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Introduction

Sciences tend to evolve in a direction that introduces greater emphasis on formal theorizing.
Psychology generally, and the study of memory in particular, have followed this prescription:
The memory field has seen a continuing introduction of mathematical and formal computer
simulation models, today reaching the point where modeling is an integral part of the field rather
than an esoteric newcomer.  Thus anything resembling a comprehensive treatment of memory
models would in effect turn into a review of the field of memory research, and considerably
exceed the scope of this chapter.  We shall deal with this problem by covering selected
approaches that introduce some of the main themes that have characterized model development.
This selective coverage will emphasize our own work perhaps somewhat more than would have
been the case for other authors, but we are far more familiar with our models than some of the
alternatives, and we believe they provide good examples of the themes that we wish to highlight.

The earliest attempts to apply mathematical modeling to memory probably date back to the late
19th century when pioneers such as Ebbinghaus and Thorndike started to collect empirical data
on learning and memory.  Given the obvious regularities of learning and forgetting curves, it is
not surprising that the question was asked whether these regularities could be captured by
mathematical functions.  Ebbinghaus (1885) for example applied the following equation to his
data on savings as a function of the retention interval:
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where S is the percentage saving, t is the retention interval in minutes, and k and c are constants.
Since no mechanisms were described that would lead to such an equation, these early attempts at
mathematical modeling can best be described by the terms curve fitting or data descriptions.  A
major drawback of such quantification lies in the limitations upon generalization to other aspects
of the data or to data from different experimental paradigms:  Generalization is limited to
predictions that the new data should match the previously seen function, perhaps with different
parameter values.  Notwithstanding the many instances where this approach provides reasonable
accounts, theorists generally prefer accounts that provide cognitive mechanisms from which the
pattern of results emerge, mechanisms that allow better understanding and the potential for
different patterns of predictions in new situations.
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This difference between data fitting and mechanism based models is illustrated by comparing
older approaches and current models for memory.  Models such as ACT (Anderson, 1976, 1983b,
1990), SAM (Raaijmakers & Shiffrin, 1980, 1981; Gillund & Shiffrin, 1984), CHARM (Metcalfe
Eich, 1982, 1985), and TODAM (Murdock, 1982, 1993) are not models for one particular
experimental task (such as the recall of paired associates) but are general theoretical frameworks
that can be applied to a variety of paradigms (although any such application does require quite a
bit of additional work).  In SAM for example, the general framework or theory specifies the type
of memory representation assumed and the way in which cues activate specific traces from
memory.  In a particular application, say free recall, task-specific assumptions have to made that
do not follow directly from the general framework, such as assumptions about the rehearsal and
retrieval strategies.  The general framework and the task-specific assumptions together lead to a
model for free recall.1 This chapter of course focuses on such newer modeling approaches.
However, understanding the present state of modeling is facilitated by a brief look at the models’
origins.  Hence, in the next section we will review some key theoretical approaches of the past 50
years.

Brief historical background: From learning models to memory models

Modern memory models have their roots in the models developed in the 1950’s by mathematical
psychologists such as Estes, Bush, Mosteller, Restle, and others.2 Initially these models were
mainly models of learning, describing the changes in the probability of a particular response as a
function of the event that occurs on a certain trial.  A typical example is the linear operator model
proposed by Bush and Mosteller (1951).  In this model, the probability of a correct response on
trial n+1 was assumed to be equal to:

p Q p pn j n j n j+ = = +1 ( ) α β (2)

The "operator" Qj could depend on the outcome of trial n (e.g. reward or punishment in a
conditioning experiment).  Such a model describes the gradual change in probability correct as
learning proceeds.  Note that if the same operator applies on every trial, this is a simple difference
equation that leads to a negatively accelerated learning curve.  Although this might seem to be a
very general model, it is in fact based on fairly strong assumptions, the most important one being
that the probability of a particular response depends only on its probability on the preceding trial
and the event that occurred on that trial (and so does not depend on how it got there).  Thus, the
state of the organism is completely determined by a single quantity, the probability pn.  Note that
in comparison to more modern models, such operator models have little to say about what is
learned, and how this is stored and retrieved from memory.  As with other, more verbal theories
of that era, they are behavioristic in that no reference is made to anything other than the current
response probabilities.

                                                
1Although it might be preferable to make a distinction along these lines between a theory and a model, we will use
these terms interchangeably, following current conventions.
2 An excellent review of these early models is given in Sternberg (1963) and Atkinson and Estes (1963).
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A closely related theory was proposed by Estes (1950, 1955).  Estes however did make a number
of assumptions (albeit quite abstract ones) about the nature of what was stored and the conditions
under which that would be retrieved.  This Stimulus-Sampling Theory assumed that the current
stimulus situation could be represented as a set of elements.  Each of these elements could either
be conditioned (associated) or not-conditioned to a particular response.  Conditioning of
individual elements was considered to be all-or-none.  On a given trial, a subset of these elements
is sampled and the proportion of conditioned elements determines the probability of that
response.  Following reinforcement, the sampled not-yet-conditioned elements have some
probability of becoming conditioned to the correct response.  If the number of elements is large
and if the same reinforcement applies on every trial, this Stimulus-Sampling model leads to the
same equation for the expected learning curve as Bush and Mosteller’s linear operator model.

One of the advantages of Estes’ approach was that it made it possible to generalize the model to a
number of different paradigms.  For example, Estes (1950) showed how the theory led to
predictions for the response times in simple operant conditioning experiments and Estes (1955)
generalized the theory to phenomena such as spontaneous recovery and regression.  For the latter
generalization, it was assumed that there exists a process of random environmental or contextual
fluctuation in such a way that on a given trial only a subset of the elements is available for
conditioning.  Between sessions, the environment will continue to fluctuate and hence, after a
given retention interval, the current set of conditionable elements will be mix of elements that
were available during the previous session and elements that were not available.  Figure 1 shows

Figure 1: Example showing Estes’ stimulus fluctuation model: Filled dots represent
conditioned elements, open dots represent unconditioned elements. At the end
of learning on Day 1 all available elements (within the circle) have been
conditioned. Between Day 1 and Day2 there is fluctuation between the two
sets of elements so that at the start of Day 2 the set of available elements
contains a number of unconditioned elements.

AFTER STUDY ON DAY 1 BEGINNING OF DAY 2
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an example of such a fluctuation process.  In this example, training takes place on Day 1 until all
available elements (those within the circle) have been conditioned (left panel of Fig 1).  However
between Day 1 and Day 2, there is fluctuation between the sets of available and unavailable
elements so that at the start of Day 2 (right panel) some conditioned elements in the set of
available elements have been replaced by unconditioned elements.  It is easy to see that this will
lead to a decrease between sessions in the probability of a conditioned response.3 In this example,
the probability of a response would decrease from 1.0 (=16/16) at the end of Day 1 to 0.625
(=10/16) at the start of Day 2.  In this way, spontaneous regression could be explained.
Spontaneous recovery would be just the opposite, such that the available elements would all be
unconditioned at the end of Day 1 but would be replaced by conditioned elements due to
fluctuation during the retention interval; in this way the probability of a response on Day 2 would
show a recovery of the conditioned response.

The important point here is that such predictions are possible because the theory provides a
mechanism (in this case a very simple one) that determines how the system generates a response,
rather than just a function that transforms one response probability into another.  Although
Stimulus-Sampling Theory is rarely used these days, the theory has been very influential and may
be viewed as the starting point of modern mathematical modeling of learning and memory
processes.

One of the significant modeling developments that came out of the Stimulus Sampling approach
was the use of simple Markov models to describe learning processes.  The first (and indeed
simplest of these) was the one-element model proposed by Bower (1961).  In this model it was
assumed that there is only a single element for each stimulus that is present on each presentation
of that item.  On each presentation there is a probability c that the item will be conditioned (or
learned).  Since the element will be either conditioned or unconditioned, learning of a single item
will be an all-or-none event, which is why the model is also known as the all-or-none model.  The
model still predicts a gradual learning curve because such a curve will represent the average of a
number of items and subjects, each with a different moment at which conditioning takes place.
The learning process in the all-or-none model may be represented by a simple Markov chain with
two states, the conditioned or "learned" state in which the probability correct is equal to 1, and the
unconditioned state in which the probability correct is at chance level (denoted by g).  The
following matrix gives the transition probabilities, the probabilities of going from state X (L or U)
on trial n to state Y on trial n+1.

state on trial n+1 P(Correct)
L U

state on trial n
L

U c c

1 0

1−










1

g








 (3)

                                                
3 This same model of contextual fluctuation was later incorporated by Mensink and Raaijmakers (1988) in their
application of the SAM model to interference and forgetting.
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Bower (1961) applied this model to a simple learning experiment in which subjects were
presented lists of 10 paired associate items in which the stimuli were pairs of consonants and the
responses were the integers 1 and 2 (hence this experiment might perhaps be better described as a
classification learning experiment since the subjects have to learn the correct category for each
pair of consonants).  The interesting aspect of this application was that Bower did not just look at
the learning curve (which would not be very informative or discriminative) but derived a large
number of predictions for many statistics that may be computed from the data of such a learning
experiment, including the distribution for the total number of errors, the distribution of the trial of
last error, and the frequencies of error runs.  The model fitted Bower’s data remarkably well (see
Figure 2 for an example) and this set a new standard for mathematical modelers.

One of the key predictions of the model was what became known as presolution stationarity: The
probability of responding correctly prior to learning (or prior to the last error) was constant.  One
of way of formulating this is in terms of the probability of an error being followed by another
error:

P e en n( )+1  =  constant for all  n (4)

It may be shown that this presolution stationarity property coupled with one other assumption
(such as the distribution of the trial of last error) is a sufficient condition for the all-or-none
model.  Thus, the crucial property of the all-or-none model is that errors are (uncertain) recurrent
events (Feller, 1957).  Batchelder (1975) showed that for this stationarity property to hold, it is
necessary that there are no subject differences in the learning parameter c.  To see this, note that if
subjects do differ, it will be the case that for larger n, only the slower subjects will be included in
the data (the faster subjects will already have learned and will not make an error).  That is, the
probability
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Figure 2:   Observed and
predicted distributions of
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per subject-item sequence
(After Bower, 1961).
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P e e c gn n( ) ( )( )+ = − −1 1 1   , (5)

will be based on a different, lower, mean value of c for later trials.  Hence, the assumption of
presolution stationarity is not just crucial, but also quite restrictive.  One of the reasons why
Bower’s data fitted the model so well (despite its restrictiveness) may have been the relative
simplicity of the experimental task.  In the years that followed it became evident that more
complicated designs would not conform to the predictions of the simple all-or-none model
(Bjork, 1966; Rumelhart, 1967).

