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Abstract 

Recent interest in PDP (parallel distributed processing) models is due in part to the 
widely held belief that they challenge many of the assumptions of classical cognitive 
science. In the domain of language acquisition, for example, there has been much 
interest in the claim that PDP models might undermine nativism. Related argu- 
ments based on PDP learning have also been given against Fodor’s anti-construc- 
tivist position - a position that has contributed to the widespread dismissal of 
constructivism. A limitation of many of the claims regarding PDP learning, 
however, is that the principles underlying this learning have not been rigorously 
characterized. In this paper, I examine PDP models from within the framework of 
Valiant’s PAC (probably approximately correct) model of learning, now the 
dominant model in machine learning, and which applies naturally to neural 
network learning. From this perspective, I evaluate the implications of PDP models 
for nativism and Fodor’s influential anti-constructivist position. In particular, I 
demonstrate that, contrary to a number of claims, PDP models are nativist in a 
robust sense. I also demonstrate that PDP models actually serve as a good 
illustration of Fodor’s anti-constructivist position. While these results may at first 
suggest that neural network models in general are incapable of the sort of concept 
acquisition that is required to refute Fodor’s anti-constructivist position, I suggest 
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that there is an alternative form of neural network learning that demonstrates the 

plausibility of constructivism. This alternative form of learning is a natural 

interpretation of the constructivist position in terms of neural network learning, as it 

employs learning algorithms that incorporate the addition of structure in addition to 

weight modification schemes. By demonstrating that there is a natural and plausible 

interpretation of constructivism in terms of neural network learning, the position 

that nativism is the only plausible model of acquisition can no longer be defended. 

Indeed, I briefly discuss a number of learning-theoretic reasons indicating that 

constructivist models so characterized uniquely possess a number of important 

learning characteristics. 

1. Introduction 

One of the few detailed theories of cognitive development is the constructivist 

model. Unlike the heavy burden nativism places on genetic mechanisms to 

account for specific brain structures, constructivism regards the emergence of 

these structures as the outcome of the interaction between developmental 

mechanisms and the structure of the environment in which the organism is 

embedded - an interaction that developmental neurobiology is coming to ap- 

preciate (e.g., Hockfield & Kalb, 1993; Shatz, 1990).’ Despite the appeal of many 

of its features, there has been a widespread dismissal of constructivism, due in 

part to Jerry Fodor’s (1975, 1980, 1981) arguments against its coherence. For 

example, Pinker (1984) cites Fodor’s arguments as grounds for dismissing 

constructivist models of development in the case of language acquisition (for an 

extended discussion, see Piattelli-Palmarini, 1980). Indeed, the nativist assump- 

tions that dominate cognitive science are in some measure the result of the widely 

held belief that there are no plausible alternative models of acquisition. 

With the rise of PDP (parallel distributed processing) networks in recent years, 

an intriguing possibility is that these models may offer a view of learning that 

refutes the assumptions underlying positions such as nativism and the anti- 

constructivist one mentioned above.2 Although this claim has been most intensely 

scrutinized in terms of the language acquisition properties of PDP models and 

their implications for nativism (e.g., Pinker & Prince, 1988; Rumelhart & 

McClelland, 1986; for a review see Bates, 1992), related arguments have also 

‘The recent adoption of so-called selection& models (e.g., Piattelli-Palmarini, 1989; Lightfoot, 
1991, 1992) may be seen as an attempt to maintain the nativist position without the commitment to 

explicit genetic encodings. In Quartz (1993a) I suggest that the learning-theoretic properties of 

selectionist models render them infeasible. 

‘1 use PDP models and connectionism interchangeably to refer to fixed feedforward neural 

networks where learning is construed as an adaptive changing of node functions, such as gradient 

descent minimization of a scalar error function. 
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been given against the anti-constructivist position (e.g., Chater & Oaksford, 

1990). Both the anti-nativist arguments and those directed against Fodor’s anti- 

constructivist position share the belief that PDP models learn by creating internal 

representations rather than having these representations built in - a popular 

conception of connectionist learning. A fundamental limitation of these argu- 

ments, however, is that the characterization of PDP learning they employ is not a 

rigorous one. Therefore, the force of the claim that PDP models both circumvent 

nativism and establish the plausibility of constructivism is not clear in the absence 

of a more rigorous treatment of the properties of this class of models. 

By introducing some elementary learning-theoretic notions, in what follows I 

will demonstrate that, once characterized from a more formal perspective, 

standard PDP models are in fact nativist, and, rather than undermine Fodor’s 

arguments, they actually serve as a good illustration of his anti-constructivist 

position. Indeed, contrary to a number of claims, PDP models are typically more 

highly constrained than classical architectures. Does this result imply that the 

nativist, anti-constructivist arguments typified by Fodor’s position are corrobo- 

rated, as they now appear to hold for the distinct style of representation that PDP 

models offer? By further considering learning from this formal perspective, the 

answer to this question will be negative, as I will suggest that Fodor’s position 

against constructivism is undermined by considering an alternative form of 

learning in neural networks. This alternative form of learning is a natural 

interpretation of the constructivist position in terms of neural network learning, as 

it employs learning algorithms that incorporate the addition of structure. 

