
Abstract. When judging what caused an event, people do not treat all1

factors equally – for instance, they will say that a forest fire was caused by a2

lit match, and not mention the oxygen in the air which helped fuel the fire.3

We develop a computational model formalizing the idea that causal judgment4

is designed to identify “portable” causes – causes that are likely to generalize5

across a variety of background circumstances. Under minimal assumptions,6

the model is surprisingly simple: a factor is regarded as a cause of an out-7

come to the extent that it is, across counterfactual worlds, correlated with8

that outcome. The model explains why causal judgment is influenced by the9

normality of candidate causes, and outperforms other known computational10

models when tested against an existing fine-grained dataset of human graded11

causal judgments (Morris, A., Phillips, J., Gerstenberg, T., & Cushman, F.12

(2019). Quantitative causal selection patterns in token causation. PloS one,13

14 (8).).14

keywords. causation | causal selection | computational modelling | counter-15

factuals16
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When multiple causes contribute to an event, we tend to discriminate17

among them: for instance, we tend to say that the forest fire was caused18

by the match lit by a careless camper, but we regard the presence of oxygen in19

the air as a mere ‘enabling condition’ or ‘contributing factor’. This suggests20

that we implicitly rank the different causes of an event, as if we computed the21

‘actual causal strength’ of each of them.22

Here we propose a model of how the mind computes actual causal strength.23

Researchers have proposed that cognitive mechanisms for causal judgment24

are well-designed for the problem of identifying ‘portable’ causes, i.e. causes25

that would reliably lead to an outcome, across a wide range of different back-26

ground conditions (see (Lombrozo, 2010; Hitchcock, 2012)). For instance, the27

lit match is a ‘portable’ cause of the forest fire, because across a variety of28

plausible background circumstances, striking a match inside a forest would29

result in a forest fire.30

We formulate this hypothesis as a simple computational theory (Marr,31

1982). Identifying portable causes requires that when one judges how much a32

factor C was causally responsible for an outcome E, one does not focus exclu-33

sively on what actually happened. One also needs to compute the effect that a34

manipulation of C would have had on E in a range of alternative possible situa-35

tions. This suggests a measure of causal strength which is similar to the ‘effect36

size’ measures that scientists use in interpreting the results of an experiment.37

On average, across possible situations, by how many standard deviation units38

can one change the value of E by making a one standard-deviation change in39

C? In many contexts, this is simply equivalent to computing the correlation40

between C and E across the possible situations that we imagined.41

We formally express this theory as a simple algorithm, and show that it42

can explain a wide range of human causal intuitions.43
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1 Model44

We define an algorithm which takes as input an event (e.g. someone lits a45

match, there is oxygen in the air, and the forest catches fire), and delivers46

an actual causal strength score for a candidate cause (e.g. how well the lit47

match qualifies as having caused the forest fire). We assume that the agent48

making a causal judgment possesses a representation of the causal structure49

of the situation she is evaluating (e.g. she knows that lightning a match tends50

to generate fire, unless there is no oxygen in the air). We use the formalism51

of structural equation models to model such representations (see SI for an52

informal introduction, and (Halpern, 2016), for a technical treatment), and53

refer to a specific state of a causal system as a ‘world’. The following algorithm54

generates a causal score kC→E quantifying how well C qualifies as a cause of55

E.56

a. Simulate a large number of worlds by sampling the set of possible57

worlds, according to the prior probabilities of the exogenous variables (i.e.,58

sample worlds in proportion to how likely each world is). For each such world,59

the values of the endogenous variables are then determined naturally according60

to the structural equations. For each variable V in the causal system, compute61

the standard deviation σV of the variable value across all sampled worlds (for62

exogenous variables, this can simply be read off from the variable’s associated63

probability distribution).64

b. For each world generated that way, simulate a counterfactual ‘twin’65

world by making an intervention on C, which sets C to a new, randomly66

sampled value. Then the values of the endogenous variables in this twin world67

are set naturally according to the structural equations.68

c. For each pair of worlds thus generated, compute the specific causal effect69
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of C on E by taking the ratio of the change in the value of E to the change70

in the value of C between the two worlds (∆E
∆C

), and multiplying this ratio by71

the standardizing factor σCσE .72

d. The causal score of C on E is the average of all specific causal effects73

across all pairs of worlds. Formally, we can denote it as kC→E and write it as:74

kC→E =

∑n
i=1(∆E

∆C
)i

n

σC
σE

where n is the number of simulated world pairs.75

The first step of the algorithm generates a large number of possible worlds,76

ensuring that we can look at the effect of C on E across a large number of77

different background circumstances, where these circumstances are represented78

in proportion to how likely they are to arise. The second step looks at each79

of these worlds in turn, asking about the strength of the causal dependence of80

E on C in each world. Our measure of causal dependence is standardized by81

the ratio of the standard deviation of C to the standard deviation of E. This82

standardization is akin to what scientists do when they compute statistical83

measures of effect size such as a Pearson’s r; it allows measures of causal84

effects to be unit-free (so that, e.g., the causal strength of temperature does85

