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A flower pollination algorithm is proposed based on the hormone modulation mechanism (HMM-FPA) to solve the no-wait
flow shop scheduling problem (NWFSP). This algorithm minimizes the maximum accomplished time. Random keys are
encoded based on an ascending sequence of components to make the flower pollination algorithm (FPA) suitable for the
no-wait flow shop scheduling problem. The hormone modulation factor is introduced to strengthen information sharing
among the flowers and improve FPA cross-pollination to enhance the algorithm global search performance. A variable
neighborhood search strategy based on dynamic self-adaptive variable work piece blocks is constructed to improve the
local search quality. Three common benchmark instances are applied to test the proposed algorithm. The result verifies
that this algorithm is effective.

1. Introduction

The flow shop scheduling problem is a simplified model
of many manufacturing enterprise processes, belonging
to a kind of important combinatorial optimization prob-
lem. The no-wait flow shop scheduling problem is a
scheduling problem developed on the flow shop schedul-
ing problem. In manufacturing, such as chemical industry
manufacturing, smelting, food processing, and pharma-
ceutical manufacturing, the processing of work pieces
cannot be interrupted from start to finish due to
manufacturing craft limitations or storage space. Optimi-
zation scheduling of this kind of process can be
concluded as a solution to the no-wait flow shop schedul-
ing problem. In a more competitive market, optimal pro-
duction planning and scheduling methods can reduce

enterprises’ production costs and improve their competi-
tiveness. However, when the number of work pieces is
over 3, the no-wait flow shop scheduling problem has
been proven to be an NP-hard problem [1]. This prob-
lem has great engineering research value and important
theoretical significance. In the past few decades, many
scholars have put forward several approaches to solve
such problems, which can be divided into three catego-
ries: exact solution, heuristic algorithm, and meta-
heuristic method. The exact solution method includes
the dynamic programming method, branch and bound
method [2], enumeration method, and cutting plane
method. Due to the difficulty of the no-wait flow shop
scheduling problem, the exact solution is only suitable
for problems with relatively small scales. With improve-
ment in the problem size, the time complexity of the
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algorithm increases rapidly. Nagano and Miyata [3]
presented a mechanism that describes in detail how to
construct a heuristic algorithm to solve the no-wait flow
shop scheduling problem. Laha and Chakraborty [4]
developed a constructive heuristic algorithm based on the
job insertion principle. Framinan et al. [5] tackled the
no-wait flow shop problem with a constructive heuristic
algorithm based on an analogy with the objective of min-
imizing makespan. In order to obtain good approximate
solutions, a new constructive heuristic named QUARTS
is proposed by Nagano et al. [6]. With the total flow time
as the criterion, many heuristics were examined by Bonney
and Gundry [7], King and Spachis [8], Nawaz et al. [9],
Rajendran [10], Gangadharan and Rajendran [11], and
Ronconi and Armentano [12]. Grabowski and Pempera
[13] used different local search algorithms to solve the
no-wait flow shop problem for minimizing makespan. A
heuristic algorithm is able to acquire the solutions within
short time, but the solutions are usually worse in quality.

The meta-heuristic algorithm based on swarm optimi-
zation algorithm can acquire the optimal solution or
approximate optimal solution to the no-wait flow shop
scheduling problem within feasible time and space com-
plexity. Considering the no-wait flow shop scheduling
problem with makespan minimization, Aldowaisan and
Allahverdi [14] investigated six heuristics based on simu-
lated annealing (SA) and genetic algorithms (GA). Pan et
al., respectively, used the discrete particle swarm optimiza-
tion algorithm [15], differential evolution algorithm [16],
hybrid discrete particle swarm algorithm [17], artificial
bee colony algorithm [18], and harmony search algorithm
[19] to solve the no-wait flow shop scheduling problem.
The goal was to minimize the maximum accomplishment
time. For the same criterion, Fink and Voß [20] employed
the simulated annealing algorithm and Tabu search algo-
rithm, and Liu et al. [21] introduced a hybrid particle
swarm optimization algorithm based on local search and
self-adaptive learning mechanism. An ant colony optimiza-
tion algorithm that improved the ant colony algorithm
based on local search was applied separately to solutions
for NWFSP [22, 23]. Nagano et al. [24, 25] designed an
algorithm based on the hybrid meta-heuristic evolutionary
clustering search (ECS_NSL). By testing the standard
instances and comparison with algorithms provided by
other literature, ECS_NSL performance is better. Qi et al.
[26] presented a fast local neighborhood search algorithm
(FLNS) with makespan criterion. The experimental results
show that FLNS outperformed IHA, IBHLS, GA-VNS, and
DHS in the solution quality and robustness. Deng et al.
[27] proposed a cooperative evolutionary quantum genetic
algorithm based on the competition mechanism to solve
NWFSP. By maintaining population diversity and a
competition mechanism to balance the development and
exploit algorithm abilities, good solution results were
obtained. Davendra et al. [28] introduced a new discrete
self-organizing migrating algorithm. Through standard
testing instances, it was shown in the statistical results
that the algorithm is better than the heuristic algorithm
in the literature.