As I describe in more detail below, Fodor’s argument against constructivism 

depends on first defining some quantitative measure of a conceptual structure’s 

complexity and then showing that this measure cannot increase over time. But, by 

employing a quantitative measure of a conceptual structure’s complexity from this 

alternative model of learning in neural networks, I will demonstrate that there is a 

natural sense in which Fodor’s argument against constructivism dissolves as an 

artifact of his choice of this measure. Although my main aim will be in 

demonstrating the plausibility of the constructivist position, since Fodor’s argu- 

ments are directed at this question, I will also briefly suggest that there are a 

number of learning-theoretic reasons for supposing that constructivist models so 

characterized uniquely possess a number of important learning characteristics that 

fundamentally differ from standard PDP models. 

2. Fodor’s arguments 

Before considering the possible relevance of connectionist models to the 

question of constructivism’s plausibility, it is worthwhile briefly to spell out 

Fodor’s arguments. With the premises of Fodor’s arguments made explicit, it will 
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then be possible to consider the conditions that must be satisfied by a candidate 

learning model to be a constructivist system and, specifically, whether con- 

nectionist models provide such an account. 

Fodor’s argument against constructivism depends on showing that the notion of 

concept learning in general is confused and that, on closer inspection, there could 

not be any such phenomenon. Roughly, in order for there to be a sense in which a 

cognitive system could acquire new concepts, there must be a well-defined sense 

in which the system’s conceptual resources increase over time. As this is exactly 

the Piagetian notion of stages of conceptual development (Piaget, 1954), in which 

successive stages are richer in their representational power than previous ones, 

Fodor’s argument is aimed at constructivism as a special case of this more general 

argument against concept acquisition. 

From Fodor (1980), we may formulate the following conditions on concept 

acquisition: 

(1) 

(2) 
(3) 

The concept must originally 

repertoire (initial state). 

Through some process, the 

The learner must learn the 

lie outside the domain of the learner’s conceptual 

learner must come to acquire the concept. 

truth conditions for that concept. 

For (3), there is a well-developed sense of learning as inductive inference; 

however, regarding (2), Fodor (1981) contends that there is no available theory 

of the source of our inductive hypotheses, but that theories of concept learning 

simply presuppose their availability. Fodor’s arguments have a further aim: not 

only is there no theory of concept acquisition as a contingent fact about the state 

of cognitive psychology, but there could not be such a theory. We are thus led to 

nativism by a dismissal of any cogent alternative. 

In what sense could it be said that there could never be a theory of concept 

acquisition? To make this question more precise, it is necessary to adopt a 

quantitative measure of the representational power of a cognitive structure, as 

this measure will index conceptual expressiveness and must therefore increase 

over time with the complexity of the system. Fodor (1980) considers such a 

measure in terms of the logic instantiated by a cognitive system, which we may 

formulate as the following condition: 

a system at some time, is a more powerful structure than at time,_, only if the set of truths that 
could be expressed by the logic the system instantiates at time, is larger than the set of truths that 

could be expressed by the logic the system instantiates at time,_, (i.e., the set of truths of the 

logic,_, is a proper subset of the truths of the logic at time,). 

Now that this condition for acquiring novel concepts is explicit, it is possible to 

consider whether it can be satisfied in general. To show that accepting this picture 

entails that there can be no acquisition of a more powerful logic in terms of 
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learning as inductive inference, Fodor (1980) considers the case of moving from 

propositional logic at stage, to first-order quantificational logic at stage,,, . To 

learn quantificational logic, the system must learn the truth conditions of its 

formulae, such as “ ‘(X)Fx’ is true if and only if. . . ,” as condition (3) specifies. 

Yet, this requires that the system have at stage, the conceptual apparatus 

sufficient to represent this truth-conditional statement. But, by definition, a 

system instantiating propositional logic cannot represent this statement. The 

conclusion, according to Fodor (1980, p. 149), is: 

there literally isn’t such a thing as the notion of learning a conceptual system richer than the 

one that one already has; we simply have no idea of what it would be like to get from a 

conceptually impoverished to a conceptually richer system by anything like a process of learning. 

Thus there is an important sense in which the nativist hypothesis is the only one in the field. 

In evaluating this argument, it is important to point out that Fodor’s argument 

depends on establishing some fairly rigorous sense of representational power in 

order to establish a quantitative notion of the change that is supposed to occur 

between stages of development. For this, Fodor employs the notion of a logic, as 

we saw above, which establishes this quantitative measure as the set of truths a 

logic expresses. However, the choice of logic for this measure has no privileged 

status in itself. The notion of a logic does lend itself naturally to a quantitative 

treatment of representational power or expressiveness, especially under a view 

that regards cognition to depend essentially on a language of thought (LOT), as 

the representational units in such a model are formal strings or formulae with a 

recursive syntax (Pylyshyn, 1984). Yet its use is not mandated as the only possible 

quantitative measure, even within LOT models. It is this point that makes 

connectionist models interesting to the question of the plausibility of constructivist 

models, as PDP models have been offered as an alternative to LOT models of 

cognition. In particular, what makes connectionism of potential relevance to this 

question is the possibility that there exists an appropriate quantitative measure of 

representational power from within this domain of research that will help remove 

these obstacles to concept acquisition. 