Notwithstanding the facts that the model was quite simple, that it was rather sparse in its
assumptions concerning cognitive mechanisms, and that it was eventually rejected, it did fulfill an
important function in the "coming of age" of mathematical models for learning and memory:  The
detailed level at which the data were analyzed,  and for which predictions were derived, set a
standard for future modeling efforts.

In the next ten years, various Markov models were proposed that built upon the all-or-none
model.  Greeno and Scandura (1966), Batchelder (1970) and Polson (1972) generalized the all-or-
none model to transfer-of-training and the learning of conceptual categories (several lists in which
a stimulus item from a specific category is always paired with same response).  The basic idea
held that when consecutive lists are conceptually related, there might be all-or-none learning on
two levels: the individual item level and the category level.  Atkinson and Crothers (1964)
extended the model to include the notion of a short-term memory state, a rather important
conceptual/modeling advance as subsequent events demonstrated.  Various versions of such a
model have been proposed by a number of researchers, but the basic notion always was that an
item could move from the unlearned state to the short-term state when that item was presented for
study but could move back to the unlearned state on trials in which other items were studied.  The
learning process can then be described using two transition matrices, one that applies when the
target item is presented (T1) and one that applies when another item is presented (T2):
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where L is the state in which the item has been learned, S is an intermediate or short-term state,
and U is the state in which the item is not learned.
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Although these LS-models still assume that learning eventually results in a state (L) from which
no forgetting would occur (obviously a simplifying assumption), they also introduced a number of
elements that would become important in the following years.  For example, the models explicitly
deal with the events between successive study trials and incorporate the notion that additional
storage (as well as forgetting) may occur on those intervening trials (see T2).  Based on this
general approach, Bjork (1966), Rumelhart (1967) and Young (1971) developed (increasingly
complex) models to account for spacing effects in paired-associate recall, leading to a model that
became known as the General Forgetting Theory.  Thus, the Markov models shifted from an
emphasis on learning to an emphasis on (intertrial) forgetting.

In 1968 Atkinson and Shiffrin produced a model and a model framework that can be thought of
as a natural culmination of these various developments.  Their model became known as the
’modal model of memory’, partly because it used principles extracted from the rapidly developing
studies of short-term memories to produce a model specifying the relations of short-term to long-
term memory.  In modeling circles, their theory broke new ground for a different reason:  It went
much farther than previous theories in quantifying assumed underlying processes of cognition,
including rehearsal strategies for short term memory, and retrieval strategies for long-term
memory (Atkinson & Shiffrin, 1968).  An important advance was the shift of emphasis from an
inexorable march through a limited number of states of memory to a final and permanent learned
state (as in the Markov models) to an emphasis upon search and retrieval processes from long-
term memory (see Shiffrin, 1968, 1970; Shiffrin & Atkinson, 1969; Atkinson & Juola, 1974).
Although this model retained an assumption that long-term memory was a (relatively) permanent
state, its addition of retrieval failure as an explanatory mechanism allowed it to handle a far wider
range of phenomena.  Another distinguishing characteristic of the Atkinson-Shiffrin theory was
the fact that it provided both a general framework for analyzing memory processes and also a
number of detailed mathematical models for specific experimental tasks.  In all these senses, the
Atkinson-Shiffrin model may indeed be said to be the first modern model for human memory.

The Atkinson-Shiffrin model

Although this theory is probably best known as the major representative of what is often referred
to as the Modal Model for Memory (Murdock, 1967; see also Izawa, 1999), the distinction
between a Short-Term Store (STS) and a Long-Term Store (LTS) was perhaps not the most
important or original contribution made by Atkinson and Shiffrin’s model.  The framework
proposed by Atkinson and Shiffrin was based on a distinction between permanent structural
features of the memory system and control processes.  The permanent structural features include
the various memory stores: the sensory registers (e.g., iconic and echoic memory), STS and LTS.
The other aspect discussed by Atkinson and Shiffrin were the control processes, the operations
that are carried out to operate on and control memory, such as rehearsal, coding, and retrieval
strategies.  Although this is often overlooked in introductory textbooks (see also Raaijmakers,
1993) the concept of control processes and how these relate to memory storage and retrieval,
made it possible for this Two-Store model to explain the effects of the nature of the study
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activities and what subsequently became known as "levels-of-processing" effects (Craik &
Lockhart, 1972).4

Atkinson and Shiffrin (see Shiffrin and Atkinson, 1969) assumed that LTS was permanent: once
information is stored in LTS is remains there, there is no process that leads to a decay or a
decrease in the strengths of the traces in LTS.  Although there are exceptions (see e.g.,
Wickelgren, 1974) such an assumption is quite common in current models of models of memory.
At first sight, this might seem to be strange since one would expect theories of memory to deal
with the essentially universal phenomenon of forgetting.   Current theories of memory, however,
assume that most forgetting is the result of retrieval failure, either because other information in
memory competes during retrieval with the target information or because the available retrieval
cues have changed since the original encoding (e.g., when the retrieval context has changed).
Although it is hardly possible to prove such an assumption, it has proved useful and durable, and
most theorists have seen no compelling reason to introduce additional and alternative long-term
forgetting assumptions.

In addition to presenting a general framework for human memory, Atkinson and Shiffrin also
showed how specific models could be derived within that framework for specific experimental
tasks.  In most of these tasks, the situation was such that the usefulness of using a simple
maintenance rehearsal strategy was maximized and more elaborative rehearsal strategies were
less likely to be useful.  For example, in one task the participants were presented long series of
paired associates consisting of a two-digit number and letters from the alphabet (23-H, 47-K).
During a particular experimental session only a small set of stimuli was used.  The response term
(the letter) for a given stimulus term (the number) was varied.  The task was to remember which
letter was last paired with a particular 2-digit stimulus.  Using such tasks made it possible to
investigate in detail the workings of simple rehearsal processes in STS.

In sum, the Atkinson-Shiffrin theory may be seen as a prime example of the ’modern’ approach in
this area: the combination of a general theoretical framework and detailed mathematical models
for specific experimental tasks.  In the next sections we will describe some of the seminal
theoretical frameworks that have been presented in the past 25 years.

Search models

SAM

The SAM theory (Raaijmakers & Shiffrin, 1980, 1981), based on earlier work by Shiffrin (1970),
was initially developed as a model for free recall (Raaijmakers, 1979) but was quickly
generalized to other recall paradigms and to recognition (Gillund & Shiffrin, 1984).  The basic
framework of SAM assumes that during storage, information is represented in "memory images",

                                                
4 Note that the original Atkinson and Shiffrin model already included the notion that rehearsal processes in STS
might be conceptualized as lying on a continuum, with simple or maintenance rehearsal (without the intention to
remember) on one end and coding rehearsal (where  the intention to remember is most important) at the other end
(see Raaijmakers, 1993).
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which contain item, associative and contextual information.  The amount and type of information
stored is determined by coding processes in STS (elaborative rehearsal).  For the usual,
intentional study procedures, the amount of information stored in LTS was assumed to be a
function of the length of time that the item or the pair of items is studied in STS.

According to SAM, retrieval from LTS is a cue-dependent process.  These cues may be words
from the studied list, category cues, contextual cues, or any other type of information that the
subject uses in attempting to retrieve information from LTS (or that happens to be present in STS
at the time of retrieval).  Whether an image is retrieved or not, depends on the associative
strengths of the retrieval cues to that image.  SAM incorporates a rule to compute the overall
strength of a set of probe cues to a particular image: let S(Qj,Ii) be the strength of association

between cue Qj and image Ii.  Then the combined strength or activation of image Ii, A(i), for a

probe set consisting of Q1, Q2, ..., Qm is given by5

A i S Q Ij i
j

m

( ) ( , )=
=
∏

1

(7)

The key feature of Eq. 7 is that the individual cue strengths are combined multiplicatively into a
single activation measure.  This multiplicative feature focuses the search process on those images
that are strongly associated to all cues, the intersection of the sets of images activated by each cue
separately.  For episodic memory paradigms, the cue set will always contain a context cue
(representing the list context) that enables the search process to focus on the particular list that is
being tested.

In recall tasks, the search process of the SAM model is based on a series of elementary retrieval
attempts (see the flowchart in Figure 3).  Each attempt involves selecting or sampling one image
based on the activation strengths Ai.  The probability of sampling image Ii equals the relative

strength of that image compared to all images in LTS:

P I
A i

A kS i( )
( )
( )

=
∑

(8)

Sampling an image allows recovery of some of the information from it.  Note that the system
does not simply retrieve a copy of the item.  Rather, it is assumed that a set of features or
fragments are activated and that the system has to reconstruct the item based on the activated
features.  Hence, there is a constructive element in recall.  For simple recall tasks where a single
word has to be recalled, the probability of successfully recovering the name of the encoded word
after sampling the image Ii is assumed to be an exponential function of the sum of the strengths of

the probe set to the sampled image:

                                                
5 For simplicity we ignore the assumptions regarding weighting of cues (in effect we are assuming, as in many SAM
applications, that these weights are all equal to 1).
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In the simplest variant of this model, the probability of recall, assuming Lmax retrieval attempts

with the same set of cues, is given by the probability that the item was sampled at least once,
times the probability that recovery was successful:

( )[ ]P I P I P Irecall i s i

L

R i( ) ( ) ( )max= − −1 1 (10)

Assuming that each cycle takes the same amount of time T, the latency distribution for correct
responses is equal to:

P RT l T
P P

P
s

l
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−1

1 1

1

        for   l=1, .... Lmax (11)

Special assumptions are necessary when an image has previously been sampled using one or more
of the present cues but its recovery did not lead to successful recall.  In that case, recovery is
based only on the "new" components of the sum in Eq. (9), corresponding to cues that were not
involved in the earlier unsuccessful retrieval attempts (see Gronlund & Shiffrin, 1986).
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Stop Output
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Figure 3:  Flowchart representing the
SAM retrieval process in a cued
recall task.
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The above equations apply directly to cued recall.  More complicated recall paradigm such as free
recall can be handled in a similar way, by making assumptions about the retrieval strategy that is
used.  In the standard SAM model for free recall, it was assumed that the search starts using only
the context cue (the only information available).  As the search proceeds any item that is retrieved
is used as an additional cue (for a maximum of Lmax retrieval attempts).  If this item+context

search is not successful, the system will revert to using only the context cue.

