Complexity and Information

— A Critical Evaluation of Algorithmic Information Theory

Panu Raatikainen

“Complexity” is a catchword of certain extremely popular and rapidly devel-
oping interdisciplinary new sciences, often called accordingly the sciences of
complexity'. It is often closely associated with another notably popular but
ambiguous word, “information”; information, in turn, may be justly called
the central new concept in the whole 20th century science. Moreover, the
notion of information is regularly coupled with a key concept of thermody-
namics, viz. entropy. And like this was not enough, it is quite usual to add
one more, at present extraordinarily popular notion, namely chaos, and wed
it with the above-mentioned concepts.?

It is my aim in this paper to critically analyse this conceptual mess from
a logical and philosophical point of view, concentrating on the concepts of
complexity and information, and the question concerning the true relation
between them. I shall focus especially on the so-called algorithmic infor-
mation theory, which has lately become extraordinarily popular, especially
in theoretical computer science and in the above-mentioned new sciences of
complexity; indeed, today one can hardly open a popular science book with-
out meeting this theory®. It is notable that this approach simply equates in-
formation content with complexity; and it is furthermore regularly offered as
the preferable explication of the notions of entropy* and chaos®. This theory

has also been a source of various rather fantastic philosophical speculations.®

1 “Information” in ordinary language

Before taking a closer look to the various technical approaches called —
with better or worse justification — information theories, let us for a mo-
ment consider what one usually actually means by the word “information”
in ordinary language. This is because I aim to evaluate how well various
theories of information that have been put forward actually capture this
pretheoretical notion, i.e. how apt explications of the informal concept of
information they really are.



The Oxford English Dictionary (OED) explains the root of the verb “in-
form” as follows: “inform. ... L. informare, to give form to, shape, fashion,
form an idea of, describe”. The primary sense of the word had undergone
various developments in ancient and mediaeval Latin, and in French, before
it appeared in English; the Latin word had a very restricted use. The earliest
uses of “information” (and “inform”) in English, in the middle-ages, were
related to teaching, training, instructing and disciplining (usually the mind,
or the character): “I.1.a. The action of informing ... ; formation or mould-
ing of the mind or character, training, instruction, teaching, communication
of instructive knowledge. Now rare or Obs. ... b. with an and pl. An item
of training; an instruction. Obs. ... c. Divine instruction, inspiration. Obs.
... d. Capacity of informing; instructiveness. rare.” (OED)

Note that all the above senses are classified as rare or obsolete. The rele-
vant basic senses of “information”, according to the OED, are the following:
“2. The action of informing (in sense 5 of the verb); communication of the
knowledge or ‘news’ of some fact or occurrence; the action of telling or fact
of being told of something.” Sense 5 of the verb “inform” referred above is:
“To impart knowledge of some particular fact or occurrence to (a person); to
tell (one) of or acquaint (one) with something; to appraise.” And the OED
adds: “The prevailing modern sense.” Further, the OED continues: ”3.a.
Knowledge communicated concerning some particular fact, subject or event;
that of which one is appraised or told; intelligence, news. spec. contrasted
with data. ... ... b. with an and pl. An item of information or intelligence;
a fact or circumstance of which one is told. ...

Although the OED finds in total 18 different meanings for the word
”information”, what is left as the basic modern ordinary senses, if one ig-
nores the above-mentioned rare or obsolete senses, various technical juridical
meanings and, of course, the definition of the term in the mathematical infor-
mation theory, are indeed the above 2. and 3.a.—b. In various information
theories, “information” is used primarily to refer to what is communicated
rather than to the action of communication; hence it is the sense 3.a.—b.
that is most pertinent here. Further, the interest of information theories is
not so much in the concept of information as such but rather in measur-
ing the amount of information in a message, i.e. its informativeness. And
this is explained in the OED as follows (ignoring again obsolete and juridi-
cal senses): “informative ... Having the quality of informing ... Having
the quality of imparting knowledge or communicating information; instruc-
tive”; and further: “informativeness ... The quality or condition of being
informative”.

I think one can justly conclude from the above that in the standard



modern sense of the word, information belongs essentially to the context of
communication. Moreover, most of the senses under 3.a. and b. seem to
imply that information is, in some sense, the content of the communicated
message (“that of which one is appraised or told”, or “a fact or circumstance
of which one is told”; see above) rather than just the message itself as a
syntactical object, i.e. as a string of uninterpreted symbols (although “An
item of information or intelligence” above is somewhat ambiguous in this
respect) — there will be much more of this difference below, in section 3.2.
Accordingly, how informative a message is corresponds to the property of
being instructive, to the intelligence it contains, to its news value.

Evidently information in its ordinary sense, as something that is commu-
nicated, is primarily a language-mediated issue, i.e. what bears information
is some sort of linguistics entity, “a message” consisting of symbols. It is
rather clearly assumed that in the communication situation there are both
a sender — likely a conscious and intentional agent — who informs, and a
receiver, someone who is informed. What bears information is thus pri-
marily linguistic expressions, or symbols. Naturally, one can use pictures,
smoke signals, sticks and stones, or whatsoever; but they convey information
only insofar as there is an agreed interpretation of these symbols between a
sender and a receiver. Indeed, one of the essential characteristics of language
in general is its conventionality and arbitrariness; usually linguistic symbols
have no intrinsic or necessary connection with their referents. Consequently,
whatever bears information does so solely in virtue of the conventional in-
terpretation attached to it by the relevant linguistic community (minimally,
by the sender and the receiver).

Although admittedly one speaks often as though one received informa-
tion directly from the physical reality e.g. in perception, or in an experiment
or a measurement, it is important to see that one is then using merely a fig-
ure of speech: there is no intentional sender, no mediating language, and
thus no message; actually this is a case of causal interaction rather than of
information transmitting or communication. Even if the “receiver” conse-
quently forms a belief with a propositional content, this is only as a result
of conceptualization on his part: the physical “situation” just does not have
this propositional content, nor is this content transmitted in the causal inter-
action between the physical reality and the observer. Strictly speaking, it is
only the observation sentence reporting the observation that can convey any
information. To claim otherwise is to illegitimately personify the physical
reality, and to project to the physical reality properties of a communication
situation that simply are not out there.”

Nothing I have said above is particularly new or original, nor should it be



too controversial. The general recognition of the conventionality of (at least
a part of ) natural language is an age-old philosophical truism; the theme was
discussed vividly already in Plato’s Kratylos. The above issues are closely
related to the well known distinction, due to Paul Grice in his classical
article “Meaning” [1957], between natural and non-natural meaning. By
the former, he means a case like ‘foetid breath means tooth decay’, i.e.
a case where ‘means’ is roughly synonymous with ‘is a reliable sign of’.
This should be clearly distinguished from the cases of meaning which are
restricted to language or other symbolic system, i.e. what Grice called non-
natural meaning. Similar distinction can be observed also already in Charles
Sanders Peirce’s [1867] famous thricotomy of indices, icons and symbols.
These denote the different ways in which signs may be connected to their
referents: (1) indices have some sort of factual, e.g. causal relation to what
they signify; this connection holds independently of any interpretation; (2)
icons resemble in some respect their referents; they have shared properties
with what they represent; (3) finally, symbols can act as sign only because
there is a general practice to use them to represent their referents, because
they are interpreted in this particular way. Clearly the difference between
indices and symbols in analogous to Grice’s distinction between natural and
non-natural meaning.