3. PDP models are inadequate to refute Fodor’s anti-constructivist position 

As I mentioned above, Chater and Oaksford (1990) suggest that the learning 

characteristics of PDP models refute Fodor’s argument against constructivism; 

they state (p. 101): 

By contrast [to PDP models], standard learning models cannot develop new structures. since 
Classical learning is just hypothesis generation and confirmation. Everything that can be learnt 
must be represented innately. PDP promises a theory of learning which sidesteps these 
difficulties. 



228 S.R. Quartz I Cognition 4X (1993) 223-242 

IS it the case that PDP models sidestep the difficulties associated with classical 

learning models? In light of the above discussion, this now reduces to the question 

of whether PDP models offer an account of concept acquisition and whether an 

alternative measure of representational power can be derived from this model 

that makes sense of increases to a system’s conceptual resources over time. 

To consider the questions of concept acquisition and nativism from within the 

domain of connectionist research, we now require a general conception of 

connectionist network learning. In particular, as we are interested in evaluating 

the capacities of connectionist network learning and in defining such notions as 

the initial state of a network, we require a fairly rigorous model. The Valiant 

(1984) framework has recently been applied to neural network learning (e.g., 

Abu-Mostafa, 1989; Baum, 1989; Baum & Haussler, 1989) and provides this 

general conception, as I outline below. 

To see the utility of the application of the Valiant model to neural network 

learning, it is useful first to consider the problem of feasibility in learning. In 

particular, it was seen early on that a general learner (e.g., Gold, 1967), while 

perhaps capable of learning in the limit, was not capable of learning in feasible 

time. Instead, as Pinker (1979) notes in the case of language acquisition, such a 

general learner may have a test on the order of 10”” possible grammars even in 

an extremely simplified case - a computation that could never actually be 

performed. Gold’s learner was so slow because it adopted a general strategy 

whereby it simply enumerated an entire class of grammars and hypothesized each 

element in turn until it reached the target grammar. Within the Chomsky 

hierarchy of languages, primitive recursive languages are the highest class that is 

learnable by such a strategy since they are the highest decidable class. Although 

this guarantees convergence its practical implications are severely limited because 

of the vast search that may be required. A fundamental limitation of Gold’s 

paradigm, then, was that it did not address the problem of learning in feasible 

time by incorporating complexity constraints into its model of learning - consid- 

erations that are of prime importance to learning both in natural systems and in 

large real-world applications. 

The most notable example of applying complexity considerations to learning is 

Valiant’s (1984) PAC (probably approximately correct) model of learning, which 

has now become the dominant model in machine learning (e.g., Natarajan, 1991). 

Valiant’s original study concerned the learning in polynomial time (polynomial in 

the number of arguments of the function) of a Boolean function f in a class of 

Boolean functions F on the domain Z* from examples chosen according to some 

arbitrary but fixed probability distribution D, where 2 is the Boolean alphabet 

(0, l} and 2 * is the set of strings of finite length on 2. On this model, the learner 

has access to a subroutine EXAMPLE that provides positive and negative 

examples, where each example is a feature vector for which f(S) = 1 or 0 that are 

drawn according to the probability distribution D. A condition of Valiant’s model 
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is that the probability distribution D that is employed in the training case likewise 

be employed in the test cases. A function is then said to be learned by some 

algorithm just in case when supplied with examples of f drawn from D, the 
algorithm constructs with probability 1 - 6 a hypothesis g belonging to a 

representation class G such that g(i) =f(J;) with probability at least 1 - F (6 and E 

are defined below). 

An important insight into learning from this model was that feasible learning - 

learning that is achieved within some realistic time bounds -was seen to require 

(at least) a significant restriction of the possible conjectures that the learner must 

evaluate (see Blumer, Ehrenfeucht, Haussler & Warmuth, 1987). A step towards 

achieving this in the Valiant model is to significantly restrict the class of concepts 

that the system may represent by delimiting in advance the hypothesis space or 

representation class that the learner may employ. The question of feasibility may 

then be addressed by determining the complexity of learning various functions 

from this class. In particular, a hypothesis space will be polynomially learnable 

just in case the number of examples required is polynomial as a function of II, l/e, 

l/6, where n is a length parameter on the examples, and a consistent hypothesis 

can be found in G in time polynomial in n, l/~, l/6. In addressing these issues, 

Valiant’s model thus shifts the main emphasis of the learning problem from what 

is in principle learnable to what is learnable from some restricted representation 

class in feasible time. This relativization of learning to some specified representa- 

tion class has a direct application to PDP models, as I consider next. 

Valiant’s model may be applied to PDP networks by considering an arbitrary, 

feedforward architecture $3 (see Baum & Haussler, 1989), a class of networks that 

share the same directed acyclic graph G (roughly, the pattern of connections 

between processing nodes), which may serve generally to define the learning- 

theoretic characteristics of the class of connectionist models. Associated with each 

node (excluding input nodes) is a node function set, F,. Each individual member 9 

belonging to 9 may be constructed by choosing a particular f; from F, for each 

appropriate node (see Baum & Haussler, 1989). 3 may therefore be regarded as 

the set of all those networks that may be realized by setting the function that each 

node may compute to some value while holding constant the pattern of 

connectivity between nodes. 