FPA is a swarm intelligent bionic algorithm [29, 30]
proposed by Yang et al. in 2012. The algorithm is
highly regarded by scholars due to its simple structure,
few parameter settings, relatively stronger global search
performance, and easy implementation. Many scholars
put forward an improvement method based on the
FPA and popularized into industrial and agricultural
production. Based on the basic FPA, Wang and Zhou
[31] added a neighborhood search strategy and
dimension-by-dimension greedy search method to
improve cross-pollination. In comparison with other
intelligent algorithms, the proposed algorithm is better.
Abdel-Raouf and Abdel-Baset [32] proposed a hybrid
FPA based on a combination particle swarm optimiza-
tion algorithm and FPA to solve the constrained optimi-
zation problem. FPA is applied to solve the economic
load dispatch problem [33–35]. Bekdaş et al. [36] used
FPA to optimize the sizing truss structure. Abdelaziz
et al. [37, 38] used FPA to obtain the optimal capacitor
placement and sizing in distribution systems. They
obtained the solution using combined economic and
emission dispatch. In order to improve the accuracy
and stability of cluster analysis, Wang et al. [39] pro-
posed an FPA cluster analysis method with a bee polli-
nator. As shown in the experimental statistical results,
the algorithm is better than DE, CS, ABC, PSO, FPA,
and k-means algorithms in convergence, cluster accuracy,
and stability performance. In order to solve the image
segmentation problem via multilevel thresholding, Ouad-
fel and Taleb-Ahmed [40] presented an algorithm that
combined social spider optimization (SSO) and FPA.
The results showed that the proposed algorithm outper-
forms the PSO and BAT algorithms. Flower pollen gam-
ete cross-pollination relies on animals like bees and
butterflies; however, this is ignored in information shar-
ing among the flowers in the basic FPA. Thus, the algo-
rithm is inclined to engage in local optimum.

Aiming at minimizing the NWFAP accomplishment
time, the hormone modulation factor is introduced based
on the FPA to realize information sharing and improve
the global search performance. A variable neighborhood
search strategy based on dynamic self-adaptive variable
work piece blocks is constructed to improve the local
search quality. The computational results based on
benchmark instances show the effectiveness of the pro-
posed algorithm.

2. No-Wait Flow Shop Scheduling Problem
Model and Description

Based on the traditional flow shop scheduling problem,
the no-wait flow shop scheduling problem is described
as follows: Assuming that n work pieces need to be proc-
essed on m machines in the same sequences (without any
preemption and interruption). There is a continuous pro-
cess through m machines without interruption when a
work piece is started on the first machine. Here, the pro-
cessing time ti,j of work piece i on machine j is provided.
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At any time, one work piece can be processed on only
one machine and one machine can process only one
work piece. To satisfy the no-wait constraints, on a given

machine, the work piece completion time should be equal
to the work piece start time on the next machine. For the

purpose of minimizing the maximum accomplishment
time, NWFSP can be described by the mathematics
model below:

where π = π1, π2,… , πn is a scheduling sequence of n work
pieces, t πi, k is the processing time required by the job
πi on the machine k, C πi, k is the accomplishment
time of the job πi on the machine k, and π∗ is the
scheduling sequence aiming at the maximum accom-
plishment time minimum.

3. Flower Pollination Algorithm

FPA is a new swarm optimization algorithm based on
flower pollination behavior. The basic thought is as fol-
lows: (i) Each flower is mapped as an individual in the
population. (ii) Cross-pollination is conducted by the
switch probabilityp ∈ 0, 1 . (iii) Self-pollination is con-
ducted at the probability (1 − p).

(1) Cross-pollination. Cross-pollination refers to ani-
mals like bees and butterflies pollinate among
different kinds of flowers using the levy flight
mode. The flower update mode is shown as

xt+1i = xti + δ ⋅ levy λ ⋅ xtbest − xti , 2

where δ is the scaling factor, xti is the flower individ-
ual xi at generation t, xtbest is the current optimal
individual found among all flower individuals at gener-
ation t, and levy λ is the random number subordi-
nated to Levy distribution.

levy λ ~
λΓ λ sin πλ/2

π
⋅

1
s1+λ

  s≫ s0 > 0 3

For calculation convenience, Yang et al. [30] used the
method proposed by Mantegna to calculate the step size s.
The calculation method is shown below:

s =
u

v 1/λ , u~N 0, σ2 , v~N 0, 1 ,

σ =
Γ 1 + λ × sin π × λ/2
Γ 1 + λ /2 ⋅ λ ⋅ 2 λ−1 /2

1/λ

,
4

where λ = 3/2 and Γ λ is a standard gamma function.

(2) Self-pollination. Self-pollination simulates close-
distance pollination among the same species of
flowers. The pollination method is shown below:

xt+1i = xti + ε ⋅ xtj − xtk , 5

where xti is the flower individual xi at generation t, ε is the
random number subordinated to uniform distribution in
[0,1], and xtj and xtk are the different flower individuals.