If the retrieval attempt is successful, the associative connections between the probe cues and the
sampled image are strengthened.  Thus, SAM assumes that learning occurs during retrieval as
well as during study.  This assumption leads to a kind of retrieval inhibition, because it decreases
the probability of sampling other images.  If the retrieval attempt is not successful, a decision is
made about whether to continue, either with the same set of cues or with some other set of cues.
The decision to terminate the search process is usually based on the number of unsuccessful
searches, although other types of stopping rules are also possible.

Although the SAM model assumes that the process of activating information is basically the same
in recall and recognition, there are some important differences between these two processes.
Search models are not generally proposed as a primary basis for recognition because they have
difficulty predicting similar response times for ’old’ and new’ recognition decisions.  Thus Gillund
and Shiffrin (1984) proposed that recognition is based on the overall activation induced by the
probe cues.  That is, the overall activation, ∑ A(k), defines a familiarity value that is used in the
manner of signal-detection theory to determine the probability of recognition.  This notion of
"global familiarity" introduced by Gillund and Shiffrin has become a general property of most
current recognition models (often termed "global memory models" for that reason).  In order to
derive predictions, some assumption is also needed about the variance of the strength
distributions.  Typically, the standard deviation is assumed to be proportional to the mean
strength value (Gillund & Shiffrin, 1984; Shiffrin, Ratcliff, & Clark, 1990).

Of course, alternative and more complex models for recognition might be constructed within the
SAM framework.  One obvious approach (much explored in recent years) assumes recall is used
in tandem with familiarity to determine recognition.  An early form of this approach was a two-
stage model (as in Atkinson & Juola, 1974):  Two criteria are used such that a fast ’new’ response
is given if the familiarity is below the lower criterion and a fast ’old’ response is given if the
familiarity is above the upper criterion.  If the familiarity lies between these two criteria, a more
extended search process (as in recall) is undertaken.  Alternatively, it might be assumed that there
are two parallel routes in which one route would be based on familiarity and one on a recall-like
process.  In general (especially when dealing only with accuracy data), dual-route models make
predictions similar to those from single-route models to the degree that  familiarity is above
criterion for items that are successfully recalled.6

According to SAM, contextual information is always encoded in the memory image, and for
episodic-memory tasks, context is one of the retrieval cues.  Changes of context between study

                                                
6 This seems to be in conflict with the recognition failure of recallable words phenomenon (Flexser & Tulving, 1978).
However this effect depends on the use of a specific paradigm and does not necessarily generalize to a task in which
recall is a subprocess within a recognition task.
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and test play an important role in the prediction of forgetting phenomena.  Such changes may be
discrete or occur in a more gradual way.  Discrete changes are typical for studies that explicitly
manipulate the test context (e.g., Godden & Baddeley, 1975; Smith, 1979).7  On the other hand,
gradual changes may occur when the experimental paradigm is homogeneous (as in continuous
paired-associate learning).  In such cases, context similarity between study and test will be a
decreasing function of delay.

Mensink and Raaijmakers (1988, 1989) proposed an extension of the SAM model to handle time-
dependent changes in context.  The basic idea, adapted from Stimulus Sampling Theory (Estes,
1955), is that a random fluctuation of elements occurs between two sets, a set of available context
elements and a set of (temporarily) unavailable context elements.  The contextual strengths at test
are a function of the relationship between the sets of available elements at study and test.
Mensink and Raaijmakers (1989) showed how some simple assumptions concerning the
fluctuation process yield equations for computing the probability that any given element is active
both at the time of storage and at the time of retrieval.  A more elaborate analysis of contextual
fluctuation processes and its application to free recall was recently proposed by Howard and
Kahana (1999, see also Kahana, 1996).  They showed how such a notion could be used within a
SAM-like model to explain a number of effects (such as long-term recency) that would be
difficult to explain under the constant context assumption that was used in Raaijmakers and
Shiffrin (1980).

The SAM theory has been quite successful.  The SAM approach to recall and recognition has
been shown to provide relatively straightforward explanations for a number of standard findings
(such as the effects of list length, presentation time, serial position effects) as well as a number of
findings that previously were considered quite problematic (e.g., the part-list cuing effect [see
Raaijmakers & Phaf, 1999], spacing effects [see Raaijmakers, 1993], the differential effects of
natural language frequency and of context changes on recall and recognition [see Gillund &
Shiffrin, 1984] and the set of results that had caused problems for the traditional Interference
Theory of Forgetting [see Mensink & Raaijmakers, 1989]).

Ratcliff, Clark and Shiffrin (1990), however, discovered a phenomenon, called the "list-strength
effect", that could not be explained within SAM without making additional assumptions.  This
refers to the effects of strengthening some list items on memory for the other list items.  Ratcliff
et al. (1990) showed in a series of experiments that strengthening some items on the list has a
negative effect on free recall of the remaining list items (as one would expect for any model
based on relative strengths) but has no effect on cued recall or even a positive effect on
recognition performance.  This stands in contrast to the list-length effect: adding items to a list
decreases both recall and recognition performance.

In a prototypical experiment on the list-strength effect, three conditions are compared: a pure list
of weak items (e.g. brief presentation time, single presentation), a pure list of strong items, and a
mixed list consisting of both weak and strong items.  Of course strong items do better than weak
items, both in pure and mixed lists, and  for free recall, cued recall, and recognition.  However,

                                                
7 The effect upon memory of a discrete context change appears to depend on the degree to which context information
is integrated with content information, as explicated in the ICE theory (e.g. Murnane, Phelps, & Malmberg, 1999).
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the critical aspect is that strong items in mixed lists are not recognized better than in pure lists (in
fact they are a little worse).  Similarly, weak items in mixed lists are not recognized worse than
on  pure lists (in fact they are a little better).  Since the relative strength of a strong item in a
mixed list is larger than in a pure list (and similarly for a weak item on a pure weak list compared
to a weak item in a mixed list), a model like SAM would have predicted a difference in
recognition performance.  Because adding items to a list does harm performance, one might
expect a similar effect if one strengthens other items.

Shiffrin et al. (1990) showed that a variant of the SAM model could handle the results if one
makes a differentiation assumption:  The better an item is encoded, the more clear are the
differences between the item information in its image and the item information in the test item.
Conversely, the better an item is encoded, the stronger will be the match between the context
information encoded in its image and the context information used in the test probe.  Because
strength of activation in SAM is determined by the product of context and item strength, the net
effect of these two opposing factors is to cancel, approximately.  Because both cued recall and
recognition use both item and context cues at test, differentiation produces the observed null list-
strength effect for these paradigms.  On the other hand, because many test probes during free
recall use context cuing only, a list strength effect is predicted for this case, as observed.
Although this differentiation assumption may have seemed a bit ad-hoc when first introduced, the
years since have shown the difficulty of finding any alternative account of the list-strength
findings, and the differentiation assumption is generally accepted, whatever the model
framework.

Although the differentiation assumption was an important and helpful addition to SAM, a number
of other problems remained.  One of these concerned the so-called "mirror effect" in recognition.
This effect refers to the finding that many factors that increase the probability of a ’hit’ (saying
’yes’ to a target item) also decrease the probability of a ’false alarm’ (saying ’yes’ to a distractor
item), as documented extensively by Glanzer and his colleagues (e.g., Glanzer & Adams, 1985;
Glanzer, Adams, Iverson, & Kim, 1993).  Thus, the order of the conditions for the probability of
saying ’yes’ to distractors is the mirror image of the order for these same conditions for the
probability of saying ’yes’ to target items.  For example, although low-frequency items are more
likely to be correctly rejected than high-frequency items, LF target items are also more likely to
be correctly recognized than HF targets.  Such mirror effects are difficult to explain for any model
that bases the probability of saying ’yes’ on a "strength"-like measure.  Although mirror effects
might be handled by assuming different criteria for HF and LF items, such a solution is inelegant,
and it has been difficult to find coherent explanations for the posited movement of the criteria
across conditions.

Recently, Shiffrin and his co-workers have developed a new model, REM, that retains many of
the best elements of SAM, but provides a principled solution for the mirror effect, and for a
number of other previously unexplained memory phenomena.
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REM

The REM (Retrieving Effectively from Memory) model started out as a model for recognition
memory (Shiffrin & Steyvers, 1997).  Because global familiarity models faced problems
explaining the mirror effect, a solution had to be found that would provide a more rational basis
for criterion placement.  Shiffrin and Steyvers (1997) realized that the assumption that the
memory system behaves as an optimal decision making system might produce a model capable of
solving this problem.

In REM, memory images are represented as vectors of feature values, e.g. <3,1,3,7,3,2,1,....>.
The numbers represent the frequency of a particular feature value.  The probability that a feature
V has value j is assumed to be given by the geometric distribution8:

P V j g g jj( ) ( ) ,= = − = ∞−1 11 � (12)

That is, not all feature values are equally likely.  Now, suppose an item is studied.  As a result of
study, an episodic image (of item and context features) is stored in memory.  This episodic image
will be error prone, i.e. some features will not be stored correctly, and some will not be stored at
all.  The better or the longer an item is studied, the higher the probability that a given feature will
be stored.

On a recognition test, old and new items are presented and the subject is asked to indicate
whether the test item is old (from the list) or new.  It is assumed that the system compares the
retrieval probe features to those stored in episodic memory images, noting the matches and
mismatches to the features in each image.  The system  then uses a rational basis for generating a
response:  It chooses whichever response has the higher probability given the observed feature
matches and mismatches in all the memory images.  Thus, if there is an episodic image in
memory that is quite similar to the test item, producing many matching features, the probability
that the test item is old will be high.  Mathematically, the decision criterion is given by the
posterior odds ratio which according to Bayes’ rule may be written as the product of the prior
odds and the likelihood ratio:
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(when the prior probabilities of old and new items are equal, as is the case in most studies, the
posterior odds is simply the likelihood ratio itself).  It can be shown (see Shiffrin & Steyvers,
1997) that in REM, the likelihood ratio is given by the average likelihood ratio for the individual
list  traces (assume L episodic images are compared to the test probe): :

                                                
8 It should be noted that this assumption is not essential for the REM model. Most predictions do not depend on the
nature of this distribution.
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Hence, an "old" response would be given if  Φ > 1.  This result is of course quite similar to the
SAM recognition model if one substitutes the likelihoods in REM for the SAM activation values.
A critical difference concerns response criteria: In SAM the familiarity values are on an arbitrary
scale that changes with conditions, and a  response criterion must be chosen differently for each
condition.  In REM the odds have a natural criterion at 1.0.  Although the participant could
choose a response criterion different from 1.0 if conditions warrant, the default criterion of 1.0
produces a mirror effect.  This prediction and others suggested that the REM model for
recognition was indeed qualitatively better than SAM, despite the many similarities.

