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Abstract. The goal of this paper is to present a new reconstruction of Aris-
totle’s assertoric logic as he develops it in Prior Analytics, Α1-7. This re-
construction will be much closer to Aristotle’s original text than other such
reconstructions brought forward up to now. To accomplish this, we will not
use classical logic, but a novel system developed by Ben-Yami (2004, 2014)
called ‘QUARC’. This system is apt for a more adequate reconstruction since
it does not need first-order variables (‘x’, ‘y’, . . . ) on which the usual quanti-
fiers act – a feature also not to be found in Aristotle. Further, in the classical
reconstructions, there is also the need for binary connectives (‘∧’, ‘→’) that
don’t have a counterpart in Aristotle. QUARC, again, does not need them ei-
ther to represent the Aristotelian sentence types. However, the full QUARC is
also not called for so that I develop a subsystem thereof (‘QUARCAR’) which
closely resembles Aristotle’s way of developing his logic. I show that we can
prove all of Aristotle’s claims within this systems and, lastly, how it relates to
classical logic.
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1 Introduction
The logic of Aristotle has been the topic of many intense studies. In particular,
Łukasiewicz (1957) has developed an axiomatic system that is supposed to be a
proper representation of Aristotle’s logic (as has, following him, Patzig 1968). This
approach has been widely criticized and been replaced by the interpretation that
Aristotle’s logic constitutes a natural deduction system; the main proponents of this
interpretation are Corcoran (1972, 1974a, 1974b) and Smiley (1973) who give their
own reconstructions.

However, the proposed reconstructions invoke an underlying singular logic, viz.,
classical logic; for example, Corcoran (1972) has the following semantic principle:
‘Let x, y and z be different members of C’ (p. 697). But given Aristotle’s original
text, such a principle seems not to be a close fit. In particular – and this is the
topic of this paper – we can give a much more fitting reconstruction of the text.
In doing so, we do not need to enforce the whole modern formalism and way of
thinking about it. If we enforce the modern picture on an ancient text, we are prone
to obscure the original thoughts and ideas.

In what follows, I will develop a logical system that is more appropriate with
respect to the original text. For example, the underlying logic will be a plural one.
To this end, I will use the logic QUARC that has been developed by Ben-Yami
(2004, 2014). However, just using the system as it is introduced in Ben-Yami 2014
would suffer from the same problems as other modern reconstructions. Thus, I will
develop a new system (called QUARCAR) that is a plural logic and more faithful to
the Aristotelian text.

To be faithful to the text, it is helpful to know the text. I will first (Section 2)
succintly present Aristotle’s assertoric logic as it is developed in the first few chapters
of his Prior Analytics. Then (Section 3), I will first briefly motivate and introduce
QUARC (Section 3.1), and go on to develop QUARCAR (Section 3.2). In doing
so, I will first define the underlying language, develop a semantics, and, lastly, a
calculus. The calculus is able to prove all the moods of the three figures – and this
in a manner that is close to Aristotle’s own proofs. To make this obvious, I include
his proofs before giving the formal ones. Having proven the Aristotelian syllogisms
(in Section 3.3), I go on to establish soundness and point towards completeness of
QUARCAR (Section 3.4). In the last Section 3.5, I extend QUARCAR to include
complex terms and relate it to classical logic.

The upshot of this will be that we can translate Aristotle’s own proofs word by
word and end up with a formal proof within QUARCAR and, similarly, the proposed
semantics does not contain more than needed. This, then, has also the potential
to shed some light on the usual debates (such as the one mentioned above), even
though it is not within the scope of this paper to properly enter into them.

2 Aristotle’s Assertoric Logic in the Prior
Analytics

For our purposes, it is sufficient to focus on chapters Α1-7 of the Prior Analytics.
Aristotle develops his so-called assertoric logic in these chapters. At the heart of his
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system lie his three figures which are supplemented by conversion rules. After in-
troducing the three figures and the valid moods of them (the so-called syllogisms),1
Aristotle goes on to establish some results. For example, he proves that the syllo-
gisms of the first figure are able to prove all syllogisms of the other two figures. The
goal of this section is to familiarize ourselves with what and exactly how Aristotle
developed his logical system. Major interpretatory questions are not of concern here
since they will not have any impact on the topic of this paper which is to give a
more fitting formalization of the Aristotelian logic; the framework developed in Sec-
tion 3.2 is flexible enough to be adapted to different interpretations of the text (as
will be exemplified by the question of whether or not all terms are supposed to be
non-empty).

The structure of the first chapters of the Prior Analytics is as follows. Aristotle
starts in chapter 1 by delineating the topic of the writing and by introducing some
terminology. In particular, he specifies the structure of the sentences by stipulating2

that a sentence ‘affirms or denies something of something, and this is either universal
or particular or indeterminate’3 (APr. Α1, 24a16f.)4. In developing the logic, the
‘indeterminate’ option will not play any further role; thus, I’ll not mention it in the
following.5 The constituents of a sentence are so-called ‘terms’ (Α1, 24b16)6 and a
copula (Α1, 24b17f.)7. Every sentence has two terms and a copula and says of the
terms in question that the one belongs/does not belong to the other term. This
gives us the following sentence forms (where I’ll use ‘A’, ‘B’, etc. as terms):

a: A belongs to all B (universal-affirmative, AaB)

i: A belongs to some B (particular-affirmative, AiB)

e: A belongs to no B (universal-denying, AeB)

o: A does not belong to some B (particular-denying, AoB).8

Note that the notation is ‘reversed’ (as Crivelli 2012, p. 115, calls it); the subject
of the sentence is ‘B’ and the predicate ‘A’. Thus, in a modern formalization, a

1Cf. also Read ms, Section 1.
2This might not be a stipulation at all, but it does not matter in the following. Since Aristotle
only considers such sentences, we can interpret it as being stipulated.

3
λόγος καταφατικὸς ἢ ἀποφατικός τινος κατά τινος: οὖτος δὲ ἢ καθόλου ἢ ἐν μέρει ἢ ἀδιόριστος.

The Greek text is taken from Aristotelis 1964.
4All translations of Book Α of the Prior Analytics are Striker’s as printed in Aristotle 2009. In
the following, I will suppress the ‘APr.’.

5Cf. Aristotle 2009, p. 77, and Crivelli 2012, p. 115. See, however, Α7, 29a27ff.: ‘It is also clear
that an indeterminate premiss put in the place of a positive particular premiss will produce
the same syllogism in all the figures [δῆλον δὲ καὶ ὅτι τὸ ἀδιόριστον ἀντὶ τοῦ κατηγορικοῦ τοῦ
ἐν μέρει ριθέμενον τὸν αὐτὸν ποιήσει συλλογισμὸν ἐν ἅπασι τοῖς σχήμασιν].’

6
῞Ορον.

7
προστιθεμένου [ἢ διαιρουμένου] του εἶναι ἢ μὴ εἶναι.

8As pointed out by Wedin (1990, pp. 134f., 141), Aristotle’s canonical way of referring to an o-
statement differs in his writings; in his De Interpretatione 17b16–25, he introduces it as explicit
negation of the corresponding a-statement, whereas in his Prior Analytics he lists the following
three (instead of two) as particular statements: ‘belonging to some, or not to some, or not to
all [τὸ τινὶ ἢ μὴ τινὶ ἢ μὴ παντὶ ὑπάρχειν]’ (Α1, 24a19) and then uses it like in ‘A does not belong
to some of the Bs [τὸ Α τινὶ τῷ Β μὴ ὑπάρχει]’ (Α2, 24b22f.). Since the topic of this paper is
Aristotle’s Prior Analytics, I will stick to the latter.
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sentence of the form ‘AaB’ is translated as ‘∀x(B(x) → A(x))’. Further, since the
terms are denoting pluralities, Aristotle’s logic can be classified as plural (cf., e.g.,
Oliver & Smiley 2013, pp. 6f.).
Aristotle moves on to tell us what a ‘syllogism’ is:

A syllogism is an argument in which, certain things being posited, something
other than what was laid down results by necessity because these things are
so. By ‘because these things are so’ I mean that it results through these, and
by ‘resulting through these’ I mean that no term is required from outside for
the necessity to come about.9

Even though Aristotle defines syllogism in a way that excludes trivial ones (such
as AqB

AqB
, q ∈ {a, i, e, o}), we will relax this to include such implications in our

consequence relation (see Definition 8). A possible reason for Aristotle’s exclusion
of trivial consequences is that his main interest is ‘demonstration and demonstra-
tive science’10 (Α1, 24a10f.). For this purpose, he starts with the more general
syllogistics which includes demonstration. The difference between a syllogism and
a demonstration is roughly the difference between valid and sound arguments (see
Α1, 24a28-24b111 and Α4, 25b27-3112).

So far we have been given some definitions of what is involved in a syllogism. But
Aristotle also provides semantic notions to explain why they are valid: something
being/not being in something else as in a whole (Α1, 24a13f.13) and something being
predicated of all or of none (Α1, 24a14f.14). The former notion is explained via the
latter: let A and B be two terms. Then A is in B as in a whole if, and only if, (iff.)
B is predicated of all A (Α1, 24b26ff.15; note, again, the reversed notation); and B
is be predicated of all of A iff. ‘nothing can be found of the subject of which the
other will not be said’16 (Α1, 24b28ff.).

9
συλλογισμὸς δέ ἐστι λόγος ἐν ᾧ τεθέντων τινῶν ἕτερόν τι τῶν κειμένων ἐξ ἀνάγκης συμβαίνει τῷ

ταῦτα εἶναι. λέγω δὲ τῷ ταῦτα εἶναι τὸ διὰ ταῦτα συμβαίνειν, τὸ δὲ διὰ ταῦτα συμβαίνειν τὸ μηδενὸς

ἔξωθεν ὅρου προσδεῖν πρὸς τὸ γενέσθαι τὸ ἀναγκαῖον. (Α1, 24b18-23)
10
περὶ ἀπόδειξιν καὶ ἐπιστήμης ἀποδεικτικῆς.

11‘Hence a syllogistic premiss in general will be an affirmation or denial of something about some-
thing in the way mentioned, and it will be demonstrative if it is true and accepted on the basis of
the inital assumptions [ὥστε ἔσται συλλογιστικὴ μὲν πρότασις ἁπλῶς κατάφασις ἢ ἀπόφασίς τινος
κατά τινος τὸν ἐρημένον τρόπον, ἀποδεικτικὴ δέ, ἐὰν ἀληθὴς ᾗ καὶ διὰ τῶν ἐξ ἀρχῆς ὑποθέσεων

εἰλημμένη].’
12‘We will have to discuss demonstration later. Syllogism must be discussed before demonstration

because syllogism is more universal than demonstration, for a demonstration is indeed a kind
of syllogism, but not every syllogism is a demonstration [ὕστερον δὲ λεκτέον περὶ ἀποδείξεως.
πρότερον δὲ περὶ συλλογισμοῦ λεκτέον ἢ περὶ ἀποδείξεως διὰ τὸ καθόλου μᾶλλον εἶναι τὸν συλ-

λογισμόν: ἡ μὲν γὰρ ἀπόδειξις συλλογισμός τις, ὁ συλλογισμὸς δὲ οὐ πᾶς ἀπόδειξις].’
13‘[W]hat it is for this to be or not to be in that as in a whole [τί τὸ ἐν ὅλῳ εἶναι ἢ μὴ εἶναι τόδε
τῷδε]’.

14“to be predicated of all’ or ‘of none’ [τὸ κατὰ παντὸς ἢ μηδενὸς κατηγορεῖσθαι]’.
15‘For one thing to be in another as in a whole is the same as for the other to be predicated of all

of the first [τὸ δὲ ἐν ὅλῳ εἶναι ἕτερον ἑτέρῳ καὶ τὸ κατὰ παντὸς κατηγορεῖσθαι θατέρου θάτερον
ταὐτόν ἐστιν]’.

16
λέγομεν δὲ τὸ κατὰ παντὸς κατηγορεῖσθαι ὅταν μηδὲν ᾖ λαβεῖν [τοῦ ὑποκειμένου] καθ᾿ οὗ θάτερον

οὐ λεχθήσεται: καὶ τὸ κατὰ μηδενὸς ὡσαύτως.
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This means that we can use a simple (set-)inclusion to interpret these notions:
A is in B as in a whole iff. BaA [∀x(A(x) → B(x))] iff. A ⊆ B.17 For example,
every human being is an animal. Thus, human being is in animal as in a whole, and
animal is predicated of every human being.

We can similarly understand ‘being predicated of none’, ‘being predicated of
some’, and ‘not being predicated of some’, viz., A is predicated of no B (AeB)
iff. B ∩A = ∅, A is predicated of some B (AiB) iff. B ∩A 6= ∅, and A is not predi-
cated of some B (AoB) iff. B 6⊆ A. This makes it also clear that a sentence of the
form AaB has as its contradictory a sentence of the form AoB and vice versa, and
similarly for the remaining two. Two sentences are contradictories iff. exactly one
of them is true (see also Lemma 9 below). The correspondence in modern notation
is as follows:

a: AaB=̂∀x(B(x)→ A(x));

e: AeB=̂¬∃x(B(x) ∧ A(x));

i: AiB=̂∃x(B(x) ∧ A(x));

o: AoB=̂¬∀x(B(x)→ A(x)).

Since AoB is the negation of AaB, only one of them can be and one of them has to
be true; they are, indeed, contradictories.

Note that I chose the above translations of the sentence-types e and o to make
conspicuous that they are negations of i and a, respectively.18 Later on, we will use
logically equivalent formulations for the four sentence types. Since an e sentence
is ‘universal-denying’, we’ll translate a sentence of the form ‘AeB’ as ‘∀x(B(x) →
¬A(x))’; and since an o sentence is ‘particular-denying’, we’ll translate a sentence
of the form ‘AoB’ as ‘∃x(B(x) ∧ ¬A(x))’.
This brings us to the so-called conversion rules. In chapter 2, Aristotle explains

and proves three such (where ‘ ’ reads ‘converts to’):

(a-i-conv) AaB  BiA

(i-i-conv) AiB  BiA

(e-e-conv) AeB  BeA.

The conversion rules guarantee the truth of the converted sentence given the truth
of the sentences that is converted. The latter two rules are also valid in classical
17Cf. also Striker’s commentary in Aristotle 2009, pp. 83f. The set-inclusion semantics is the

orthodox one, but there have been proposed several others; for one alternative, see Malink
2013, pp. 63ff.; for others, see Andrade & Becerra 2008. Further, see Andrade-Lotero & Dutilh
Novaes 2012 for a discussion of what significance the availability of different semantics has
(thanks to an anonymous referee for this reference). Andrade-Lotero & Dutilh Novaes argue
that ‘there is as of yet no uncontroversial candidate for the semantic side of a technical analysis
of the notion of syllogistic validity, precisely because there are no clear guidelines or criteria
of what it means for a semantics to be adequate’ (p. 416); the underlying assumption of this
paper is that one such criterion is the minimal fit to the original text: even though there are
many semantics available, the “correct” one should not rely on techniques that are not to be
found in Aristotle (a criterion not discussed in Andrade-Lotero & Dutilh Novaes 2012; it is also
not a purely semantical criterion). This, of course, does not necessarily lead to a unique best
fit, but rules out some of the semantics considered in Andrade-Lotero & Dutilh Novaes 2012.