But uncontroversial, and even trivial, as the above observations on the
notion of information may appear, they are worthy of stating here, for they
appear to be ignored repeatedly in motivation, application and interpreta-
tion of certain popular theories of information, as we will shortly see.

2 Some logical distinctions

At this point, let us make a digression and pay attention to certain ba-
sic logical distinction that will play an essential role in what follows.

2.1 Use and mention

Confusing an object and its name is a classical philosophical fallacy. The
risk of such confusion is much larger when one is considering language; one
regularly conflates the case of using an expression to say something, and the
case of mentioning the expression i.e. speaking about the expression. But
easy as this confusion is to make, it can indeed lead to terrible philosophical
conclusions.

The clear distinction between use and mention of a linguistic expression
is indeed entirely fundamental. Already Frege, in his Grundgesetze ([1893],



p. 4), recognized the importance of this distinction. After him, it was
more or less ignored by the logicians for some thirty years. The issue was
discussed again clearly in Carnap’s Logische Syntaz ([1934], §§41-42). The
contemporary philosopher who has especially warned against confusing use
and mention is W. V. Quine (see e.g. Quine [1940], §4; [1987b]).

Let me quote Quine’s brilliant and already classical exposition at some
length:

If the object is a man or a city, physical circumstances pre-
vent the error of using it instead of its name; when the object
is a name or other expression in turn, however, the error is eas-
ily committed. As an illustration of the essential distinction,
consider these following three statements:



(1) Boston is populous,

(2) Boston is disyllabic,

(3) ‘Boston’ is disyllabic.

The first two are incompatible, and indeed (1) is true and (2)
false. Boston is a city rather than a word, and whereas a city
may be populous, only a word is disyllabic. To say that the
place-name in question is disyllabic we must use, not that name
itself, but a name of it. The name of a name or other expression
is commonly formed by putting the named expression in single
quotation marks; the whole, called quotation, denotes its interior.
This device is used in (3), which, like (1), is true. (3) contains
a name of the disyllabic word, just as (1) contains a name of
the populous city in question. (3) is about a word which (1)
contains; and (1) is about no word at all, but a city. In (1) the
place-name is used, and in this way the city is mentioned; in (3) a
quotation is used, and in this way the place-name is mentioned.
We mention z by using a name of z; and a statement about x
contains a name of z....

... ‘Boston is populous’ is about Boston and contains ‘Boston’;
‘‘Boston’ is disyllabic’ is about ‘Boston’ and contains “Boston”.
“Boston” designates ‘Boston’, which in turn designates Boston.
To mention Boston we use ‘Boston’ or a synonym, and to men-
tion ‘Boston’ we use “Boston” or a synonym. “Boston” contains
six letters and just one pair of quotation marks; ‘Boston’ con-
tains six letters and no quotation marks; and Boston contains
some 800 000 peoples. (Quine [1940], pp. 23-24)

Further, it is worth noting that quotation is by no means the only way
to mention an expression:

Scrupulous use of quotation marks is the main practical mea-
sure against confusing objects with their names. But... this
particular method of naming expressions is not theoretically es-
sential. E.g. using elaborately descriptive names of ‘Boston’, we
might paraphrase (3) in either of the following ways:

The word composed successively of the second, fifteenth, nine-
teenth, twentieth, fifteenth, and fourteenth letters of the alpha-
bet is disyllabic.

The 4354th word of Chants Democratic is disyllabic.



(Quine [1940], p. 26)

2.2 Object language and metalanguage

The distinction between use and mention is closely related to another dis-
tinction with a vital importance, viz. that between the object language and
the metalanguage, i.e. the language about which one is speaking, and the
language in which one is speaking about the object language. This dis-
tinction was first suggested by Russell in his introduction to Wittgenstein’s
Tractatus [1922] in order to avoid the radical conclusions of the work. It
was made unavoidable in logic by Tarski, who in his epoch-making work
on the concept of truth (Tarski [1933], cf. [1944]) demonstrated that the
distinction is, in a definite sense, necessary for avoiding the contradictions
caused by the semantic paradoxes like "The Liar” (i.e. “This sentence is
false”). Today the distinction is fully standard in logic and philosophy.
There is, of course, a contrary tendency in logic, due to Gédel’s justly
famous method of the arithmetization of syntax (introduced in Gédel [1931])
which, in a sense, enables one to speak about the language in the very same
language. Obviously, there is no actual contradiction here, for Tarski’s work
focuses on semantics, whereas Gdédel’s method is applied only to syntax.
And even if one is able, via coding — or Gédel numbering, as it is standardly
called — to discuss the syntax of a language in the very same language, it
is no less necessary to make a clear distinction between the expression one
mentions, and the expression one uses to speak about the former expression
(and thus the use of the experssions as a part of object language, and as a
part of metalanguage). The distinction is just as essential in the Godelian
approach: e.g. there is all the difference between a numeral 7 and the nu-
meral "n " which names the Gédel number of the former numeral (cf. Quine

[1987a]).

3 The varieties of information theories

I next give a very short review of the various suggested theories of infor-
mation.

3.1 The statistical theory of information

The statistical theory of information emerged from the practical engineer-



ing problem of efficient signal transmission e.g. in telegraphy and telephony.
The basic ideas of the theory were suggested already in the 1920s, by H.
Nyquist [1924] and especially by R. Hartley [1928]. However, it was Claude
Shannon’s classical treatment “A Mathematical Theory of Communication”
[1948] that really established a systematic theory and received extraordinary
attention in the scientific community. It has become the standard mathe-
matical theory of information.®

In the statistical theory of information, one considers a fixed ensemble of
possible messages m; which occur in a communication channel with a certain
probability p; — where probability is standardly understood according to the
frequency interpretation. A few natural requirements (positivity, additivity)
on a possible information measure naturally lead to the following definition
(first suggested by Wiener [1948]): The amount of information provided by
a single message m;, I(m;) = —logz p;.

Further, assume that X is a discrete random variable, which may take
the values x1,...,a,, and that z;(1 < ¢ < n) has the probability p;. Then
the average uncertainty relative to X, i.e. the entropy” (or Shannon-entropy)
of X, H(X)is (again, this is the unique function that satisfies certain natural
requirements):

H(X)=H(pi....pn) = —Xp; logs p;.