The similar role played by likelihood ratios in REM and retrieval strengths in SAM suggested that
the SAM recall model could be ported to REM by substituting likelihood ratios for strengths.
Such an approach has the desirable feature that most (if not all) of the SAM recall predictions
hold for REM as well.  In carrying out this procedure, it was discovered that the distributions of
the likelihood ratios were much more severely skewed than the retrieval strengths in SAM.  One
undesired result of this fact was a tendency to sample the highest strength image with too high a
probability.  For this reason, sampling in recall in REM is assumed to be based on a power
function of the likelihoods (see Diller, Nobel, & Shiffrin, 2001):
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Diller et al. (2001) show that such a model accurately describes the response time distributions in
cued recall.  More generally, these authors show that an appropriately tailored REM model gives
a good simultaneous fit to the accuracy and  response time data in both cued recall and
recognition.

It is worth highlighting one major difference between the SAM activation values and the REM
likelihood ratios.  In REM, the likelihood ratio for an individual trace is a function of the numbers
of both matching features and mismatching features (see Shiffrin & Steyvers, 1997):
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where α is the probability of a match given storage for the correct trace, β is the probability of
match given storage for an incorrect trace (α must obviously be larger than β), and mj and qj are
the number of matches and mismatches respectively for trace j.  Thus, the higher the number of
matching features, the higher the likelihood,and the higher the number of mismatching features,
the lower the likelihood.  Consider what this implies for the likelihood ratio for a strengthened
image when a different item is tested.  More features will be stored in the ’stronger’ image, but
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these will generally mismatch the test probe (because the image and test probe do not match).
The likelihood ratio for the stronger image therefore tends to be lower.  This mechanism may be
seen as an implementation of the differentiation hypothesis: Stronger traces are more easily
discriminated from the test item than weak items.  Shiffrin and Steyvers (1997) showed that the
REM model could indeed account for the list-strength results.

The comparison of SAM to REM in the domain of episodic recognition provides a most
illuminating look at two rather different approaches to modeling.  The SAM model was generated
in much the way that most psychology models have been developed over the past 50 years:
knowing the data patterns to be predicted, plausible cognitive mechanisms were hypothesized,
and implemented with functional forms that intuition suggested would produce the observed data
patterns.  A certain period of tuning of the model then ensued, as is usually the case, because
intuitive predictions are notoriously error prone.  In the case of SAM, the functional forms
included, as an example, the assumption that cues would combine multiplicatively, enabling the
system to converge upon images in the intersection of the items similar to each cue separately.
The REM model was developed somewhat differently:  A few structural limitations were
assumed at the outset, chiefly the assumption that images are stored incompletely and with error.
Then the model was derived rather than assumed, under the assumption that the structure of the
task was known, and that all the information in images was available for optimal decision
making.  The functional form of the equations governing REM were therefore derived rather than
assumed.  It should be emphasized that there is no necessary reason why this approach should be
superior, or that the cognitive system should necessarily be designed in optimal fashion to carry
out any given task.  The fact that it seemed to work well in the present instance does point out the
potential utility of the approach, and gives the modeler another weapon in his or her theoretical
arsenal.

Although the REM model was developed initially in the domain of episodic recognition memory,
and represented an improvement upon SAM in that domain, its primary contributions lay in
different spheres: generic (or semantic) and implicit memory.  The model provided a mechanism
through which episodic images could be accumulated into lexical/semantic images, over many
repetitions across developmental time, and enabled retrieval from such memories with the same
basic processes that operate in episodic tasks.  It is assumed (see Schooler, Shiffrin &
Raaijmakers, 2001) that when an event is first stored, a noisy and incomplete (episodic) image is
stored in memory.  When that event is repeated, a new episodic image will be stored.  However, if
the new image is sufficiently similar to the previous stored image, information may also be added
to that previous image.  Thus, repetitions will gradually lead to an increasingly complete image,
that may be termed a lexical/semantic image.  This accumulated image will contain perceptual,
semantic, and contextual features.  However, since the contextual information will come from
many different contexts, the activation of the lexical/semantic image will not depend on any
particular test context, and sampling of such an image will not produce a sense of any one
episodic event.  Tthe lexical/semantic images will in effect become context-independent, not
because they fail to encode context, but because they encode too many contexts.  Thus, although
REM incorporates a distinction between episodic and semantic memory, both have a common
origin and follow the same basic rules.
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The retrieval processes assumed to operate in explicit memory can in turn be used to describe
retrieval from lexical-semantic memory:  A probe vector of features is compared to the set of
lexical-semantic images, and likelihood ratios calculated for each.  These likelihood ratios can
then be summed, for example to make a lexical decision (word/nonword decision), or used as a
basis for sampling for a variety of recall-based tasks such as naming or fragment completion.

It is only a minor extension to use these same processes to model implicit memory effects.
Implicit memory refers to findings that recent study of a word enhances (or at least alters)
performance on a subsequent generic memory test, where the subsequent test may be
accomplished without reference to episodic memory (and even without explicit realization that
the previously studied words are relevant).  For example, a lexical decision given to the word
’table’ may be speeded by study of table in a prior list.  Such effects are often termed ’repetition
priming’.  In order to explain repetition priming effects, REM borrows the previously stated idea
that study produces storage not only of an episodic image but also additional storage in a
previously stored similar image, in this case, the lexical/semantic image of the studied word.  One
refinement of this idea is needed:  The added information is restricted to information not already
stored in the lexical/semantic image.  Thus item information in the lexical/semantic image such
as its core meaning, which is already stored, is unaffected by a recent study event.  However,
perceptual (e.g. font) and context information which is unique to the current study episode is
added to the lexical/semantic image.

These storage assumptions lead naturally to the prediction of repetition priming, as long as the
test probe utilizes any of the information that had been added to the lexical/semantic image.  Thus
if current context is used as part of the test probe, which may be inevitable even in tasks that do
not require context cuing, then the match of this information to that stored in the lexical/semantic
image of the studied word will increase the likelihood ratio for that image, and produce priming.
One example is presented in Schooler et al. (2001).  They present a REM-based model to account
for priming effects in perceptual identification and in particular the results obtained by Ratcliff
and McKoon (1997).  Ratcliff and McKoon had participants study a list of words.  Subsequently
the participants saw a briefly flashed and masked word, and then received two choice words, one
of which had been the one flashed (the target) and one not (the foil).  If a choice word had been
studied in the earlier  list, it is said to have been primed.  The target, the foil, both, or neither
choice could have been primed, in different trials.  For example, during study the word LIED
might be presented.  At test, the word LIED is briefly flashed and then two alternatives, say LIED
and DIED, are presented for a choice.  When the choices are perceptually similar (such as LIED
and DIED) priming the target increases its choice probability, but priming the foil does so as well.
If the choices are dissimilar (say LIED and SOFA), there is little effect of priming.9

Ratcliff and McKoon (1997) argued that this pattern of results poses a challenge for existing
models of word identification because these models assume that "prior exposure to a word
changes some property of the representation of the word itself" (Ratcliff & McKoon, 1997, p.
339).  They proposed a Counter Model in which the system assigns perceptual evidence to each

                                                
9 With slightly different instructions, Bowers (1999) was able to obtain priming for dissimilar alternatives as well.
The difference may depend on differential tendencies for the subjects to use episodic memory access to help carry out
the identification task.
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of the two choice words.   Prior study leads to bias in the system in such a way that a counter
corresponding a studied word tends to "steal" counts from neighboring counters (for similar
words).  Schooler et al. (2001) however showed that this pattern of results can be also explained
in REM if one assumes that prior study leads to the storage of a small amount of new contextual
information (i.e., prior study does change "some property of the representation").  The idea is
simple:  The extra matching context features for the studied item increase the likelihood ratio for
choice of its lexical/semantic image over that for the alternative word.  For similar alternatives,
only a few visual features are diagnostic since most letters areshared between the choices (e.g. the
IED part of the choices are not relevant when choosing between LIED AND DIED); in this case
the extra likelihood due to prior study has a large effect.  For dissimilar alternatives many or all
visual features are diagnostic so the same extra likelihood has a smaller relative effect.

At this moment, work on the application of REM to other implicit and semantic memory
paradigms (such as lexical decision [Wagenmakers et al., 2001]) is still in progress. However, it
seems likely that the REM model will be able to use the mechanisms outlined above to explain
several of the most basic findings in implicit memory. For example, the finding that perceptual
implicit memory tasks (word identification, lexical decision) are usually unaffected by levels-of-
processing variations in the study task that do have a clear effect on explicit memory, can be
explained by pointing out that such variations mostly affect the number and nature of the
semantic features that are stored in episodic traces, and these features are not the ones added to
the lexical/semantic traces since they will usually already be present in those traces.  In addition,
since whatever semantic or associative information is present in STS when the target item is
presented, will be unrelated to the semantic/associative features of the lexical/semantic trace, a
prior semantic study task will not affect the match between the presented item and the target
lexical trace.  As another example, amnesic patients that have a very deficient explicit memory
often show relatively normal implicit memory performance; in REM the implicit benefit is based
on altered activation of lexical-semantic traces, and these patients are known to exhibit few
deficits in semantic memory tasks requiring access to  those traces (e.g., standard word
identification tasks).

Only time will tell whether REM, or alternative models, will be successful in their attempt to
integrate explicit memory, semantic memory, and implicit memory within a single theoretical
framework.  However, this goal is a major goal of current research , and in this respect, these
models have come a long way from the simple Markovian models of the 1960s.