4. FPA Based on the Hormone
Modulation Mechanism

4.1. Coding of the Algorithm. A job-permutation-based
encoding scheme has been widely used in solving the no-
wait flow shop scheduling problem. The job scheduling prob-
lem is discrete; it is impossible to use the standard FPA
encoding scheme to directly express the sequence of work
pieces. A random key coding principle based on the work
piece ascending order is applied in this paper to realize the
reflecting relationship between individual flowers and the

C π1, k = 〠
k

j=1
t π1, j , k = 1, 2,… ,m,

C πi, k = C πi−1, 1 + 〠
k

j=1
t πi, j + Δ πi , i = 2, 3,… , n ; k = 1, 2,… ,m,

Δ πi =max 0, max C πi−1, k − C πi−1, 1 − 〠
k−1

j=1
t πi, j , 2 ≤ i ≤ n, 2 ≤ k ≤m,

π∗ = arg C πn,m →min,

1
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scheduling sequence. Let the solution vector be xi = x1i , x2i ,
… xji … , xni , where there are two meanings for each vector

xji including its own value xji and the sequence number j
representing the value of the new generating sequence. The
process from a real vector of flower individual to the work
pieces’ sequence is as follows: Each dimension vector value
of xi is sequenced according to the ascending sequence prin-
ciple; thus, θi = θ1i , θ

2
i ,… θki … , θni . The sequence of work

piece πi,θki
can be acquired through (6). A case on transforma-

tion from flower individual to sequence of work piece is pro-
vided in Table 1.

πi,θki
= j 6

4.2. Population Initialization. The quality of the initial popu-
lation is significantly affected by the intelligent swarm opti-
mization algorithm solution result. In order to ensure initial
population diversity and improve the algorithm convergence
velocity, the NEH heuristic algorithm is applied to acquire
the first solution to the initial population. The remaining ns
ize − 1 (nsize is the size of population) solutions to the initial
population randomly emerge.

4.3. The Cross-Pollination Operator Based on Hormone
Modulation Mechanism. In standard flower pollination algo-
rithm cross-pollination, the update of flower individuals is
determined only by the current best solution. However, the
solution is greatly influenced by the other flowers around it.
Meanwhile, the flowers can be responsive to the surrounding
flowers and adjusts itself in real time. Thus, inspired by hor-
mone modulation mechanism, FARHY [41] discovered a
general changing principle of biological hormone secretion:
monotonicity and nonnegativity. The ascending and declin-
ing principles of hormone secretion abide by the Hill charac-
teristic function, which is shown in

f up g =
gn

tn + gn
, 7

f down g =
tn

tn + gn
, 8

where t t > 0 and g refer to the independent variable and
threshold of the function, respectively. n n ≥ 1 is the coeffi-
cient of the Hill function. Setting the hormone and regulatory
hormone as x and y, respectively, the relationship between

the velocity vx of hormone secretion x and the concentration
cy of regulatory hormone y is shown below:

vx = α ⋅ f up,down cy + vx0, 9

where vx0 and α are the basic secretion velocity and common
hormone coefficient, respectively.

Gu et al. [42] designed a hormone modulation mecha-
nism and achieved great effect. In this paper, the hormone
modulation mechanism is introduced into the FPA algo-
rithm on the original cross-pollination to give the flower
update method better global pollination performance. The
flower update method is shown below:

xt+1i = xti + δ ⋅ levy λ ⋅ xtbest − xti +Hf ⋅ rand n 0, dim ,
10

where rand n 0, dim can satisfy the dim dimension random
number in standard Gaussian distribution and H f is the
hormone regulatory function as shown in

H f =

ar tan
f avg − f i

2

fmax − fmin
2 + f avg − f i

2 , f i < f avg

ar tan
fmax − fmin

2

fmax − fmin
2 + f i

2 , f i ≥ f avg,

11

where f i is the flower fitness value xi, and fmax, fmin, and f avg
are the maximum fitness value, the minimum fitness value,
and the average fitness value, respectively, of nt flowers that
are closest to the flower xi in the current population. The
solution method is shown in Algorithm 1.

According to the regulation in (11), the local location of
flower xi is better whenf i ≥ f avg. So fewer adjustment ranges
should be conducted to the original flower. The local location
of flower xi is worse whenf i < f avg. The endocrine systems
make the flower xi move to a better location by distributing
more hormones.

4.4. The Variable Neighborhood Search of Dynamic Self-
Adaptive Variable Work Piece Blocks. As a specific schedul-
ing problem, the no-wait flow shop scheduling problem
solutions are difficult and easily trapped into local opti-
mum. The local search improvement can enhance the
search performance for the swarm intelligent algorithm
[43]. Hansen and Mladenović [44] proved that the prob-
ability of obtaining the optimal solution through system-
atic transformation of the neighborhood structure is
higher than that from search results using a single neigh-
borhood structure. A variable neighborhood search based
on dynamic self-adaptive variable work piece blocks for
local search is constructed in this paper. For a solution
r = r 1 , r 2 ,… , r n , the local search process in this
paper is described in Algorithm 2.

Table 1: Transformation from a flower individual xi to sequence of
work piece πi.

Dimension j 1 2 3 4 5

xji 3.56 2.23 −0.29 1.48 −2.97

θki −2.97 −0.29 1.48 2.23 3.56

πi,θki 5 3 4 2 1
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Compared with the traditional swap and insert neighbor-
hood search methods, the variable neighborhood search
strategy with dynamic self-adaptive variable work piece
blocks can make the algorithm able to search in a
broader search space. This increases the probability of
acquiring better solutions. In early iterations, the algo-
rithm has good global search ability due to the relatively
large size of the work piece blocks. With increasing iter-
ations, the size of the work piece blocks step is adjusted
dynamically, which makes the algorithm possess better
local search ability.