One has, on the basis of the above definitions, developed an enormously rich
mathematical theory, dealing e.g. with conditional entropy, optimal coding,
“redundancy” in the messages and the effects of “noise”. These further —
certainly important — developments of the theory do not, however, have any
bearing on my present philosophical study.

3.2 The semantic theory of information

Although Shannon himself consistently emphasized that his theory has ab-
solutely nothing to do with the content, or meaning, of messages (“... se-
mantic aspects of communication are irrelevant to the engineering problem”;
Shannon [1948]), very few of his followers have been able to resist the temp-
tation to derive from the theory illicit semantical conclusion concerning the
information content of a message, so strongly suggested by the ordinary
non-technical meaning of “information” and “informativeness” (cf. Bar-
Hillel [1955]). As Bar-Hillel writes, “it is psychologically almost impossible
not to make the shift from the one sense of information, ... i.e. information
= signal sequence, to the other sense, information = what is expressed by



the signal sequence ... ([1955], p. 284)”. Consequently, the development of
the statistical theory of information, wed with the inability to clearly sep-
arate the above two senses of “information”, has led to various untenable
speculations.'®

Basically, the semantic theory of information is a theory that aims to
take seriously this distinction, which is in fact just a special case of the
distinction between use and mention, and explicitly theorize about what is
expressed by messages, i.e. about their information content!!. The basic
ideas of semantical theory of information were suggested, informally, by Pop-
per already in his Logik der Forschung [1934]. As a systematic theory it was
initiated by Carnap and Bar-Hillel in the early fifties (apparently reacting
to misuse of Shannonian theory); and it has been since then importantly
developed and generalized by Hintikka.!?

The intuitive point of departure of this theory is the idea that the more
possibilities (possible states of affairs) a sentence rules out, the more infor-
mative it is, i.e. information is the elimination of uncertainty. For example,
the sentence “Apples are not blue” may very well be, in the sense of the
statistical theory (when mentioned), less probable and hence more “infor-
mative” than the sentence “Apples are red”; but certainly the latter sentence
is more specific and contains more information (when used). Hence one must
clearly distinguish between the probability of a string of symbols, and the
probability of the state of affairs that the strings expresses.

In semantic information theory, one considers a particular language L.
Let Wy,..., W, be, in some definite sense, the mutually exclusive maximal
consistent sentences of L (Carnap’s “state descriptions”, or Hintikka’s “con-
stituents”, depending on the logical setting and the expressive recources).
Now every consistent sentence is compatible with some of these and excludes
all the others. Next, assume that the probability p; of the state of affairs
expressed by W; (1 < i < n) such that p;+...4+p, = 1 is given, for all i. As
a consequence, a definite probability is thus attached to every sentence. (In
the semantic theory of information, probability is usually understood either
according to the logical interpretation of probability or according to some
epistemic interpretation of probability.)

Carnap and Bar-Hillel have suggested the following two measures of in-

formation (where p(H) is the probability of the state of affairs expressed by
H):

cont(H) =1—-p(H)

inf(H) = —log p(H)



Let me emphasize that p(H) here is the probability of the state of affairs
expressed by H, not the probability of ‘H’ in some communication channel,
i.e. H is used, not mentioned. Bar-Hillel suggests that cont(H) measures
the substantive information content of sentence H, whereas inf( H) measures
the surprise value, or the unexpectedness, of the sentence H. It can be ar-
gued that the pre-theoretical notion of information is somewhat ambiguous,
sometimes used more in the sense of cont, and sometimes rather in the sense
of inf. 1t is worth of noting that, if one focuses on inf, the statistical and the
semantical theories thus share the same “information calculus”: they differ
in how this calculus is interpreted.

There is a feature in the classical theory of semantic information that
one may find somewhat counterintuitive: according to it a logical inference
cannot provide new information. However, Hintikka has later developed
measures of information which do not have this property: he has defined
the notion of “surface information” which may increase in course of logical
inference, in contradistinction to “depth information” which is zero for all
logical truths (Hintikka [1970b]). Such more fine-grained notions are, in
my mind, philosophically very important and interesting refinements of the
theory of semantic information. Nevertheless, in the present study I shall
not lean on them but utilize only the most general features of the semantic
information theory (that is, I shall lean solely on its explication of the notion
of information content, not on any particular measure of information).

3.3 Algorithmic information theory

Algorithmic information theory is a new-comer in the field. It is notable
that unlike the above two theories, according to it information is not to be
defined in terms of probability. The basic idea of this theory, i.e. the no-
tion of program-size complexity, was suggested in the 1960s independently
by Solomonoff [1964], Kolmogorov [1965] and Chaitin [1966]. However,
its original purpose was not to function as a definition of informativeness.
Solomonoff used it in his work on the inductive inference, Kolmogorov aimed
initially to give a satisfactory definition for the problematic notion of random
sequence in probability theory, and Chaitin was studying just the program-
size complexity of Turing machines. It was Kolmogorov who first (in 1965)
suggested that this notion provides an explication of the concept of informa-
tion content of a particular string of symbols. Later Chaitin followed him
in this interpretation.

The intuitive idea behind this theory is that the more difficult an object
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is to specify or describe, the more complex it is. One then explicates this
intuition by considering binary strings outputted by a Turing machine 7,
and defining the complexity of a binary string s as the size of the minimal
program that, when given to 7T, prints s and halts. Finally, one simply
equates the information content of a string with its complexity.'?

As I must later in my critical discussion dig rather deep in the technical
details of algorithmic information theory, I shall next give a slightly more
detailed survey of the theory.'

One considers the set of finite binary strings B* = {A,0,1,00,01,
10,11,000, ...}, where A is the empty string. The length of a string s is
deonted by I(s). (z,y) is any standard pairing function (which is fixed be-
low). Assume that one is considering objects from a countable domain of
objects 5. To each object # in S, one attaches a code n(z), that is a natural
number or the corresponding binary string. Let us assume that this coding
is one-one.

Next one fixes a way to present algorithms. For most cases, any expli-
cation of computable functions, e.g. partial recursive functions, or Turing
machines, would do. However, for certain technical reasons, it is convenient
to assume that one uses Turing machines that accept only so-called prefix-
free, or instantaneous, binary programs (for details, see e.g. Chaitin [1975]).
It is clear that one can easily compute all partial recursive functions by such
computers.

DEFINITION. The algorithmic complexity of a string s relative to a Turing
machine T, Kr(s), is min {{(p) : T'(p) = s}.

Through coding, it is customary to generalize this definition to apply to
any countable domain of objects. One simply equates the objects with their
codes.

Let us assume that one has fixed an effective one-one coding of all Tur-
ing machines to N, or to B*, such that one can numerate Turing machines:
11,15, 15, ..., or equally, when coded and given to a Universal Turing ma-
chine, programs py, p2,ps3,... . So, let me emphasize this from the begin-
ning, there are two very different codings in use here: the coding of objects
of some domain, n(z), and the coding of Turing machines. This fact will
play a crucial role below.

