutions, especially
for the worst solution 𝐴1.

In summary, the proposed Approaches 1 and 2 are
both effective multiple attributes group decision-making
methods. For those decision situations where experience
weighting information exists, Approach 1 can accommodate
the weighing information in its decision-making procedures.
Regarding those more complex decision situations where
no concrete weighting information exists, Approach 2 man-
ages to objectively derive unknown weights from decision
matrices and also provides an effective way to enhance its
decision-making process by integrating relative importance
among assessing attributes as its order-inducing vector, which
is derived from group opinions and generally cannot be
adequate enough in practical problems of high uncertainty.
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5. Conclusions

To support rational decision-making activities under com-
plex decision environments, we have proposed the interval-
valued dual hesitant fuzzy unbalanced linguistic set (IVDH-
FUBLS) to elicit complicate preferences of decision-makers
more completely and flexibly, which not only allows decision-
makers to follow their cognition habit by marking their
most approximate linguistic term in an unbalanced linguist
label system, but also allows them to supplement the des-
ignated label with two sets of interval-valued membership
degrees and nonmembership degrees. IVDHFUBLSmanages
to attain flexibility of interval values in assigningmembership
and nonmembership degrees, as well as the advantages of
both unbalanced linguistic set and dual hesitant fuzzy set
in depicting fuzzy properties of evaluating objects. We have
defined operational laws for the IVDHFUBLS, and, more
importantly, a novel distance measure has been put forward
to overcome potential information distortion that could be
caused by conventional distance measure widely adopted for
hesitant fuzzy set and its hybrid extensions.

In view of the intrinsic suitability of classic power aggre-
gation operators and induced aggregation operators in con-
structing MAGDM approaches for complex problems, such
as those scenarios where only limited decision information
can be exploited objectively based on supportive interrela-
tions among attribute values or where additional expertise
attitudes should be included in decision-making proce-
dures, we have developed the W-IVDHFUBL-PA operator,
the IVDHFUBL-PA operator, and the I-IVDHFUBL-POWA
operator. Their desirable properties, including commutativ-
ity, idempotency, boundedness, and monotonicity, have been
further inspected. Then, based on the W-IVDHFUBL-PA
operator and I-IVDHFUBL-POWA operator, we have struc-
tured two approaches of Approaches 1 and 2, respectively.
Numerical studies have verified effectiveness and practicality
of the both approaches. In particular, Approach 2 is capable of
objectively deriving unknown weights from decision matri-
ces and also provides an effective way to enhance its decision-
making process by integrating additional expertise attitudes
in complex decision-making situations.

Due to continuously emerging complex decision-making
problems, such as sustainable investment projects evaluation
and complicate green supplier selection, future research
directions should be still aimed at approaches by considering

more interrelations among decision factors as well as applica-
tion studies.

Appendix

A. Transformation between 2-Tuple
Linguistic Representation and Unbalanced
Linguistic Variable

(1) Representation in linguistic hierarchy: to transform the
unbalanced terms of 𝑆 into the corresponding terms in the
LH, transformation function 𝜓 is employed to associate each
unbalanced linguistic 2-tuple (𝑠𝑖, 𝛼) with its linguistic 2-tuple
in LH(𝑆); that is,

𝜓: 𝑆 󳨀→ LH (𝑆) , (A.1)

so that 𝜓(𝑠𝑖, 𝛼) = (𝑠𝐺(𝑖)𝐼(𝑖) , 𝜆), for ∀(𝑠𝑖, 𝛼) ∈ 𝑆.(2) Computational phase: firstly, transform (𝑠𝐺(𝑖)𝐼(𝑖) , 𝜆) into
linguistic 2-tuples, denoted as (𝑠𝑛(𝑡󸀠)

𝐼󸀠(𝑖)
, 𝜆󸀠) in 𝑆𝑛(𝑡󸀠), where

(𝑠𝑛(𝑡󸀠)
𝐼󸀠(𝑖)