We can now see how Valiant’s model provides a general characterization of 

connectionist network learning. Specifically, a fixed feedforward architecture 

represents a certain class of concepts that will be determined by the connectivity 

between nodes and the functions that each node may perform. A feedforward 

architecture C!3 will thus be identified with the representation class G in Valiant’s 

model. Roughly, as learning proceeds, this class of concepts is reduced by some 

error-correction method until the network settles on some element g of G that 

approximates the target function. As in Valiant’s model, the end state of the 

network need not be identical to the target function; instead, it need only 
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approximate it within certain parameters. What is important, however, is that the 

probability distribution that was employed in training the network likewise be 

employed in evaluating the network’s ability to generalize after training. Valiant’s 

framework thus contains the same definition of generalization that is used in 

neural network research and it allows for the network to make a fraction E of 

incorrect predictions and to fail with some probability 6, features which are 

necessary since the examples are chosen probabilistically. 6 is a confidence 

parameter and t: is an error parameter, where in successful learning the algorithm 

is (1 - S) confident that its error is at most E. Among the most important 

applications of this framework to neural networks has been the obtaining of 

bounds on the relation among network size, training sample size, and generaliza- 

tion ability (Baum & Haussler, 1989). 

Given the applicability of Valiant’s model to learning in feedforward neural 

networks, we are now in a position to consider from this perspective both whether 

connectionist networks solve Fodor’s problem of concept acquisition, as Chater 

and Oaksford (1990) suggest, and whether these models escape nativism. 

Regarding Fodor’s arguments against concept acquisition, we may now 

consider whether PDP models satisfy condition (2) above, as it is this condition 

that appeared to be problematic for classical models of learning. As condition (2) 

specifies as a matter of definition, in order for a network to be capable of concept 

acquisition, it would be required to come to represent some concept h that is not 

an element of its initial state. In order to evaluate this condition, we thus require 

a characterization of the initial state of a network. Here the application of the 

Valiant framework to neural networks proves useful. In the Valiant model, the 

initial state is represented as a hypothesis space G, from which the end state, 

which approximates the target function within some tolerance parameters, is 

chosen by the restrictive pressures of the input space. The application of this 

model to neural networks resulted in the identification of the feedforward 

architecture 3 with the hypothesis space G, which may therefore be considered 

the initial state of a network. 

As we have now identified the initial state of an architecture 3 with the 

hypothesis space G, the question of the plausibility of concept acquisition reduces 

to whether such an architecture may come to represent some concept not 

belonging to G. It is now clear, though, that connectionist models in general are 

incapable of representing any concept h that is not an element of its initial state 

G. This follows from consideration of the demands of feasible learning, which 

PDP models implicitly incorporate, and from the structural features of this class 

of models. As the complexity considerations of the Valiant model illustrate, 

feasible learning requires that learning be relative to some restricted hypothesis 

space that the learner employs. This we identified with the initial state of the 

network, G, which may be roughly regarded as the innate knowledge of the 

system or as the inductive bias, as it is known in the machine-learning literature. 
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However, the combination of both feasibility demands that restrict the initial state 

to the representation class G and the structural features of connectionist models 

that identify this class with a fixed feedforward architecture entails that no 

concept lying outside the initial state may be represented by the model. The 

reason for this is that the only free parameters of a PDP model are the weights 

(and thresholds), which may vary according to some error-correction method. 

But, the effect of learning is to reduce the possible concepts that the system may 

represent, as learning reduces the set of elements of G that are consistent with the 

training examples to a proper subset of G (and ultimately to a particular element 

of G). Therefore, condition (2) cannot be satisfied by connectionist models, and 

so these models do not offer the appropriate account of concept acquisition. 

A response to this argument may be to point out that PDP models are 

nonetheless capable of coming to represent some concept that is not explicitly 

represented in the initial state. Yet, Fodor is not committed to the extreme view 

that every concept must be represented explicitly in the initial state. According to 

Fodor (1981), only a subset of possible primitive concepts comes to be repre- 

sented explicitly, namely those that are “triggered” by appropriate environmental 

features. While avoiding identifying “triggering” (which appears never to have 

been characterized rigorously as an acquisition mechanism) with neural network 

learning, it is clear what Fodor’s general position corresponds to in terms of 

connectionist network learning. The particular hypothesis g that is arrived at need 

not be represented explicitly in the initial state. Indeed, typically it would not be 

since that would make learning trivial. Instead, arriving at the end state g is 

derivable from some combination of weights from the initial state through the 

representation class G to g. Yet, any element that belongs outside G, the initial 

state, cannot be represented by the network, despite any possible configuration of 

the weights. 

Put another way, Fodor’s argument is a challenge to show how a cognitive 

structure may increase its complexity over time as a function of learning. In the 

case of connectionist networks, any increase in the complexity measure will be 

dependent on the size of G - the class of concepts a network may represent. Yet, 

by definition G cannot increase over time, since we identified G with the fixed 

feedforward architecture 3, and, hence, any complexity measure that is depen- 

dent on 33 will be time-invariant. 