The MINERVA 2 Model

Hintzman (1986, 1988) developed a memory model that is based on global familiarity, somewhat
like the SAM and REM models for episodic recognition.  This model, MINERVA 2, has been
applied primarily to category learning and recognition memory.  A basic goal of the model is to
provide an explanation for memory for individual experiences (episodic memory) and more
generic or semantic memory within a single system.  The model assumes that memory consists of
a large set of episodic traces.  It is assumed that each experience produces a separate memory
trace.  Memory traces are represented as lists of features or vectors.  When an item is studied, a
new memory vector for that item is formed.  Each feature is independently encoded with
probability L, a learning rate parameter.  Features are encoded as +1 or -1.  If a feature is not
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encoded it is set to 0.  When a probe cue is presented, it is compared in parallel to all memory
traces.  The amount of activation of any particular trace is a nonlinear function of the similarity to
the probe cue, where similarity is determined by numbers of matching and mismatching features.
Overall activation is given by the summed similarity, and is used to make a recognition decision.

 In MINERVA 2, a generic or semantic memory is produced by combining or summing a large
number of individual episodic traces.  The basic difference between such an approach to semantic
memory and the one represented, say, by the REM model, is the representation of
lexical/semantic memory.  REM assumes a separate set of  lexical/semantic images, but in
MINERVA 2 the semantic traces are computed at the time of retrieval and not stored separately.

For recognition, a test item’s vector is compared with each vector in memory and a similarity
value is computed using the following equation:
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where Pj is the value of feature j of the probe, Tij is the value of the corresponding feature in trace
i and Nr is equal to the number of relevant features (i.e., those that are encoded is both the probe
and the trace).  Thus, the similarity is based on the inner product of the two vectors (also termed
the dot product). The inner product is just the sum across vector positions of the product of the
corresponding entries, and is a single real number.  The activation value for trace i is given by

A Si i= 3   . (18)

Thus, the activation rapidly declines as the similarity to the probe decreases.  Next, all activation
values are summed to provide an overall measure of match called "echo intensity".  If this value is
greater than a criterion value, an "old" response is produced; if it is less, a "new" response is
produced.  Hence, MINERVA 2 is another example of a global familiarity model.  MINERVA 2
has also been successfully applied to confidence data, and frequency judgment data, by assuming
that such judgments are determined by the value of summed activation obtained on a trial:
Appropriate criteria are set that determine the desired responses.

In order to allow recall to be carried out, the model assumes that a specific vector is constructed
from the activated traces.  To be precise, the retrieved vector (called the echo) is the sum of all
trace vectors, each weighted by its activation value:
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where Cj is the value for feature j in the echo.  Because Ai rapidly declines as the similarity
decreases, the echo will be mostly determined by those traces that are similar to the probe cue.
How is this echo used to carry out recall?  Consider cued recall as an example.  Suppose the two
words studied together (say, A and B) are stored  in a single concatenated vector, back to back
(A,B).  MINERVA 2 has a property that might be called pattern completion: Whenever part of a
trace is used as a probe (say the test word, A), the echo will also contain retrieved values for the
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features that are missing in the probe.  These filled in features will tend to be determined by the
traces with the highest activation, i.e. those similar to the test word, A.  Chief among these will of
course be the trace encoding the test word (A,B).  Hence the echo will tend to have features
similar to the response word in the test word’s trace (i.e. B).  This is a standard mechanism for
recall that also figures prominently in several connectionist models for memory (see below).  Of
course, the retrieved trace is actually a composite of many traces, so some mechanism is needed
to extract some particular item from the composite.  That is, some way is needed to ’clean up’ the
composite.  This might be done in several ways (see Hintzman, 1986, 1988).   Under some
circumstances, the retrieved vector can be recycled as a new retrieval cue, and a series of such
cycles can produce a cleaned up and interpretable response word.  In other cases, it would
probably be necessary to compare the response vector to words in a separately stored lexicon.

For recognition, the model makes many of the same predictions as other global familiarity
models.  It predicts many of the standard experimental results such as the effects of repetition and
study time.  However, as is the case for most of the other global familiarity models, it does not
account for the list-strength results and mirror effects that were the primary motivation behind the
replacement of the SAM model for recognition by the REM model.  To handle list-strength what
would be needed is some kind of mechanism similar to the differentiation assumption.  Also, the
model has not been tested in a thorough way in recall paradigms.  On the other hand, the model
was the first explicit mathematical model that incorporated the assumption that semantic memory
traces might not be stored separately from episodic traces, but instead computed at the time of
retrieval.  This is in many ways an attractive proposal whose power in explaining
semantic/implicit memory findings should be explored further.

It should be mentioned that the first application of MINERVA 2 was to categorization (1986),
rather than recognition (1988).  It is noteworthy that this model can handle significant findings in
both domains, and indeed a good deal of recent effort by a number of investigators has been
devoted to linking memory and categorization models in a common framework (e.g. Nosofsky,
1988).   It is natural to link the two because summing activation across the exemplar traces from a
given category can be viewed as providing evidence for that category.  Unfortunately, any
discussion of categorization models takes us well beyond the coverage of this chapter.

Associative Network Models

The idea that activation in memory is based on spreading of activation over a network of
interconnected nodes and that this is the principal mechanism of associative memory, became
popular in the 1970s when it was introduced as a framework for semantic memory.  Collins and
Loftus (1975) and Anderson and Bower (1973) used this idea to explain findings in sentence
verification tasks.  Following these initial proposals, the spreading activation notion became
widely used by researchers in semantic memory to explain findings such as associative or
semantic priming (i.e., the finding that performance on a target item is faster or more accurate
when that item is preceded by an associatively or semantically related item).10  However, in most

                                                
10 Recent years have also seen the introduction of the related concept of spreading inhibition (e.g. Anderson &
Spellman, 1995).
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of these uses of the spreading activation concept, predictions were derived only very loosely.  In
order to enable exact predictions the general notion of spreading activation has to be incorporated
in a quantitative framework.  Several of these frameworks have been developed over the past 30
years.  In this section we will focus on one well-known example of a spreading activation model,
Anderson’s ACT model (Anderson, 1976, 1983b, 1993).  The ACT theory (Adaptive Control of
Thought) is really a very general cognitive architecture that is not just a framework for memory
but a system in which models may be constructed for all cognitive tasks, including problem
solving, acquisition of cognitive skills (including the acquisition of skills in physics, geometry,
computer programming, etc.), learning, language and semantic memory.  The architecture
consists of a working memory, a declarative memory system and a procedural memory system.
The latter is modeled as a production system, consisting of a large set of both generic as well as
specific production rules that act on the contents of the working memory.  However, in this
section we will restrict our discussion to the models that have been derived within ACT for (long-
term) memory.

The ACT model (1976-1983)

In the original ACT model (Anderson, 1976), long-term memory was assumed to consist of a
large set of nodes and links connecting these nodes.  The nodes represented basic concepts or
cognitive units and the links represent semantic or episodic relations.  Whenever two items are
studied together in a memory task, a link between the corresponding nodes may be formed.  In
such a model, retrieval of a target item B from a cue item A is accomplished if the activation from
the node representing A spreads to item B and activates the node representing B (or sends enough
activation to B to pass an activation threshold).  In such a model, nodes are either active or
inactive.

In the 1976 version of ACT, the spreading of activation is determined by the (relative) strength of
the links.  For example, suppose that after study of A-B a link connecting these is formed with
strength s.  If A is later presented as cue, the probability of activating B in the next unit of time is
a function of s/S, the relative strength of the A-B link compared to all other links emanating from
A.  Once any node (say, B) does become active, it begins in turn to activate nodes to which it is
linked.  Of course, some decay of activation has to occur in such a model to prevent eventual
activation of all nodes in memory.  In the present model this is prevented by assuming that after D
units of time, all activated nodes are deactivated (unless they are placed in a kind of buffer or
short-term store).

Because nodes and links are activated in an all-or-none manner, the response latency is
determined by the time it takes to activate the target node.  The larger the distance between the
cue and the target (in terms of the number of links in the path from cue to target) the longer the
response time will be. However, Ratcliff and McKoon (1981) showed in a primed lexical
decision task that this is not the case.  They demonstrated that the semantic distance between the
prime and the target does not affect the time at which the facilitation due to priming begins to
have its effect although it does affect the magnitude of the facilitation.  In response to such
findings, Anderson (1983a,b) developed a continuous activation model as an alternative to the all-
or-none model.
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In the continuous model, the activation values for the nodes vary continuously.  Further, the level
of activation is used to determine whether a memory trace has been successfully retrieved.  That
is, the amount of activation that spreads from A to B is determined by the relative strength of
node B (compared to all other nodes connected to A), and the probability and latency of retrieving
trace B are a function of B’s activation.  To explain the Ratcliff and McKoon (1981) data (and
other data), the spread of initial activation occurs extremely rapidly, even to distant nodes. Thus,
the notion of spreading activation changed from gradually activating connected nodes (i.e., distant
nodes take longer to activate) to a dynamic model in which the activation spreads rapidly over the
network but in varying degrees (i.e., distant nodes have a lower level of activation).

Anderson (1981, 1983a) applied this model (also referred to as ACT*) to a number of memory
phenomena.  It is assumed that during storage memory traces are formed in an all-or-none
manner.  In addition, each trace (once formed) has a strength associated to it.  The strength of
these traces is determined by such factors as the number of presentations and the retention
interval.  More specifically, the trace strength (S) for a trace that has been strengthened n times is
given by
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where ti is the time since the i-th strengthening and b is a decay parameter (between 0 and 1).
This assumption agrees with the power law of forgetting (for n=1).

These strengths determine the amount of activation that converges on the trace from associated
nodes.  Thus, in a paired-associate recall situation, where the subject learns a list of pairs A-B, it
is assumed that the trace encodes the information that this pair was presented in this context.  At
test, the response will be retrieved if (a) such a trace has indeed been formed, and (b) it can be
retrieved within a particular cutoff time.  Retrieval time is assumed to follow an exponential
distribution with a rate parameter that depends on the activation of the target trace.  This
activation is assumed to be equal to the sum of the relative strength of the target trace (relative to
other traces associated to the cue item) and the relative strength of the association between the
current context and the target trace (this strength is a function of the number of study trials on the
list).