, 𝜆󸀠) = TF (𝑠𝐺(𝑖)𝐼(𝑖) , 𝜆)
= Δ(Δ−1 (𝑠𝐺(𝑖)𝐼(𝑖) , 𝜆) ⋅ (𝑛 (𝑡󸀠) − 1)𝐺 (𝑖) − 1 ) . (A.2)

Then, a computational model is used over 𝑆𝑛(𝑡󸀠) with a
result denoted as (𝑠𝑛(𝑡󸀠)𝑟 , 𝜆𝑟) ∈ 𝑆𝑛(𝑡󸀠).(3) Retranslation process: the result (𝑠𝑛(𝑡󸀠)𝑟 , 𝜆𝑟) ∈ 𝑆𝑛(𝑡󸀠)
is transformed into the unbalanced term in 𝑆, by using the
transformation function 𝜓−1; that is,

𝜓−1: LH (𝑆) 󳨀→ 𝑆, (A.3)

so that 𝜓−1(𝑠𝑛(𝑡󸀠)𝑟 , 𝜆𝑟) = (𝑠result, 𝜆result) ∈ 𝑆.
B. Proof of Theorem 7

Obviously, rules (1) and (2) are correct.(3) For rule (3),
𝜆 (𝑠𝑑1 ⊕ 𝑠𝑑2) = 𝜆 ⋃

(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1 ,(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖)))+Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,
⋃

[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[𝜇𝐿1 + 𝜇𝐿2 − 𝜇𝐿1𝜇𝐿2 , 𝜇𝑈1 + 𝜇𝑈2 − 𝜇𝑈1 𝜇𝑈2 ]} , {[]𝐿1]𝐿2 , ]𝑈1 ]𝑈2 ]}})
= ⋃

(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1 ,(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
𝜆(Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖)))+Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗))))

,
⋃

[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[1 − (1 − (𝜇𝐿1 + 𝜇𝐿2 − 𝜇𝐿1𝜇𝐿2))𝜆 , 1 − (1 − (𝜇𝑈1 + 𝜇𝑈2 − 𝜇𝑈1 𝜇𝑈2 ))𝜆]} , {[(]𝐿1]𝐿2)𝜆 , (]𝑈1 ]𝑈2 )𝜆]}}) ,
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𝜆𝑠𝑑1 = ⋃
(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1

(𝑠𝜆Δ−1𝑡0 (TF𝑡𝑖𝑡0 (𝜓(𝑠𝑖))), ⋃
[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1

{{[1 − (1 − 𝜇𝐿1)𝜆 , 1 − (1 − 𝜇𝑈1 )𝜆]} , {[(]𝐿1)𝜆 , (]𝑈1 )𝜆]}}) ,
𝜆𝑠𝑑2 = ⋃

(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
𝜆Δ−1𝑡0 (TF

𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

, ⋃
[𝜇𝐿2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[1 − (1 − 𝜇𝐿2)𝜆 , 1 − (1 − 𝜇𝑈2 )𝜆]} , {[(]𝐿2)𝜆 , (]𝑈2 )𝜆]}}) ,

𝜆𝑠𝑑1 ⊕ 𝜆𝑠𝑑2 = ⋃
(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1 ,(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
𝜆(Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖)))+Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗))))

,

⋃
[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[1 − (1 − (𝜇𝐿1 + 𝜇𝐿2 − 𝜇𝐿1𝜇𝐿2))𝜆 , 1 − (1 − (𝜇𝑈1 + 𝜇𝑈2 − 𝜇𝑈1 𝜇𝑈2 ))𝜆]} , {[(]𝐿1]𝐿2)𝜆 , (]𝑈1 ]𝑈2 )𝜆]}})
= 𝜆 (𝑠𝑑1 ⊕ 𝑠𝑑2) ;

(B.1)