18This does not mean that we can reduce the sentence types to one another – unless we have a
negation in our language.
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logic and straightforward given the modern notation: (i-i-conv) corresponds to the
commutativity of ‘∧’ and so does (e-e-conv). If we substitute the logical equivalent
‘∀x(B(x)→ ¬A(x))’ for ‘¬∃x(B(x)∧A(x))’, (e-e-conv) can also be taken as corre-
sponding to the contraposition of ‘→’ (assuming double-negation) (but see the end
of Section 3.1).

The first conversion rule, (a-i-conv), on the other hand, does not hold in a classical
setting. The reason is that sentences of the form ‘∀xϕ(x)’ are also true if there are
no objects that satisfy ‘ϕ(x)’. In particular, every sentence of the form ‘∀xϕ(x)’
is true in a model with empty domain. The converted sentence, however, is an
existential claim: BiA corresponds to ∃x(A(x) ∧ B(x)). Thus, in a model whose
domain contains nothing that satisfies ‘B(x)’, ‘AaB’ is true but ‘BiA’ is false.

One way of guaranteeing the validity of (a-i-conv) is to ensure that every term/predicate
has instances. In such models (a-i-conv) is true (and we effectively rule out empty
models). Set theoretically speaking, this means that sets of the form ‘{x|A(x)}’ are
non-empty if A is (a simple) term/predicate; this is also one of the assumptions of
the QUARC, viz., ‘Instantiation’ (Ben-Yami 2014, p. 130).

Since employing a non-emptiness requirement seems to be the orthodox way of
modelling Aristotle’s syllogisms,19 I will likewise stick to this assumption; this will
assure easy comparability with the other reconstructions. Nevertheless, I will indi-
cate how to change some clauses to get to a representation that allows for empty
terms – a view that finds more and more advocates20 – and comment on which parts
of the given reconstructions do not hold anymore (see the footnotes at the relevant
places).

Aristotle also proves the conversion rules.21 He does not explicitly introduce any
of his proof-methods, but only discusses them later on. Aristotle makes use of three
methods to show that a conclusion follows from its premises:

(i) direct proof, (ii) indirect proof, and (iii) proof by ‘ecthesis’.

The first two are familiar to a modern reader, so let me just explain the third one.
Striker (in Aristotle 2009) explains ecthesis as follows:22 ‘If A belongs to some B,
there is a C such that both B and A belong to C; and if A does not belong to some
B, there is a C such that B belongs to C, but A does not belong to C’ (p. 69).
This means that given a sentence of the form ‘AiB’, we can choose an appropriate

19See Corcoran 1972, p. 696, Martin 1997, p. 6 (note, too, the new footnote added to the reprint
cited here), Smiley 1973, p. 144, and Smith 2018, §5.2.

20See, for example, Malink 2013, pp. 81f., and Wedin 1978, 1990.
21Whether or not he actually proves all of them without circularity does not matter for us. It

seems that Aristotle proves first (e-e-conv) and uses either something like (i-i-conv) (which is
not supported by the text and leads to a circularity) or, as Striker argues (in Aristotle 2009,
pp. 86ff.), ecthesis. However, the latter interpretation has its own problems; Striker argues that
the term Aristotle uses in the ecthesis is an individual term since otherwise we’d just run into
a different circle than with the (i-i-conv) option (pp. 87f.). But I don’t find it plausible at all
that Aristotle would use something like existential specialization and not include it in his logic
or even just presuppose it. For a different approach, see Malink 2013, pp. 39f. See also the
discussion below Theorem 12 below.

22Cf. also Malink 2013, pp. 86–101. I endorse most of what he says there, but, since I reject his
semantic reconstructions (they employ, for example, existential instantiation), I don’t follow
him with respect to his claim that Aristotle is not committed to the o-ecthesis as presented
here, but to a weaker one.
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C such that ‘AaC’ and ‘BaC’ are true, too; and given a sentence of the form ‘AoB’,
there is a C such that ‘AeC’ and ‘BaC’ are true. Thus, an ecthesis provides further
premises to use in a proof (but see also the discussion after Theorem 12).

That ecthesis is valid is easily seen. We already noted the correspondence between
a sentence of the form ‘AiB’ and a set-theoretical statement of the form ‘B∩A 6= ∅’.
But the latter tells us explicitly that the intersection of B and A is non-empty so that
there obviously is a non-empty C such that C ⊆ B and C ⊆ A, viz., let C = B ∩A
(i.e., ∀x(C(x) :↔ B(x) ∧ A(x))).
Similarly in the case of ‘AoB’. The corresponding set-statement is ‘B ∩ A 6= B’.

Thus, we can find a non-empty C such that C ⊆ B and C∩A = ∅, viz., let C = B\A
(i.e., ∀x(C(x) :↔ B(x) ∧ ¬A(x))).
This brings us to the heart of the Aristotelian logic: the syllogisms. Aristotle

introduces 3 different figures of syllogisms in chapters 4-6.23 His goal is to give a
complete list of all the valid moods of these three figures (i.e., a complete list of
syllogisms). The first figure has the following scheme

(First Figure Scheme) ApB BqC
ArC

where p, q, r ∈ {a, i, e, o}. In all the figures there are two premises and one con-
clusion. Since we already ruled out trivial conclusions, certain inferences are not
considered to be valid moods of a figure. Overall, Aristotle determines four valid
moods (cf. Crivelli 2012, p. 128):

Barbara
AaB BaC

AaC

Celarent
AeB BaC

AeC

Darii
AaB BiC

AiC

Ferio
AeB BiC

AoC

The names ‘Barbara’, ‘Celarent’, ‘Darii’, and ‘Ferio’ have been introduced by the
medieval logicians as mnemonic devices and derive from the four kinds of sentence
(‘a’, ‘i’, ‘e’, and ‘o’; cf. Malink 2011b, p. 345). This means that every Barbara syllo-
gism has two universal affirmative premises and a universal affirmative conclusion.

To justify the Barbara syllogism, Aristotle argues that it is necessary because
of ‘what we mean by ‘of all”24 (Α4, 25b39f.). As all of the first figure syllogisms,
Barbara is a perfect25 syllogism; a perfect syllogism is one that is in no need for
further justification or, as Crivelli (2012) puts it, ‘evidently valid’ (p. 129). Since
there are so far no rules for arguments with two premises, Aristotle cannot prove
the moods of the first figure, but since they are all declared as perfect, there seems
no need to justify them.

23On the discussion how Aristotle arrives at three (and not four) figures, see Crivelli 2012, pp.
125f.

24
πῶς τὸ κατὰ παντὸς λέγομεν.

25In chapter 1 of the Prior Analytics, Aristotle also introduced the term ‘perfect’: ‘Now I call a
syllogism perfect if it requires nothing beyond the things posited for the necessity to be evident;
I call a syllogism imperfect if it requires one or more things that are indeed necessary because of
the terms laid down, but that have not been taken among the premisses. [τέλειον μὲν οὖν καλῶ
συλλογισμὸν τὸν μηδενὸς ἄλλου προσδεόμενον παρὰ τὰ εἰλημμένα πρὸς τὸ φανῆναι τὸ ἀναγκαῖον,

ἀτελῆ δὲ τὸν προσδεόμενον ἢ ἑνὸς ἢ πλειόνων, ἃ ἔστι μὲν ἀναγκαῖα διὰ τῶν ὑποκειμένων ὅρων,

οὐ μὴν εἴληπται διὰ προτάσεων]’ (24b23-26). However, since this does not play any further role,
I excluded it from the presentation.

7



Aristotle, Logic, and QUARC April 11, 2018 3 QUARC and QUARCAR

The scheme and the valid moods of the second figure are as follows:

(Second Figure Scheme) MpN MqX
NrX

Cesare
MeN MaX

NeX

Camestres
MaN MeX

NeX

Festino
MeN MiX

NoX

Baroco
MaN MoX

NoX

Lastly, there is the third figure. Its scheme and valid moods are as follows:

(Third Figure Scheme) PpS RqS
PrR

Darapti
PaS RaS

PiR

Felapton
PeS RaS

PoR

Disamis
PiS RaS

PiR

Datisi
PaS RiS

PiR

Bocardo
PoS RaS

PoR

Ferison
PeS RiS

PoR

Before moving on to the formal development of the Aristotelian logic, let me point
out that Aristotle does use different letters for the different figures. Thus, if he gives
an argument and chooses ‘P ’, ‘S’, and ‘R’, we know that he indicates a third figure
syllogism. I will stick to this convention in what follows:

Convention 1: In syllogisms,

• A, B, and C indicate the first figure;

• M , N , and X indicate the second figure;

• P , S, and R indicate the third figure.

Further, I will use ‘(a-i-conv)’ (and the like) to denote the informal Aristotelian
conversion rule and ‘Barbara’ (and the like) for the informal mood. On the other
hand, ‘(a-i-conv)’ and ‘(Barbara)’ will be used to denote the corresponding formal
(semantic or syntactic) rules of QUARCAR. a

Furthermore, consider, for example, the moods Darii and Datisi. Both have the
same pattern of sentence-types: ‘a’ and ‘i’ as premises, and ‘i’ as conclusion. This
means that it is not enough to just know the name of the syllogism; one also has to
know to which figure the syllogism belongs.

3 QUARC and QUARCAR

The goal will now be to show that (a subsystem of) QUARC (as developed in Ben-
Yami 2004, 2014, Lanzet & Ben-Yami 2004, Raab 2016) is capable of capturing the
assertoric part of the Aristotelian logic as sketched in Section 2. The relevant reason
to use QUARC is that it allows us to reconstruct the Aristotelian logic without the
imposition of the classical apparatus. In particular, we do not need variables (‘x’,
‘y’, . . . ) and quantifiers binding those. We also do not need binary connectives (‘∧’,
‘→’) and their interplay with the quantifiers to capture the Aristotelian sentence

8
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types. All this can accomplished in a simple way that brings us closer to Aristotle’s
own system.

In the following, I will first give a brief motivation for QUARC and point to
the differences between QUARC and classical logic (Section 3.1). A familiarity with
classical logic is assumed throughout what follows. Since the topic is the Aristotelian
logic, I will only introduce as much of QUARC as needed to present a subsystem
thereof which will be called ‘QUARCAR’ (Section 3.2). It will be shown to be
sufficient for the assertoric syllogistic (Section 3.3) and to be sound and complete
(Section 3.4). Lastly, I liberalize the underlying language by allowing complex terms
and show which part of classical logic this corresponds to (Section 3.5).

3.1 Brief Motivation for QUARC

In a series of publications (2004, 2009a, 2009b, 2012, 2014, Lanzet & Ben-Yami
2004), Ben-Yami has developed a logic which he claims is ‘closer in some respects
to Aristotle’s logic than it is to Frege’s calculus’ (2014, p. 120). One of the main
differences to the classical Fregean approach is the occurrence of quantified terms in
argument position which also motivates the system’s name ‘QUARC’, viz. QUanti-
fied ARgument Calculus.26 In particular, the classical system has quantifiers which
act on singular variables (‘∀x’, ‘∃x’), and these variables can occur in argument posi-
tion (‘P (x)’, ‘Q(x)’, ‘ϕ(x)’) and are bound by the quantifiers if the formula is closed.
This combines with the connectives such as ‘→’ and ‘¬’ to give us expressions such
as ‘∀x(P (x) → ¬Q(x))’. The last expression could, e.g., be the formalization of a
sentence like ‘all philosophers are not stupid’.

However, in the informal version it rather seems that ‘all philosophers’ is the
subject of the sentence whereas the classically formalized expression obscures this.
The classical approach seems insufficient if we want to keep the natural language
structure of the sentence. This is why Ben-Yami (2014) introduces a different system
of logic in which ‘quantifiers combine with one-place predicates’ (p. 120) such as
‘∀M ’; he formalizes the above sentence as ‘(∀P )¬Q’ and reads it as ‘all P are not
Q’. This mirrors exactly the natural language structure and grammar.

Ben-Yami (2014) introduces, then, the logic of QUARC (pp. 122ff.). The main dif-
ferences to the classical approach are the aforementioned quantified expressions, the
introduction of anaphora, the introduction of permutation to mirror active/passive
constructions, and a new ‘¬’ rule to pass from expressions such as ‘¬(x1, x2, . . . , xn)P ’
(sentential negation) to ‘(x1, x2, . . . , xn)¬P ’ (predicate negation) and vice versa.
Note that we now write ‘(x)P ’ instead of ‘P (x)’ to, again, mirror the natural lan-
guage syntax of which most mention the subject before the predicate (cf. Ben-Yami
2014, p. 122). Notably, Ben-Yami (2014) argues that quantification presupposes
instances of the quantified phrase (see also Ben-Yami 2004, pp. 60ff.). To formally
guarantee this, he introduces a rule called ‘Instantiation’ (2014, p. 130).
For additional differences to classical logic that are not of interest here, see Ben-

Yami 2014 and, for a more detailed discussion, Ben-Yami 2004. Further, QUARC
has been proof-theoretically investigated (see Gratzl & Pavlovic ms) and also been
developed with a three-valued semantics to drop ‘Instantiation’ (see Lanzet 2017).

26Even though the name seems to imply a calculus, I will use ‘QUARC’ and ‘QUARCAR’ as names
for the logics and not just the calculi.
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Generalized Quantifiers & QUARC Let me briefly mention the exchange be-
tween Ben-Yami (2009a, 2012) and Westerståhl (2012). The debate is concerned
with a comparison of QUARC with the theory of generalized quantifiers. We do
not have to go into any detail here, but in his paper, Westerståhl introduces his
understanding of determiners as binary quantifiers and compares it to Ben-Yami’s
QUARC which he refers to as ‘an alternative account’ (p. 109). The upshot is that
Westerståhl (2012) shows ‘how we can go back and forth between’ (p. 114) the two
accounts. Thus, using his tools, we can relate QUARCAR to the theory of generalized
quantifiers, too, but, for reasons of space, will not do so (but see, e.g., Westerståhl
1989). Let me just mention that we can understand (e-e-conv) as determining what
is known as a quantifier being symmetric (see, e.g., Westerståhl 2015, p. 18): if we
understand the sentence-type e as involving a quantifier, then (e-e-conv) means that
we can interchange the arguments of that quantifier and preserve the truth-value.
In our representation below, this can also easily be seen. Thus, we don’t have to
interpret (e-e-conv) as corresponding to the commutativity of ‘∧’ or the contrapo-
sition of ‘→’, but as being about a quantifier; see also Westerståhl 1989, pp. 583ff.,
and 2016, §2; in this sense, we can see QUARC as a nice bridge between classical
logic and generalized quantifier theory.