Also fundamental for this theory is the notion of conditional or relative
complexity:

DEFINITION. The complexity Kt of & conditionalto y is defined by Kr(z/y) =
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min{l(p) : T({p,y)) = x}, and Kr(z/y) = oo if there is no such p.

From the existence of Universal Turing machines (Turing [1936-7]) follows al-
most immediately the following key result of algorithmic information theory:

THE INVARIANCE THEOREM. There is an optimal Turing machine U

such that for any Turing machine T there is a constant ¢ < oo such that for
all z,y we have Ky(z/y) < Kr(z/y) + c.

Note that ¢ here is indeed independent of z and y, and depends only on
T': it may be aptly called the cost of simulating T by U; in favourable cases
(i.e. with a suitable U) it is simply the code number of 7. Because of this
theorem, it is customary in algorithmic information theory to fix some op-
timal machine U, and omit the subscripts and ignore the finite differences
that may result.

The rather unelegant behaviour of the above-defined conditional com-
plexity in the case of additivity led Chaitin to revise the definition of relative
or conditional complexity (in Chaitin [1975]); since then, he has defined the
relative or conditional complexity C'(z/y) of « given y to be the size of of the
smallest program to calculate = from the minimal program for y'> — whereas
in the traditional concept of relative complexity K (z/y) one is directly given
y. The difference between these two definitions will play a certain role below.

4 A critical evaluation of algorithmic
information theory

As was noted above, the confusions and illicit semantical conclusions with
respect to the statistical theory of information have received a comprehen-
sive critical analysis from the logicians and philosophers. Algorithmic in-
formation theory has, on the other hand, so far been left largely in peace.
Although it has been developed into a formally rich theory with numerous
ramifications, there has been very little analytic reflection concerning its
motivation and soundness of its basic assumptions.

Unfortunately, algorithmic information theory shares many of the limi-
tations of the statistical theory of information, and is apparently even less
conscious about them. Particularly, it has developed, as far as I can see, in
complete ignorance of the fundamental criticism directed by logicians and
philosophers towards the classical statistical theory of information and of the
development of the semantic theory of information. Understandably, then, it
continues to contain many of the confusions that were clearly pointed out, in
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the case of Shannonian theory, already in the 1950’s — in addition to several
several confusions of its own. Let us finally start our critical examination of
algorithmic information theory. My aim is to show that the theory is — the
impressive mathematical developments notwithstanding — wed with serious
logical confusions.

For a start, recall that one intuitively motivates algorithmic information
theory by considering the problem of describing or specifying certain objects,
and concluding that an object may be reasonably called “complicated” if its
description is necessarily long. I grant this agrees quite well with common
sense.

However, in my mind it is a little bit odd to explicate the intuitive idea
of specifying an object by algorithms, Turing machines, or programs. For
specifications are a sort of descriptive expressions. Algorithms, on the other
hand, are rather sets of instructions or commands; a human computer may
or may not follow them; a deterministic computing machine has no choice.
As a result, one finds, or constructs, an object. But certainly it is one thing
to specify an object, and another thing to give instructions sufficient for
finding one — not to mention for constructing one; think of “the murderer of
Olof Palme”, or “the first manned spaceship to Mars” (assuming there will
someday be one).

Nevertheless, in mathematical contexts, at least, this may not be that
serious a problem, so I shall bypass it and assume below — at least for the
sake of an argument — that one can conveniently explicate the intuitive idea
of describing, specifying, or defining, an object with the help of an algorithm,
or a Turing machine, that computes it. Thus I do not aim here to question
the theory as an explication of the notion of complexity.

The crucial question for algorithmic information theory, qua a theory of
information, is however the following: is it really a reasonable explication of
the notion of information content? My conclusion will be thoroughly nega-
tive. Let us begin to study what are my reasons for this strong conclusion.

4.1 Preparatory considerations on complexity
and information content

To begin with, I shall discuss the question of plausibility of algorithmic
information theory, and especially its basic claim that one should consider
the algorithmic complexity of a string to be its information content, on the
common-sense level and base my consideration on certain fundamental in-
tuitions concerning the notions of information and informativeness. These
general remarks serve as a preparation for the more technical and detailed
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considerations that follow.

It is illuminating to compare the ideas suggested by algorithmic infor-
mation theory with certain highly plausible ideas that are the basis of the
semantic theory of information. Let us recall, in particular, that according
to the latter theory, the more possibilities an expression excludes, the more
informative it is, and that consequently a logical tautology (which does not
rule out any possible states of affairs but allows them all) has a minimal
information content.

Consider then the infinite set of tautologies of propositional logic, all
minimally informative. Assume next that one has fixed any suitable coding
of a formalized language to the binary strings. Obviously there are then,
when mentioned, i.e. considered as syntactical objects, arbitrarily (algorith-
mically) complex propositional tautologies. However, is there any reason to
think that the information content of a complex tautology is high, i.e. that
it is highly informative? No; it does not exclude any possible states of af-
fairs; it does not tell anything about the world. Actually, a simple sentence
po is much more informative (it says at least something, viz. rules out —pg)
than a more complex but totally uninformative tautology such as

“p2r VpoV opr VpsVopr Vope V ops Vopars

and evidently, one could construct arbitrarily complex such examples. But
such complex trivialities tell us nothing; they are in no natural sense highly
informative. That certain tautologies require lots of space to describe (or, re-
quire a long program to print), when mentioned in the metalanguage, has no
consequences concerning their information content, when used themselves.
Likewise, turning to first order languages, a simple sentence (Vz)P(z) is
clearly much more informative than a complex sentence

P(ag) vV P(ag) vV P(a17) vV P(a41) vV P(agg) vV P(a126) vV P(a457);

the former logically implies the latter (but not vice versa), and therefore it
is, in any plausible sense of the word, more informative. In fact, a sentence
highly informative for its content may be very simple for its form: think of
“E = mc?”, for example.

According to common sense uncorrupted by any “information theory”,
if a sentence S logically implies another sentence S/, but not vice versa, S is
clearly more informative, i.e. contains more information, than S’. However,
neither the statistical nor the algorithmic theory of information respect this
basic idea. They ascribe a high information content to a logically weak
sentence (e.g. to a tautology of propositional logic) if it happens to be

14



algorithmically complex, or “improbable” — when mentioned. They pay no
attention to what the sentence says when used, i.e. to its content. Also,
one would expect that two messages that are logically equivalent (at least,
if this equivalence is in addition of a trivial sort) would have the same
information content, or would be equally informative. But again, neither the
statistical nor the algorithmic approach satisfy this intuitive requirement;
for any sentence has infinitely many logical equivalents, which may have
arbitrarily large Shannonian or algorithmic “information content”.