(4)

𝑠𝑑1𝜆 = ⋃
(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1

(𝑠
(Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖))))

𝜆 , ⋃
[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1

{{[(𝜇𝐿1)𝜆 , (𝜇𝑈1 )𝜆]} , {[1 − (1 − ]𝐿1)𝜆 , 1 − (1 − ]𝑈1 )𝜆]}}) ,
𝑠𝑑2𝜆 = ⋃

(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
(Δ−1𝑡0 (TF

𝑡𝑗
𝑡0
(𝜓(𝑠𝑗))))

𝜆 , ⋃
[𝜇𝐿2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[(𝜇𝐿2)𝜆 , (𝜇𝑈2 )𝜆]} , {[1 − (1 − ]𝐿2)𝜆 , 1 − (1 − ]𝑈2 )𝜆]}}) ,
𝑠𝑑1𝜆 ⊗ 𝑠𝑑2𝜆 = (𝑠𝑑1 ⊗ 𝑠𝑑2)𝜆
⋅ ⋃
(𝑠𝑖 ,ℎ̃1 ,𝑔1)∈𝑠𝑑1 ,(𝑠𝑗 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
Δ−1𝑡0 (TF

𝑡𝑖
𝑡0
(𝜓(𝑠𝑖)))×Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,
⋃

[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1 ,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[(𝜇𝐿1𝜇𝐿2)𝜆 , (𝜇𝑈1 𝜇𝑈2 )𝜆]} , {[1 − (1 − (]𝐿1 + ]𝐿2 − ]𝐿1]
𝐿
2))𝜆 , 1 − (1 − (]𝑈1 + ]𝑈2 − ]𝑈1 ]

𝑈
2 ))𝜆]}}) ;

(B.2)

(5)

𝜆1𝑠𝑑 = ⋃
(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
𝜆1Δ
−1
𝑡0
(TF𝑡𝑘𝑡0 (𝜓(𝑠𝑘)))

, ⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[1 − (1 − 𝜇𝐿)𝜆1 , 1 − (1 − 𝜇𝑈)𝜆1]} , {[(]𝐿)𝜆1 , (]𝑈)𝜆1]}}) ,
𝜆2𝑠𝑑 = ⋃

(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
𝜆2Δ
−1
𝑡0
(TF𝑡𝑘𝑡0 (𝜓(𝑠𝑘)))

, ⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[1 − (1 − 𝜇𝐿)𝜆2 , 1 − (1 − 𝜇𝑈)𝜆2]} , {[(]𝐿)𝜆2 , (]𝑈)𝜆2]}}) ,
(𝜆1 + 𝜆2) 𝑠𝑑 = ⋃

(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
(𝜆1+𝜆2)Δ

−1
𝑡0
(TF𝑡𝑘𝑡0 (𝜓(𝑠𝑘)))

,
⋃

[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[1 − (1 − 𝜇𝐿)𝜆1+𝜆2 , 1 − (1 − 𝜇𝑈)𝜆1+𝜆2]} , {[(]𝐿)𝜆1+𝜆2 , (]𝑈)𝜆1+𝜆2]}}) ,
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𝜆1𝑠𝑑 + 𝜆2𝑠𝑑 = ⋃
(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
𝜆1Δ
−1
𝑡0
(TF𝑡𝑘𝑡0 (𝜓(𝑠𝑘)))+𝜆2Δ

−1
𝑡0
(TF𝑡𝑘𝑡0 (𝜓(𝑠𝑘)))

,
⋃

[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[1 − (1 − 𝜇𝐿)𝜆1+𝜆2 , 1 − (1 − 𝜇𝑈)𝜆1+𝜆2]} , {[(]𝐿)𝜆1+𝜆2 , (]𝑈)𝜆1+𝜆2]}}) = (𝜆1 + 𝜆2) 𝑠𝑑;
(B.3)

(6)