One prediction of ACT that has received a lot of attention is the so-called fan-effect.  This effect
refers to the prediction that the amount of activation that spreads from A to B is a function of the
number of links emanating from A (or the fan of A).  Similarly, in order to verify a sentence such
as "The hippie is in the park" (i.e., to decide whether this sentence is ’true’, is one of the sentences
studied previously), the response latency is a function of the "fans" of "hippie" and "park": the
more sentences have been studied with "hippie" as the subject, the more time it takes to recognize
such a sentence.  Similarly, the more sentences have been studied with "park" as the location, the
more time it takes to recognize such the sentence.  These predictions were verified in several
experiments (see e.g. Anderson, 1974). Note that this fan effect is similar to the list length effect
that has been tested extensively in cued recall and recognition.
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Anderson (1981, 1983a) also showed that the ACT* model accurately explains a number of
interference results.  One interesting result that follows from the ACT* model is that probability
of correct recall and latency are differentially affected by interference manipulations.  Probability
of correct recall is determined by two factors, the probability that a link has been formed between
the cue item and the target trace (basically a function of the number of study trials, i.e.  the
absolute strength of the trace), and the number of other traces associated with the cue item (i.e.,
the relative strength of the trace).  The latency of correct responses, however, does not depend on
the absolute strength but only on the relative strength.  Anderson (1981) showed that this implies
that even if the probabilities of correct recall are matched between an interference condition and
the control condition, there will still be an interference effect on the latency.  This prediction was
indeed verified.  Using similar reasoning it may be shown that the ACT* model makes the
counterintuitive prediction that in an unpaced proactive interference paradigm (A-B, A-D
compared to an C-B, A-D control condition) in which the second list is learned to a fixed
criterion, proactive facilitation should be observed.  This prediction follows from the fact that at
the end of second-list learning the absolute strength for the interference condition should be
higher if both lists are learned to the same criterion (in order to compensate for the lower relative
strength).  It can be shown (see Anderson, 1983a, p. 269) that this implies that after a delay, the
total activation for the target trace will be higher in the interference condition than in the control
condition.  Anderson (1983a) reports results from his laboratory that confirm this counterintuitive
prediction.

Despite its successes, there are still a number of problems in ACT* that have yet to be resolved.
One of the most important ones is that the model does not really have a mechanism to predict the
latencies of negative responses.  For example, in the sentence verification experiment, the latency
to determine that a sentence of the form "the A is in the B" was not presented on the study list,
seems to be equally affected by the fans of A and B even though there obviously is no path that
links A and B (after all, A and B were not presented together).  Anderson makes the ad hoc
assumption that the latency of a negative response is given by the latency of a positive response
for the same experimental condition plus some constant.  Although this fits the pattern of the
results, such an assumption is hard to defend within ACT*.

As mentioned previously, the notion of spreading activation has been very popular in
explanations of associative priming.  McNamara (1992a,b, 1994) has made a detailed
investigation of the application of ACT* to a variety of results from associative priming tasks
including the prediction of mediated priming: the finding that there is also a priming effect from
LION to STRIPES.  Such a result can be explained as being due to the activation spreading from
LION to TIGER and from TIGER to STRIPES.  Such a result seems to be strong evidence for the
notion of spreading activation.  However, McKoon and Ratcliff (1992) showed that this result
might also be explained within their compound cue model for lexical decision (see Ratcliff &
McKoon, 1988),  a model that is based on the global familiarity mechanism used in the SAM
model for recognition.  In the 1990s, the issue of whether associative priming is best explained by
spreading activation or by compound cue mechanisms was heavily debated in a large number of
papers by McNamara and Ratcliff and McKoon.  However, there does not seem to have been a
clear resolution.
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The ACT-R model

In the early 1990s, Anderson (1993) developed a new version of ACT, called ACT-R (ACT-
Rational).  In many ways, the ACT-R model is similar in spirit to the previous ACT models.  As
in the previous version, the cognitive architecture consists of a declarative and a procedural
memory system.  Information is stored in chunks and retrieval of information from memory is a
function of the activation level of a chunk.  The major difference is that the ACT-R model is
based on the assumption that the cognitive system is based on rational principles, i.e., the
activation of information is determined by rules that optimize the fit to the environmental
demands.  Anderson and Schooler (1991) showed that many of the functional relations that
characterize learning and memory (such as the power law of learning, spacing and retention
functions) can also be observed in the outside environment.  For example, they showed that the
probability of particular words appearing in newspaper headlines has many of the same properties
as the recall of words from a memorized list.  Thus, the basic idea of ACT-R is that the cognitive
system has developed in such a way as to provide an optimal or rational response to the
information demands of the environment.

In the application of ACT-R to memory (see Anderson, Bothell, Lebiere, & Matessa, 1998) it is
assumed that the activation of a chunk i depends both on its base-level activation (Bi) a function
of its previous use) and on the activation that it receives from the elements currently in the focus
of attention:

A B W Si i j ji
j

= +∑ (21)

where Sji is the strength of the association from element j to chunk i and Wj is the source
activation (salience) of element j.  One important difference between ACT-R and previous
versions of ACT is that ACT-R no longer assumes that activation spreads over a network of links:
activation of a chunk is directly related to its association to the source elements.  In this respect
the ACT-R model is more similar to the SAM model than to earlier spreading activation models.

 The activation of a chunk may be seen as a representation of the odds that the information will be
needed in the current context.  That is, following Bayes’ rule, the posterior probability of a
particular chunk being needed is determined by its prior probability (the base-level activation)
and the available evidence (the activation it receives from current cognitive context).  Each time a
chunk is retrieved, its activation value is increased.  However, activation is subject to decay so
that the longer ago the chunk was activated, the less the contribution of that activation to the
current base-level activation.  The equation for the base-level activation is thus given by:

B t Bi j
d

j

n

= +−

=
∑log

1

  . (22)

In this equation, n is the number of times the chunk has been retrieved from memory and tj

indicates the length of time since the j-th presentation and d and B are constants.  According to
Anderson et al. (1998) this equation predicts that forgetting of individual experiences and
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learning will both be power functions (in accordance with the Power Law of Forgetting and the
Power Law of Learning).  One problem with such an assertion is that within ACT-R the above
equation may not be linearly related to the dependent variable of interest, hence it is unclear
whether the same prediction would be made for the full implemented model.

This base-level activation combines with the activation that the target trace receives from
associated chunks that are currently active.  According to ACT-R,

( )S S P i jji = + log ( , ) (23)

where P(i, j) is the probability that chunk will be needed when element j is present or active.  This
is of course similar to the standard assumption that the association between two elements is a
function of their co-occurrence but now couched in a rational or Bayesian framework.

If the combined activation of the target chunk exceeds a retrieval threshold, a correct response
will be given.  Finally, it is assumed that the latency of a response is an exponentially decreasing
function of the activation level of the corresponding chunk.11 It is assumed that the system will
always retrieve the chunk with the highest activation (provided it is above the threshold).  Due to
the presence of noise in the system, the activation values will have a probability distribution (a
logistic distribution is assumed).  The probability that a chunk with a mean activation value of Ai

(and variance σ2) is above a threshold τ is then equal to:

( )[ ]Pr
exp /

(i)
A si

=
+ −

1

1 τ
    where     s = ( )σ π3 . (24)

In this equation it is assumed that there is only one chunk above threshold.  If there are more
chunks above threshold, the system will choose the one with the largest activation.  The

                                                
11 For simplicity, we disregard the assumption (introduced by Anderson, Reder and Lebiere (1996)) about mismatch
penalties. This assumption was introduced in order to enable ACT-R to predict that when the goal is to retrieve the
sum of 3+4, the chunk 3+4=7 should receive a larger activation value than the chunk 3+1=4.

List-Token

B

implyList-3
SL SW

Figure 4: ACT-R representation of a chunk encoding the
occurrence of the word "imply" on List-3 in a
recognition memory experiment (After Anderson,
Bothell, Lebiere & Matessa, 1998).
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probability that the target chunk has the largest activation is given by an equation similar to the
Luce choice rule (as in the sampling equation used in SAM):

( )
( )P choose i
A t

A t

i

j
j

( )
exp

exp
=
∑

      where t = ( )σ π6 . (25)

Anderson et al. (1998) show that such a model can explain a number of finding from episodic
memory paradigms such as serial recall, recognition memory, memory search in the Sternberg
paradigm, the Tulving-Wiseman law, and free recall.  We will discuss one representative example
here, the application of ACT-R to recognition.  In this ACT-R model it is assumed that during
study chunks are formed in memory that encode the occurrence of the words on a given
experimental list (see Figure 4).  It is further assumed that the system sets up production rules
such as:

Recognize-A-Word

IF the goal is to judge whether the word occurred in a context

and there is a trace of seeing the word in that context

THEN respond yes

In order to be able to give ’no’ responses the model assumes that there is a similar rule that fires
when there is no trace of seeing the word in that context that is above threshold, i.e. when the
"Recognize-A-Word" rule times out. This is obviously not a satisfactory solution since it makes it
impossible to generate fast negative responses. In addition, since such a time-out criterion is
presumably fixed, the model incorrectly predicts that the latencies for negative responses will be
unaffected by factors such as frequency, list length, etc.

According to ACT-R, the activation of the chunk representing the tested item can be written as:

A B W S W SW W L L= + + (26)

where WW is the weighting given to the word, SW is the strength of the association from the word
to the trace, WL is the weight of the list context and SL is the strength of the context association.
Anderson et al. (1998) show that this may be approximated by

A B n d T W LL= + − −’ log( ) log( ) log( ) (27)

where B’ combines all the constant effects, n equals the number of presentations/rehearsals, T is
the time since presentation, L is the list length, d is the decay rate, and WL is the attentional
weighting of the list context.

This model for recognition (that is quite similar to a model presented by Anderson and Bower,
1972, 1974) assumes that recognition is based on a search-like process and as such is quite
different from the global familiarity recognition models such as SAM, MINERVA 2 and
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TODAM (the latter will be discussed below).  Of particular interest is the fact that the model
predicts the absence of a list-strength effect in the presence of list-length effects which has been a
major problem for most recognition models.  ACT-R predicts these results because list strength
and list length affect do not affect activation in the same way: increasing the strength (by
increasing the study time) has an effect on the base-level activations whereas list length results in
greater fan.  Increasing the number of other list items increases the fan and hence decreases the
activation of the target trace.  Increasing the strength of the other list items (other than the tested
item) has no effect on the base-level activation for the target trace and hence will not affect the
activation of that trace.

It should be clear that such a general framework should be easily generalized to implicit and
semantic memory paradigms.  In fact, there is no distinction within ACT between episodic and
semantic memory systems.  Presumably the semantic chunks would be much stronger and more
complete (as in the REM model for implicit memory).  Anderson et al. (1998) present a number
of simulation results that demonstrate that it may indeed be able handle implicit memory data.
Implicit memory effects are predicted because prior study increases the base-level activation.  For
example, in a word identification task (naming, perceptual identification) ACT-R assumes that
the letters are the sources of activation and that these activate the word trace.  The activation of a
given word trace is equal to the base-level activation of that trace plus the activation it receives
from the letter nodes.  The model accounts for the independence between implicit memory and
explicit memory since only explicit memory depends on context.  It is not clear however whether
or how the model accounts for the dependence of repetition priming in such tasks on the modality
in which the word is presented during study.