However, just using the theory of generalized quantifiers is not apt for our pur-
poses. For, even though we can move back-and-forth between it and QUARC (as we
can between classical logic and QUARC, see Raab 2016), using the theory of gen-
eralized quantifiers forces a different conception on us. For example, it works with
open formulas which can be closed by quantifiers; as such, there is no negation that
operates on predicates, but only on open formulas. Regarding the truth conditions,
this does not make a difference (see also Section 3.5 where this is spelled out), but it
does in our way of thinking about the matter. In this respect, this paper has similar
concerns as, for example, Moss 2015 (cf. his Figure 18.1 on p. 567).

3.2 QUARCAR

Since the QUARC involves much more than is needed to get Aristotle’s syllogistic, we
will develop a less rich system called ‘QUARCAR’. The language of QUARCAR only
contains the four sentence types and does not have a device for sentence-negation. To
still be in a position to prove what we want to prove, we have to introduce different
reductio rules for the sentence-types to implicitly codify the assumed relations of
contradictories.

In a more formalized fashion, the sentences of the Aristotelian logic are of the
form ‘AqB’ where ‘A’ and ‘B’ are terms and ‘q’ is either ‘a’, ‘i’, ‘e’, or ‘o’. In
particular, ‘AaB’ reads ‘All B are A’, ‘AiB’ reads ‘Some B is A’, ‘AeB’ reads ‘No
B is A’, and ‘AoB’ reads ‘Some B is not A’. This can be captured as ‘(∀B)A’,
‘(∃B)A’, ‘(∀B)¬A’, and ‘(∃B)¬A’, respectively.27 As ‘(∃B)¬A’ suggests, we need
the ‘negative predication’. This, then, is enough to capture the four sentence types
and shows that the language of QUARCAR is much simpler than the languages of

27Note that we could drop the parentheses and just write, for example, ‘∀AB’ instead of ‘(∀A)B’,
but I keep them to indicate that the argument position is written in front of the predicate
symbol since the QUARC way of thinking about these formal expressions is unfamiliar to most
readers. In particular, it makes conspicuous negative predication: ‘(∀A)¬B’.
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classical logic and, especially, of the full QUARC. As such, we can use QUARC
as natural bridge between the Aristotelian term-logic and classical logic without
invoking too many concepts foreign to Aristotle. It is in this sense that QUARC is
the more appropriate tool to reconstruct Aristotle’s logic compared to, for example,
the theory of generalized quantifiers.

In the following, I define the language of QUARCAR, give it a semantics, and,
lastly, a calculus. In the next Section 3.3, I show that we can derive the Aristotelian
syllogisms within QUARCAR, and indicate in Section 3.4 how to prove its soundness
and completeness. The last Section 3.5 extends QUARCAR by allowing complex
terms and shows which part of classical logic this extended version corresponds to.

The Language Let us start with the definition of the language of QUARCAR and
give the usual definitions for terms, formulas, and sentences. Note that we do not
have to include the definition of terms, but I included it (i) to have a resemblance
to the way in which classical logic proceeds and (ii) to show that we really have
a term-logic, i.e., there is no distinction between arguments and predicates which
means that we have plural reference.

Definition 2 (LAR)
The language of QUARCAR (LAR) consists of the following:

• the logical symbols ‘¬’, ‘∀’, and ‘∃’,

• the auxiliary symbols ‘(’ and ‘)’,

• and a set PredLAR of unary predicate-symbols. a

Note that the auxiliary symbols are not really necessary; I included them to
maintain the readability and to keep the resemblance to QUARC (cf. footnote 27).

Definition 3 (LAR-Terms)
The set of LAR-terms (TermLAR) is defined to be PredLAR . a

As indicated, every predicate is a term. The language does not contain any first-
order variables or individual constants (which are the terms of classical logic), but
consists solely of the logical symbols and predicates/terms. This also leads to a
simplified definition of formula. Since there are no variables, every formula is closed
and, thus, a sentence.

Note, at this point, that we only specified in Definition 2 that ‘¬’ is a logical
symbol, but not which role it plays. In the classical setting, it would be an operation
on sentences; here it will be an operation on terms. If we extended the set of
QUARCAR-formulas, the first step would be to introduce also a sentence negation.

Definition 4 (LAR-Formula)
The set of LAR-formulas/sentences is defined as follows:

(F)
If A and B are LAR-terms, then p(∀A)Bq, p(∃A)Bq, p(∀A)¬Bq,
and p(∃A)¬Bq are LAR-formulas.

Let FormLAR be the set of LAR-formulas. a
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Note that we explicitly allow for formulas of the form ‘(qA)A’ (q ∈ {∀,∃}); there
is some textual evidence that Aristotle himself did not dismiss such as formulas (see
APr. Β15, 63b40–64a428).
Before developing the semantics, let me briefly comment on the syntax, how to

extend it, and what changes in the proof theory such extensions lead to.
Since there is no recursion-clause in the definition of LAR-formula, all formulas can

be taken to be atomic. We have several ways to introduce more complex formulas.
For example, as already indicated, we can include a recursion clause that allows
for sentence negation. With such an extension, we could introduce typical rules
governing it (including the typical negation clause in the semantics). In particular,
there could be a uniform reduction rule such as

ϕ

[ψ]u

...
¬ϕ (RAA, u)¬ψ

instead of the four (types of) reductio rules introduced below (see Definition 19).
Further, we would also need a rule for double negation. With these rules alone,
i.e., without interaction of negation and the quantifiers, the equivalence classes of
formulas are the same as the ones (F) gives rise to (identifying formulas of the form
‘¬((qA)B)’ with ‘(q′A)¬B’, q ∈ {∀, ∃}, q′ ∈ {∀,∃} \ q).
The next step would be to allow – again by recursion – for arbitrarily many

negation symbols in front of a term to produce formulas such as ‘(∀A)¬ . . .¬B’. We
can introduce rules governing the interaction of quantifiers and negation such as

(¬∀ → ∃¬) ¬ ∗ ((∀A) ∗′ B)

∗((∃A)¬ ∗′ B)
(∀¬ → ¬∃) ∗((∀A)¬ ∗′ B)

¬ ∗ ((∃A) ∗′ B)

where ‘∗’ and ‘∗′’ are (possibly empty) strings of negation symbols, and similarly
rules for ‘∃’. These, together with a rule for double negation, allow us then to derive,
for example, a formula of the form ‘(∀A)B’ from one of the form ‘(∀A)¬¬B’. The
resulting equivalence classes of formulas coincide then again with the above ones.

Note that we do, indeed, need both ‘∀’ and ‘∃’ as logical symbols and cannot
define the one in terms of the other. Only in case of the second extension mentioned
above this is, indeed, possible. The problem is that we would need to define, e.g.,
(∀A)B :↔ ¬((∃A)¬B), but we have no way of moving the negation symbols. Thus,
(∀A)¬B would not be well-formed since it would be ¬((∃A)¬¬B) which is not a
well-formed formula.

All this shows that the language of QUARCAR is very simple; but it leads to
rather different problems concerning the relationship of the different formulas. In

28‘In the middle figure a deduction can be made both of opposites and of contraries. Let A stand
for good, let B and C stand for science. If then one assumes that every science is good, and
no science is good, A belongs to every B and to no C, so that B belongs to no C; no science,
then, is a science [᾿Εν δὲ τῷ μέσῳ σχήματι καὶ ἐκ τῶν ἐκ τῶν ἀντικειμένων καὶ ἐκ τῶν ἐναντίων
ἐνδέχεται γίγνεσθαι συλλογισμόν. ἔστω γὰρ ἀγαθὸν μὲ ἐφ᾿ οὗ Α, ἐπιστήμη δὲ ἐφ᾿ οὗ Β και Γ. εἰ δὴ

πᾶσαν ἐπιστήμην σπουδαίαν ἔλαβε καὶ μηδεμίαν, τὸ Α τῷ Β παντὶ ὑπάρχει καὶ τῷ Γ οὐδενί, ὥστε

τὸ Β τῷ Γ οὐδενι: οὐδεμία ἄρα ἐπιστήμη ἐπιστήμη ἐστίν.]’. The translation is A. J. Jenkinson’s
as printed in Barnes (1995: Vol. 1).
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particular, Aristotle just states that a sentence of the form ‘(∀A)B’ has as its con-
tradictory the sentence of the form ‘(∃A)¬B’. In our set-up, we have to encode this
in some of the derivation rules as well as enforce it in the semantics. Let’s turn to
the latter first.

The Semantics Since the LAR-formulas arising from Definition 2 are so simple,
the interpretation can be simple, too. In particular, QUARCAR does not include
individual-terms so that we only need to interpret terms/ predicates. This will be
accomplished via sets. This leaves us with the question of how the quantifier and
the negation behave. Both will be combinations of intersection and (in-)equality.
But first, we need an underlying system of sets that is able to interpret the terms.
In particular, we need to ensure that no interpretation of a predicate is empty to
ensure that an analogue of (a-i-conv) follows. This move is similar to the one made in
QUARC (see Raab 2016) and follows the orthodox way of reconstructing Aristotle’s
logic.

Note, in what follows, the footnotes regarding the changes to be made when we
drop the non-emptiness requirement (2) of Definition 5.

Definition 5 (LAR-Structures)
Let LAR be a language. An LAR-structure is a tuple A = (D, (AA)A∈PredLAR

) with
the following properties:

(1) D is a set (the universe);29

(2) if A ∈ PredLAR , then AA is a non-empty unary relation (i.e., predicate) on D,
viz. ∅ 6= AA ⊆ D.30 a

The definition is in principle standard. However, we do not need to enforce the
domain to be non-empty, because this follows from clause (2) (except in the rather
uninteresting special case that PredLAR = ∅, i.e., a language without any predicates
and, thus, without formulas). This clause also ensures that there are no empty
predicates so that every one has instances – whatever and how many they may
be. This means, in particular, that it follows from the following Definition that for
every A to be B or not to be B, there must be As – see also Lemma 9. With this at

29As Ben-Yami (2004, pp. 59ff., 2012, pp. 49ff.) argues, there is no need for a domain. Lanzet
(2017) similarly develops QUARC without one. However, I am not convinced that (i) there is no
domain nonetheless and (ii) that one needs no domain (cf. also Westerståhl 2012). Regarding
(i), Lanzet uses interpretations that map predicates to extensions; but without a domain,
where exactly is the extension? where does the interpretation map to? And, regarding (ii),
even if this approach is successful in getting rid of a domain, it seems that the meaning of
a predicate becomes context-sensitive (cf. Ben-Yami 2012, p. 50) because the predicates get
assigned different extensions. Even though two co-extensional predicates do not have to have
the same meaning, they surely don’t have the same meaning if they aren’t. This is why I chose
to include a domain. Note also Definition 29 where we need it to assign the proper extensions
to complex terms.

30If we drop the non-emptiness requirement, we have to replace (2) with:

(2∗) if A ∈ PredLAR , then AA ⊆ D.
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hand, we can easily define satisfaction as follows. I give positive (‘+’) and negative
(‘−’) clauses for the four sentence-types, i.e., there are eight clauses. We can cut
them in half as noted below (see Lemma 7). However, I chose to formulate all eight
clauses to make obvious that it are such with which we work. Aristotle has four
sentence types which leads to the positive clauses; the negative ones formalize the
assumed relations of contradictory sentence types. Since Aristotle does not reduce
the number of sentences (which would need a device for sentence-negation), neither
do I.

Definition 6 (Satisfaction |=)
Let the satisfaction-relation A |= ϕ for LAR-formulas ϕ and LAR-structures A be
defined as follows: Let A, B ∈ PredLAR , then

(a+) If ϕ equals (∀A)B, then A |= ϕ⇔ AA ∩BA = AA.31

(a−) If ϕ equals (∀A)B, then A 6|= ϕ⇔ A |= (∃A)¬B.

(i+) If ϕ equals (∃A)B, then A |= ϕ⇔ AA ∩BA 6= ∅.

(i−) If ϕ equals (∃A)B, then A 6|= ϕ⇔ A |= (∀A)¬B.

(e+) If ϕ equals (∀A)¬B, then A |= ϕ⇔ AA ∩BA = ∅.

(e−) If ϕ equals (∀A)¬B, then A 6|= ϕ⇔ A |= (∃A)B.

(o+) If ϕ equals (∃A)¬B, then A |= ϕ⇔ AA ∩BA 6= AA.32

(o−) If ϕ equals (∃A)¬B, then A 6|= ϕ⇔ A |= (∀A)B.

a

What is interesting about the above clauses is that, even though sentences of
type i are supposed to be particular-affirmative, the interpretation makes use of a
negation; similarly, even though e is universal-denying, there is no negation involved.
However, if we translate the set-statements into first-order logic, we obtain the right
correspondence again: i is of the form ‘∃x(A(x)∧B(x))’ which is affirmative, and e
is of the form ‘∀x(A(x)→ ¬B(x))’ which is negative.
Every sentence type has two clauses – a positive (‘+’) and a negative (‘−’) one.

This is to ensure that an a-formula has an o-formula as its contradictory, and vice

31If we assume (2∗) rather than (2), this condition becomes instead:

(a∗+) If ϕ equals (∀A)B, then A |= ϕ⇔ AA ∩BA = AA and AA 6= ∅.

32Again, using (2∗) instead of (2), we get:

(o∗+) If ϕ equals (∃A)¬B, then A |= ϕ⇔ AA ∩BA 6= AA or AA = ∅.
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versa; similarly for i- and e-formulas. However, we can reduce the number of basic
clauses to four; for example, it suffices to have (a+), (a−), (i+), and (i−) since the
other ones follow from them (see also the following Lemma 7). The reason for this
is that we have some kind of double-negation in the meta-language. Whereas it
does not follow from A 6|= ϕ that A |= ¬ϕ since the latter does not even involve
a well-formed formula, given the negative clauses, it follows from A 6|= ϕ that A
satisfies the contradictory of ϕ. This means also that we really need 4 rules to (i)
govern the set relations for two sentence types and (ii) ensure which formulas are
contradictories; but it does, for example, not suffice to have (a+), (a−), (o+), and
(o−) since nothing would tell us how i- and e-formulas behave; also, we can derive
(o+) and (o−) from (a+) and (a−).

Lemma 7 (Reduction of Semantic Clauses)
It suffices to have only 4 of the clauses for satisfaction.33 a

Proof. I’ll only demonstrate three representative cases. Let A be an LAR-structure.

• Suppose that we have (a+) and (o+) and want to prove (o−).

“⇒”: Let A 6|= (∃A)¬B. Then, by (o+), AA ∩BA = AA, i.e., A |= (∀A)B.