𝑠𝑑𝜆1 = ⋃
(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
(Δ−1𝑡0 (TF

𝑡𝑘
𝑡0
(𝜓(𝑠𝑘))))

𝜆1
, ⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[(𝜇𝐿)𝜆1 , (𝜇𝑈)𝜆1]} , {[1 − (1 − ]𝐿)𝜆1 , 1 − (1 − ]𝑈)𝜆1]}}) ,
𝑠𝑑𝜆2 = ⋃

(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
(Δ−1𝑡0 (TF

𝑡𝑘
𝑡0
(𝜓(𝑠𝑘))))

𝜆2
, ⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[(𝜇𝐿)𝜆2 , (𝜇𝑈)𝜆2]} , {[1 − (1 − ]𝐿)𝜆2 , 1 − (1 − ]𝑈)𝜆2]}}) ,
𝑠𝑑𝜆1+𝜆2 = ⋃

(𝑠𝑘 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠
(Δ−1𝑡0 (TF

𝑡𝑘
𝑡0
(𝜓(𝑠𝑘))))

𝜆1+𝜆2
,

⋃
[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[(𝜇𝐿)𝜆1+𝜆2 , (𝜇𝑈)𝜆1+𝜆2]} , {[1 − (1 − ]𝐿)𝜆1+𝜆2 , 1 − (1 − ]𝑈)𝜆1+𝜆2]}}) = 𝑠𝑑𝜆1 ⊗ 𝑠𝑑𝜆2 .

(B.4)

C. Proof of Theorem 15

(1) When 𝑛 = 1, obviously, it is right.
W-IVDHFUBL-PA (𝑠𝑑) = ⋃

(𝑠0 ,ℎ̃,𝑔)∈𝑠𝑑

(𝑠Δ−1𝑡0 (TF𝑡0𝑡0 (𝜓(𝑠0))),
⋃

[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[𝜇𝐿, 𝜇𝑈]} , {[]𝐿, ]𝑈]}}) .
(C.1)

(2) When 𝑛 = 2,𝜔1 (1 + 𝑇 (𝑠𝑑1))∑2
𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) 𝑠𝑑1

= ⋃
(𝑠1 ,ℎ̃,𝑔)∈𝑠𝑑1

(𝑠(𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))(Δ−1𝑡0 (TF𝑡1𝑡0 (𝜓(𝑠1)))),
⋃

[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1

{{[1 − (1 − 𝜇𝐿1)𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,
1 − (1 − 𝜇𝑈1 )𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]} ,
{[(]𝐿1)𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,
(]𝑈1 )𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]}}) ,

𝜔2 (1 + 𝑇 (𝑠𝑑2))∑2
𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) 𝑠𝑑2

= ⋃
(𝑠2 ,ℎ̃,𝑔)∈𝑠𝑑2

(𝑠(𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))(Δ−1𝑡0 (TF𝑡2𝑡0 (𝜓(𝑠2)))),
⋃

[𝜇𝐿2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[1 − (1 − 𝜇𝐿2)𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,
1 − (1 − 𝜇𝑈2 )𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]} ,
{[(]𝐿2)𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) , (]𝑈2 )𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]}}) ,
𝜔1 (1 + 𝑇 (𝑠𝑑1))∑2
𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) 𝑠𝑑1

+ 𝜔2 (1 + 𝑇 (𝑠𝑑2))∑2
𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) 𝑠𝑑2

= ⋃
(𝑠1 ,ℎ̃1,𝑔1)∈𝑠𝑑1 ,(𝑠2 ,ℎ̃2 ,𝑔2)∈𝑠𝑑2

(𝑠
∑2𝑗=1(𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑

2
𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))(Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗))))

,
⋃

[𝜇𝐿1 ,𝜇
𝑈
1 ]∈ℎ̃1 ,[𝜇

𝐿
2 ,𝜇
𝑈
2 ]∈ℎ̃2 ,[]