4. PDP models are nativist 

The results of the application of Valiant’s model to neural networks for these 

debates are in fact stronger than those of the last section. So far, I have outlined 

only how it is that PDP models are incapable of coming to represent some 

concept that lies outside their initial state. Rather than learn by creating internal 
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representations, as they have often been characterized, they actually learn by 

eliminating elements of an a priori defined hypothesis space to those that are 

consistent with the training examples. The Valiant model, however, also illustrates 

the stronger result that PDP models are nativist in a robust sense. These are 

distinct claims, as it may be the case that while PDP models cannot acquire 

concepts lying outside their initial state, the representation class that is repre- 

sented innately by a feedforward architecture may be so general that the network 

may be applicable across a number of domains. If this were the case, then PDP 

models would not need to build in domain-specific knowledge and could be 

regarded as implementing general learning strategies. In the context of applica- 

tions to complex problem domains, however, this is an unlikely possibility. From 

within Valiant’s model, general arguments follow from complexity considerations 

that show that the initial state of a PDP network must be an exponentially small 

subset of all possible concepts, U, in order for the network to feasibly learn (see 

Blumer et al., 1987). Hence, as Dietterich (1990) points out, the probability that 

some particular network may PAC learn on a hypothesis chosen at random from 

all possible hypotheses U is vanishingly small. 

The abstract characterization afforded by the application of Valiant’s model 

thus explains why the choice of an architecture is such an important factor in 

connectionist learning (see Hertz, Krogh & Palmer, 1991, Ch. 6), as it is the 

choice of this hypothesis space. It also illustrates why so much of neural network 

research is devoted to automating the search for appropriate network architec- 

tures for particular problem domains and to finding useful heuristics to guide this 

selection. Viewing the problem from a statistical perspective, Geman, Bienen- 

stock, & Doursat (1992, p. 45) thus conclude that in real-world applications the 

only means of finding practical solutions to large neural modeling problems is to 

prewire the important generalizations and that finding the appropriate initial state 

of a network so that it lies close to the target function is the fundamental problem 

of neural network research. From a different framework, Dente and Mendes 

(1992) reach similar negative conclusions against general learning strategies for 

PDP models. Although it is sometimes remarked that PDP models are tab&a ram 

learners in virtue of having random initial weights, the effect of initial weight 

randomization is really just to place the network somewhere in an a priori defined 

hypothesis space, which is necessary for applications. 

It is in part because PDP models represent such a highly constrained 

hypothesis space that they display favorable learning characteristics. Indeed, 

although connectionist networks are sometimes regarded as more powerful 

computationally than Turing-based models, the favorable learning characteristics 

of connectionist models actually stem from their structural restrictions that in 

limited domains result in fast learning. However, this comes at a cost: the 

network must be tailored to the task and will with a high likelihood fail to learn in 

some unanticipated problem domain. Therefore, the notion that a general- 
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purpose network architecture may be found is untenable. It should be noted, 

however, that this result against general learning is a property of the problem of 

learning by examples from a defined hypothesis space and not of a particular 

algorithm, and so any approach - whether Turing-based or PDP-based - that 

views learning as the search through a hypothesis space will be constrained by 

these results. 

For these reasons, the above argument does not amount to merely defining 

some notion of representational capacity and then claiming that a network cannot 

exceed this capacity. By definition, a system cannot exceed its representational 

capacity, and so this would be a trivial position. Rather, as the Valiant model 

illustrates, the a priori representation class or hypothesis space that a learner 

employs represents a specific and exponentially small subset of all possible 

concepts, of which an acceptable approximation of the target function is a 

member, as a necessary condition of feasible learning. This framework maps 

directly onto PDP models and identifies this hypothesis space with the structural 

features of a network architecture. The characterization of the initial state of a 

fixed architecture as a hypothesis space on the Valiant model is therefore stronger 

than some general measure of representational capacity. Thus, failure to learn 

may not be simply the result of inadequate resources stemming from circuit 

complexity considerations, in which the complexity of the target function exceeds 

the representational capacity of the network, but in some cases may be due to the 

selection of the wrong architecture as the representation of the hypothesis space. 

In summary, to return to Fodor’s argument against concept learning and its 

relevance to PDP models, the application of the Valiant framework to PDP 

models illustrates that these models have built into their architecture a highly 

restricted hypothesis space that contains the target function. or at least an 

acceptable approximation to it. Further, the fact that the architecture that 

represents this hypothesis space is fixed entails that no concept lying outside this 

hypothesis space may ever be represented by the network. Training by examples 

on such an architecture is, therefore, simply learning the truth conditions for a 

concept that the network already has available to it. 

5. Alternative network models demonstrate the plausibility of constructivism 

In the previous section, standard PDP models were shown to be strongly 

nativist, contrary to the popular conception of PDP learning as learning by 

creating internal representations. Given their strong nativism and their structural 

properties, it quickly followed that they did not offer an account of concept 

acquisition, in Fodor’s sense of the term. Although this result may at first suggest 

that neural networks are in general incapable of offering an account of concept 

acquisition, within the framework of the last section it is straightforward to 
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identify the features of standard PDP models that are responsible for this 

restriction on learning and to consider the nature of learning in their absence. 