not depend on whether it is measured in Fahrenheit or Celsius). Finally, the86

last step of the algorithm takes the average of all the causal dependence scores87

computed in this way.88

If C and E obey the “no-confounding assumption” (Pearl, 2000), then kC→E89

is simply the correlation between C and E across worlds sampled in step a (we90

prove this for the case of binary variables in the SI). The “no-confounding91

assumption” holds when C has a causal influence on E, E does not have a92

causal influence on C, and no variable has a causal influence on both C and E.93
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Intuitively, when this assumption holds, the relationship between C and E is94

not confounded by third variables, so we can read the causal effect of C on E95

from the correlation between C and E even in ‘observational’ data (i.e. data96

which was generated without performing any intervention) (Pearl, 2000).97

2 Comparison with human causal intuitions98

When judging whether a factor is causal, people are sensitive to its statistical99

normality (i.e. its frequency, or its probability), as well as the statistical100

normality of other factors. The present model parsimoniously explains four101

qualitative effects of normality on human causal judgments, most of which102

have been replicated many times across different contexts. We show below103

that it also provides a good quantitative fit to fine-grained data from a recent104

set of experiments (Morris, Phillips, Gerstenberg, & Cushman, 2019). For105

reasons of space, we also describe the four qualitative effects in the context of106

the Morris et al. (2019) set of experiments, since these experiments exhibited107

all four effects.108

Morris et al. asked participants to read the following vignette:109

A person, Joe, is playing a casino game where he reaches his110

hand into two boxes and blindly draws a ball from each box. He111

wins a dollar if and only if he gets a green ball from the left box112

and a blue ball from the right box. Joe closes his eyes, reaches in,113

and chooses a green ball from the first box and a blue ball from the114

second box. So Joe wins a dollar.115

Participants were asked to rate, on a 1-9 scale, their agreement with the116

statement “Joe’s first choice (where he chose a green ball from the first box)117

caused him to win the dollar”.118
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In a first experiment, participants saw the vignette shown above, which119

describes a conjunctive structure (Joe needs to draw a green ball from the120

first box, AND a blue ball from the second box, in order to win). In a second121

experiment, another set of participants read the same vignette, minimally122

modified so as to depict a disjunctive structure (Joe needs to draw a green123

ball from the first box, OR a blue ball from the second box, in order to win).124

Participants were shown pictures of the two boxes. Across conditions, the125

experimenters systematically varied the proportion of green balls in the first126

box and blue balls in the second box. The proportion of green balls in the127

first box varied from 0.1 to 1, in 0.1 increments; the proportion of blue balls128

in the second box was similarly and independently manipulated. Morris et129

al. (2018, 2019) assessed the fit of prominent existing computational models130

of causal judgment (Icard, Kominsky, & Knobe, 2017; Halpern & Hitchcock,131

2015; Morris et al., 2018; Cheng, 1997; Jenkins & Ward, 1965; Spellman, 1997)132

to their dataset.133

Following (Morris et al., 2018), we generated predictions for two versions of134

our model. The first version is the baseline version of the model. The second135

version is a “normalized” version, generated with the softmax function:136

k̃G→D =
ekG→D

ekG→D + ekB→D

Where kG→D is the baseline causal strength ascribed to the draw of the137

green ball, and kB→D is the baseline causal strength ascribed to the draw of138

the blue ball (Morris et al., 2018). We also considered a baseline and a nor-139

malized version for all the models that are studied in Morris et al. (see Morris140

et al., 2019, 2018 for a description of these models). For each causal structure,141

we computed the predictions of our model by deriving analytical expressions142
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corresponding to the correlation between “Joe draws a green ball” and “Joe143

wins a dollar” in the limit of an infinity of samples (see SI for derivation). We144

studied the performance of each model in each causal structure by comput-145

ing the item-level correlation between a model’s predictions and participants’146

average causal ratings.1147

2.1 Conjunctive structure148

Results are shown in Figure 1. Both the human data and the model exhibit149

two well-known effects of statistical normality on causal judgment. The first150

effect is abnormal inflation: as “drawing green” becomes less likely, causality151

ratings for “drawing green” increase (Hilton & Slugoski, 1986; Kahneman &152

Miller, 1986). The second effect is supersession : as“drawing blue” becomes153

more likely, causality ratings for “drawing green” increase (Kominsky, Phillips,154

Gerstenberg, Lagnado, & Knobe, 2015).155

1R code to reproduce analyses and figures is available in the electronic supplementary

materials.
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Figure 1: Judgments made by the normalized version of the model

in the conjunctive structure, along with average human judgments.

Human data are from Morris et al. (2019), and are standardized on the [0,1]

interval.

Figure 2 shows the fit of each model to the data. The normalized version156

of our model had a marginally better fit than the baseline version (William’s157

t-test, t(97) = 1.88, p = .06), and a better fit than all other models (all158

ts > 6.11, all ps < .001).159
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Figure 2: Fit of each model to human data, conjunctive structure.