𝐿
1 ,]
𝑈
1 ]∈𝑔1,[]

𝐿
2 ,]
𝑈
2 ]∈𝑔2

{{[1 − (1 − 𝜇𝐿1)𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))
⋅ (1 − 𝜇𝐿2)𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,
1 − (1 − 𝜇𝑈1 )𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) (1 − 𝜇𝑈2 )𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]} ,
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{[(]𝐿1)𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) (]𝐿2)𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,
(]𝑈1 )𝜔1(1+𝑇(𝑠𝑑1))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) (]𝑈2 )𝜔2(1+𝑇(𝑠𝑑2))/∑2𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]}}) ;

(C.2)

so when 𝑛 = 2, Theorem 15 also is right.
(3) Supposewhen 𝑛 = 𝑘,Theorem 15 is right; thenwe have

W-IVDHFUL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑘)
= ⋃

(𝑠𝑗 ,ℎ̃𝑗,𝑔𝑗)∈𝑠𝑑𝑗

(𝑠
∑𝑘𝑗=1(𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑

𝑛
𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,

⋃
[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗 ,[]

𝐿
𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{{{
{{{[[1 −

𝑘∏
𝑗=1

(1 − 𝜇𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖)) ,

1 − 𝑘∏
𝑗=1

(1 − 𝜇𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖))]]
}}} ,

{{{[[
𝑘∏
𝑗=1

(]𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖)) ,
𝑘∏
𝑗=1

(]𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑗(1+𝑇(𝑠𝑑𝑖))]]
}}}
}}}) .

(C.3)

Then when 𝑛 = 𝑘 + 1,
W-IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑘, 𝑠𝑑𝑘+1)
= ( 𝑘⨁

𝑗=1

𝜔𝑗 (1 + 𝑇 (𝑠𝑑𝑗))∑𝑛
𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) 𝑠𝑑𝑗) ⊕ 𝜔𝑘+1 (1 + 𝑇 (𝑠𝑑𝑘+1))∑𝑛

𝑖=1 𝜔𝑖 (1 + 𝑇 (𝑠𝑑𝑖)) 𝑠𝑑𝑘+1
= ⋃

(𝑠𝑗 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑𝑗

(𝑠
∑𝑘+1𝑗=1 (𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑

𝑛
𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

,

⋃
[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗 ,[]

𝐿
𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{{{
{{{[[1 −

𝑘+1∏
𝑗=1

(1 − 𝜇𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,

1 − 𝑘+1∏
𝑗=1

(1 − 𝜇𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]]
}}} ,

{{{[[
𝑘+1∏
𝑗=1

(]𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)) ,
𝑘+1∏
𝑗=1

(]𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))]]
}}}
}}}) .

(C.4)

So, when 𝑛 = 𝑘 + 1, Theorem 15 is right too.
According to steps (1), (2), and (3), we can conclude that

Theorem 15 is right for all 𝑛.

D. Proof of Theorem 16

(1) Since 𝑠𝑑𝑗 = 𝑠𝑑 for all 𝑗 = 1, 2, . . . , 𝑛, then
W-IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)

= ⋃
(𝑠0 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑

(𝑠0,
⋃

[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[𝜇𝐿, 𝜇𝑈]} , {[]𝐿, ]𝑈]}}) = 𝑠𝑑.
(D.1)

(2) Suppose 𝑠𝑑− = (𝑠−0 , ℎ̃−, 𝑔−), 𝑠𝑑+ = (𝑠+0 , ℎ̃+, 𝑔+), where
𝑠−0 = min

𝑗
(𝑠

Δ−1𝑡0 (TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

) ,
𝑠+0 = max

𝑗
(𝑠

Δ−1𝑡0 (TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

) ,
ℎ̃− = ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[𝜇𝐿−, 𝜇𝑈−]}
= ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[min
1≤𝑗≤𝑛