Informally, what is required to refute Fodor’s position is some sense in which a 

system may increase it representational power-defined as the set of concepts it 

may express - as a function of learning. From the application of Valiant’s model 

to neural network learning, it became apparent that the class of concepts G a 

network represents is identified with a fixed feedforward architecture 3 and that 

these fixed structural features restrict the possible concepts that may be repre- 

sented to elements of that hypothesis space. But, since the architecture of a 

network is identified with the class of concepts it may represent, this suggests that 

a network with the ability to alter its architecture in appropriate ways as a 

function of learning will be capable of extending its representation class beyond 

its initial state and will therefore be capable of acquiring novel concepts. As I will 

consider in more detail in section 6, the characterization of a system that may add 

structure through learning is not exclusive to neural networks since Turing-based 

algorithms may be formulated that perform a similar operation. Yet, since neural 

networks effectively collapse the distinction between structure and function, in 

contrast to functionalist-based symbolic models, neural networks naturally allow 

for the investigation of how structural modifications may have significant func- 

tional consequences at the level of the representations that are supported by such 

a system. 

Two conditions must be satisfied by such a system: (1) the addition of structure 

must be non-trivial by being describable as a process of learning; (2) it must offer 

an appropriate quantitative measure for progressive increases in representational 

power. I consider these two conditions below in the context of constructive neural 

networks, systems that alter their architecture by adding computational units as 

well as by modifying connection strengths, a natural interpretation of constructiv- 

ism in terms of neural network learning.’ Of course, such a learning mechanism 

would be of limited value if it did not possess powerful learning-theoretic 

characteristics. Although my main aim is in establishing the plausibility of 

constructivist learning, since this is what Fodor’s arguments are aimed at, I will 

briefly consider these learning-theoretic properties in section 7. 

6. Incorporating structural modifications 

Constructivist models are examples of systems that incorporate the principle of 

non-stationarity, as it is known in the theory of computation, namely the property 

‘Although constructivist networks add units, it is reasonable to assume that synapses are the basic 
computational units of the brain (see Shepherd, 1990) and that constructivist processes will be 

identified with activity-dependent synaptogenesis in neurobiological systems. For a more extensive 
discussion of constructivist learning in neurobiological terms, see Quartz (1993b). 
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that a system may make changes to its underlying mechanism in addition to 

changes to the data structures that mechanism supports (for a discussion of this 

principle in terms of learnability, see Pinker, 1981). An objection to the inclusion 

of this principle, and hence to constructivism, is that it trivializes an explanation 

of learning or development since arbitrary processes may transform the learning 

system into the target state (e.g., Pinker, 1984). This objection amounts to the 

challenge to show that the process by which elements are added to a system are 

not arbitrarily related to the content of the learning episode that invokes them, 

but can be described as a cognitive process of learning, as condition 1 stipulated 

above. 

The best response to this objection lies in the existence of a number of 

constructivist algorithms where the addition of new units is a principled one and 

which confer convergence properties on the networks, although a detailed 

analysis of these is beyond the scope of this paper (see, for example, Fahlman, 

1991; Fahlman & Lebiere, 1990; Frean, 1990; Nadel, 1989; Wynne-Jones, 1993).4 

It should also be noted that one of the best examples of plasticity in neural 

systems, Hebbian plasticity - a neural implementation of associative learning 

(reviewed in Sejnowski & Tesauro, 1989) -was originally proposed by Hebb 

(1949) as a growth algorithm underlying associative learning and the activity- 

dependent construction of cell assemblies. Hebb’s proposals may be viewed as a 

learning algorithm for the activity-dependent construction of neural circuits that 

has a clear interpretation in terms of the associative conditions that are identified 

with processes of learning, although discussion of this point is not possible here 

(see Quartz, 1993b). In fact, the use-dependent addition of structure underlying 

learning is one of the best documented types of neural plasticity, both in 

development and in the mature state as well (e.g., Black, Isaacs, Anderson, 

Alcantara, & Greenough, 1990; reviewed in Greenough & Bailey, 1988). 

Despite the charge of trivialization, inclusion of changes to the underlying 

architecture is not in itself any more liable to introduce arbitrary changes than are 

other forms of plasticity. For example, this objection may also be directed at 

weight modification schemes in that it is equally possible to implement arbitrary 

rules for weight change that are not related to the nature of the input in any 

principled manner. What makes non-stationarity potentially problematic is not 

that it introduces arbitrary changes to a system, but that it incorporates qualitative 

changes to the learning mechanism that may be analytically difficult to evaluate. 

However, as I consider below, these qualitative changes may be of central 

importance in theories of development and may dramatically alter the learning 

capacities of developing systems. 

4For example, Wynne-Jones’s (1993) constructive algorithm uses principal component analysis to 

determine the area of the function space that is least well covered by the hidden units and then splits 
those units along the direction of maximal variance to better cover the space. 
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Non-stationarity has been excluded in a number of developmental studies in 

favor of the methodological principle known as the continuity hypothesis - that 

learning in development is fundamentally like learning in the mature state in 

terms of both the underlying processes and structures (Pinker, 1984; McNamara, 

1982). Although the continuity hypothesis is defended on grounds of parsimony 

(its real defense is more likely to be analytic tractability), it may actually exclude 

a number of important properties of development. For example, one important 

aspect of non-stationarity is that of incremental learning, whereby a system 

increases some resource over time with learning, and which is related to 

constructivist learning. Elman (1991) has demonstrated an important property of 

incremental learning in applications to language acquisition. Specifically, Elman 

(1991) found that networks that start small by limiting some resource, such as 

working memory, could learn the structure of embedded sentences with long- 

distance dependencies, whereas larger networks could not. Briefly, an initially 

restricted network was more sensitive to the low-order statistics in the input data 

than was a larger network, as these resource limitations effectively acted as a filter 

on the input to simplify the initial input to the system. However, as these 

resources increased, the prior learning served as a constraint on subsequent 

learning and the network could effectively use the lower-order statistics it had 

learned as a basis to learn the higher-order statistics.’ 