That is, neither of these approaches cares whether a message is a bare
contradiction, trivial tautology, or a genuinely informative statement; they
focus solely on the “probability” or the complexity of the syntactical form of
sentences when mentioned. It is exactly this sort of counter-intuitive aspects
that have motivated the development of the semantic theory of information.
By the way, one may note that although the statistical information theory is
often classified (and one could likewise classify the algorithmic information
theory) as a syntactic theory of information, in contradistinction to the
semantic theory of information, the above problems have nothing to do with
the meanings of non-logical terms of the language; being a contradiction or
a tautology, the properties of implying something or being equivalent with
something, are all completely syntactical (proof theoretical) properties; yet
neither the statistical theory nor algorithmic theory is able to take them to
the account.

Already at this general level of consideration, one begins to see how the
algorithmic information theory ignores the distinction between use and men-
tion of an expression. This becomes even more evident below.

4.2 The question of the bearer of information

The above preparatory critical discussion concerned the basic idea of al-
gorithmic information theory, according to which the information content of
an object is to be equated with its complexity, i.e. the size of its minimal
specification. In fact, however, the literature on algorithmic information
theory is rather confused in the question of the bearer of information: Is
it the object specified, or the specification? For consider first the following
representative quotations:

The entropy, or information content, or complexity, of a string is
defined to be the number of bits needed to specify it ... (Chaitin
[1974b], p. 495; my emphasis)

Intuitively, the amount of information in a finite string is the size
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(number of binary digits or bits) of the shortest program that,
without additional data, computes the string and terminates. ...
Thus, a long sequence of 1’s such as

10,000 times
e N
11111...1

contains little information because a program of size about log
10,000 bits outputs it:

for i:= 1 to 10,000

print 1. (Li and Vitanyi [1993], Preface, p. v; my emphasis)

We identify the length of the description of z with respect to
a fixed specification function Dy with the ‘algorithmic (descrip-
tional) complexity’ of z. ... This complexity can be viewed as
‘absolute information content’: the amount of information which
needs to be transmitted between all senders and receivers when
they communicate the message in absence of any othera priori
knowledge which restricts the domain of the message. (Li and
Vitanyi [1993], p. 2; my emphasis)

A way to measure the information content of some text is to
determine the size of the smallest string (code, input) from which
it can be reproduced by some computer (decoder, interpreter).

(Calude [1994], p. 25)

In all the above quotations, it is clearly assumed that it is the object specified
(or, more exactly, the string outputted by a Turing machine) that bears
information, i.e. has certain information content. Nevertheless, in other
contexts it is as clearly assumed that it is rather the specification (or, the
program inputted to a Turing machine) that contains the information:

If any object is “simply” constructed, then for its description a
small quantity of information is sufficient; but if it is “compli-
cated”, then its description must contain much information. ...
it is convenient to call the quantity thus introduced the “com-
plexity”. (Kolmogorov [1970/1983], p. 32)

The complexity of a binary string is the minimum quantity of

information needed to define the string... ... the complexity of
a binary string is the information needed to define it ... (Chaitin
[1974a])

We define the complexity of a text as the length of the short-
est binary word containing all the information that is necessary
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for recovering the text in question with the help of some fixed
method of coding. (Zvonkin and Levin [1970], p. 88)

Li and Vitanyi even have both ideas in the same paragraph:

One interpretation of the complexity C'(z) is as the quantity of
information needed for the recovery of an object x from scratch.
... Hence the complexity is ‘absolute information’ in an object.
(Li and Vitdnyi [1993], p. 140.)

In the light of my earlier discussion on the notion of information, it should
be clear that it is only the specification that can bear information, not
an arbitrary object that has been specified — I find the latter idea totally
preposterous (although, obviously it is possible that the objects described
are themselves linguistic entities and thus bear some information; I shall
discuss this special case below).

Note also that one is here dangerously close to defining the information
content of a string to be the information content of the (minimal) string
that specifies the former string, and thus of giving a circular definition.
One breaks the circle only by understanding the latter, i.e. the information
content of the specification, to be just its length. But if, at the end of the
day, the information contained in a binary string is defined to be simply as
its length, one may wonder why this definition has not been used from the
beginning; why introduce partial recursive functions and open the door for
uncomputability? As most of the strings are anyway incompressible'®, one
would lose a little. But be that as it may, for plainly the length and the
information content —in any plausible sense — of an expression are in no way
related.

Prima facie, it is thus very surprising that one would like to conclude
that the (algorithmic) complexity of an object is to be equated with the
information content of the object; after all, all sorts of objects may be justly
called complex, but only linguistic entities can have an information content.
Explicit arguments justifying this step are surprisingly sparse in the liter-
ature. Most often, one tends to take the mere formal analogues with the
traditional statistical theory of information as a sufficient justification. But
this is hardly convincing; for the whole approach has been motivated by
questioning the adequacy of the classical approach. And in any case, the
mere formal similarity (and there are clear differences as well) of the result-
ing, rather general calculi just cannot be a sufficient reason for equating the
two concepts. For one should recall e.g. that the statistical theory of in-
formation and the semantical theory of information share, after all, exactly
the same caluculus, but concern yet wholly different issues.
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There is, nevertheless, in Kolmogorov’s writings a sort of argument for
taking the complexity to be the information content. Let us turn to this
line of reasoning.

4.3 Kolmogorov on the information content

Kolmogorov’s line of reasoning, although somewhat implicitly present also
in various other papers including his pioneering one [1965], is most explicit
in his mature presentation [1970/1983]'":

The complexity of specifying any object can be facilitated
when any other object is already specified. This fact reflects
the following definition of the relative complexity of an object z,
given an object y:

K _ ' I
SEM= i (P

Here the method .S of relative determinations is a function of
two arguments, the number of the object y and the number p of
the programme for computing the number n(z) when y is given.

... If the relative complexity K (2/y) is much smaller than the
unconditional complexity K (z), then it is natural to interpret it
as an indication that the object y contains some “information”
about z. It is, therefore, natural to regard the difference

Is(z/y) = Ks(x) — Ks(x/y)

as a quantitative measure of the information about = contained
in y. As a value of the second argument of the function S(n, p)
we admit the number 0, and we put

S(n,0)=n
(the zero programme from n produces n). Then
Ks(z/z) =0, Is(z/z)=Kg(z).

Thus, the complexity Kg(z) can be called the information con-
tained in an object about itself. (Kolmogorov [1970/1983], p.
37)
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Kolmogorov’s argument is as ingenious as it is problematic. What actually
happens in this argument is that one takes the name (code) of an object
y, i.e. n(y), gives it to a computer which, according to an entirely differ-
ent coding (of Turing machines, or programs) interprets it as a program
(or rather, a subprogram) which together with another (sub-) program p,
outputs the name of an object z, i.e. n(z). But surely it is completely
accidental whether the binary code (according to one coding system) of an
object y is, according to another totally unrelated coding system, a code
of a program that can somehow facilitate the computation of the name of
another object x. It is quite bizarre to conclude that in such cases the object
y somehow contains information about the object z. In other words, when
interpreted as a program inputted for the relevant Turing machine, ‘n(y)’
has absolutely nothing to do with y.