𝜇𝐿𝑗 , min
1≤𝑗≤𝑛

𝜇𝑈𝑗 ]} ,
ℎ̃+ = ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[𝜇𝐿+, 𝜇𝑈+]}
= ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[max
1≤𝑗≤𝑛

𝜇𝐿𝑗 ,max
1≤𝑗≤𝑛

𝜇𝑈𝑗 ]} ,
𝑔− = ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[]𝐿−, ]𝑈−]}
= ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[max
1≤𝑗≤𝑛

]𝐿𝑗 ,max
1≤𝑗≤𝑛

]𝑈𝑗 ]} ,
𝑔+ = ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[]𝐿+, ]𝑈+]}
= ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[min
1≤𝑗≤𝑛

]𝐿𝑗 , min
1≤𝑗≤𝑛

]𝑈𝑗 ]} .

(D.2)

Obviously,

𝑠−0 = min
𝑗

(𝑠
Δ−1𝑡0 (TF

𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

)
≤ 𝑠

∑𝑛𝑗=1(𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑
𝑛
𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

≤ max
𝑗

(𝑠
Δ−1𝑡0 (TF

𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

) = 𝑠+0 .
(D.3)
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And for all 𝑗 = 1, 2, . . . , 𝑛, we have
(1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))) .

(D.4)

Meanwhile, we have

( 𝑛∏
𝑗=1

(]𝐿−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ ( 𝑛∏

𝑗=1

(]𝑈−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
≥ ( 𝑛∏

𝑗=1

(]𝐿)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ ( 𝑛∏

𝑗=1

(]𝑈)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
≥ ( 𝑛∏

𝑗=1

(]𝐿+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ ( 𝑛∏

𝑗=1

(]𝑈+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))) .

(D.5)

Then

(1 − 𝑛∏
𝑗=1

(1 − 𝜇𝐿+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝐿+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))

− ( 𝑛∏
𝑗=1

(]𝑈+)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈𝑗 )𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝐿)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝑈)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝐿−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝑈−)𝜔𝑗(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1 𝜔𝑖(1+𝑇(𝑠𝑑𝑖))) .
(D.6)

According to Definitions 8 and 10 and Theorem 15, we
have

𝑠𝑑− ≤ W-IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) ≤ 𝑠𝑑+, (D.7)

which completes the proof.

E. Proof of Theorem 19

(1) Assume that (𝑠𝑑1∗, 𝑠𝑑2∗, . . . , 𝑠𝑑𝑛∗) is any permutation of(𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛); then for each 𝑠𝑑𝑗, there exists one and only
one 𝑠𝑑𝑘∗ such that 𝑠𝑑𝑘∗ = 𝑠𝑑𝑗 and vice versa. And, also we
have 𝑇(𝑠𝑑𝑗) = 𝑇(𝑠𝑑𝑘∗). Thus, based onTheorem 18, we have

IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)
= ⨁𝑛

𝑗=1 ((1 + 𝑇 (𝑠𝑑𝑗)) 𝑠𝑑𝑗)∑𝑛
𝑖=1 (1 + 𝑇 (𝑠𝑑𝑖))

= ⨁𝑛
𝑗=1 ((1 + 𝑇 (𝑠𝑑𝑘∗)) 𝑠𝑑𝑘∗)∑𝑛

𝑖=1 (1 + 𝑇 (𝑠𝑑𝑖))= IVDHFUL-PA (𝑠𝑑1∗, 𝑠𝑑2∗, . . . , 𝑠𝑑𝑛∗) .
(E.1)
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(2) Since 𝑠𝑑𝑗 = 𝑠𝑑 for all 𝑗 = 1, 2, . . . , 𝑛, then
IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛)