This sort of learning clearly violates both the continuity hypothesis and the 

related instantaneous learning idealization of Chomsky (1965), but it helps to 

resolve a paradox that surrounds initial resource limitations and learnability. 

While it has been held that initial resource limitations actually make the problem 

of learning more difficult since they weaken the learning capacity of a system 

(e.g., Wexler & Culicover, 1980), Elman’s demonstration illustrates how these 

initial limitations may facilitate learning. It also supports Newport’s (1990) 

interpretation of her experimental findings that children are more efficient 

language learners because of these initial limitations. This, then, illustrates an 

important point regarding non-stationarity: a system that does not initially fully 

express its computational resources may learn in bootstrap fashion by using its 

initially limited resources to learn a subset of some domain that then constrains 

subsequent learning. Were that system to start by fully expressing its resources, it 

would not successfully learn the problem confronting it, but may simply fail by 

overfitting the data, a problem common to large networks (see Fahlman 8~ 

5Elman (1991) trained recurrent networks in which the feedback was initially restricted and then 

increased over training. This had the effect of a sliding temporal window over the network’s access to 

its own states. 
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Lebiere, 1990), for a discussion of incremental learning in the context of 

constructivist networks). 

7. Some learning-theoretic properties of constructivist models 

The previous section illustrated that systems that incorporate non-stationarity 

may have important learning characteristics and that the charge that such systems 

trivialized explanations by introducing arbitrary changes was unfounded. Al- 

though I am most concerned only with demonstrating the plausibility of construc- 

tivism, in this section I briefly consider some of the learning-theoretic properties 

of constructivist models and contrast them with standard PDP models (see 

Quartz, 1993a, for more detail). 

The representational and learning-theoretic properties of constructivist net- 

works fundamentally differ from fixed networks. Perhaps most importantly, PDP 

networks are limited to an a priori defined, fixed hypothesis space, and are, 

therefore, model-based estimators that in complex domains may perform quite 

poorly. While this restriction results in fast learning in cases where an appropriate 

hypothesis space is chosen, it also leads to error in cases where the target 

function, or an acceptable approximation, is not contained in the hypothesis 

space. However, as Baum (1989, p. 203) points out, the fact that some concept F 
is not learnable relative to some representation class G only indicates that the 

wrong representation class may have been chosen, and that “a pragmatic learner 

should be willing to use any class of representations necessary to solve the 

problem”. 

This suggests that it would be advantageous for a system not to be limited to its 

a priori knowledge of some domain. Although constructivist networks have built 

into their initial state some hypothesis space, they are not limited to this 

representation class. Rather, since constructivist networks may build their 

architecture, and therefore representations, as they learn, they have been shown 

(Baum, 1988, 1989) to be “complete” representations, capable of learning any 

concept learnable in polynomial time by any representation that is computable in 

polynomial time, and which escape the NP-completeness results that afflict fixed 

architectures (Blum & Rivest, 1988; Judd, 1988) These NP-completeness results 

bring into serious doubt the ability of fixed networks to learn in polynomial time 

for large problems. 

The demonstration that constructivist networks are “complete” representations 

suggests that the relativization of learning to some particular choice of representa- 

tion to ensure feasibility may be relaxed for the constructivist learner to allow 

learning to be relative to the class of all polynomial computable representations. 

Essentially this maintains, then, that if F is learnable by any representation that 
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can be computed in polynomial time, then F is learnable by a constructivist 

network.6 Hence, by not being limited to some a priori defined, fixed hypothesis 

space, constructivist models can build representations as they learn to come to 

represent any concept learnable in polynomial time. In this sense, constructivist 

models are more general learners in contrast to PDP learners that relativize 

learning to some a priori fixed representation class. 

Although these results point to the theoretical capacities of constructivist 

networks, they do not demonstrate their utility in applications. While constructiv- 

ist networks have not been as extensively studied as standard PDP models, in 

benchmark tests constructivist models significantly outperform standard PDP 

back-propagation networks. For example, Fahlman and Lebiere (1990) examined 

the performance of their constructive cascade-correlation algorithm against 

standard back-propagation on the two-spirals problem, which has as its goal to 

classify training points of two interlocking spirals. They found that their network 

outperformed back-propagation by at least a factor of 10 and also outperformed 

back-propagation on the parity problem. In addition to outperforming PDP 

models, the cascade-correlation model automatically found efficient network 

topologies and showed incremental learning features. Although further com- 

parisons are required, and benchmarks are complicated by the possibility of 

idiosyncratic or non-representative problems, these results suggest that construc- 

tivist algorithms have a number of performance advantages over standard PDP 

models. 