Thus one illegitimately conflates two codings, two very different interpre-
tations of as such meaningless binary strings. The case is completely anal-
ogous to the following, more transparent case: “Pain”, in English, means
pain; “Pain”, in French, means bread; one can satisfy one’s hunger by bread;
however, one cannot conclude that thus one can satisfy one’s hunger by pain.
That is, serious confusions are likely to arise if one wildly changes the inter-
pretation of one’s language in the midst of an argument.

Likewise, it is simply absurd to think that an object always contains in-
formation about itself. This is obviously false when one thinks about physical
objects, e.g. tables and stones, which just don’t contain information about
anything. It is likewise false about most linguistic objects, or “texts”: e.g.
the sentence “It will snow tomorrow” contains information about tomorrows
weather, not about the sentence itself; “Turing” names Turing, a man and a
genius, not the word; and the expression “the present president of U.S.A.”
specifies a certain very powerful man, not the definite description. It is one
thing — a platitude — that any object is identical with itself and that any
sentence is logically equivalent with itself, and a wholly different thing that
an expression describes itself, or that an object contains information about
itself — which is in most cases simply false, if not a total nonsense. Again,
only confusing totally use and mention can one end up with such conclusion.

Besides, it is noteworthy that the trick in the final part of Kolmogorov’s
reasoning is done by the stipulation that S(n,0) = n.!® It then follows
immediately that Kg(z/2) = 0and Is(z/2) = Kg(z). Of course, technically
there is nothing wrong in such a stipulation. But it is important to see that
it is a rather arbitrary decision. Here n as an argument of S is interpreted
as a subprogram, and the outputted n is then interpreted as a member
of whatever domain one is considering. All this by no means justifies the
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conclusion that the complexity Kg(z) is — in any reasonable sense of the
word — the information contained in the object # about itself.

There is also a further confusion, present in the writings of Kolmogorov
and recurring in the literature of this field, between the complexity of an
object and the complexity of the name of the object — a clear-cut case of
confusion between use and mention. To illustrate its absurdity, let us again
consider a concrete example: “Chlamydomonas angulosa” is clearly a more
complex string of symbols than “Bubo bubo”; but may one conclude that
Chlamydomonas angulosa, a certain flagellate, is a more complex object than
Bubo bubo, the eagle owl? And, what would be even more absurd, how on
earth could one conclude that a flagellate thus contains more information
than an eagle owl? (Neither of them contain any information, in any natural
sense of the word.)

Similar confusions are repeated in the case of the notion of relative in-
formation, i.e. in the idea that an object may facilitate the specification of
another object. One more illustrative example: A full description of the edge
of a certain knife may considerably facilitate the description of the whole
knife. However, it is the description of the edge that contains the useful
information, not the edge (which just doesn’t contain information) — one
should keep the distinction between an object and its name or description
sharp as a knife.

Note that Chaitin’s revised definition of relative or conditional com-
plexity (see above 3.3.) appears to be in preferable this respect — it com-
pares programs to programs, or “specifications” with ”specification”, and
not “specifications” and objects, and does not thus confuse two different
interpretations of strings (it will be discussed in more detail below).

In sum, there is a double confusion here; first, one confuses two very
different and totally unrelated codings of binary strings, and concludes that
the complexity of a sequence of symbols has some intrinsic connection to
its information content; and second, it is oddly assumed that complexity
of a sequence of symbols used conventionally and completely arbitrarily to
denote an object somehow reveals the complexity of the object itself, or even
(following from the above confusion) the information content of the object
— whatever that could mean.

4.3.1 Texts as objects
One clear source of confusion is that Kolmogorov and his associates some-

times (but not always!) think that the objects “described”, or ”specified”,
are themselves some sort of texts:
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One of the central concepts in this article is the concept of the
complexity of a certain text (communication). We define the
complexity of a text as the length of the shortest binary word
containing all the information that is necessary for recovering the
text in question with the help of some fixed method of coding.
(Zvonkin and Levin [1970], p. 88)

Accordingly, Kolmogorov discussed the possibility of applying different in-
formation measures ‘to an estimate of the quantity of information contained
in a novel” (Kolmogorov [1970/1983], p. 37), and the meaning of ‘asking how
much information is contained in “War and Peace”?” (Kolmogorov [1965],
p. 3).

Nevertheless, although this makes the resulting view slightly less absurd
— for in this case the objects that are described may indeed bear some
information — the approach is yet guilty of the disastrous confusion of object
language (the text described) and the metalanguage (the language in which
the description is given; in this case, the programming language in question),
and of use and mention.

Let us thus consider, as an example, the following case that is directly
relevant to the present issue: let the language in question, i.e. the object
language, be the language of arithmetic L(A), and take as the “text” in
question e.g. the numeral ‘37 (officially, 0"). Given some coding of this
language, this numeral has a binary code s. Assume then that the chosen
coding of Turing machines happens to attach the code s to a Turing machine
which prints m and halts, where m in turn is the code (in the former coding
of L(A)) of numeral naming, say, 78498 (certainly such codings are possible,
and indeed effectively fixable). Now it is indeed hard to see how on earth
the numeral ‘3’ or the natural number 3 contains information about the
number 78498 or the corresponding numeral (I am a little bit uncertain how
exactly to state the “conclusion”, given the total ignorance of the distinction
between use and mention, or object and its name, by the theory). And yet
it is claimed, by the algorithmic information theory, that this is the case.

Moreover, as noted above, the restriction of these considerations to texts
is rather an exception than a rule, as the following quotations clearly demon-
strate:

Consider an “indexed domain of objects”, i.e., a countable set

X = z, with a finite sequence n(z) of zeros and ones ... asso-
ciated with each element as its index. (Kolmogorov [1965], pp.
4-5)
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Suppose that we are dealing with some domain D of objects in
which there is already some standard numbering of objects by
numbers n(z). (Kolmogorov [1970/1983], p. 32)

Identify an object x from a countable infinite sample space S
with its index n(z). (Li and Vitanyi [1993], p. 90)

Here one is clearly allowed to apply algorithmic information theory to any
sort of objects. And apparently all sorts of objects may consequently contain
information. Indeed, the literature is loaded with such implausible specu-
lations on the information contained in all sorts of non-linguistic physical
objects.

It might have helped if one had clearly distinguished the input language
and the output language, which may in general be wholly different languages,
although may, of course, coincide. This latter possibility has apparently had
the unfortunate consequence that researchers in this field — presumably not
very familiar with the crucial philosophical and logical distinctions that mat-
ter here (i.e. between use and mention, and the object language and the
metalanguage) — have got so deeply confused.