“⇐”: Let A |= (∀A)B. Then, by (a+), AA ∩ BA = AA. Suppose that A |=
(∃A)¬B. Then, by (o+), AA ∩ BA 6= AA, a contradiction. Therefore,
A 6|= (∃A)¬B.

• Suppose we have the clauses for i and want to derive (e+):

“⇒”: Let A |= (∀A)¬B. Then, by (i−), A 6|= (∃A)B. Therefore, by (i+),
AA ∩BA = ∅.

“⇐”: Let AA∩BA = ∅. Suppose that A |= (∃A)B. Then, by (i+), AA∩BA 6= ∅,
a contradiction. Therefore, A 6|= (∃A)B. Thus, by (i−), A |= (∀A)¬B.

• Suppose we have the (a+) and (a−) and want to derive (o+):34

“⇒”: Let A |= (∃A)¬B. By (a−), A 6|= (∀A)B, i.e., by (a+), AA ∩BA 6= AA.

“⇐”: Let AA ∩ BA 6= AA. Thus, by (a+), A 6|= (∀A)B, so, by (a−), A |=
(∃A)¬B.

Note again that, even though it is implicit, double-negation does not explicitly
occur. In the mentioned extension where we allow for negated formulas such as
‘¬((∀A)B)’, we need the typical negation-clause: A 6|= ϕ iff. A |= ¬ϕ. However, this
only further reduces the number of clauses if we ensure the interaction of negation

33Similarly, this holds if we adopt (a∗+) and (o∗+) instead of (a+) and (o+).
34We can also derive (o∗+) from (a∗+) and (a−):

“⇒”: Let A |= (∃A)¬B. Then, by (a−), A 6|= (∀A)B, so, by (a∗+), AA ∩BA 6= AA or AA = ∅.
“⇐”: Let AA ∩BA 6= AA or AA = ∅. Then, by (a∗+), A 6|= (∀A)B, so, by (a−), A |= (∃A)¬B.
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and quantifier. As pointed out above, this also means that we need to allow for
more negation symbols between the predicates as in ‘(∀A)¬¬B’.35

We can also see properly now why Definition 5 (2) does the work it is supposed
to do. If there were empty predicates, conditions (a+) and (e+) would be satisfied
if A = ∅ no matter what B is (cf. also Malink 2013, pp. 40f.). These cases are
effectively ruled out. Further, since it is a logical truth that (∃A)A (Theorem 10)
and this, by (i+), means that ∅ 6= AA ∩ AA = AA ⊆ D, the universe has to be
non-empty as expected.36

Note, too, that we did not need to talk about the instances of predicates to inter-
pret the quantifiers; rather, it is interpreted via ‘how much’ the respective predicates
have ‘in common’. The predicates A and B can have in common either (i) nothing
(e+) (exclusion), (ii) something (i+) (overlap), (iii) all from the perspective of A
(a+) (inclusion)37, or (iv) not all from the perspective of A (o+) (non-inclusion)38

(cf. Smiley 1973, p. 143).
This brings us to the definitions of logical consequence, logically valid and satis-

fiability which are all standard.

Definition 8
Let T ⊆ FormLAR .

(1) ϕ is a logical consequence of T (T |= ϕ) :⇔ for all LAR-structures A, if A |= ψ
for all ψ ∈ T , then A |= ϕ.

If T = {ϕ1, . . . , ϕn}, we write ‘ϕ1, . . . , ϕn |= ϕ’ instead of ‘{ϕ1, . . . , ϕn} |= ϕ’.

(2) ϕ is logically valid :⇔ ∅ |= ϕ. We will also write this as ‘|= ϕ’.

(3) T is satisfiable :⇔ there is an LAR-structure A such that A |= ϕ for all ϕ ∈ T .

a

As an immediate consequence from Definition 5 of LAR-structure, we get the so-
called square of opposition (see Parsons 2017, §1, and Peters & Westerståhl 2006,
ch. 1.1.1).

Lemma 9 (Square of Opposition)
The Square of Opposition holds:39

Contradictories: {(∀A)B, (∃A)¬B} and {(∀A)¬B, (∃A)B} are not satisfiable, but
any model satisfies one member of the respective sets.

Contraries: (∀A)B and (∀A)¬B are contraries, i.e., they cannot both be true (viz.,
{(∀A)B, (∀A)¬B} is not satisfiable) but can both be false.

35This is also true if we drop the non-emptiness requirement, as long as we interpret the negations
as predicate-negations and not as term-building operations; see also Lemma 30 in Section 3.5.

36Dropping the non-emptiness requirement, this does not longer hold; see the footnote to Theo-
rem 10.

37In the case of (a∗+), inclusion if A is non-empty.
38In the case of (o∗+), non-inclusion if A is non-empty.
39All of this still holds if we drop the non-emptiness requirement.
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Subcontraries: (∃A)B and (∃A)¬B are subcontraries, i.e., they cannot both be
false, but can both be true.

Subalternation: (∃A)B is the subaltern of (∀A)B and (∃A)¬B of (∀A)¬B, i.e., if
the latter are true, so are the former, and if the former are false, so are the
latter:

(a |= i) (∀A)B |= (∃A)B (e |= o) (∀A)¬B |= (∃A)¬B.

a

Proof. Let A be an LAR-structure.

Contradictories: • If A |= (∀A)B, then, by (o−), A 6|= (∃A)¬B. If A |=
(∃A)¬B, then, by (a−), A 6|= (∀A)B.

On the other hand, if A 6|= (∀A)B, then, by (a−), A |= (∃A)¬B, and, if
A 6|= (∃A)¬B, then, by (o−), A |= (∀A)B.

• If A |= (∃A)B, then, by (e−), A 6|= (∀A)¬B. If A |= (∀A)¬B, then, by
(i−), A 6|= (∃A)B.

On the other hand, if A 6|= (∃A)B, then, by (i−), A |= (∀A)¬B, and, if
A 6|= (∀A)¬B, then, by (e−), A |= (∃A)B.

Contraries: • Let A |= (∀A)B. Then, by (a+), AA ∩ BA = AA. But, by Defini-
tion 5 (2), AA 6= ∅. Therefore, AA ∩ BA 6= ∅, so, by (i+), A |= (∃A)B.
Thus, by (e−), A 6|= (∀A)¬B.40

On the other hand, let A |= (∀A)¬B. Then, by (e+), AA ∩BA = ∅. But,
by Definition 5 (2), AA 6= ∅. Thus, AA ∩ BA 6= AA. Therefore, by (o+),
A |= (∃A)¬B, so, by (a−), A 6|= (∀A)B.41

• To show that they can be both false together, we construct an appropriate
model A such that A 6|= (∀A)B and A 6|= (∀A)¬B. If there is such a
model, then, by (a−) and (e−), A |= (∃A)¬B and A |= (∃A)B, i.e., by
(o+) and (i+), AA ∩ BA 6= AA and AA ∩ BA 6= ∅. Choosing, for example,
AA = {x|x is white} and BA = {x|x is a human being}, we can see that
this is indeed satisfiable.

Subcontraries: • If A 6|= (∃A)B, then, by (i−), A |= (∀A)¬B. From (e |= o)
(see below) it follows that A |= (∃A)¬B.

On the other hand, if A 6|= (∃A)¬B, then, by (o−), A |= (∀A)B. From
(a |= i) (see below) it follows that A |= (∃A)B.

• To see that both can be true, just take the model from above.

40If we drop the non-emptiness requirement, we have to change the proof as follows: Let A |=
(∀A)B. Then, by (a∗+), AA ∩ BA = AA and AA 6= ∅. Thus, AA ∩ BA 6= ∅. So, by (i+),
A |= (∃A)B. Thus, by (e−), A 6|= (∀A)¬B.

41Dropping the non-emptiness requirement, we get instead: Let A |= (∀A)¬B, i.e., AA ∩BA = ∅.
Suppose that A |= (∀A)B. Then, by (a∗+), AA ∩BA = AA and AA 6= ∅. Thus, AA ∩BA 6= ∅, a
contradiction. Therefore, A 6|= (∀A)B.
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Subalternation: (a |= i): Let A |= (∀A)B. Since (∀A)B and (∀A)¬B are con-
traries, it follows that A 6|= (∀A)¬B. Thus, by (e−), A |= (∃A)B.

(e |= o): Let A |= (∀A)¬B. Since (∀A)B and (∀A)¬B are contraries, it fol-
lows that A 6|= (∀A)B. Thus, by (a−), A |= (∃A)¬B.

With all this, we can show that predicates are non-empty (Inst) and that every
A is A (A-A). These are not (explicit) part of Aristotle’s logic but follow from his
presuppositions (cf., for the latter, Malink 2013, p. 63; see also APr. Β15, 63b40–
64a442).

Theorem 10
The following are logically valid.43

(Inst) |= (∃A)A (A-A) |= (∀A)A44

a

Proof. (Inst) Since ∅ 6= AA = AA ∩ AA for all AA and all A, |= (∃A)A.

(A-A) Since AA ∩ AA = AA for all AA and all A, |= (∀A)A.

Note also the following:

Lemma 11 (Non-Emptiness)
The following holds:

((∀A)B |= (∃B)B) (∀A)B |= (∃B)B.45 �

In the following, I will show that the three figures hold after showing the same
for conversion and ecthesis. Thereafter, a calculus will be developed and it is shown

42This passage is quoted above in footnote 28.
43This does not hold if terms can be empty: Let A be an LAR-structure such that AA = ∅. Then,

(a∗+) is not satisfied, so A 6|= (∀A)A. Further, AA∩AA = ∅, so that (i+) is likewise not satisfied.
Indeed, by (o∗+), A |= (∃A)¬A, and, since A 6|= (∃A)A, by (i−), A |= (∀A)¬A. See also Read
2015, pp. 541f.

44Even though this is not logically valid without the non-emptiness requirement, we can weaken
it as follows:

(A-A∗) (∃A)B |= (∀A)A.

This holds trivially true under (a+), but also if we use (a∗+). For, let A be an LAR-structure
such that A |= (∃A)B. Then, by (i+), AA ∩ BA 6= ∅. Therefore, AA ∩ AA = AA 6= ∅, so that,
by (a∗+), A |= (∀A)A.

45This is still valid if we drop the non-emptiness requirement: Let A be an LAR-structure such that
A |= (∀A)B. Then, by (a∗+), AA ∩BA = AA 6= ∅. Suppose that BA = ∅. Then, AA ∩BA = ∅,
contradiction. Therefore, BA ∩BA = BA 6= ∅, i.e., by (i+), A |= (∃B)B.

18



Aristotle, Logic, and QUARC April 11, 2018 3.2 QUARCAR–The Semantics

how the figures can be derived. Note, right away, that even though I state ecthesis
here, they are not properly part of QUARCAR; see the discussion below.

Theorem 12 (Ecthesis)
Ecthesis holds.

(ec(i))
If A |= (∃A)B,

then there is a CA 6= ∅ such that A |= (∀C)B and A |= (∀C)A.46

(ec(o))
If A |= (∃A)¬B,
then there is a CA 6= ∅ s.t. A |= (∀C)A and A |= (∀C)¬B.47

(ec) If A |= (∀C)A and A |= (∀C)B, then A 6|= (∀A)¬B.48

a

Ecthesis will not play a major (or any) role in the semantic proofs of the figures.
However, Aristotle explicitly uses ecthesis and so we should say something about it.
Note that none of the syntactic proofs that follow need ecthesis either; indeed, it
has often been observed that adding ecthesis does not lead to any more deductive
power (see, e.g., Smith 1982, p. 116). We can prove everything without it – but we
cannot account for Aristotle’s own proofs without it. Aristotle’s own use of ecthesis
is to establish (e-e-conv) and to indicate how to prove certain moods without the
use of a reductio rule.49

Further, ecthesis is easily seen to follow semantically. The reason is simply that
if we have two sets A and B, we also have a unique set which is the intersection
of the two sets (A ∩ B) as well as a unique set that is A without B (A \ B = A ∩
(¬B)50). However, this does not show that the intersection is also a term/predicate.
What ecthesis, therefore, does is to ensure that our underlying language has enough
resources to name the intersections and parts of sets, viz., given two sets A and B, we
have A\B, A∩B, and B\A. This means that we only need it to choose appropriate
subsets of sets, i.e., that we have appropriate subterms for given terms; it is a
downwards-looking procedure.51 Strictly speaking, I have said nothing that enforces
this, but it is clear how this can be achieved, viz., by extending the underlying

46This is clearly still valid if we drop the non-emptiness requirement.
47This is not valid without the non-emptiness requirement: Let A be an LAR-structure such that

AA = ∅. Then, by (o∗+), A |= (∃A)¬B. However, by (a∗+), for any term C, A |= (∀C)A iff.
CA ∩ AA = CA and CA 6= ∅. Thus, A |= (∀C)A only if CA ∩ AA 6= ∅. But, since AA = ∅,
CA ∩AA = ∅. Therefore, A 6|= (∀C)A.
To reconcile this, we have to change (ec(o)) to:

(ec(o)∗)
If A |= (∃A)¬B and A |= (∃A)A,
then there is a CA s.t. A |= (∀C)A and A |= (∀C)¬B.

Note that we don’t have to specify that CA 6= ∅ since this is required by (a∗+); this is also the
reason why we need to include ‘(∃A)A’ because CA = AA \BA.

48This still holds if we drop the non-emptiness requirement: (∀C)A is only true in A if CA 6= ∅.
49Cf. Aristotle’s remarks regarding Bocardo at Α6, 28b20f.
50See Section 3.5 for this notation.
51Nonetheless, we will be more general in Section 3.5.
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language to contain the needed subterms. This also means that the only way for
ecthesis to fail to be true is there not being a corresponding term in the language. An
alternative approach will become clear in Section 3.5 where we extend QUARCAR

to QUARC∗AR which includes complex predicates. However, for now, they are not
proper part of QUARCAR as developed here.