8. A measure of representational power 

One of the obstacles to establishing the plausibility of constructivism was the 

lack of an appropriate quantitative measure of a system’s representational 

complexity that could be reasonably seen as increasing with learning. As I 

mentioned above, since neural networks identify representational properties with 

structural ones, this relation may suggest such a measure. In fact, approximation 

studies of the capacities of neural networks establish a direct relation between the 

ability of a network to approximate some function or concept and the complexity 

of the network that provides such a measure, as I consider below. 

PDP networks are fundamentally limited in that they are model-based 

estimators that may only partially approximate some concept. In contrast, 

networks with the ability to add hidden units as a function of learning can learn 

arbitrarily accurate representations and thus are universal approximators (Hor- 

‘The condition that the representation be computable in polynomial time is an additional 

complexity-based demand that not only is the sample complexity polynomial but the time complexity - 
the time it takes the system to process the samples to arrive at a representation-also scales 

polynomially. 
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nik, Stinchcombe, & White, 1989). The upshot of these approximation studies is 

that networks with the ability to add units at an appropriate rate relative to the 

size of the training set II are capable of consistent (hence learnable) non- 

parametric regression (White, 1990). Although the details are not relevant here, 

in these approximation theory studies, the representational complexity of a 

network is indexed simply by the number of hidden units, q, and, allowing q to 

grow at an appropriate rate relative to the training set size II, it can be shown that 

such a network increases its representational complexity so that it may arbitrarily 

accurately approximate some function. As n increases, the network adds hidden 

units to build successively more powerful concepts until it converges on the target 

concept. 

Hence, we may simply take q, the number of hidden units (or the number of 

units that perform the salient part of the computation), as an expedient measure 

of the representational power of a network that can replace Fodor’s choice of 

logic as this measure, as I consider in more detail below.’ 

9. Conclusions 

As the Valiant model illustrates, and as statistical studies have confirmed 

(Geman et al. 1992), the central problem of learning is perhaps not so much 

learning in the sense of statistical inference, but the more fundamental problem 

confronting a cognitive system is that of constructing appropriate representations 

to serve as the basis for the acquisition of those skills that define the mature state. 

The main promise of constructivism is that it uniquely allows for the structure of 

the learning system’s environment to play a central role in the construction of the 

representations that underlie the system’s ability to learn in that environment. 

The learning-theoretic positions outlined here suggest that this is a maximally 

powerful strategy that escapes the shortcomings of attempting to define these 

representations a priori. Indeed, the prolonged extent of postnatal human 

development, with its corresponding progressive increase in neural complexity, 

suggests that it is a highly adaptive strategy to allow environmental factors to 

directly influence brain structure, as 30 years of neurobiological research has 

suggested (reviewed in Greenough & Bailey, 1988; Juraska, 1990). 

To return to Fodor’s example of representational power, which I stated earlier 

was an important element of his position, it is true that a weaker logic cannot 

represent the primitives of a stronger logic; hence, there must be principled 

discontinuities between such systems. It is these principled discontinuities inher- 

‘From within the PAC framework, a measure of representational power of a class of concepts (or 
architecture) is the Vapnik-Chervonenkis (VC) dimension (see Abu-Mostafa, 1989). I consider only 

the number of hidden units q here to avoid introducing more technical definitions into the discussion 
and since q is a rough bound of the VC dimension. 
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ent in Fodor’s choice of logic as the quantitative measure of a conceptual 

structure’s representational power that appears to make the problem of concept 

acquisition intractable. However, once we abandon the notion that the expressive 

power of a structure must be construed in terms of such a logic, there are natural 

ways to show that more powerful structures may be acquired on the basis of 

simpler ones. For example, by allowing a network to add new connections and 

units as a function of learning, as many constructivist algorithms have explored 

(Fahlman, 1991; Fahlman & Lebiere, 1990; Frean, 1990; Gallant, 1986; Nadel, 

1989; Wynne-Jones, 1993), such a network may extend its representation class 

beyond its initial state to include novel concepts. And, since there is an immediate 

relation between increases in the complexity of a neural network architecture and 

its representational power, indexing representational power by the number of 

hidden units, q (or the number of units that perform the salient part of the 

computation), provides a natural measure to see how increases in the complexity 

of the architecture lead to increases in this measure of representational power. 

Although constructivist learning is not precluded in classical or symbolic architec- 

tures, it is this immediate relation between structure and function in neural 

networks that makes the plausibility of constructivist networks evident by showing 

how structural increases may lead to novel representations. 

A number of empirical issues raised by this discussion remain untouched 

(Quartz, 1993b). However, my main aim in this paper has only been to 

demonstrate the plausibility, or coherence, of the constructivist position. Fodor’s 

argument is a theoretical one, aimed not at an appraisal of the empirical support 

for various models of acquisition, but only at the logical coherence of the 

positions themselves. Thus, the interpretation of constructivism in terms of neural 

networks with the ability to add new connections and units as a function of 

learning represents both a natural interpretation of constructivism in terms of 

possible mechanisms and a logically coherent one. In addition, the theoretical 

results I briefly discussed suggest that constructivist networks are powerful 

learners in contrast to the fundamental limitations of PDP models, which were 

shown to be nativist. However, constructivist class of learners has not been 

extensively explored, in part because of the widely held assumption that they 

were not plausible models. Perhaps with their natural interpretation in terms of 

neural network learning, constructivist models will come to play a more promi- 

nent role in neural network research and in cognitive science. 
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