4.4 Chaitin on complexity and information

In certain writings by Chaitin, there occurs also another line of heuristic
reasoning that may appear to justify the identification of complexity and
information content, although its actual bearing turns out to be rather un-
clear. Let us thus study Chaitin’s approach and the evolution of his view.

To begin with, it is interesting to note that in his early papers from the
1960s, Chaitin does not at all consider the task of measuring the information
content of outputted strings. Although he says that he studies “...[t]he use
of Turing machines . .. from the point of view of information theory” [Chaitin
1966], this means in practice only that he considers the number of bits of
the minimal program with a given output. Moreover, he simply notes (in
1.9.) that “There is some connection between the present subject and that
of Shannon in [1948]”. There is yet no hint of the idea that one could thus
measure the information content of the outputted string.

The information-theoretic aspect becomes more visible later, but Chaitin’s
way of viewing the issue differs considerably from that of Kolmogorov. In
his [1970], Chaitin wrote:

Here we are interested in examining the viewpoint of informa-
tion theory concerning the efficient transmission of information.
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An information source may be redundant, and information the-
ory teaches us to code or compress messages so that what is
redundant is eliminated and communications equipment is op-
timally employed. ...The receiver must decode the messages;
that is, to expand them into their original form. In summary,
information theory teaches us that messages from an informa-
tion source that is not completely random (that is, which does
not have maximum entropy) can be compressed. The definition
of randomness is merely the converse of this fundamental theo-
rem of information theory; if lack of randomness in a message
allows it to be coded into a shorter sequence, then the random
messages must be those that cannot be coded into shorter mes-
sages. A computing machine is clearly the most general pos-
sible decoder for compressed messages. We thus consider that
this definition of randomness is in perfect agreement and indeed
strongly suggested by the coding theorem for a noiseless channel
of information theory.

Thus Chaitin does not here consider programs as descriptions of outputs,
i.e. somehow speaking about them, as metalanguage speaks about object-
language, but a program is rather considered to be the output — the message
—itself, just in coded form. (Although a code can certainly in some occasions
be viewed as a name, thus mentioning what it codes, I would argue that in
the communication model it is much more natural to consider coded and
uncoded message as different tokens of the same type; or, to use a different
image, their relation is more like that between an expression in spoken and
written English than that between an expression and its name or specifi-
cation in the metalanguage. Think of the Morse code, for example.) Thus
Chaitin’s heuristic model is essentially different from that of Kolmogorov.
The picture on which Chaitin leans is, however, rather strange. What
is the purported coding method is this picture? Is there a coding function
at all? On the one hand, there is no unique “code” of a message; for, by
the Padding Lemma!?, there are infinitely many alternative “codes” of any
“message”; further, the property of being a “code” of a given “message”, in
this sense, is undecidable??. On the other hand, if one intends here that the
minimal program is the code to be used (it appears that this is Chaitin’s
actual intention), one is again in deep trouble: for, although the decoding
function is here at least a partial recursive function, the imagined coding
function is not even partial recursive, but is strongly non-computable?!; that
is, there is no effective, mechanical procedure for compressing messages. So
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who on earth is the sender in this model — God? An Oracle? 1 find this
setting very implausible as a model of communication. One is given — as
fallen from the Heaven — coded messages without there being any imaginable
sender or any realistic coding method. Certainly one usually thinks that in
a communication system there is a sender who has at hand a computable
coding method that gives for each message a unique code — that both coding
and decoding are effective, mechanical procedures. (In fact, I think it is
reasonable to require that both coding and decoding methods are primitive
recursive (and thus total), i.e. that neither of them contain unbounded
searches.)

Note that the situation is not even the one of deciphering a code, for even
in that case there is a computable coding method — it is just not known.
The situation in the above case is even worse: there is no computable cod-
ing method, neither known nor unknown. Moreover, some of the apparent
“codes” are not real codes, for once given to "the decoder”, i.e. to a Uni-
versal Turing machine, they result an infinite loop, and the machine never
halts; and the “receiver” has no effective means to separate such only ap-
parent codes from the genuine ones.

Further, as the theory of algorithmic complexity clearly tells us, only a
very small minority of all “messages” are compressible?? (of the type that
could be “coded” by a program such as “Print 1000 times ‘I love you’!”), so in
most cases there is no possibility (i.e. not even a non-computable function)
to compress the message considerably anyway, and they must be transmitted
as they are. So — I am repeating my earlier query — why introduce the idea
of only partial recursive decoding function, and thus implicitly assume a
strongly non-computable coding method, only because of those very few
untypical compressible messages? Why not require total primitive recursive
coding and decoding functions? That would, at least, make the model more
realistic as a model of communication, and keep it manageable. Anyway,
I think one may justly conclude that Chaitin’s view that one has here a
reasonable model of efficient communication is quite implausible.

But be that as it may, Chaitin did not originally use this communication
model to justify the equation of complexity and information content. Indeed,
as far as I have been able to find, before 1974 Chaitin does not at all consider
the information content of outputted strings, and much less equates it with
their algorithmic complexity. That is, before 1974 the information-theoretic
aspect of the theory is for Chaitin restricted to the amount of information
needed to specify a string, which is measured by him simply by the number
of bits (the length) of the specification, i.e. the inputted program.

However, in [1974b] Chaitin’s perspective changed, with no further ex-

24



planation: “The entropy, or information content, or complexity, of a string
is defined to be the number of bits needed to specify it.” One may guess that
Chaitin simply borrowed the idea of equating complexity and information
content from Kolmogorov. In any case, Chaitin’s [1975] paper “A Theory
of Program Size Identical to Information Theory” meant a big departure in
more than one respect: not only did he introduce prefix-free programs to
the theory (this had been anticipated by others, e.g. by Levin) and revise
the definition of the conditional or relative complexity; in this paper Chaitin
also begun to move more explicitly towards Kolmogorov’s way of viewing
the issue.

The justification of this fundamental change is, nevertheless, surprisingly
dim. Chaitin clearly gives great weight to the formal similarity between the
classical information calculus and formulas resulting from his revised ap-
proach to the algorithmic complexity. He writes: “There is a persuasive
analogy between the entropy concept of information theory and the size of
programs”; and: “H and [ satisfy the fundamental inequalities of informa-
tion theory to within error terms of the order of unity.” (Chaitin [1975]) It
should be clear, though, that this is in itself a rather weak justification — to
say the least — for identifying the two subject matters.

Besides this, Chaitin refers to the above-quoted paragraph from his
[1970] and writes: “... think of a computer as decoding equipment at the
receiving end of a noiseless binary communication channel. Think of its pro-
grams as code words, and of the result of the computation as the decoded
message.” (Chaitin [1975]) Now Chaitin apparently thinks that his above-
discussed, rather problematic communication picture somehow justifies his
new position.