An alternative approach is to understand ecthesis as a language-extending pro-
cedure. In this case, we do not assume the language to include the subterms, but
to look at an appropriately extended language that does. To make this alternative
formally work, we have to define language extensions and structure extensions. This
can easily be done in the standard way.52

To get a proof of (e-e-conv) that is closer to Aristotle’s own, I also include a
third kind of ecthesis. This rule is just (Darapti) – a mood of the third figure. We
can semantically prove all the moods without circularity, but it seems like Aristotle
does not do so himself (at least in the syntactical case) – we have to invoke further
logical principles that he does not make explicit. For example, Striker argues (in
Aristotle 2009, pp. 86ff.) that, since it cannot be Darapti that is at play because
Aristotle mentions a proof by ecthesis of it, it must be ‘existential generalization’
(p. 88) that is used here. Malink (2013), on the other hand, suggests a different
semantics, viz., what he calls ‘preorder semantics’ (pp. 73ff.) to argue that, e.g.,
(a-i-conv) naturally follows from it (p. 67). Martin (2004a)53 shows that we can
understand ecthesis as ‘a discharge rule that functions in syllogistic semantics in
much the way that disjunction-elimination and existential instantiation function
in first-order logic’ (p. 19); a possible way to spell this out is again in terms of
language- and model-extensions. Without going into further detail, let me just point
out that all of these reconstructions suffer from similar problems as all the others
not mentioned here: they invoke a full-blown classical apparatus in the background
which includes connectives and quantifier specialization/generalization. Let me just
mention, without further arguing for it, that I find it implausible that Aristotle
invokes principles such as existential specialization without developing a logic that
properly includes it (or even just giving us a hint to suggest that he does). For
example, look at Malink’s (2013, p. 67) reconstruction/justification of (a-i-conv).
He uses ∧-introduction as well as existential generalization. But neither of these are
properly part of Aristotle’s logic – and we can do without them.54 For this reason, I
do not formally include ecthesis into QUARCAR, even though I called it ‘Theorem’
(which it is (as stated) not for the reasons mentioned in the previous paragraph).
Note, however, that we can understand ecthesis as semantic justification of the
syntactic conversion rules; given this interpretation, there is no need to include
ecthesis into the calculus. In what follows, I will show that (i) we can prove the
conversion rules without ecthesis and (ii) if we use ecthesis, we get very close to

52See, for example, Raab 2016, Sections 3.4 and 4.3.
53Thanks to an anonymous referee for pointing this out.
54This observation loses some of its force if we replace (a+) and (o+) by (a∗+) and (o∗+) since these

rely on conjunction and disjunction. Nonetheless, the point still applies for the specializa-
tion/generalization cases. Note also that Malink (2013, p. 89), says explicitly after using ‘rules
of classical propositional and quantifier logic’ that ‘[he does] not want to suggest that Aristotle
had a clear grasp of all these rules’. However, I also do not want to claim that Aristotle did
not have any grasp of it; the point is rather that he did not include them in his formal logic as
developed in his Prior Analytics, Α1–7.
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Aristotle’s proofs. After that, I will drop ecthesis again and also not include them
as derivation rules, but I will indicate syntactic proofs using them.

Proof. Let A be an LAR-structure.

(ec(i)) Let A |= (∃A)B hold, i.e., AA∩BA 6= ∅. Let CA := AA∩BA. Then, CA 6= ∅.
Further, since CA ∩ AA = CA, A |= (∀C)A and similarly for A |= (∀C)B.

(ec(o)) Let A |= (∃A)¬B. Then, AA ∩ BA 6= AA 6= ∅. Let CA := AA \ BA. Since
AA ∩ BA 6= AA, CA 6= ∅. Then, CA ∩ AA = CA so that A |= (∀C)A. Further,
CA ∩BA = ∅ so that A |= (∀C)¬B.55

(ec) Let A |= (∀C)A and (i) A |= (∀C)B. Then, (ii) CA ∩ AA = CA so that
CA ∩ BA (i)

= CA (ii)
= CA ∩ AA. Thus, intersecting both sides with AA gives us

CA∩BA∩AA = CA∩AA∩AA = CA∩AA = CA 6= ∅. Therefore, AA∩BA 6= ∅.
But then, A |= (∃A)B. Thus, by (e−), A 6|= (∀A)¬B.

Theorem 13 (Conversion)
Semantic conversion holds:

(a-i-conv) (∀A)B |= (∃B)A; (i-i-conv) (∃A)B |= (∃B)A;

(e-e-conv) (∀A)¬B |= (∀B)¬A; (o-o��@@−conv) (∃A)¬B 6|= (∃B)¬A.

a

This is the point where we reach results that Aristotle proves himself, viz., con-
version. I will first quote the original text and then give my proof so that it becomes
clear how close we are to the text. I will put numbers (in the form ‘[(n)]’) into the
quotation to indicate the parallel moves in QUARCAR. This practice of first quoting
will be followed especially when proving the figures in a syntactical fashion.

Proof. Let A be an LAR-structure.

(e-e-conv) First, let the premiss AB be a universal privative. Now if A belongs
to none of the Bs, then neither will B belong to any of the As. [(1)] For
if it does belong to some, for example, [(2)] to C, [(3)] it will not be true
that A belongs to none of the Bs, since C is one of the Bs.56

Let A |= (∀B)¬A hold, i.e., BA ∩ AA = ∅.

(1) For if it does belong to some, Suppose A |= (∃A)B
(2) for example, to C, by (ec(i)), A |= (∀C)B and A |=

(∀C)A
(3) it will not be true that A belongs

to none of the Bs
by (ec), A 6|= (∀B)¬A

55The proof stays essentially the same if we adopt (ec(o)∗) instead of (ec(o)): Since A |= (∃A)A,
AA 6= ∅.

56
Πρῶτον μὲν οὖν ἔστω στερητικὴ καθόλου ἡ Α Β πρότασις. εἰ οὖν μηδενὶ τῷ Β τὸ Α ὑπάρχει, οὐδὲ

τῷ Α οὐδενὶ ὑπάρξει τὸ Β: εἰ γάρ τινι, οἷον τῷ Γ, οὐ ἀληθὲς ἔσται τὸ μηδενὶ τῷ Β τὸ Α ὑπάρχειν:

τὸ γὰρ Γ τῶν Β τί ἐστιν. (Α2, 25a14-17) 21
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contradicting the assumption. Therefore, A 6|= (∃A)B so that, by (i−), A |=
(∀A)¬B.

A more straightforward proof not relying on ecthesis is this:

Let A |= (∀B)¬A hold, i.e., BA ∩AA = ∅ ⇐⇒ AA ∩BA = ∅. This means that
A |= (∀A)¬B.

(a-i-conv) And if A belongs to every B, B also belongs to some A, [(1)] for
if it belongs to none, [(2)] neither will A belong to any of the Bs. But it
was assumed that it belongs to all.57

Let A |= (∀B)A.

(1) for if it belongs to none, Suppose A |= (∀A)¬B
(2) neither will A belong to any of

the Bs
then, by (e-e-conv), A |= (∀B)¬A

from which it follows, by (i−), that A 6|= (∃B)A. But, by (a |= i), it follows
from A |= (∀B)A that A |= (∃B)A, contradiction. Therefore, A 6|= (∀A)¬B,
i.e., by (e−), A |= (∃A)B.

Here, too, there is a more straightforward proof:

Let A |= (∀B)A hold, i.e., BA ∩ AA = BA. But by Definition 5 (2), BA 6= ∅,
so that AA ∩BA 6= ∅, i.e., A |= (∃A)B.58

(i-i-conv) Similarly also in the case of the particular premiss; for if A belongs
to some of the Bs, it is necessary that B belong to some of the As. For if
it belongs to none, neither does A belong to any of the Bs.59

Let A |= (∃B)A. Suppose that A |= (∀A)¬B. Then, by (e-e-conv), A |=
(∀B)¬A. But, by (i−), this implies A 6|= (∃B)A, a contradiction. Therefore,
A 6|= (∀A)¬B, and, by (e−), A |= (∃A)B.

(o-o��@@−conv) For it is not the case that, if man does not belong to some animal,
then animal also does not belong to some man.60

Let BA $ AA. Then, A |= (∃A)¬B since AA∩BA 6= AA. But since BA∩AA =
BA, A |= (∀B)A. Thus, by (o−), A 6|= (∃B)¬A.61

Before moving on to the figures, let me point out that – if we drop the non-
emptiness requirement – we can restrict (o-o��@@−conv) to a valid version. Let A be an

57
εἰ δὲ παντὶ τὸ Α τῷ Β, καὶ τὸ Β τινὶ τῷ Α ὑπάρξει: εἰ γὰρ μηδενί, οὐδὲ τὸ Α οὐδενὶ τῷ Β ὑπάρξει:

ἀλλ᾿ ὑπέκειτο παντὶ ὑπάρχειν. (Α2, 25a17ff.)
58Dropping the non-emptiness assumption, we can invoke (a∗+) instead of the definition of LAR-

structure.
59
ὁμοίως δὲ καὶ εἰ κατὰ μέρος ἐστὶν ἡ πρότασις. εἰ γὰρ τὸ Α τινὶ τῷ Β, καὶ τὸ Β τινὶ τῷ Α ἀνάγκη

ὑπάρχειν: εἰ γὰρ μηδενί, οὐδὲ τὸ Α οὐδενὶ τῷ Β. (Α2, 25a20ff.)
60
οὐ γὰρ εἰ ἄνθρωπος μὴ ὑπάρχει τινὶ ζῴω, καὶ ζῷον οὐχ ὑπάρχει τινὶ ἀνθρώπῳ. (Α2, 25a12f.)

61If we choose, as Aristotle indeed does, BA to be non-empty, this is also a countermodel with the
non-emptiness requirement dropped.
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LAR-structure. Then:

(o-o-conv∗) If A 6|= (∃A)A, then, if A |= (∃A)¬B, then A |= (∃B)¬A.

For, A 6|= (∃A)A iff. AA = ∅. Thus, if AA = ∅, then, by (o∗+), A |= (∃A)¬B.
Also, BA ∩ AA = ∅. But either (i) BA = ∅ or (ii) BA 6= ∅. If (i), applying (o∗+),
A |= (∃B)¬A. And, if (ii), then BA ∩ AA = ∅ 6= BA. Thus, by (o∗+), A |= (∃B)¬A.
I will not mention the non-emptiness requirement in what follows. The reason is

simply that none of the proofs depends on it, i.e., they still hold if we drop it. This
is so because we get existential import in any of the moods of the figures, i.e., at
least one of the premises is affirmative in every mood.

Theorem 14 (First Figure)
The moods of the first figure hold:

(Barbara) (∀B)A, (∀C)B |= (∀C)A; (Celarent) (∀B)¬A, (∀C)B |= (∀C)¬A;

(Darii) (∀B)A, (∃C)B |= (∃C)A; (Ferio) (∀B)¬A, (∃C)B |= (∃C)¬A.

a

Proof. I will only prove (Barbara) and (Darii), the others have similar proofs.
Let A be an LAR-structure.

(Barbara) Let A |= (∀B)A and A |= (∀C)B hold. This means that (i) BA ∩ AA =

BA and (ii) CA∩BA = CA. Thus, CA (ii)
= CA∩BA (i)

= CA∩BA∩AA (ii)
= CA∩AA,

i.e., A |= (∀C)A.

(Darii) Let A |= (∀B)A and A |= (∃C)B. Then, (i) BA ∩ AA = BA and (ii)

CA ∩ BA 6= ∅. Thus, intersecting (i) with CA leads to BA ∩ AA ∩ CA (i)∩CA

=

BA ∩ CA
(ii)

6= ∅. Therefore, CA ∩ AA 6= ∅, i.e., A |= (∃C)A.

Theorem 15 (Second Figure)
The moods of the second figure hold:

(Cesare) (∀N)¬M, (∀X)M |= (∀X)¬N ; (Camestres)
(∀N)M, (∀X)¬M |= (∀X)¬N ;

(Festino) (∀N)¬M, (∃X)M |= (∃X)¬N ; (Baroco) (∀N)M, (∃X)¬M |= (∃X)¬N.

a

Proof. I will only prove (Baroco).
Let A be an LAR-structure.
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(Baroco) Let A |= (∀N)M and A |= (∃X)¬M hold. Suppose, for contradiction,
that A |= (∀X)N . Using the first premise and this new one in (Barbara), we
get A |= (∀X)M , which implies, by (o−), A 6|= (∃X)¬M , a contradiction to
the second premise. Thus, A 6|= (∀X)N so that, by (a−), A |= (∃X)¬N .

Theorem 16 (Third Figure)
The moods of the third figure hold:

(Darapti) (∀S)P, (∀S)R |= (∃R)P ; (Felapton) (∀S)¬P, (∀S)R |= (∃R)¬P ;

(Disamis) (∃S)P, (∀S)R |= (∃R)P ; (Datisi) (∀S)P, (∃S)R |= (∃R)P ;

(Bocardo) (∃S)¬P, (∀S)R |= (∃R)¬P ; (Ferison) (∀S)¬P, (∃S)R |= (∃R)¬P.

a

Proof. I will only prove (Darapti), (Bocardo), and (Ferison).
Let A be an LAR-structure.

(Darapti) Let A |= (∀S)P and A |= (∀S)R hold. Applying (a-i-conv) to the second
premise and using (Darii), we get A |= (∃R)P .

(Bocardo) Let A |= (∃S)¬P and A |= (∀S)R hold. Suppose, for contradiction,
that A 6|= (∃R)¬P . Then, by (o−), A |= (∀R)P . Applying (Barbara) to it and
the second premise, we get A |= (∀S)P , which implies, by (o−), A 6|= (∃S)¬P
contradicting the first premise. Therefore, A |= (∃R)¬P .

(Ferison) Let A |= (∀S)¬P and A |= (∃S)R hold. Assume, for contradiction, that
A 6|= (∃R)¬P . Then, by (o−), A |= (∀R)P . Using this and the first premise
in a (Camestres), we get that A |= (∀S)¬R. Therefore, by (i−), A 6|= (∃S)R,
which contradicts the second premise. Thus, A |= (∃R)¬P .

The Calculus Now that we have seen that the figures are valid, I introduce a
natural deduction system. Before giving the rules, we need to say what a derivation
is and what assumptions are.62 After giving the rules, I prove that all conversion
rules can be derived before giving the proofs of the figures in the following Section 3.3.

Ben-Yami (2014) also introduces a natural deduction system, but in Lemmon-
style. In this system, all QUARCAR-derivation rules are derivable. Note also Gratzl
& Pavlovic (ms) who develop the proof theory of QUARC within a sequent calculus,
and Lanzet (2017) who also uses a sequent calculus, but for a three-valued QUARC.

62I am following Troelstra & Schwichtenberg 2000.
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Definition 17 (Derivation & Assumption)
A derivation Π in a system S is a labelled tree where the conclusion is the label of
the end-node, and each top-node is labelled by an (open or closed) assumption. a

Definition 18 (Discharged Assumption)
An application of an inference rule that is discharging will close a class of assump-
tions A. We write ‘[A]u’ to indicate that an assumption class A is closed, and
the index ‘u’ corresponds to the rule application which discharged the assumption.
For a derivation Π with end-node B and open assumptions A1, . . . , An, we write
‘A1, . . . , An ` B’, and say that Π is a derivation of B from premises A1, . . . , An. a

Definition 19 (QUARCAR Derivation Rules)
The derivation rules of QUARCAR are the following:63

(∀ → ∃) (∀A)B

(∃A)B
; (A-A) (∀A)A ; (e-e-conv) (∀A)¬B

(∀B)¬A
;

(RAAa-o, u)
±ϕ

[(∀A)B]u

...
∓ϕ

(∃A)¬B

; (RAAo-a, u)
±ϕ

[(∃A)¬B]u

...
∓ϕ

(∀A)B

;

(RAAi-e, u)
±ϕ

[(∃A)B]u

...
∓ϕ

(∀A)¬B

; (RAAe-i, u)
±ϕ

[(∀A)¬B]u

...
∓ϕ

(∃A)B

;

(Barbara) (∀B)A (∀C)B

(∀C)A
; (Celarent) (∀B)¬A (∀C)B

(∀C)¬A
;

(Darii) (∀B)A (∃C)B

(∃C)A
; (Ferio) (∀B)¬A (∃C)B

(∃C)¬A
.

a

63If the terms are not assumed to be non-empty, we replace (A-A) by

(A-A∗)
(∃A)B
(∀A)A

.
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We have to include the rules (∀ → ∃) and (A-A) to ensure the completeness of the
logic; otherwise they will not play a major role.64 Most notably, we need (∀ → ∃) to
derive (a-i-conv). This is why it suffices to have (e-e-conv) as basic conversion rule.
In the presence of (e-e-conv) and the reductio rules (see Theorem 20), we could have
equally well chosen (a-i-conv) instead of (∀ → ∃) and derive the latter as follows:

(∀A)B
(a-i-conv)

(∃B)A
(i-i-conv)

(∃A)B

.