2.2 Disjunctive structure160

Results are shown in Figure 3. Both the human data and the model exhibit161

abnormal deflation: as “drawing green” becomes less likely, causality ratings162

for “drawing green” decrease (Icard et al., 2017; Gerstenberg & Icard, 2019;163

Henne, Niemi, Pinillos, De Brigard, & Knobe, 2019). They also exhibit an164

effect, reverse supersession, that had not been identified prior to the study165

by Morris et al.: as “drawing blue” becomes less likely, causality ratings for166

“drawing green” increase.167

We note that the reverse supersession effect is relatively weak in the human168

data, and is mostly driven by cases where “drawing blue” is certain to occur;169

indeed, Kominsky et al. (2015), in a study with lower statistical power, and170

that did not include candidate causes that were certain to occur, were not able171

to find evidence for a reverse supersession effect. High-powered replications of172

the effect are a ripe area for future research.173
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Figure 3: Judgments made by the normalized version of the model

in the disjunctive structure, along with average human judgments.

Human data are from Morris et al. (2019), and are standardized on the [0,1]

interval.

Figure 4 shows the fit of each model to the data. The best performing174

models were the normalized version of our model, both versions of the Icard175

model and the normalized Delta-P model. None of these four models fit the176

data better than any other, all ts < .73, all ps > .47. The next best model was177

the baseline version of our model, which performed less well than the models178

above (all |ts| > 3.69, all ps < .001), but better than all other models (all179

ts > 4.03, all ps < .001).180
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Figure 4: Fit of each model to human data, conjunctive structure.

Morris et al. (2019) also highlight interesting non-linear patterns in their181

data, for both experiments. Our model mostly reproduces these non-linear182

patterns (see SI).183

3 Discussion184

Our simple model provides a normative justification for the complex pattern of185

effects of statistical normality on causal judgment: causal cognition appears186

to be well-designed to identify ‘portable’ causes. Our work also provides a187

normative justification for the hypothesis that causal judgment relies on a188

process which samples counterfactuals according to their normality (Icard et189

al., 2017) 2.190

Another recent measure of actual causal strength, the SAMPLE mea-191

sure (Morris et al., 2018) can be easily derived from the present model. For192

2at least as far as statistical normality is concerned; this could be extended to other types

of normality using recent arguments by (Phillips, Morris, & Cushman, 2019)
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any causal structure in which C and E are binary variables obeying the no-193

confounding assumption, and C is necessary for E, the SAMPLE measure is194

equivalent to the square of kC→E (see SI).195

Many existing measures of actual causal strength are based on the notions196

of necessity and sufficiency (Gerstenberg, Goodman, Lagnado, & Tenenbaum,197

2015; Icard et al., 2017; Morris et al., 2018). Necessity and sufficiency are198

not primitives in our model, but in the special case where we assume binary199

variables, then the ∆E
∆C

term used by the algorithm reduces to a measure of200

sufficiency (when we consider an intervention setting C from 0 to 1) or a201

measure of necessity (for an intervention setting C from 1 to 0): C is sufficient202

(or necessary) for E if ∆E
∆C

= 1.203

Why is causal judgment well-designed to identify portable causes? The204

present results are consistent with several possibilities. Morris et al. (2018)205

recently argued that causal judgment serves to identify our best-bet interven-206

tion if we want to bring about an outcome but do not know the exact state of207

the causal system. Our model is consistent with this argument. On average,208

we can expect that an intervention on C will result in a change of kC→E stan-209

dard deviation units in E for each one standard deviation unit change in C.210

Therefore, if we want to set E to a certain value, we are generally better off211

making an intervention on the variable X with the highest kX→E. However,212

identifying portable causes may also be useful for a broader range of cognitive213

activities, such as prediction or explanation. The proper evolutionary domain214

of causal judgment remains an open question.215

Closer to Marr’s algorithmic level of analysis (Marr, 1982), future research216

should take a closer look at which actual causal strength measure best approx-217

imates human judgments. Our model had the best overall fit to the Morris218

et al. (2019) dataset, but other models (notably Icard et al., 2017) also per-219
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formed well. It will be important to extend this comparison to a wider range220

of experimental setups (see e.g. (Sytsma, 2019) for preliminary evidence that221

differences in study design may influence causal attributions).222

Although very general, our model is not a full theory of causal judgment.223

Just as other models of actual causal strength, it is relatively insensitive to224

the specifics of what actually happened. Imagine that Suzy and Billy throw a225

rock at a bottle, but Suzy’s rock gets there first. Against intuition, the present226

model assigns positive causal strength to “Billy’s rock broke the bottle”, be-227

cause there are possible worlds where Billy’s rock would have made a difference228

to whether the bottle breaks. Future work should integrate the present ideas229

with theories which can handle such cases (e.g. (Halpern & Pearl, 2005)).230
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