In sum, despite its great potential as a unified theory of cognition, it is difficult to evaluate ACT-
R’s standing as a model for memory since detailed comparisons with other models have not been
made.  Also, systematic comparisons with the data within particular paradigms have not been
made.  In addition, as mentioned above, ACT-R has problems with the explanation of negative
latencies that are reminiscent of the problems that the older ACT models had.  However, ACT-R
is certainly an excellent example of the general trend towards more and more general theories that
we have observed in the nature of the mathematical modeling entrerprise in the past 30 years.

Neural network models and distributed models

In the 1980s and 1990s a class of models became popular that at first sight seemed to differ
greatly from the memory models we have been describing.  In these models (known as neural
network, connectionist or parallel distributed models), information was not represented in
separate traces or chunks (as in SAM and ACT) but was assumed to be distributed over a large set
of nodes.  In these distributed models, it is the pattern of activation over a set of nodes that
defines a particular item.  As in spreading activation models, the activation that is due to the input
(the cues) is propagated through a network of links and it is the structure of these links (the
organization of the connections, and the weights on the connections) that determine which output
will result from a particular input.  These models became popular, in part, because at least
superficially they appeared to embody a neurally plausible architecture.
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It should be mentioned at the outset that there are innumerable variants of these models.  The
various approaches differ considerably in the degree to which different memories are
superimposed.  In some neural net models, such as ART (Grossberg, 1987; Grossberg & Stone,
1986), the system represents memories as vectors at one level, but assigns a single node to such a
vector at another level.  These systems are probably best thought of as representing memories
separately.  Other architectures use a distributed representation but one that is very sparse
(relatively few of the vector positions are used to encode a memory; e.g. Kanerva, 1988).  In these
sparse systems the overlap in vector positions of any two memories can be very low, so that the
representations are effectively separate.  We shall begin discussion with models that use densely
overlapping representations.

Although naive observers usually find it hard to imagine how memories could be retrieved with
any degree of accuracy if large numbers of them are stored in densely superimposed and
distributed fashion, each such model incorporates appropriate storage and retrieval mechanisms
that make such retrieval effective.  Perhaps the earliest simple example comes from the model
proposed by Anderson, Silverstein, Ritz, and Jones (1977; also known as the ’brain state in a box’
model, or BSB).  In this model, items are represented as vectors of feature values.  Learning is
represented by changes in synaptic strengths.  Assume that the system is presented a list of paired
associates.  Each pair of items is represented as two vectors (say fi and gi).  If the two items are
studied together the synaptic strengths are modified in such a way that the connection strength
between node r in the input layer and node s in the output layer is modified by an amount equal to
the product of the r-th value in the input vector (fi(r)) and the s-th value in the output vector
(gi(s)).  Using vector notation, this is equivalent to the assumption that the changes in the synaptic
strengths are modified according to the matrix Ai:

A f g ’i i i= (28)

Thus, if a list of such pairs is studied, the strengths are modified according to the matrix M with
M =∑ Ai.  The trick of such models is that despite the fact that there does not seem to be a
representation for the individual items or pairs, the system does have a surprising capability to
generate the appropriate response vector from a given input vector.  If we make the assumption
that all vectors are orthonormal (mutually independent and of unit length) then when we present
the memory system with fi (via matrix multiplication as follows) then it will generate gi:   

( ) ( )Mf A f g f ’ f g f ’ f gi j i j j
j i

i i i i i= = + =
≠
∑∑ (29)

The assumption of orthonormality is of course unreasonable, but much research has shown that
relaxing this assumption does not harm the approach irreparably.  If the vectors are not
orthonormal, noise is added to the system, such that gi in the above equation has noise added to it.
In other words, retrieval with the stimulus term as input produces the response term plus noise.
How much noise is added depends on the number of memories that are concatenated relative to
the size of the vectors.  However, large vectors allow the system to degrade gracefully, and quite
a large number of paired associates can be encoded and retrieved with some degree of accuracy.
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A variant of such a model may be used to explain recognition performance.  In this case the
composite memory vector consists of the sum of all item vectors.  Postmultiplication with the test
item (i.e., taking the dot product with that vector) will result in a familiarity value that may be
used to determine a  recognition decision.

Although we have discussed the BSB model as a memory model, most of its applications have
been to categorization and classification.  Indeed many of the distributed, composite models have
a natural application to categorization phenomena because the superimposition of similar
memories produces a composite that sometimes may be akin to a prototype.  In this chapter,
however, we discuss the application of such models to memory.

Relatives of the BSB model are the TODAM model (Murdock, 1982), the CHARM model
(Metcalfe Eich, 1982)  and the Matrix model (Pike, 1984; Humphreys, Bain, & Pike, 1989).  Each
of these has been applied extensively to episodic recognition and recall.  However before turning
to a discussion of such models, we will briefly discuss a class of neural network models that has
received a great deal of attention and has had considerable success in other areas of cognitive
psychology but has had some problems when applied to human memory.  In this type of model it
is assumed that learning may be represented as changes in the strengths of the links connecting
the nodes in a network.  A representative example, the back-propagation model, was studied by
McCloskey and Cohen (1989), and Ratcliff (1990).

In one back-propagation model (Ackley, Hinton, & Sejnowski, 1985; Rumelhart, Hinton, &
Williams, 1986) a 3-layer representation is assumed: a layer of input nodes, a middle layer of so-
called ’hidden units’ and a layer of output units.  If an item is presented for study, a particular
vector is created in the input layer.  The input units then send activation forward to the hidden
units (in a nonlinear fashion) and these in turn send the activation to the output units.  How much
activation is sent forward from a particular node to some other node is determined by the strength
of the connection between these two nodes.  Learning consists of modifications of these
connection strengths in such a way as to increase the match between the output vector generated
by the network at a given layer and the desired or correct output vector at that layer (this
adjustment is known as the Delta rule).  At the final layer, the desired output is obvious.  At
earlier layers, the desired output is computed by ’back-propagating’ the error signals at the final
layer.  The magnitude of the change in the strength of a given link is a function of the error in the
output:  If there is no error, the weights will remain unchanged, but if the error is large, the
change will also be large.  In essence the back-propagation model performs a kind of least-
squares fitting procedure.  It can be shown that such a 3-layer network can be taught any type of
mapping between the input vectors and the output vectors. However, such a model has some
problems when applied to standard memory paradigms.

The most basic problem is usually referred to as "catastrophic forgetting", and was highlighted by
McCloskey and Cohen (1989) and Ratcliff (1990).  When items or lists of items are learned
sequentially, the model shows almost complete forgetting of the prior items or lists.  In the basic
model there is nothing that protects the weights that encode earlier memories from adjustment as
new items are learned.  The better learned are the new items, the more forgetting occurs for the
previous items.  Now, forgetting is of course a basic property of human memory.  However,
contrary to the back-propagation model, such forgetting is almost never complete, and the ’decay’
of old memories occurs increasingly slowly as time between study and test increases.  For
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example, consider the phenomenon of retroactive interference (this is the task discussed by
McCloskey and Cohen, 1989).  In such tasks, two lists (say A-B and A-C) are studied in
succession.  In typical experiments with human subjects, the learning of A-C will decrease the
probability of recall for the A-B items.  However, even after extensive training on A-C, there is
still fairly good recall of A-B (see Figure 5, left panel).  McCloskey and Cohen (1989) simulated
such a retroactive interference paradigm with a 3-layer back-propagation network.  It was shown
that the network and the human subjects differed radically:  Reasonable good performance on the
A-C list required almost complete forgetting of the A-B list (see Figure 5, right panel).  The
adjustment of the weights to allow A-C learning eliminated the prior weight patterns.  Similar
problems for recognition memory performance were demonstrated by Ratcliff (1990), who
showed in addition that this model fails to predict a positive effect of amount of learning on the d’
measure for recognition.

Thus, such ’feedforward’ network models require modification in order to handle even the most
basic results in human memory.  A number of investigators have constructed more complicated
variants that do not suffer from catastrophic forgetting (see e.g. French, 1992, Chappell &
Humphreys, 1994, or McClelland, McNaughton & O’Reilly, 1995), although such variants are
quite different from the simple connectionist approaches discussed here.  For example, the
McClelland et al. (1995) model assumes that a back-propagation-like system is used but only for
semantic and procedural memory (represented in the neocortex).  Episodic memory (represented
in medial temporal lobe structures such as the hippocampus) would store information in a way
that minimizes the overlap of distinct memories.  The latter type of representation is of course
quite different from the composite and distributed representations that characterize traditional
connectionist models.
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Figure 5: Left panel: Observed proportions of correct recall of A-B and A-C pairs as a
function of the number of study trials on the A-C list. (Adapted from Barnes &
Underwood, 1959).
Right panel: Predicted proportions of correct recall of A-B and A-C pairs for a 3-
layer back-propagation model (Adapted from Lewandowsky, 1991).
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More subtle but even more difficult findings for such networks to handle are the list-strength
findings.  Strengthening some list items doesn’t harm recognition or cued recall of other list items
(Ratcliff et al., 1990).  Shiffrin et al. (1990) showed that a large class of network models cannot
predict both list-length and list-strength effects.  Extra items harm performance by changing
weights, but strengthening other items also changes weights and should cause similar harm.
Finding ways to allow strongly composite and distributed models to handle this pattern of
findings has proved remarkably difficult.

A cautionary note should be inserted here, however.  One must be very careful not to generalize
too far when discussing neural network models as a group.  This class of models is in principal
broad enough to include virtually every other model yet developed, or to be developed.  One
would no more want to draw a conclusion about ’neural network’ models as a group than about
’mathematical’ models or ’computer simulation’ models as a group.  In the above discussion we
have mentioned some problems that arise for certain back-propagation models that assume a
densely composite and distributed structure.  Other neural network models have been developed
with quite different structures and properties.  For example, the ART models developed by
Grossberg (e.g. Grossberg, 1987; Grossberg & Stone, 1986) incorporate mechanisms that in
effect produce separate storage for different memories.  In the simplest version, there are two
layers with bidirectional connections.  An input pattern of activations at the first layer causes
what initially might be a distributed pattern of activation at the second layer, but inhibitory
connections within the second layer cause a ’winner take all’ phenomenon, and typically just one
node at that layer comes to represent the input pattern.  Rules of operation insure that sufficiently
different input patterns get assigned to different nodes at the second layer.  Such a system, with
each memory pattern encoded by a different node and the connections to that node, is markedly
different in character from a system in which each memory is encoded (in part) by all nodes and
their various connections.