Later in the paper, Chaitin defines — without any explanation or justifi-
cation — “the information in one tuple of strings about another”, as follows
(I have simplified the notation inessentially):

IU(S : t) = I(U(t) — I(U(t/s),

where Kp(t/s) is Chaitin’s revised conditional complexity (see 3.3., and
note 15). Although this differs a little from Kolmogorov’s setting, it does
not avoid the basic difficulties. Let it suffice to say here that again the
relevant partial information about the second string is in the specification of
the first string, not in the first string itself (the above knife example and the
example about 3 and 78498 are again relevant). Thus the definition does no
really capture the notion it is presumed to define.

Since then, Chaitin has unhesitatingly equated information content and
algorithmic complexity. Thus, e.g. in a joint paper with Schwartz from
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1978 one can read: “I(X), the algorithmic information content of X, is
defined to be the size in bits of the smallest programs for U to compute X.”
(Chaitin and Schwartz [1978]); and a couple of years later, Chaitin speaks
about “the information content of an individual object, which is a measure
of how difficult it is to specify or describe how to construct or calculate that
object.” (Chaitin [1982a], my emphasis).

Chaitin gives, in the above-mentioned papers of in any other publication,
absolutely no argument or clear reason for this identification of complexity
and information content. In particular, Chaitin never uses explicitly a line
of reasoning like that of Kolmogorov. And, because of the problems with his
definition of Ijs(s : t) mentioned above, the Kolmogorovian argument would
not work in the case of Chaitin’s slightly revised setting either.

One may thus conclude that Chaitin has not provided any good justifi-
cation for his later-day identification of information content and complexity.
And yet, possibly following Chaitin, this simple but highly problematic iden-
tification has unfortunately become the received view in the literature of this

field.
4.5 Conclusions

In sum, Kolmogorov’s line of reasoning that leads to the idea that the algo-
rithmic complexity is a good measure of the information content of an object
is wed to serious confusions. Nor does this argument work with Chaitin’s
revised definition of conditional complexity. Further, the heuristic communi-
cation model that Chaitin has used is rather implausible, and certainly does
not justify the equation of algorithmic complexity and information content.
And independently of these problems, it has become entirely evident that
the complexity and the information content of a linguistic expression have
no real connection.

My general conclusion from my above analysis is quite destructive: I
claim that “the algorithmic information theory” is in all respects inappro-
priate as a theory of information. Obviously, the popular name of this rich
field of study is accordingly a misnomer. 1 suggest that one should rather
use the name “the algorithmic theory of complexity” — for the theory is after
all, at least in its own limits, a reasonably plausible formal explication of the
informal notion of complexity. And certainly the notion of the program-size
complexity is in itself a notion worth studying. In addition, the algorithmic
complexity of an expression as a syntactical object may well provide a rea-
sonable explication for the notion of the simplicity of a theory, which has
been for a long time a subject of intensive discussion in the philosophy of
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science.
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Notes

1 See e.g. Casti [1994], Pagels [1988], Gell-Mann [1994], Zurek [1990b].

2 Ruelle [1991], Ford [1983], [1989], Casti [1994], Gell-Mann [1994]. For in-
formation and entropy (but not chaos), see the useful (although quite uncritical)
survey Schumacher [1993]; for a critical discussion, see Wicken [1987].

3 E.g. Rucker [1987], Pagels [1988], Ruelle [1991], Stewart [1991], Casti [1994],
Gell-Mann [1994], Barrows [1992] — to mention but some.

1 E.g. Bennett [1982], Zurek [1989], [1990a].

5 See e.g. Ford [1983], [1989]; Shuster [1988]. For a critical discussion, see
Winnie [1992] and Batterman [1993].

6 See e.g. the final chapter of Calude [1994] and the numerous references given
there.

71 thus strongly disagree with Fred Dretske, in his Knowledge and the Flow
of Information [1981]. For a detailed and thoroughgoing criticism of Dretske, see
Loewer [1982], [1987]; cf. Putnam [1994].

8 As this theory, which is a sort of standard theory of information, is very well
known, and I am not actually discussing it on the later parts of this paper, I'll give
only a very short review. For details of the theory, see e.g. Ash [1965], Feinstein
[1958], Gallagher [1968]; cf. Cherry [1952], [1957].

9 As it happens, the idea of calling the quantity thus defined “entropy” was
not Shannon’s own idea but suggested to him by John von Neumann; Shannon had
thought of using “uncertainty”. I agree completely with Wicken [1987] that this
was a very unhappy christening that has only caused confusion.

10 For a detailed and penetrating critical examination, see Bar-Hillel [1955].

11 Although, no one has ever, to my knowledge, expressed the difference between
these two theories in terms of use and mention; I find this both surprising and
regrettable, for I think this basic distinction greatly helps to clarify the issue.

12 Carnap and Bar-Hillel [1952]; Bar-Hillel [1952], [1955]; Hintikka [1968],
[1970a]. See also Hintikka’s later philosophical reflection in his [1993].

13 This is indeed the general practise in this field nowadays. But I must grant
that this statement is unfairly simplifying with respect to Kolmogorov’s original
reasoning via conditional complexity that led him to equate the two concepts. 1
shall discuss this issue thoroughly in 4.2.

14 An useful concise survey is Cover et al. [1989]. For comprehensive surveys,
see Li and Vitanyi [1993] (this textbook is certainly the standard exposition of this
field), Calude [1994]; cf. Chaitin [1987].

15 More formally, Chaitin’s revised definition goes as follows:
He(t/s) =g min l(p) : (C(p,s™) =1),
where in turn
s* =g minp: (U(p,A) =s.
16 That is, most binary strings are “random” i.e. have the algorithmic com-

plexity approximately equal to their lengths. For further details on compressiblity
and incompressibility, see e.g. Li and Vitdnyi [1993], sections 2.2. and 3.2.
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17 Very similar line of reasoning can be found, e.g., in Li and Vitanyi [1993], p.
140.

18 Note that Kolmogorov’s notation is slightly nonstandard; his S(n, p) corre-
sponds to the more usual U(p, n), i.e. Kolmogorov writes input before program.

19 The Padding Lemma is a basic fact of recursive function theory (see e.g.
Odifreddi [1987], Proposition IT.1.6, p. 131): it says that given one index of a partial
recursive function, one can effectively generate infinitely may other indices of the
same function. It follows e.g. from the possibility of adding to a Turing machine
program arbitrarily many redundant commands with no effect on the computation.

20 This fact follows easily from Turing’s [1936-7] classical undecidability result
on the halting problem.

21 Tt is well known that there is no effective general method for finding the
minimal program of a given string (in fact, also this can be derived easily from the
undecidability of the halting problem).

22 Cf. note 16.
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