We also have to include one of the conversion rules to prove the other two where
the choice was rather arbitrary. However, we need reductio rules to derive (i-i-
conv) from (e-e-conv) or vice versa (see below). In particular, we do not include
the ecthesis rules. Here, again, we would need three, where one would essentially
be (Darapti). In their presence, we could derive all the conversion rules. However,
since Aristotle also wants to reduce all the moods to just (Barbara) and (Celarent),
and needs to use conversion rules to do so, it would be rather circular to have one
of the reduced rules as a basic derivation rule. In particular, the claim that all the
moods are reducible to (Barbara) and (Celarent) would then be plainly false.

To ensure the contradictories again, we have to include four (types of) reductio
rules. In the reductio rules, we read ‘±ϕ’ to ‘∓ϕ’ as contradictories, too, so that the
rules are stated somewhat circular. We could spell them out with all the possible
pairs to get rid of this circularity, but this would multiply the rules without much
gain. For example, we can instantiate (RAAi-e, u) as below to derive (e-e-conv)
from (i-i-conv), or (RAAa-o, u) as follows:

(∃A)¬B

[(∀B)A]u

...
(∀A)B

(RAAa-o, u)
(∃B)¬A

.

Similarly, we could arrive at a different pair of contradictories such as

(∀C)¬D

[(∀B)A]u

...
(∃C)D

(RAAa-o, u)
(∃B)¬A

.

This also means that for every reductio type, there correspond four instances with
different contradictories in place of ‘±ϕ’ and ‘∓ϕ’. Aristotle himself has more than
one reductio rule to conclude the contradictory of a sentence.65 This is necessary to
pass from a given sentence-type to another one. In an extended language which then

64The following remarks on the rules and their interderivability mostly still apply if we allow for
empty terms, i.e., drop (A-A). Of course, without (A-A), we cannot drive what is called (Inst)
below.

65See Β11, 61a19f., where Aristotle explains to assume ‘the contradictory of the conclusion [ἡ
ἀντίφασις τεθῇ τοῦ συμπεράσματος]’ to derive a contradiction. Cf. also Crivelli 2012, p. 133,
and Malink 2013, pp. 31ff.
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gives rise to rules that govern the interaction of negation and quantifier, the rules
can be reduced again; but as long as there is no formal information about when two
sentences are contradictories, we actually have to include all of them as rules.66

Given these reductio rules, we could have chosen (i-i-conv) as basic rule and
derived (e-e-conv) as follows:

(∀A)¬B
[(∃B)A]u

(i-i-conv)
(∃A)B

(RAAi-e, u)
(∀B)¬A

.

This also shows that, given the other rules, (∀ → ∃) and (a-i-conv) as well as (e-
e-conv) and (i-i-conv) are interderivable. Further, we can also derive the following
(call it (Inst)):

(A-A)
(∀A)A

(a-i-conv)
(∃A)A

.

Since we use (∀ → ∃) in the derivation of (a-i-conv), this proof relies on the former
rule. Using (Inst) and (Darii), we can see that (Inst) and (∀ → ∃) are interderivable
(assuming (A-A)):

(∀A)B
(Inst)

(∃A)A
(Darii)

(∃A)B
.

Thus, we could have chosen (Inst) instead of (∀ → ∃).67

Since we want to derive (Darii) from (Barbara) and (Celarent) plus the conversion
rules, there is a possible circularity in using (Inst) as basic rule. However, to derive
(Darii), we only need (e-e-conv) and reductio. Thus, the proof of Theorem 23 shows
that the reduction is successful. Further, given (Inst), we can also derive (a-i-conv);
just apply (i-i-conv) (whose proof only needs (e-e-conv) and a reductio rule, see
below), to the previous derivation.

Lastly, the four moods of the first figure are included as derivation rules. Aristotle
does not prove them himself, but notes that they are ‘perfect’ and, thus, not in need
for any justification. We will later (in Theorem 23) prove that it, indeed, suffices to
have (Barbara) and (Celarent).

The moods of the first figure together with the conversion rules are sufficient to
derive all the moods of the second and third figures. Theorem 20 shows the derivabil-
ity of the remaining two conversion rules. Then, it will be shown that the moods of
the second and third figures are derivable as well. To see how adequate the calculus
is, I will first quote Aristotle’s own proofs before giving the formal counterparts. As
can be seen, the formal derivations are just transcriptions of Aristotle’s own words
in the formal language.
66An anonymous referee has pointed out that Martin (1997, p. 7) introduces just one general

reductio rule which shows that the multiplication of such rules as above is unnecessary. However,
Martin is able to reduce it because he introduces a ‘syntactic negation’ (p. 5) which is exactly not
done here since Aristotle does not work with such a concept and without such, a more general
form of the reductio rules is not viable (Smith 2018, §4, explicitly tells us that Aristotle ‘does
not view negations as sentential compounds’). Opting for the mentioned extended language,
viz., a language including negation, we can formulate a general reductio rule.

67Again, if we allow empty terms, this is no longer the case.
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Theorem 20 (Conversion Rules)
The following conversion rules are derivable.

(a-i-conv) (∀A)B

(∃B)A
; (i-i-conv) (∃A)B

(∃B)A
.

a

Proof. (i-i-conv) (∃A)B ` (∃B)A:

(∃A)B

[(∀B)¬A]u
(e-e-conv)

(∀A)¬B
(RAAe-i, u)

(∃B)A

(a-i-conv) (∀A)B ` (∃B)A:
(∀A)B

(∀ → ∃)
(∃A)B

(i-i-conv)
(∃B)A

3.3 Syllogistic in QUARCAR

Having developed the calculus, we can go on to prove the remaining two figures.
This will be done in the following Theorems 21 and 22. After that, I formulate and
prove a result also mentioned by Aristotle himself, viz., that we can derive the rules
(Darii) and (Ferio) from the remaining ones.

Theorem 21 (Second Figure)
The moods of the second figure are derivable.

(Cesare) (∀N)¬M, (∀X)M ` (∀X)¬N ; (Camestres)
(∀N)M, (∀X)¬M ` (∀X)¬N ;

(Festino) (∀N)¬M, (∃X)M ` (∃X)¬N ; (Baroco) (∀N)M, (∃X)¬M ` (∃X)¬N.

a

Proof. (Cesare) (∀N)¬M, (∀X)M ` (∀X)¬N :

For let M be predicated of no N and of all X. Now since the privative
premiss converts, N will belong to no M; but it was assumed that M
belongs to all X, so that N will belong to no X – this was proved before.68

(∀N)¬M
(e-e-conv)

(∀M)¬N (∀X)M
(Celarent)

(∀X)¬N

(Camestres) (∀N)M, (∀X)¬M ` (∀X)¬N :

68
κατηγορείσθω γὰρ τὸ Μ τοῦ μὲν Ν μηδενός, τοῦ δὲ Ξ παντός. ἐπεὶ οὖν ἀντιστρέφει τὸ στερητικόν,

οὐδενὶ τῷ Μ ὑπάρξει τὸ Ν: τὸ δέ γε Μ παντὶ τῷ Ξ ὑπείκειτο: ὥστε τὸ Ν οὐδενὶ τῷ Ξ: τοῦτο γὰρ

δέδεικται πρότερον. (Α5, 27a5-9)
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Again, if M belongs to all N and to no X, X will belong to no N. For if
M belongs to no X, neither does X belong to any M; but it was assumed
that M belongs to all N; therefore, X will belong to no N – for the first
figure has come about again. And since the privative premiss converts,
neither will N belong to any X, so that there will be the same syllogism.69

(∀N)M

(∀X)¬M
(e-e-conv)

(∀M)¬X
(Celarent)

(∀N)¬X
(e-e-conv)

(∀X)¬N

Note that Aristotle’s proof explicitly uses conversion to arrive at ‘(∀X)¬N ’,
but in stating the syllogism, he says ‘X will belong to no N [οὐδὲ τὸ Ξ τῷ Ν
οὐδενὶ ὑπάρξει]’ (Α5, 27a10) instead of the proven ‘N will belong to no X’. The
former, however, is not an instantiation of (Second Figure Scheme).

(Festino) (∀N)¬M, (∃X)M ` (∃X)¬N :
For if M belongs to no N but to some X, it is necessary for N not to
belong to some X. For since the privative premiss converts, N will belong
to no M; but it was assumed that M belongs to some X, so that N will
not belong to some X. For a syllogism in the first figure comes about.70

(∀N)¬M
(e-e-conv)

(∀M)¬N (∃X)M
(Ferio)

(∃X)¬N

(Baroco) (∀N)M, (∃X)¬M ` (∃X)¬N :
Again, if M belongs to all N but does not belong to some X, it is necessary
for N not to belong to some X. For if it belongs to all X and M is predicated
of every N, it is necessary for M to belong to every X. But it was assumed
that it did not belong to some.71

(∀N)M [(∀X)N ]u
(Barbara)

(∀X)M (∃X)¬M
(RAAa-o, u)

(∃X)¬N

Theorem 22 (Third Figure)
The moods of the third figure are derivable.
69
πάλιν εἰ τὸ Μ τῷ μὲν Ν παντὶ τῷ δὲ Ξ μηδενί, οὐδὲ τὸ Ξ τῷ Ν οῦδενὶ ὑπάρξει (εἰ γὰρ τὸ Μ οὐδενὶ

τῷ Ξ, οὐδὲ τὸ Ξ οὖδενὶ τῷ Μ: τὸ δέ γε Μ παντὶ τῷ Ν ὑπῆρχεν: τὸ ἄρα Ξ οὐδενὶ τῷ Ν ὑπάρχει:

γεγένηται γὰρ πάλιν τὸ πρῶτον σχῆμα): ἐπεὶ δὲ ἀντιστρέφει τὸ στερητικόν, οὐδὲ τὸ Ν οὐδενὶ τῷ

Ξ ὑπάρξει, ὥστ᾿ ἔσται ὁ αὐτὸς συλλογισμός. (Α5, 27a9-14)
70
εἰ γὰρ τὸ Μ τῷ μὲν Ν μηδενὶ τῷ δὲ Ξ τινὶ ὑπάρχει, ἀνάγκη τὸ Ν τινὶ τῷ Ξ μὴ ὑπάρχειν. ἐπεὶ γὰρ

ἀντιστρέφει τὸ στερητικόν, οὐδενὶ τῷ Μ ὑπάρξει τὸ Ν: τὸ δέ γε Μ ὑπέκειτο τινὶ τῷ Ξ ὑπάρχειν:

ὥστε τὸ Ν τινὶ τῷ Ξ οὐχ ὑπάρξει: γίνεται γὰρ συλλογισμὸς διὰ τοῦ πρώτου σχήματος. (Α5,
27a32-36)

71
πάλιν εἰ τῷ μὲν Ν παντὶ τὸ Μ, τῷ δὲ Ξ τινὶ μὴ ὑπάρχει, ἀνάγκη τὸ Ν τινὶ τῷ Ξ μὴ ὑπάρχειν: εἰ

γὰρ παντὶ ὑπάρχει, κατηγορεῖται δὲ καὶ τὸ Μ παντὸς τοῦ Ν, ἀνάγκη τὸ Μ παντὶ τῷ Ξ ὑπάρχειν:

ὑπέκειτο δὲ τινὶ μὴ ὑπάρχειν. (Α5, 27a36-27b1)
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(Darapti) (∀S)P, (∀S)R ` (∃R)P ; (Felapton) (∀S)¬P, (∀S)R ` (∃R)¬P ;

(Disamis) (∃S)P, (∀S)R ` (∃R)P ; (Datisi) (∀S)P, (∃S)R ` (∃R)P ;

(Bocardo) (∃S)¬P, (∀S)R ` (∃R)¬P ; (Ferison) (∀S)¬P, (∃S)R ` (∃R)¬P.
a

Proof. (Darapti) (∀S)P, (∀S)R ` (∃R)P :

If they are universal, then, and when both P and R belong to every S,
I say that P will belong to some R of necessity. For since the positive
premiss converts, S will belong to some R, so that, since P belongs to
all S and R to some S, it is necessary for P to belong to some R, for a
syllogism in the first figure comes about.72

(∀S)P

(∀S)R
(a-i-conv)

(∃R)S
(Darii)

(∃R)P

The demonstration can also be carried out through the impossible or by
setting out [ecthesis]. For if both terms belong to all S, and one chooses
one of the Ss, say N, then both P and R will belong to it, so that P will
belong to some R.73

(∀S)P
(∀ → ∃)

(∃S)P
(ecthesis)

(∀N)P

(∀S)P
(∀ → ∃)

(∃S)P
(ecthesis)

(∀N)S (∀S)R
(Barbara)

(∀N)R
(a-i-conv)

(∃R)N
(Darii)

(∃R)P

Note that this is a working proof, but it seems rather intricate compared to
Aristotle’s conclusion that ‘both P and R will belong to it, so that P will
belong to some R’; in particular, the phrase ‘both P and R will belong to
it’ rather suggests the formalization ‘(qN)P ’ and ‘(qN)R’ and not a mixed
case as in the above proof. Taking ‘q’ to be ‘∃’ clearly does not help here so
that we have to read it as ‘(∀N)P ’ and ‘(∀N)R’. But to conclude from this
that ‘(∃R)P ’ is exactly what is supposed to be proved, viz., (Darapti) (cf. the
discussion of ecthesis below the formulation of Theorem 12 as well as the one
below Definition 19 of the derivation rules; see also Malink 2013, pp. 92ff.).