4.5. Process of Solutions. The detailed procedure for the pro-
posed algorithm is shown in Algorithm 3.

5. Algorithm Simulation and Experimental Test

5.1. Test Settings. In order to testify the performance of the
proposed algorithm for solving NWFSP, we conducted

experiments using three common benchmark problems:
(i) 8 small-scale instances provided by Carlier [45]:
Car1 to Car8 that consist of eight problem instances with
small job and machine sizes but large processing time;
(ii) 21 instances provided by Reeves [46]: Rec01 to
Rec41 that have 21 different problems with 20~75 work
pieces and 5~20 machines; and (iii) 120 large-scale
instances provided by Taillard [47]: Ta001 to Ta120
including 120 problem instances with 12 subsets of differ-
ent sizes, ranging from 20 work pieces and 5 machines to
500 work pieces and 20 machines. In order to avoid the
influence of random factors, each test instance runs inde-
pendently 20 times. The algorithm in this paper was
tested using Matlab 2016a coding on the platform with
Win 10, Intel Core i5-4210U 2.4GHZ, and 4GB memory.

To compare the results obtained from the experiments,
the relative deviation (RD) between solutions from relative
algorithms and the best known results up to now were col-
lected. BRD, ARD, and WRD, respectively, refer to the

Step1: for k = 1:size
Step2: dist k = xk − xi  %xi is the current solution
Step3: end for
Step4: Set dist array in order according to the ascending sequence.
Step5: Select the minimum nt flower locations, and record them as index1, index2,… , indexnt .
Step6: fmax = max f it xindex j , j ∈ 1, nt
Step7: fmin = min f it xindex j , j ∈ 1, nt
Step8: f avg = 1/nt ⋅ ∑

nt
j=1 f it xindex j

Step9: if f i < f avg
Step10: xi ← xi + δ ⋅ levy λ ⋅ xbest − xi + ar tan f avg − f i

2/ fmax − fmin
2 + f avg − f i

2 ⋅ rand n 0, dim
Step11: else
Step12: xi ← xi + δ ⋅ levy λ ⋅ xbest − xi + ar tan fmax − fmin

2/ f max − fmin
2 + f i

2 ⋅ rand n 0, dim
Step13: end if.

Algorithm 1: The pseudo code of the cross-pollination operator based on hormone modulation mechanism.

Step1: Calculate the accomplishment time Cmax rbest of the current optimal solution (rbest).
Step2: Calculate the step.

step← max step −
iter

iter max
⋅max step ,

where iter is the iteration, iter max is the largest iteration,max step is the maximum of work piece blocks, and step is the size of current
work piece blocks.
Step3: Generate s ∈ 1, n (random location), and delete consecutive step work pieces in rbestfrom location s to form a module.
The deleted module is set to be r = r 1 , r 2 ,… , r n , and the remaining work pieces form the sequence r′ r′ 1 , r′ 2 ,
… , r′ n − step .
Step4:for k = 1:step
Step5: Successively insert r k into corresponding location in r′.
Step6: keep the result of the best location.
Step7: end.
Step8: Acquire a new solution r′. If Cmax rbest > Cmax r′ , rbest = r′.
Step9: If iter < iter max, iter = iter + 1, then turn to Step 3. Or else, stop the algorithm.

Algorithm 2: The pseudo code of variable neighborhood search of dynamic self-adaptive variable work piece blocks.
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optimal relative deviation, average relative deviation, and the
worst relative deviation. The RD, BRD, ARD and WRD are
calculated as follows:

RDi =
Ci − C∗

C∗ ∗ 100%,

BRD =
Cbest − C∗

C∗ ∗ 100%,

ARD =
1
R
〠
R

i=1

Ci − C∗

C∗ ∗ 100%,

WRD =
Cworst − C∗

C∗ ∗ 100%,

12

where Ci is the solution generated by a specific algorithm,
R is the run times, C∗ is the best solution found, Cbestis
the best solution over R runs, and Cworst is the worst solu-
tion over R runs. Obviously, the smaller the ARD value,
the better the algorithm’s performance is. In addition,
ACT [48, 49] and ARPT [48, 49] are also recorded to
indicate the CPU time efforts.

ACTi =
1
I
〠
I

i=1
Ti,h, ∀i = 1,… I,

ARPTh =
1
I
〠
I

i=1

Ti,h −ACTi

ACT
+ 1 , ∀i = 1,… I, h = 1,… , H,

13

where Ti,h is the CPU time required by the algorithm h in
instance i, I refers to the number of instances, and H is the
number of swarm intelligent algorithms.

This section includes four subsections. The first part dis-
cusses the influence of the work piece block size. Secondly,
comparison of particle swarm optimization algorithm
(PSO), cuckoo search algorithm (CS), flower pollination
algorithm (FPA), and the proposed algorithm will be intro-
duced. Third is the comparison of HMM-FPA with some
other existing intelligent algorithms. Finally, for solving the
large-scale problems, 120 Taillard instances are executed to
identify the effectiveness of the proposed algorithm.