= ⋃
(𝑠0 ,ℎ̃𝑗 ,𝑔𝑗)∈𝑠𝑑

(𝑠0,
⋃

[𝜇𝐿,𝜇𝑈]∈ℎ̃,[]𝐿,]𝑈]∈𝑔

{{[𝜇𝐿, 𝜇𝑈]} , {[]𝐿, ]𝑈]}}) = 𝑠𝑑.
(E.2)

(3) Suppose 𝑠𝑑− = (𝑠−0 , ℎ̃−, 𝑔−), 𝑠𝑑+ = (𝑠+0 , ℎ̃+, 𝑔+), where
𝑠−0 = min

𝑗
(𝑠

Δ−1𝑡0 (TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

) ,
𝑠+0 = max

𝑗
(𝑠

Δ−1𝑡0 (TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

) ,
ℎ̃− = ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[𝜇𝐿−, 𝜇𝑈−]}
= ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[min
1≤𝑗≤𝑛

𝜇𝐿𝑗 , min
1≤𝑗≤𝑛

𝜇𝑈𝑗 ]} ,
ℎ̃+ = ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[𝜇𝐿+, 𝜇𝑈+]}
= ⋃

[𝜇𝐿𝑗 ,𝜇
𝑈
𝑗 ]∈ℎ̃𝑗

{[max
1≤𝑗≤𝑛

𝜇𝐿𝑗 ,max
1≤𝑗≤𝑛

𝜇𝑈𝑗 ]} ,
𝑔− = ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[]𝐿−, ]𝑈−]}
= ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[max
1≤𝑗≤𝑛

]𝐿𝑗 ,max
1≤𝑗≤𝑛

]𝑈𝑗 ]} ,
𝑔+ = ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[]𝐿+, ]𝑈+]}
= ⋃

[]𝐿𝑗 ,]
𝑈
𝑗 ]∈𝑔𝑗

{[min
1≤𝑗≤𝑛

]𝐿𝑗 , min
1≤𝑗≤𝑛

]𝑈𝑗 ]} .

(E.3)

Obviously,

𝑠−0 = min
𝑗

(𝑠
Δ−1𝑡0 (TF

𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

)
≤ 𝑠

∑𝑛𝑗=1((1+𝑇(𝑠𝑑𝑗))/∑
𝑛
𝑖=1(1+𝑇(𝑠𝑑𝑖)))Δ

−1
𝑡0
(TF
𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

≤ max
𝑗

(𝑠
Δ−1𝑡0 (TF

𝑡𝑗
𝑡0
(𝜓(𝑠𝑗)))

) = 𝑠+0 .
(E.4)

And for all 𝑗 = 1, 2, . . . , 𝑛, we have
(1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))) .

(E.5)

Meanwhile, we have

( 𝑛∏
𝑗=1

(]𝐿−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ ( 𝑛∏

𝑗=1

(]𝑈−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
≥ ( 𝑛∏

𝑗=1

(]𝐿)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ ( 𝑛∏

𝑗=1

(]𝑈)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
≥ ( 𝑛∏

𝑗=1

(]𝐿+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ ( 𝑛∏

𝑗=1

(]𝑈+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))) .

(E.6)

Then

(1 − 𝑛∏
𝑗=1

(1 − 𝜇𝐿+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝐿+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
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− ( 𝑛∏
𝑗=1

(]𝑈+)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈𝑗 )(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝐿)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝑈)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
≥ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝐿−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
+ (1 − 𝑛∏

𝑗=1

(1 − 𝜇𝑈−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝐿−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖)))
− ( 𝑛∏

𝑗=1

(]𝑈−)(1+𝑇(𝑠𝑑𝑗))/∑𝑛𝑖=1(1+𝑇(𝑠𝑑𝑖))) .
(E.7)

According to Definitions 8 and 10 and Theorem 18, we
have𝑠𝑑− ≤ IVDHFUBL-PA (𝑠𝑑1, 𝑠𝑑2, . . . , 𝑠𝑑𝑛) ≤ 𝑠𝑑+, (E.8)

which completes the proof.
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