72
Καθόλου με`ν οὖν ὄντων, ὅταν καὶ τὸ Π καὶ τὸ Ρ παντὶ τῷ Σ ὑπάρχῃ, ὅτι τινὶ τῷ Ρ τὸ Π ὑπάρξει

ἐξ ἀνάγκης: ἐπεὶ γὰρ ἀντιστρέφει τὸ κατηγορικόν, ὑπάρξει τὸ Σ τινὶ τῷ Ρ, ὥστ᾿ ἐπεὶ τῷ μὲν Σ

παντὶ τὸ Π, τῷ δὲ Π τινὶ τὸ Σ, ἀνάγκη τὸ Π τινὶ τῷ Ρ ὑπάρχειν: γίνεται γὰρ συλλογισμὸς διὰ τοῦ

πρώτου σχήματος. (Α6, 28a17-22)
73
ἔστι δὲ καὶ διὰ τοῦ ἀδυνάτου καὶ τῷ ἐκθέσθαι ποιεῖν τὴν ἀπόδειξιν: εἰ γὰρ ἄμφω παντὶ τῷ Σ ὑπάρχει,

ἂν ληφθῇ τι τῷ Σ οἷον τὸ Ν, τούτῳ καὶ τὸ Π καὶ τὸ Ρ ὑπάρξει, ὥστε τινὶ τῷ Ρ τὸ Π ὑπάρξει. (Α6,
28a22-26)
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(Felapton) (∀S)¬P, (∀S)R ` (∃R)¬P :
And if R belongs to all S and P belongs to none, there will be a syllogism
to the effect that P will not belong to some R of necessity. For the
demonstration can be carried out in the same way by converting the
premiss RS.74

(∀S)¬P
(∀S)R

(a-i-conv)
(∃R)S

(Ferio)
(∃R)¬P

This could also be proved through the impossible, as in the previous
cases.75

(∀S)¬P

[(∀R)P ]u (∀S)R
(Barbara)

(∀S)P
(∀ → ∃)

(∃S)P
(RAAa-o, u)

(∃R)¬P

(Disamis) (∃S)P, (∀S)R ` (∃R)P :

For if R belongs to all S and P to some, it is necessary for P to belong to
some R. For since the affirmative premiss converts, S will belong to some
P, so that since R belongs to all S and S to some P, R will belong to some
P and hence P will belong to some R.76

(∀S)R

(∃S)P
(i-i-conv)

(∃P )S
(Darii)

(∃P )R
(i-i-conv)

(∃R)P

This can also be demonstrated through the impossible and by setting out,
as in the previous cases.77

(∃S)P
(ecthesis)

(∀N)P

(∀S)R

(∃S)P
(ecthesis)

(∀N)S
(Barbara)

(∀N)R
(a-i-conv)

(∃R)N
(Darii)

(∃R)P

(Datisi) (∀S)P, (∃S)R ` (∃R)P :
74
καὶ ἂν τὸ μὲν Ρ παντὶ τῷ Σ, τὸ δὲ Π μηδενὶ ὑπάρχῃ, ἔσται συλλογισμὸς ὅτι τὸ Π τινὶ τῷ Ρ οὐχ

ὑπάρξει ἐξ ἀνάγκης: ὁ γὰρ αὐτὸς τρόπος τῆς ἀποδείξεως ἀντιστραφείσης τῆς Ρ Σ προτάσεως.

(Α6, 28a26-29)
75
δειχθείη δ᾿ ἂν καὶ διὰ τοῦ ἀδυνάτου, καθάπερ ἐπὶ τῶν πρότερον. (Α6, 28a29f.)

76
εἰ γὰρ τὸ μὲν Ρ παντὶ τῷ Σ τὸ δὲ Π τινί, ἀνάγκη τὸ Π τινὶ τῷ Ρ ὑπάρχειν. ἐπεὶ γὰρ ἀντιστρέφει τὸ

καταφατικόν, ὑπάρξει τὸ Σ τινὶ τῷ Π, ὥστ᾿ ἐπεὶ τὸ μὲν Ρ παντὶ τῷ Σ, τὸ δὲ Σ τινὶ τῷ Π, καὶ τὸ Ρ

τινὶ τῷ Π ὑπάρξει: ὥστε τὸ Π τινὶ τῷ Ρ. (Α6, 28b7-11)
77
ἔστι δ᾿ ἀποδεῖξαι καὶ διὰ τοῦ ἀδυνάτου καὶ τῇ ἐκθέσει, καθάπερ ἐπὶ τῶν πρότερον. (Α6, 28b14f.)
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Again, if R belongs to some S and P to all S it is necessary for P to belong
to some R, for the demonstration proceeds in the same way.78

(∀S)P

(∃S)R
(i-i-conv)

(∃R)S
(Darii)

(∃R)P

This can also be demonstrated through the impossible and by setting out,
as in the previous cases.79

(∀S)P

(∃S)R
(ecthesis)

(∀N)S
(Barbara)

(∀N)P

(∃S)R
(ecthesis)

(∀N)R
(a-i-conv)

(∃R)N
(Darii)

(∃R)P

(Bocardo) (∃S)¬P, (∀S)R ` (∃R)¬P :
For if R belongs to all S but P does not belong to some S, it is necessary
for P not to belong to some R. For if it belongs to all R and R to all S,
then P will also belong to all S; but it did not belong to all.80

(∃S)¬P
[(∀R)P ]u (∀S)R

(Barbara)
(∀S)P

(RAAa-o, u)
(∃R)¬P

This can also be proved without the reduction to the impossible if one
chooses one of the Ss to which P does not belong.81

(∃S)¬P
(ecthesis)

(∀T )S (∀S)R
(Barbara)

(∀T )R
(a-i-conv)

(∃R)T

(∃S)¬P
(ecthesis)

(∀T )¬P
(Ferio)

(∃R)¬P

If we drop the non-emptiness requirement, we have to change the proof to
account for the fact that (ec(o)) had to be replaced by (ec(o)∗). The required
ecthesis looks now as follows:

(∃S)¬P (∃S)S
(ecthesis)

(∀T )S

and similarly for the conclusion ‘(∀T )¬P ’. That we can apply this rule to
derive (Bocardo) can be seen by the following:

78
πάλιν εἰ τὸ μὲν Ρ τινὶ τῷ Σ τὸ δὲ Π παντὶ ὑπάρξει, ἀνάγκη τὸ Π τινὶ τῷ Ρ ὑπάρξειν: ὁ γὰρ αὐτὸς

τρόπος τῆς ἀποδείξεως. (Α6, 28b11-14)
79
ἔστι δ᾿ ἀποδεῖξαι καὶ διὰ τοῦ ἀδυνάτου καὶ τῇ ἐκθέσει, καθάπερ ἐπὶ τῶν πρότερον. (Α6, 28b14f.)

80
εἰ γὰρ τὸ Ρ παντὶ τῷ Σ, τὸ δὲ Π τινὶ μὴ ὑπάρξει, ἀνάγκη τὸ Π τινὶ τῷ Ρ μὴ ὑπάρχειν. εἰ γὰρ παντί,

καὶ τὸ Ρ παντὶ τῷ Σ, καὶ τὸ Π παντὶ τῷ Σ ὑπάρξει: ἀλλ᾿ οὐχ ὑπῆρχεν. (Α6, 28b17-20)
81
δείκνυται δὲ καὶ ἄνευ τῆς ἀπαγωγῆς, ἐὰν ληφθῇ τι τῶν Σ ᾧ τὸ Π μὴ ὑπάρξει. (Α6, 28b20f.)
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(∃S)¬P

(∀S)R
(∀ → ∃)

(∃S)R
(A-A∗)

(∀S)S
(∀ → ∃)

(∃S)S
(ecthesis)

(∀T )S

(Ferison) (∀S)¬P, (∃S)R ` (∃R)¬P :
For if P belongs to no S and R belongs to some S, P will not belong to
some R, for there will be the first figure again when the premiss RS is
converted.82

(∀S)¬P
(∃S)R

(i-i-conv)
(∃R)S

(Ferio)
(∃R)¬P

As Aristotle notes himself, we can reduce the moods of the first figure to just
Barbara and Celarent (Α7, 29b1f.)83. Since we have the appropriate reductio
rules, QUARCAR is also capable of establishing this result.

Theorem 23 (Reduction of the Basic Rules)
(Barbara) and (Celarent) suffice as additional derivation rules. a

Proof. Here, we can improve upon Aristotle’s own reduction: ‘Now those in the first
figure – the particular ones – [. . . ] [can also be proved] through the second figure
by reduction to the impossible’84 (Α7, 29b6ff.). We can also reduce them right away
to (Barbara) and (Celarent), where, in the case of (Darii), the proof just contains a
proof of (Camestres). This is why I only state (Ferio):

(Ferio) (∀B)¬A, (∃C)B ` (∃C)¬A:

(∃C)B

(∀B)¬A
(e-e-conv)

(∀A)¬B [(∀C)A]u
(Celarent)

(∀C)¬B
(RAAa-o, u)

(∃C)¬A

Aristotle’s proofs are as follows:

(Darii): For example, if A belongs to every B and B to some C, then A belongs
to some C. For if it belongs to none, but to every B, B will belong to no
C; this we know from the second figure.85

82
εἰ γὰρ τὸ Π μηδενὶ τῷ Σ, τὸ δὲ Ρ τινὶ ὑπάρξει τῷ Σ, τὸ Π τινὶ τῷ Ρ οὐχ ὑπάρξει: πάλιν γὰρ ἔσται

τό πρῶτον σχῆμα τῆς Ρ Σ προτάσεως ἀντιστραφείσης. (Α6, 28b33ff.)
83‘But one can also reduce all syllogisms to the universal ones in the first figure [῎Εστι δὲ καὶ
ἀναγαγεῖν πάντας τοὺς συλλογισμοὺς εἰς τοὺς ἐν τῷ πρώτῳ σχήματι καθόλου συλλογισμούς].’

84
οἱ δ᾿ ἐν τῷ πρώτῳ, οἱ κατὰ μέρος, ἐπιτελοῦνται μὲν καὶ δι᾿ αὑτῶν, ἔστι δὲ καὶ διὰ τοῦ δευτέρου

σχήματος δεικνύναι εἰς ἀδύνατον ἀπάγοντας.
85
οἷον εἰ τὸ Α παντὶ τῷ Β, τὸ δὲ Β τινὶ τῷ Γ, ὅτι τὸ Α τινὶ τῷ Γ: εἰ γὰρ μηδενί, τῷ δὲ Β παντί, οὐδενὶ

τῷ Γ τὸ Β ὑπάρξει: τοῦτο γὰρ ἴσμεν διὰ τοῦ δευτέρου σχήματος. (Α7, 29b8-11)
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(∀B)A [(∀C)¬A]u
(Camestres)

(∀C)¬B (∃C)B
(RAAe-i, u)

(∃C)A

(Ferio): The demonstration will be similar in the case of the privative syllo-
gism. For if A belongs to no B and B to some C, then A will not belong
to some C. For if it belongs to every C but to no B, then B will belong
to no C – this was the middle figure.’86

(∀B)¬A [(∀C)A]u
(Cesare)

(∀C)¬B (∃C)B
(RAAa-o, u)

(∃C)¬A

3.4 Soundness & Completeness of QUARCAR

As is to be expected, QUARCAR is sound and complete; given the simplicity of the
language LAR and its semantics, the proof is rather straightforward.

Theorem 24 (Soundness and Completeness)
QUARCAR is sound and complete: Φ ` ϕ iff. Φ |= ϕ. a

Proof. Soundness: The proof is an induction on the length of the derivation. The
length of a derivation is the length of its longest branch (or any fitting definition
will do).

Base Case: The Base Case is a derivation of length 1. The only rule that
lead to such derivation is (A-A). Theorem 10 shows its soundness.

Induction Cases: Theorems 13 and 14 show the soundness of the (e-e-conv)
and the moods of the first figure. This leaves us with (∀ → ∃) and the
reductio rules (RAAa-o, u), (RAAi-e, u), (RAAe-i, u) and (RAAo-a, u). I
will only prove the soundness of the first of these reductio rules; the others
are proven similarly. The soundness of (∀ → ∃) follows from Lemma 9.

(RAAa-o, u) Recall the rule:

±ϕ

[(∀A)B]u

...
∓ϕ

(∃A)¬B
Suppose we have a proof of (∃A)¬B from premises ±ϕ and (∀A)B.
Suppose that A |= ±ϕ and A |= (∀A)B. Then, by Induction Hypoth-
esis (IH), A |= ∓ϕ. Since ‘±ϕ’ and ‘∓ϕ’ are contradictories, they are
either of the form ‘(∀C)D’–‘(∃C)¬D’, or ‘(∃C)D’–‘(∀C)¬D’. Thus,
we have four cases.

86
ὁμοίως δὲ καὶ ἐπὶ τοῦ στερητικοῦ ἔσται ἡ ἀπόδειξις. εἰ γὰρ τὸ Α μηδενὶ τῷ Β, τὸ δὲ Β τινὶ τῷ

Γ ὑπάρξει, τὸ Α τινὶ τῷ Γ οὐχ ὑπάρξει: εἰ γὰ παντί, τῷ δὲ Β μηδενὶ ὑπάρξει, οὐδενὶ τῷ Γ τὸ Β

ὑπάρξει: τοῦτο δ᾿ ἦν τὸ μέσον σχῆμα. (Α7, 29b11-15)
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(1) Suppose that ±ϕ is (∀C)D. Then, by (a−), it follows from A |=
(∃C)¬D that A 6|= (∀C)D, a contradiction.

(2) Suppose that ±ϕ is (∃C)¬D. Then, by (o−), it follows from
A |= (∀C)D that A 6|= (∃C)¬D, a contradiction.

(3) Suppose that ±ϕ is (∀C)¬D. Then, by (e−), it follows from
A |= (∃C)D that A 6|= (∀C)¬D, a contradiction.

(4) Suppose that ±ϕ is (∃C)D. Then, by (i−), it follows from A |=
(∀C)¬D that A 6|= (∃C)D, a contradiction.

Therefore, A 6|= (∀A)B, so, by (a−), A |= (∃A)¬B.

Note that, if incorporated, ecthesis is sound, too, because of (ec(i)) and
(ec(o)) (and (ec(o)∗), if the non-emptiness requirement is dropped).

Completeness: I will only indicate how to prove this. Most of the work is already
done. We only have the following four formula types:

(a) (∀A)B (i) (∃A)B (e) (∀A)¬B (o) (∃A)¬B.

In the cases in which ‘B’ just is ‘A’, Theorem 10 shows the first two to be
logically true, and we can show the other to be logically false. These are also
the only logical truths. Both are provable due to (A-A) and (∀ → ∃).
If we have one premise, the conversion rules apply; by (e-e-conv) and Theo-
rem 20, they are provable.

In the two premise case, the figures apply. Having (Barbara) and (Celarent)
plus the other rules, we can derive all the figures (Theorems 21 and 22).

If there are more than two premises, we just iterate the above cases.

In a more formal manner, we can use Martin’s (1997) completeness proof here,
too. Martin has two ‘notions of sentence’ (p. 5) where one includes formulas of
the form ‘Axx’ which correspond to our ‘(∀A)A’. Further, he interprets terms
‘over non-empty sets’ as did we. In particular then, his semantics just is ours.
The completeness of QUARCAR follows then from the intertranslatability of
it with Martin’s system. The translation is the obvious one where we identify
Martin’s ‘¬Axy’ with his ‘Oxy’ (and similarly for the other cases).