5.2. Analysis on Simulation Results

5.2.1. Discussion on the Settings of the Size of Work Piece
Blocks. In order to discuss the influence of the work piece
block size in the neighborhood search of the proposed
algorithm, seven Rec instances (Rec01, Rec07, Rec13,
Rec19, Rec25, Rec31, and Rec37) and eight Car instances
(Car1~Car8) are used to test. For the Car instances, the
size of work piece blocks step is, respectively, set as 1, 2,
3, 4, 6, and the dynamic self-adaptive variable work piece
blocks (DSVWB). The step is, respectively, set as 1, 3, 5, 8,
10, and DSVWB for the seven Rec instances. Here, the
values of C∗ for Car instances and Rec instances are the
optimal solution found so far.

It is clear from Tables 2 and 3 that the proposed algo-
rithm with DSVWB is the winner, since the ARD and
WRD obtained by the DSVWB are better than or equal to
those obtained by other step. The larger the work piece block
size is, the better the algorithm search performance is. How-
ever, when the size of the work piece blocks surpasses a cer-
tain value, the larger the size is, the worse the search
performance of the algorithm is.

As for the causes, the neighborhood search in this paper
can be essentially regarded as a disturbance operation that

Step 1. Objective function f xi = C xi , x = x1, x2,… , xn .
Step 2. Initialize the parameters of nsize, p, iter max et al.
Step 3. Generate the first flower individual by NEH heuristic algorithm, and generate (nsize − 1) flower individuals randomly to con-
struct the initial population.
Step 4. Evaluate its fitness f it xi = f xi , and find the best solution xbest.
Step 5. while (stopping criterion is not satisfied).
Step 6. for i = 1 to nsize
Step 7. Generate a random number r that obey the uniformly distribution.
Step 8. if r< p.
Step 9. Perform the cross-pollination operator based on hormone modulation mechanism (described in Algorithm 1).
Step 10. else
Step 11. Perform the self-pollination operator.

xi ← xi + ε ⋅ xj − xk j ≠ k
Step 12. end if.
Step 13. Calculate the fitnessf it xi of the new flower gamete xi.
Step 14. if f it xi > f it xi , update xi with xi.
Step 15. if f it xi > f it xbest , update xbest with xi.
Step 16. end for
Step 17. Perform the variable domain search of dynamic self-adaptive variable work piece blocks operator for the best flower indi-
vidual xbest (described in Algorithm 2).
Step 18.end while

Algorithm 3: The pseudo code of HMM-FPA.
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can easily remove the current solution to other neighboring
areas with partial characteristics of the current solution.

The size of disturbance step exerts greater effects on algo-
rithm performance. An excessively long disturbance step can
easily lead to loss of great characteristics in the current solu-
tion, similar to the random emergence process. If the distur-
bance step is excessively short and the movement range of the
current solution is excessively small, it is easier to fall into the
local optimum position.

Figures 1 and 2 are the line charts of the average relative
error (ARE) for solving Car instances and Rec instances. It
can be indicated from Figures 1 and 2 that ARE solved by
DSVWB is equivalent to or better than the results solved by

other fixed steps. The size of oversized or undersize work
piece blocks will decrease the local search ability of the neigh-
borhood search. Apparently, taking the time complexity of
the algorithm, it is reasonable to adopt the dynamic self-
adaptive variable work piece block size, which not only bal-
ances the local and global search ability of the algorithm
but also reduces the algorithm calculation time.

5.2.2. Comparison of PSO, CS, FPA, and HMM-FPA. Four
algorithms were selected as contrast algorithms in the simu-
lation experiment to evaluate the proposed algorithm’s per-
formance, that is, particle swarm optimization algorithm
(PSO) [15], cuckoo search algorithm (CS) [50], and flower
pollination algorithm (FPA) [29], respectively. Eight Car
instances (Car1~Car8) were used in this test.

The same coding method is applied to the four algo-
rithms as shown in Section 4.1. The algorithm parameter set-
tings are shown below:

The flower pollination algorithm (FPA) has the size of
the population nsize = 50, selection probability of pollination
method p = 0 8, and the largest iterations iter max = 5000.

The particle swarm optimization algorithm (PSO) has
the population size nsize = 50, the iterations iter max =
5000, linear inertia wmax = 0 9 and wmin = 0 4, learning factor
C1 = C2 = 1 4692, and search range of particles xmax = 4 and
xmin = −4.

The cuckoo search algorithm (CS) has the population
size nsize = 50, pa = 0 25, λ = 1 5, and the largest iterations i
ter max = 5000.

The flower pollination algorithm based on hormone
modulation mechanism (HMM-FPA) has the population
size nsize = 50, pollination method selection probability
p = 0 8, the largest work piece blocks max step = 4, and
the largest iterations iter max = 5000.

The statistical results of 20 independent runs for the four
algorithms are listed in Table 4, including the best relative
deviation (BRD), the average relative deviation (ARD), and
the average CPU time (Tavg) for finding the optimal solu-
tions in the iterations. Here, the values of C∗ for Car1~Car8
are the optimal solution found so far. In order to be able to
perform a fair comparison among swarm intelligent algo-
rithms, we use ARPT as a measure of the computational
effort. Results in terms of average CPU time and the ARPT
are shown in Table 4 (the last two rows represent the average
CPU time and the ARPT, resp.).

It can be indicated from Table 4 that PSO can only
acquire the optimal solution in four instances including Car
1, Car 6, Car 7, and Car 8. The optimal solutions to test
instances of Car 2, Car 4, and Car 5 cannot be acquired by
basic cuckoo algorithm. The basic FPA contributes nothing
to test instances of Car 2, Car 3, and Car 4. The proposed
algorithm can acquire all the optimal solutions to Car
instances and is better in BRD and ARD than the other three
swarm optimization algorithms.