TODAM and CHARM

The TODAM model (Theory Of Distributed Associative Memory) was developed in a series of
papers by Murdock (e.g. 1982, 1983, 1993, 1995).  A related model, CHARM (Composite
Holographic Associative Recall Model) was developed by Metcalfe Eich (e.g. 1982, 1985).  In
both TODAM and CHARM individual memory traces are represented as vectors that are then
added together and stored in a single composite vector, M.  In both, a pair of items (say vectors
represented by A and B) is stored by the operation of convolution (say, the vector A*B), and in
both, cued recall occurs with the presentation of the vector representing the probe item (say, A),
and use of the operation of correlation (the inverse of convolution, say A#M).  These two
mathematical operations are related in such a way that the correlation of a vector x with the vector
obtained by convoluting x and y will generate the vector y (and the application of the two
operations in practice produces noise that is also part of the output):  In short, A#(A*B) = B +
noise,   so that the correlation operation enables the system to retrieve the B item from A (and
vice versa).  An even more important source of noise is produced by the fact that all the stored
pairs are added together in a single composite vector, M.  In this case, using x to correlate with
the memory vector M will produce as output y plus an amount of noise that grows with the
number of pairs that have been added to M.
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TODAM and CHARM differ in their representation of single item information.  TODAM stores
the vector representing a single item by adding it to M directly; in fact if a pair A-B is studied, A,
B, and A*B are all added to M.  CHARM represents a single item by convoluting it with itself
(e.g. A*A), so that presentation of A-B results in addition of A*A, B*B, and A*B to M.  This
difference produces a different approach to single item recognition:  In TODAM, the test item is
compared directly to M.  In CHARM, the test item is first convoluted with itself and then
compared to M.

Consider TODAM first.  If we denote the memory vector prior to the study of A-B as Mj-1, the
memory vector after study is given by

M M A B A Bj j 1= + + + ∗−α γ γ ω (30)

That is, there is some forgetting (represented by α), storage of item information for both A and B
(with a weight equal to γ) as well as storage of associative information (weighted by ω).  Hence,
in TODAM both single and pair information is added to a single memory vector that contains all
of episodic memory.  A good measure for recognition is the match between the test item vector
and the memory vector, M, defined by the inner or dot product.  Hence, this model is similar to
SAM and MINERVA 2 in that the familiarity value that is used in recognition involves all of the
items in memory.  In fact, these  various recognition models are surprisingly similar, because the
main difference concerns whether the sum across memories occurs at storage or retrieval, a
difference that for many situations doesn’t produce differential predictions.

CHARM has been applied much more extensively to cued recall than to recognition.  The
recognition approach is mentioned in Metcalfe Eich (1985).  The test item is correlated with M,
producing an output vector.  This output vector is then compared to the test item itself, via an
inner product.  Mathematically this is essentially the same as taking the convolution of the test
item with itself and then taking the inner product of the result with M.  As with TODAM, the end
result is to compare the test item with all stored items; as with TODAM, the summing occurs at
storage rather than retrieval.

Both TODAM and CHARM ought to predict many of the basic phenomena of recognition
memory.  However, both have the same problem when applied to list-strength.  They cannot
predict the pattern of list-length, strength, and list-strength effects, for the case when items are
strengthened with spaced repetitions.  List-length effects are predicted because the extra items
added to M produce increasing noise.  A spaced repetition of an item must act much like a
presentation of a new item, in terms of producing extra noise, and hence list-strength should harm
memory for reasons analogous to those holding for list-length.

Both CHARM and TODAM have similar approaches to cued recall:  The test item is correlated
with the memory vector, producing a noisy version of the response term as output.  Because the
response vector is quite noisy, an actual output requires comparison to a separate lexicon of
separately stored items, a comparison process that may or may not succeed in producing an
output.  The need for a comparison to a lexicon, in order to clean up the noisy output, is in itself
not a problem, but some have noted the mixed nature of the assumptions:  Episodic memory is
represented as a composite, but lexical memory as separate traces.  If separate storage is assumed
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(and required) for the one, why not for the other?  These caveats aside, both TODAM and
CHARM have been applied to a wide variety of findings in cued recall, and with good success.
CHARM for example dealt with various forms of similarity among stimuli and responses, when
cues are both within list and extra list, and also a variety of depth-of-processing findings.  The
reader is referred to the above cited references for details.

One interesting and almost unique aspect of TODAM is that it is the only recent model of
memory that has been applied in detail to serial order memory.  In this application it is assumed
that successive items are chained:  Context is associated to Item 1, item 2 is associated to item 1,
item 3 to item 2, etc., each pair encoded as a convolution.  At recall, the system starts by using a
context cue to generate the first item, and then this item is used as a cue to generate the second
item, and so on.  One problem that has plagued such chaining models, is that recall reaches a
deadlock when a given item is not recalled.  In TODAM this is not necessarily a problem: Even
though the retrieved vector may not enable the recall of a given item (the process of cleaning up
the output vector via comparison to a lexicon may not succeed), the retrieved vector may still be
used as a further cue.  Lewandowsky and Murdock (1989) showed that this produces a viable
model for serial recall.

One interesting extension of TODAM involves the representation of higher-order associative
units as chunks, where chunks are made up of sums of n-grams.  The basic idea is to combine
some items say, a, b, and c, into a chunk.  This is done by first combining a, b, and c into
subgroups of different sizes, called n-grams.  Thus a, b and c would be 1-grams; (a+b)*2 and
(b+c)*2 would be two 2-grams; (a+b+c)*3 would be a 3-gram.  The part in parentheses is a
simple sum of the vectors, and the * notation indicates the n-fold convolution of the vector in
parentheses with itself (e.g. (b+c)*2 stands for (b+c)*(b+c)).  The sum of these n-grams would
represent a particular kind of chunk.  Murdock (1993) introduced the TODAM2 model with these
many additions in order to better model many varieties of serial-order tasks within a single
theoretical framework.  We will not discuss this (rather complicated) model in detail except to
note that the basic approach has remained the same:  All information that is required to do
recognition, cued recall, and serial-order tasks is stored in a single memory vector, and retrieving
particular types of information from this memory vector involves applying task-specific filters
(such as the correlation operation discussed above).

Conclusions: the future of mathematical modeling of memory

The above discussion has focused only on a few of the best known examples of mathematical
models for human memory.  We have emphasized those models that seem to be the most general,
models that have been applied not just to one type of memory task but to both recognition as well
as recall tasks.  Even for these few examples we have not tried to present a full discussion of all
the results that have been explained by these models, or how the models actually predict the
findings.  Furthermore, we have for the most part focused on just a few measures of performance,
in the accuracy domain, ignoring a growing body of research and modeling concerning
confidence ratings, response time, and other response measures.  What we have tried to convey is
a sense of the broad approaches that characterize the various frameworks.  In doing so, we hope
to have made it clear that there has been a major evolution in the mathematical modeling of
memory from the middle of the past century to the present.  This evolution may be summarized
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by noting that the current models are models for memory processes rather than models for
particular experimental paradigms.  Models such as SAM/REM, ACT-R and TODAM/CHARM
have come a long way from the simple Markovian models of the 1960s.  There is every reason to
expect that this trend will continue in the coming years.  In fact, both the REM and the ACT-R
approaches are moving from the area of episodic memory to the areas of implicit and semantic
memory, opening up a whole new range of problems to be handled.

In addition to becoming more and more general, there has also been a development to put an
increasing emphasis on the processes of memory and retrieval rather than the processes of
learning.  Most current models (ACT-R is an exception) make very simple assumptions regarding
learning processes and put most of the explanatory burden on retrieval processes.  This stands in
sharp contrast to the models of the 1950s (e.g., Estes’ Stimulus-Sampling Theory).  However, it is
clear that a large part of the variation in real-life memory performance is due to encoding
strategies.  Hence, a complete theory of human memory should perhaps pay more than simple lip-
service to such strategies and provide a framework in which such strategies may be derived from
generic principles that relate such strategies to the task demands and the goals that the learner
tries to achieve.  A first step in this direction was set by Atkinson and Shiffrin (1968).  More
recently, the ACT-R framework has been applied to a variety of skill acquisition problems.  Thus,
a more complete theory of human memory would provide a set of rules or principles that would
make it possible to predict the nature of the information stored in memory given a particular
learning strategy.

It should be emphasized that the success of the current generation of memory models has in no
way precluded continuing advances in the development of more descriptive (and sometimes
simpler) models (e.g. Riefer & Batchelder, 1995; Jacoby, 1998; Brainerd, Reyna, & Mojardin,
1999), verbally stated models (e.g., the levels-of-processing framework of Craik and
Lockhart,1972, or the multiple systems theory advocated by Schacter and Tulving, 1994), and
large advances in empirical investigations of memory.  Rather, the formal modeling approaches
and the other approaches have developed hand-in-hand, each gaining ideas and momentum from
the others.  Although a number of the more  experimentally oriented researchers prefer the more
simple verbal models, most do not see any one of these approaches as more ’right’ than the others.
Of course, there are always a few complaints heard about modeling efforts.  One often voiced
complaint asks whether mathematical models really explain the observed target phenomena,
given that they always require the estimation of a number of parameters (sometimes a large
number).  Such objections are occasionally well taken, but not typically so:  Parameter estimates
are required to make quantitative or numerical predictions of the data, but it is often possible to
obtain qualitative predictions without estimating any parameters.  More importantly, using an
explicit model makes it possible to verify that a given verbal explanation indeed suffices to
explain the data.  Most researchers in this area have had the experience of being astonished by the
fact that a model made a particular prediction although they would have bet on just the opposite.
Even verbal models with two or more interacting processes have the potential of generating
predictions unanticipated by the theorist/modeler, so that the apparent simplicity of many verbal
models is due more to the failures of intuition than a true elegance of expression.  A major
advantage of the modeling approach to memory is that it makes it possible to discover the failures
of intuition, the actual  structure of the model, and the correct set of predictions, all of which can
easily be missed by theorists using less formal approaches.
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