3.5 QUARCAR and Classical Logic

To get more expressive power into QUARCAR without tinkering with its presuppo-
sition that all sentences are of the form ‘a’, ‘i’, ‘e’, and ‘o’, we can be more liberal
with what counts as a term. In particular, we can introduce rules to form complex
terms out of simpler ones. In the following, it will be shown how this works and
how much more expressive power we gain by doing so. An immediate consequence
is also which part of classical logic QUARCAR actually captures.
First, we have to adjust our underlying language.
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Definition 25 (L∗AR)
The language of QUARC∗AR (L∗AR) consists of the following:

• the logical symbols ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘↔’, ‘∀’, and ‘∃’,

• the auxiliary symbols ‘(’ and ‘)’,

• and a set PredL∗AR
of unary predicate-symbols. a

We can define the simple terms as before.

Definition 26 (Simple L∗AR-Terms)
The set of simple L∗AR-terms is defined to be PredL∗AR

. a

These are the terms that we ensure have a non-empty extension. However, we
extend the set of terms now as follows.

Definition 27 (L∗AR-Terms)
The set of L∗AR-terms is recursively defined as follows:

(T1) Every simple term is a term.

(T2) If A is a term, then so is (¬A).

(T3) If A and B are terms, then so are (A ◦B) (◦ ∈ {∧,∨,→,↔}).

Let TermL∗AR
be the set of all L∗AR-terms. a

The definition of L∗AR-formula is the same as before, but ranges now over a larger
class of terms since TermLAR $ TermL∗AR

.

Definition 28 (L∗AR-Formulas/Sentences)
The set FormL∗AR

of L∗AR-formulas/sentences is defined as follows:

(F∗)
If A and B are L∗AR-terms, then p(∀A)Bq, p(∃A)Bq, p(∀A)¬Bq, and
p(∃A)¬Bq are L∗AR-formulas.

a

Compared to LAR-fomulas, we allow now for formulas of the form ‘(qA)¬¬C’
(well, strictly speaking, ‘(qA)¬(¬C)’) since given that the term ‘B’ just happens to
be ‘¬C’, there is nothing to rule this out as formula. However, strictly speaking,
there are two different negations involved. The one is a term-building operation
(the ‘¬’ in ‘¬C’), the other not (the first occurrence of ‘¬’ in ‘(qA)¬¬C’). But
since the derivation rules only apply to the latter (and only one such is allowed in a
given formula), there arises no problem out of this ambiguity (see Lemma 30). Note,
however, that to gain real expressive power, we need these two different negations
(taking into account the sentence negation, we actually arrive at three). Intuitively
speaking, an L∗AR-formula of the form ‘(∀A)B’ will correspond to a classical formula
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of the form ‘∀x(A(x) → B(x))’. But if the ‘B(x)’ contains itself negations, e.g., if
‘B(x)’ is of the form ‘¬(C(x)∧¬D(x))’, we would have no LAR-term corresponding
to it – but we do have an L∗AR-term.
Note, too, that even though bracketing does not make a difference in the case of

non-empty terms (as witnessed by Lemma 30 below), it does make a difference if we
drop this requirement. For, for example, ‘(∀A)¬B’ and ‘(∀A)(¬B)’ do come apart
then; the former is an e-sentence, the latter an a one, and, according to (a∗+), the
latter is true only if ‘A’ is non-empty, whereas this is not the case for the former
according to (e+). The latter formula does imply the former, but not vice versa (see
Lemma 30 and the footnotes there).
Since here we do not want to make any derivations about the terms themselves

(such as (∀(A ∨B))C

(∀A)C
or (∃A)C

(∃(A ∨B))C
), we do not need any extra rules for

them.87 However, we have to adjust the semantics to ensure that the complex terms
get the correct extensions. To do so, we have to add new clauses:

Definition 29 (L∗AR-Structures)
Let L∗AR be a language. An L∗AR-structure is a tuple A = (D, (AA)A∈TermL∗AR

) with
the following properties:

(1) D is a set (the universe);

(2) if A ∈ TermL∗AR
is simple, then AA is a non-empty unary relation (i.e., predi-

cate) on D, viz. ∅ 6= AA ⊆ D;88

(3) if A ∈ TermL∗AR
is a complex term of the form ‘(¬B)’ for some B ∈ TermL∗AR

,
then AA = D \BA;

(4) if A ∈ TermL∗AR
is a complex term of the form ‘(B ∧ C)’ (‘(B ∨ C)’) for some

B,C ∈ TermL∗AR
, then AA = BA ∩ CA (AA = BA ∪ CA). a

The clauses involving ‘→’ and ‘↔’ can be defined in terms of the given ones; it
would have been sufficient to just give the clause for either ‘∧’ or ‘∨’, too. With these
additional terms and the way to interpret them, we can see that ecthesis properly
follows now. In this sense, they are rather structural in nature since they concern
the existence and the behaviour of sub-terms of given terms.

That the two different negations are no cause of vicious ambiguity is shown in the
following Lemma 30.

Lemma 30 (Negation Agreement)
Let A,B,C ∈ TermL∗AR

. Let C be of the form ‘¬B’. Then:
A |= (qA)¬B iff. A |= (qA)C.89 a

87This also means that we do not obtain a completeness result for QUARC∗AR as it stands.
88Dropping the non-emptiness requirement, we get instead:

(2∗) if A ∈ TermL∗
AR

is simple, then AA ⊆ D.

89Dropping the non-emptiness requirement, we only get (∀A)C |= (∀A)¬B and (∃A)C |= (∃A)¬B.
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Proof. Let A be an L∗AR-structure. Note that, by Definition 29, CA = (¬B)A. I will
only prove the left-to-right directions for ‘q’ being ‘∀’ and for ‘q’ being ‘∃’ (since
they don’t hold if we opt for (2∗) instead of (2) in Definition 29). The other cases
are proved analogously.

“ ∀⇒”: Let A |= (∀A)¬B. Then, by (e+), (i) ∅ = AA ∩ BA. Further, AA = AA ∩
D

D=BA∪(¬B)A

= AA ∩ (BA ∪ (¬B)A) = (AA ∩ BA) ∪ (AA ∩ (¬B)A)
(i)
= AA ∩

(¬B)A
CA=(¬B)A

= AA ∩ CA. Therefore, by (a+), A |= (∀A)C.90

“ ∃⇒”: Let A |= (∃A)¬B. Then, by (o∗+), AA ∩ BA 6= AA. Intersecting this with

CA, gets us: AA ∩ CA 6= AA ∩ BA ∩ CA CA=(¬B)A

= AA ∩ BA ∩ (¬B)A
BA∩(¬B)A=∅

=
AA ∩ ∅ = ∅. Therefore, by (i+), A |= (∃A)C.91

In similar fashion to Definition 27, we can introduce predicate formation rules to
the QUARC.92 For the proof theory to keep up, we have to introduce additional
derivation rules (◦ ∈ {∧,∨,→,↔}):

(C)
(·)P ◦ (·)Q
(·)(P ◦Q)

where the double-line means that both directions (top to bottom and bottom to
top) are covered. Introducing these formation and derivation rules for complex
unary predicates leads to the intertranslatability of QUARC and classical logic +
X, where the X is a set of axioms ensuring that every (simple) unary predicate has
instances.93 I will call the latter ‘FOL∃’.
QUARC with these additional predicates and rules that govern them is able to

prove everything QUARC∗AR can prove. What interests us now is the question how
much of classical logic QUARC∗AR captures.
To this end, recall the four sentence-types and their corresponding formalization:

a: (∀A)B =̂ ∀x(A(x)→ B(x));

e: (∀A)¬B =̂ ∀x(A(x)→ ¬B(x));

i: (∃A)B =̂ ∃x(A(x) ∧B(x));

o: (∃A)¬B =̂ ∃x(A(x) ∧ ¬B(x)).

In the classical counterpart, however, formulas can have complex sub-formulas in
place of ‘A(x)’ and ‘B(x)’. Introducing the complex terms to QUARCAR leads to
the validation of a part of them, viz., those formulas that are Aristotelian:
90Using (a∗+) and (o∗+) instead of (a+) and (o+), we can easily construct a countermodel: Let

AA = ∅. Then, AA ∩ BA = ∅, i.e., by (e+), A |= (∀A)¬B. However, since AA = ∅, by (o∗+),
A |= (∃A)C, so, by Lemma 9, A 6|= (∀A)C.

91Using (o∗+) instead of (o+), we can construct a countermodel as before: Let AA = ∅. Then,
by (o∗+), A |= (∃A)¬B. But AA ∩ CA = ∅ so that, by (e+), A |= (∀A)¬C and, thus, by (i−),
A 6|= (∃A)C.

92Note that none of the following works if we adopt (2∗) instead of (2) in Definition 29. However,
we could change QUARC in similar fashion and translate it to classical logic by adding the
requirement of non-emptiness in the case of a-statements, and translating o-statements to the
negation of the corresponding a-statements.

93See Raab 2016 and, for a similar result using different resources, Lanzet & Ben-Yami 2004.
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Definition 31 (Aristotelian Formulas)
A classical formula ϕ is called Aristotelian, if it satisfies the following:

(1) ϕ does not contain n-ary predicates for every n ≥ 2;

(2) ϕ is of the form

(i) ∀xψ and ψ has as its main connective ‘→’, or

(ii) ∃xθ and θ has as its main connective ‘∧’,

where ψ and θ are quantifier-free formulas whose subformulas all have ‘x’ as
their only free variable and consist of unary predicates and connectives.

A set of classical formulas Φ is called Aristotelian iff. every ϕ ∈ Φ is Aristotelian. a

Note that the definition is stated in a redundant fashion; I wanted to include
the redundancy to explicitly specify that no proper relations are involved here. In
particular, only relatively simple predicates such as ‘(A(x)∧B(x))∨(¬A(x)∧C(x))∨
(D(x) → A(x))’ are subformulas of Aristotelian formulas. With this, we can state
and prove which part of classical logic QUARC∗AR captures.

Theorem 32
Let Φ be Aristotelian. Let Ψ ⊆ Φ and ϕ ∈ Φ. Then:
Ψ |=FOL∃ ϕ iff. Ψ |=QUARC∗AR

ϕ. a

We can prove this in different ways (where it is, of course, understood that
‘Ψ |=QUARC∗AR

ϕ’ concerns the obvious translation of the corresponding formulas).
One way is to note that (full) QUARC and FOL∃ are intertranslatable94 so that it
is enough to show the equivalence for QUARC and QUARC∗AR. But given that the
set of Aristotelian formulas reduces QUARC to the formulas of the right form, the
result follows where the translation from the classical formula to QUARC looks as
follows:

(1) ∀x(ψ(x)→ θ(x)) is translated to (∀ψ)θ.95,96

(2) ∃x(ψ(x) ∧ θ(x)) is translated to (∃ψ)θ.

After the translation, ‘ψ’ and ‘θ’ are unary predicates which can be straightforwardly
translated to L∗AR-terms.
On the other hand, we can reverse the translation to get FOL∃-formulas from the

corresponding QUARC-formulas in the same way.
All this also shows that QUARCAR validates those Aristotelian formulas that

are simple in the sense that in ‘ψ’ mentioned in Definition 31 the antecedent and
consequent are (simple) unary predicates and similarly the conjuncts of the ‘θ’.
94See Raab 2016. For a translation using a three-valued QUARC, see Lanzet 2017.
95Strictly speaking, the general translation is ‘(∀Tα)T → τ(ψ(x)→ θ(x))[α/x]’ where τ : FOL∃ →

QUARC is the translation-mapping and ‘[α/x]’ means that we replace all the occurrences of the
variable ‘x’ by the anaphora ‘α’ (as soon as the recursive translation bottoms out). However,
it can be shown that this is logically equivalent to the given translation.

96Again, dropping the non-emptiness requirement for QUARCAR, we have to translate ‘∀x(ψ(x)→
θ(x)) ∧ ∃x(ψ(x))’ to ‘(∀ψ)θ’.
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However, to further increase the expressive power of QUARCAR, we have to intro-
duce more complex sentences. But these do not fall into either of the four sentence-
types. For example, a sentence of the form ‘(∀A)B ∧ (∃C)¬D’ has as constituents
an a and an o sentence, but is itself neither a, i, e, or o. This means that such
sentences are properly out of the scope of Aristotelian syllogistics.

4 Conclusion
In this paper, we have developed a logic (QUARCAR) that is a faithful reconstruc-
tion of Aristotle’s assertoric logic as presented in his Prior Analytics, chapters 1-7.
The first step was to introduce the underlying language LAR that solely consists of
the four Aristotelian sentence types. The formal representation thereof has been
accomplished by adapting a part of the logic QUARC that allows, as the name sug-
gests, quantified phrases in the argument position of predicates. In this way, the
only logical symbols needed to indicate the corresponding sentence type are ‘∀’, ‘∃’,
and ‘¬’. In particular, there is no need for variables (‘x’, ‘y’) and connectives (‘∧’,
‘→’) as in a representation based on classical logic.

As a consequence, the semantics of QUARCAR does not have to ‘go through’
the instances of predicates to interpret the sentence types. All that is needed is
the relationship of sets, viz., inclusion, overlap, exclusion, and non-inclusion. To
further guarantee that the Aristotelian peculiarities such as (a-i-conv) follow, a
simple adaptation in the definition of a structure was called for and sufficient, viz.,
that the predicates are assigned non-empty sets.

With this at hand, it is easy to prove valid all the moods that Aristotle singles
out as valid. It has not been shown, but is easy enough, to give counterexamples to
the moods of the figures that are not valid.

After developing the semantics, a calculus has been developed which is sound
and complete with respect to the semantics. Within this calculus, it is possible
to prove, once again, all the valid moods of the figures. In particular, it suffices
to take Aristotle’s own words to produce those proofs. Nothing of the sort of ∧-
introduction/elimination etc. is needed; we can simply follow Aristotle word by
word.

There are, on the other hand, certain details of Aristotle’s proofs or justifications of
the principles he later uses. For example, one of Aristotle’s proof techniques is proof
by ecthesis. This has not been incorporated in QUARCAR, but can easily be done
(at least in QUARC∗AR). One has to wonder why Aristotle thought it necessary to
have this technique if it is not needed, as the proofs of Section 3 show. In particular,
he only mentions at points that one can also prove certain things by ecthesis, but
does not explicitly do so himself. The only essential use of it is (arguably) to justify
certain other principles such as (e-e-conv).
One also has to note that this paper does not begin to capture all of Aristotle’s

logic. In particular, Aristotle’s modal logic has not even been touched. It might
be interesting to see whether an extension of QUARCAR to a modal logic would be
adequate for Aristotle’s modal syllogistic.
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