The average CPU time and APRT of the HMM-FPA
algorithm is less than that of the CS algorithm, but more than
that of the PSO and the standard FPA algorithm. However,
its solution accuracy is apparently better than that of the
other three swarm intelligent algorithms. This demonstrates
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that the global searching ability of HMM-FPA is effective and
HMM-FPA is suitable for solving NWFSP.

In the basic particle swarm optimization algorithm, the
particle position update is determined by the particle at the

current optimal position and the historical optimum position
that the particle has experienced, neglecting the influence of
the particles at the common nonoptimal position (the parti-
cles may be near the global optimum position). The algo-
rithm is easily trapped into the local optimum position. In
selecting the host bird nest position, a kind of random search
method with levy distribution is applied in the cuckoo algo-
rithm. It has been proven that the cuckoo algorithm is better
than the basic particle swarm optimization algorithm [50] in
searching for the global optimum solution. Thus, in solutions
to NWFSP, the cuckoo algorithm is better than the basic par-
ticle swarm optimization algorithm. However, similarly, the
two algorithms ignore the influence of other neighboring
particle positions on themselves.

In the HMM-FPA algorithm mentioned in this paper,
when a single individual flower conducts cross-pollination
with the help of animal vectors like bees and butterflies,
the influence of neighboring flowers on itself and the irrita-
bility of the individual towards the flower’s status at other
positions are both considered. Furthermore, certain adjust-
ment is appropriately conducted on its position. For the pro-
posed algorithm, the flower positions are updated by (10),
and the neighboring individual flower factors are sufficiently
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considered. When f i < f avg, the flower performance of flower
i is better (in a better position), leading to a smaller adjust-
ment range in the flower position. Conversely, the perfor-
mance of flower i is worse (in a worse position), leading to
a larger adjustment range in the flower position.

The HMM-FPA sufficiently considers the flower infor-
mation at the optimal position and neighboring flower posi-
tions, which combines the global expansion ability and local
development ability, so the solution performance of the pro-
posed algorithm is apparently better than that of other swarm
intelligent algorithms.

Figure 3 is the statistical result from the makespan for
PSO, CS, FPA, and HMM-FPA. It is shown that the
makespan of the HMM-FPA is the least except Car1 and
Car6 (the four algorithms can search the global optimal
theoretical value).

Figures 4–11 are the statistical results from box diagrams
for PSO, CS, FPA, and HMM-FPA. It can be seen from
Figures 4–11 that the stability of HMM-FPA is better than
the compared algorithm for solving Car instances, which
illustrates the good robustness.

5.2.3. Comparison of HMM-FPA and Existing Intelligent
Algorithm. In order to further verify the algorithm perfor-
mance, the proposed algorithm is compared with other
intelligent algorithms. Comparisons are carried out with
sex typical methods from the literatures, including the
discrete particle swarm optimization algorithm (DPSO)
[51], improved iterated greedy algorithm with a Tabu-
based reconstruction strategy (TMIIG) [52], improved iter-
ated greedy algorithm (IIGA) [53], DE-based approach
(HDE) [54], effective hybrid particle swarm optimization
(HPSO) [21], and GA [55]. Results of DPSO, TMIIG,
IIGA, HDE, HPSO, and GA come from the corresponding
literatures. The 21 Rec problems (Rec01~Rec41) are used
as test instances. Comparison results are shown in
Table 5. Table 5 shows that IMIIG only conducts statistics
on the ARD perspective without statistics on BRD and
Tavg. GA only conducts statistics on BRD.

For BRD, the accuracy of results acquired from
HMM-PFA is generally better than that from other algo-
rithms. The advantages of some instances are more obvi-
ous, such as rec 31, rec 33, and rec 41. The average BRD
value acquired from HMM-PFA is, respectively, fewer
than that of DPSO, IIGA, HPSO, HDE, and GA by
0.03, 0.03, 0.55, 0.04, and 4.54. It can be concluded that
the BRD performance of the proposed algorithm is

9200
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Figure 8: ANOVA tests of Car5.
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Figure 9: ANOVA tests of Car6.
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Figure 12: Gantt chart of the solution for Rec07.
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Figure 13: Gantt chart of the solution for Rec27.

Table 6: Comparison of results based on Taillard’s benchmark instances.

n ×m
ACO-SA IIGA HMM-PFA

BRD ARD Tavg BRD ARD Tavg BRD ARD Tavg

20 × 5 0 0 0.28 — 0 — 0 0 0.0161

20 × 10 0 0.320 0.44 — 0.01 — 0 0 0.021

20 × 20 0 0.493 0.56 — 0.02 — 0 0 0.026

50 × 5 0.346 0.852 1.79 — 1.34 — 0.22 0.37 0.888

50 × 10 0.145 0.885 2.96 — 0.71 — 0.04 0.18 1.584

50 × 20 0.095 1.770 3.18 — 0.58 — 0.05 0.37 2.202

100 × 5 0.847 2.899 30.20 — 2.78 — 0.62 1.13 25.974

100 × 10 0.607 1.781 57.23 — 1.7 — 0.47 0.97 48.559

100 × 20 0.599 1.546 61.26 — 1.46 — 0.41 0.69 73.573

200 × 10 2.009 2.695 189.17 — 2.49 — 1.26 1.49 162.453

200 × 20 1.633 2.190 200.82 — 2.1 — 1.04 1.35 221.214

500 × 20 — — — — 2.94 — 2.10 2.31 883.166

Average 0.571 1.403 49.808 — 1.199 (1.344)∗ — 0.374 (0.518)∗ 0.595 (0.738)∗ 48.774 (118.306)∗

∗ is the statistical results for the 120 instances in 500 × 20 scale.
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Table 7: The HMM-PFA statistical result to solve 120 Taillard’s benchmark instances.

n ×m Instance Opt BRD ARD Tavg n ×m Instance Opt BRD ARD Tavg

20× 5

Ta001 1486 0 0 0.016

100× 5

Ta061 6361 0.57 1.07 25.557

Ta002 1528 0 0 0.017 Ta062 6212 0.90 1.13 26.021

Ta003 1460 0 0 0.016 Ta063 6104 0.48 0.87 25.998

Ta004 1588 0 0 0.016 Ta064 5999 0.93 1.50 26.59

Ta005 1449 0 0 0.017 Ta065 6179 0.44 0.82 25.709

Ta006 1481 0 0 0.016 Ta066 6056 0.18 0.76 26.054

Ta007 1483 0 0 0.016 Ta067 6221 0.37 1.21 26.121

Ta008 1482 0 0 0.016 Ta068 6109 1.34 1.99 25.993

Ta009 1469 0 0 0.016 Ta069 6355 0.90 1.34 25.578

Ta010 1377 0 0 0.015 Ta070 6365 0.06 0.61 26.121

20× 10

Ta011 2044 0 0 0.021

100× 10

Ta071 8055 0.62 0.81 47.664

Ta012 2166 0 0 0.02 Ta072 7853 0.45 1.88 50.001

Ta013 1940 0 0 0.02 Ta073 8016 0.41 0.95 49.654

Ta014 1811 0 0 0.021 Ta074 8328 0.41 0.75 49.721

Ta015 1933 0 0 0.022 Ta075 7936 0.38 0.93 48.332

Ta016 1892 0 0 0.021 Ta076 7773 0.68 0.86 49.024

Ta017 1963 0 0 0.021 Ta077 7846 0.43 0.75 47.238

Ta018 2057 0 0 0.021 Ta078 7880 0.56 1.15 47.967

Ta019 1973 0 0 0.022 Ta079 8131 0.30 0.85 48.054

Ta020 2051 0 0 0.021 Ta080 8092 0.46 0.74 47.937

20× 20

Ta021 2973 0 0 0.025

100× 20

Ta081 10,675 0.09 0.21 75.345

Ta022 2852 0 0 0.026 Ta082 10,562 0.94 1.32 72.49

Ta023 3013 0 0 0.026 Ta083 10,587 0.73 0.89 70.376

Ta024 3001 0 0 0.026 Ta084 10,588 0.30 0.63 73.298

Ta025 3003 0 0 0.025 Ta085 10,506 0.10 0.42 71.439

Ta026 2998 0 0 0.025 Ta086 10,623 0.57 0.76 76.296

Ta027 3052 0 0 0.027 Ta087 10,793 0.29 0.53 74.387

Ta028 2839 0 0 0.027 Ta088 10,801 0.45 0.91 72.363

Ta029 3009 0 0 0.027 Ta089 10,703 0.14 0.53 75.832

Ta030 2979 0 0 0.026 Ta090 10,747 0.47 0.73 73.901

50× 5

Ta031 3160 0.28 0.36 0.892

200× 10

Ta091 15,225 1.22 1.48 159.072

Ta032 3432 0.26 0.53 0.902 Ta092 14,990 0.75 0.95 165.921

Ta033 3210 0.09 0.27 0.912 Ta093 15,257 1.07 1.40 162.209

Ta034 3338 0.30 0.50 0.89 Ta094 15,103 0.70 0.89 167.011

Ta035 3356 0.60 0.72 0.89 Ta095 15,088 1.47 1.79 158.001

Ta036 3346 0.00 0.04 0.914 Ta096 14,976 1.65 1.85 159.928

Ta037 3231 0.09 0.29 0.911 Ta097 15,277 1.07 1.23 163.785

Ta038 3235 0.12 0.17 0.799 Ta098 15,133 1.37 1.62 164.902

Ta039 3070 0.33 0.52 0.85 Ta099 14,985 1.77 1.98 158.397

Ta040 3317 0.15 0.26 0.922 Ta100 15,213 1.57 1.75 165.299

50× 10

Ta041 4274 0.00 0.04 1.568

200× 20

Ta101 19,531 0.65 0.77 220.632

Ta042 4177 0.05 0.21 1.57 Ta102 19,942 1.44 1.79 217.997

Ta043 4099 0.00 0.09 1.587 Ta103 19,759 1.16 1.31 218.318

Ta044 4399 0.05 0.14 1.563 Ta104 19,759 1.22 1.66 225.638

Ta045 4322 0.05 0.37 1.569 Ta105 19,697 0.90 1.05 237.689

Ta046 4289 0.02 0.18 1.601 Ta106 19,826 0.94 1.31 209.396

Ta047 4420 0.00 0.13 1.602 Ta107 19,946 0.87 1.63 217.332

Ta048 4318 0.07 0.11 1.59 Ta108 19,872 1.37 1.62 219.744
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superior to the comparison algorithms. For the average
ARD values, the quality of solutions acquired from
HMM-PFA is better than that of other algorithms, which
illustrates that HMM-PFA can effectively solve NWFSP
with good robustness.

The statistical results on the last two lines in Table 5 show
that the average CPU time and ARPT of HMM-PFA are bet-
ter than that of HPSO, HDE, and TIIIG, but slightly inferior
to that of DPSO and IIGA algorithms. Comprehensive anal-
ysis shows that the dynamic self-adaptive variable work piece
block (DSVWB) neighborhood search increases the time
complexity in the HMM-PFA search process. However, from
the BRD and ARD average, it can be concluded that HMM-
PFA is significantly better than the other 6 algorithms.

Figures 12 and 13 are the Gantt charts for the optimal
results obtained using HMM-FPA for Rec07 and Rec27.

All in all, by applying the hormone modulation mecha-
nism and the dynamic self-adaptive variable work piece block
strategy, the HMM-PFA search quality can be enhanced, and
the global search exploration and the local search exploita-
tion can be well balanced. HMM-PFA is another effective
method for solving no-wait flow shop scheduling problems
with good quality.

5.2.4. Comparison for the Large-Scale Instances. Taillard’s
benchmark instances are used to test HMM-PFA algorithm
performance for solving the large-scale no-wait flow shop
scheduling problem. The data files for these instances are
downloaded from the website http://mistic.heig-vd.ch/
taillard/problemes.dir/ordonnancement.dir/
ordonnancement.html. Taillard’s benchmark instances
include 120 problems. According to the scale of the instances,
they are divided into 12 groups, with 10 in each group. The
proposed algorithm is compared with the ACO-SA [56] algo-
rithm and IIGA [53] algorithm. The ACO-SA algorithm only
performed the test of the first 110 instances (Ta001–Ta110)
and did not test the 10 instances in 500 × 20 scale (Ta111–
Ta120). Therefore, the statistical results for the 120 instances
in 500×20 scale are contained in Table 6, marked with “∗”.
From the statistical results in Tables 7 and 6, we can find that
without the statistics for the instances in 500×20 scale, the

BRD and ARD of the HMM-PFA algorithm are better than
those of the ACO-SA algorithm. Besides, the HMM-PFA
algorithm has less average CPU time and ARPT than the
ACO-SA algorithm. Compared with the IIGA algorithm,
we can find that the ARD of the HMM-PFA algorithm is bet-
ter. The results from the above analysis indicate that the
HMM-PFA algorithm is effective in solving the large-scale
no-wait flow shop scheduling problem.

6. Conclusion

A flower pollination algorithm based on the hormone
modulation mechanism is designed for NFWSP. The pro-
posed method uses a variable neighborhood search strat-
egy based on dynamic self-adaptive variable work piece
in the local search. The application of improvement on
cross-pollination operators in flower pollination algorithm
by hormone modulation mechanism is introduced, which
considers information sharing among the flowers. The
benchmark instances for NWFSP are used to conduct test
experiments on the targeted algorithm. Compared with
other swarm optimization algorithms, the solution quality
of the proposed algorithm in this paper is apparently bet-
ter than the other algorithms, which sufficiently testify the
algorithm effectiveness.

Future extensions will be conducted in the following
directions. First, the proposed algorithm will be used to solve
other complex flow shop scheduling problems (the limited
buffer permutation flow shop scheduling problem, the block-
ing flow shop problem, and the no-idle flow shop scheduling
problem). Secondly, we can combine the hormone modula-
tion mechanism with other intelligent algorithms for solving
job (or flexible) shop scheduling problems. Furthermore, we
can also use the HMM-PFA to solve optimization problems
based on sequencing (e.g., vehicle routing problem and trav-
eling salesman problem).

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Table 7: Continued.

n ×m Instance Opt BRD ARD Tavg n ×m Instance Opt BRD ARD Tavg

Ta049 4155 0.00 0.15 1.584 Ta109 19,784 1.08 1.20 216.655

Ta050 4283 0.16 0.37 1.601 Ta110 19,768 0.80 1.23 228.738

50× 20

Ta051 6129 0.00 0.11 2.195

500× 20

Ta111 46,121 1.96 2.20 873.905

Ta052 5725 0.00 0.18 2.221 Ta112 46,627 1.65 1.69 878.009

Ta053 5862 0.00 0.15 2.199 Ta113 46,013 2.12 2.54 890.675

Ta054 5788 0.24 0.42 2.198 Ta114 46,396 1.52 1.65 897.432

Ta055 5886 0.00 1.77 2.205 Ta115 46,251 2.07 2.33 870.002

Ta056 5863 0.12 0.20 2.208 Ta116 46,490 2.17 2.45 896.329

Ta057 5962 0.12 0.25 2.197 Ta117 46,043 1.96 2.15 869.428

Ta058 5926 0.02 0.20 2.199 Ta118 46,368 1.63 1.80 877.917

Ta059 5876 0.00 0.22 2.195 Ta119 46,240 3.76 3.92 879.013

Ta060 5957 0.03 0.22 2.199 Ta120 46,292 2.18 2.36 898.953
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