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ON INTERPRETING CHAITIN’S INCOMPLETENESS THEOREM

ABSTRACT. The aim of this paper is to comprehensively question the validity of the
standard way of interpreting Chaitin’s famous incompleteness theorem, which says that
for every formalized theory of arithmetic there is a finite constantc such that the theory in
question cannot prove any particular number to have Kolmogorov complexity larger than
c. The received interpretation of theorem claims that the limiting constant is determined by
the complexity of the theory itself, which is assumed to be good measure of the strength of
the theory.

I exhibit certain strong counterexamples and establish conclusively that the received
view is false. Moreover, I show that the limiting constants provided by the theorem do
not in any way reflect the power of formalized theories, but that the values of these con-
stants are actually determined by the chosen coding of Turing machines, and are thus quite
accidental.
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1. INTRODUCTION

Gregory Chaitin’s information-theoretic incompleteness result, or shortly,
Chaitin’s Theorem, is arguably one of the most famous and most popular-
ized results of logic in, perhaps, the last three decades.1 It says, roughly,
that for every formal systemF, there is a finite constantc such thatF
cannot prove any true statements of the formK(w) > c, even though there
are infinitely manyw for which this is true. HereK(w) is the algorithmic
complexity, or the Kolmogorov complexity, ofw, defined below.

Chaitin’s Theorem has indeed attracted lots of attention. Martin Davis,
a distinguished logician and pioneer of recursive function theory, calls it
“a dramatic extension of Gödel’s incompleteness result” (1978, p. 265).
Davis writes:

To fully understand the devasting import of this result it is important to realize that there
exist rules of proof (presumably sound) for proving statements of the formI (w) > n

which include all methods of proof available in ordinary mathematics. . . we are forced to
conclude that there is some definite numberk0, such that it is in principle impossible, by
ordinary mathematical methods, to prove that any string of bits has complexity greater than
k0. This is a remarkable limitation of mathematics as we know it (1978, p. 266).

Chaitin’s result has also generated plenty of discussion about its meaning
and philosophical relevance. Chaitin’s own interpretation of the result has
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become almost universally accepted – at least if one judges from the pub-
lished literature. According to this received view, the theorem shows that
in a formalized theory one cannot prove an object to be more complex
than the complexity of the theory itself. It is assumed that the algorithmic
complexity of the axioms gives a good measure of the power, or informa-
tion content, of the theory. The constantc is assumed to depend on the
complexity of axioms. The finite bound given by the constantc is hence
thought to reflect the power, or information content, of the theory.

The aim of this paper is to comprehensively question the validity of
this interpretation. Previously, Michiel van Lambalgen (1989) put forward
arguments to the same effect. But although his discussion certainly shows
that there must be something wrong with the received interpretation, it does
not really tell what. Furthermore, it leaves various questions concerning the
matter open. And the received view keeps on occurring in the literature,
which may mean that van Lambalgen’s criticism has not been felt to be
clear and conclusive enough. My purpose here is to strengthen the criticism
by exhibiting stronger counterexamples and show conclusively that the re-
ceived view is false. In addition, I answer certain questions concerning the
crucial limiting constant of the theorem left open in the existing literature.
I also attempt to thoroughly analyze the true nature of the phenomena in
question, and try to understand what has misdirected people to the received
interpretation.

2. SOME RECURSION THEORETIC PREREQUISITES

I shall first review some basic notions and results of recursion theory that
are used below (for details, see e.g. Rogers (1967), Odifreddi (1988)).
I assume for simplicity that we have a bijective coding of Turing ma-
chines ontoN, and enumerate them asT0, T1, T2, T3, . . . ; I use the
Rogers’ notation to denote the corresponding partial recursive functions
by ϕ0, ϕ1, ϕ2, ϕ3, . . . . I shall also writeTm(n)↓, if the Turing machine
with codem halts, when givenn as an input. When considering only
computations without input, I writeTm↓ for Tm(0)↓. If the output of the
computation that halts isy, I abbreviate this byTm(n)↓y, or Tm↓y for
Tm(0)↓y. If the machine does not halt, I abbreviate this byTm(n)↑, orTm↑
for Tm(0)↑. I write ϕn ' ϕm if the respective values ofϕn andϕm are either
both undefined, or both defined and with the same value.

A central result of recursive function theory, due to Kleene (1938), that
I shall utilize repeatedly, is the following:
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ON INTERPRETING CHAITIN’S INCOMPLETENESS THEOREM 571

THE FIXED-POINT THEOREM 2.1.Given a recursive functionf , there
is ane such thate andf (e) compute the same function, i.e.ϕe ' ϕf (e).
A crucial fact on which all the following considerations are based is the
existence ofUniversal Turing machineTU , a machine that, when given a
code numbere of any Turing machine and any inputn, computes the very
same computation thatTe, i.e.TU(e, n) ' Te(n). To simplify the following
considerations, I assume that one can simply concatenate the two inputs of
TU to a single input, having the lengthe + n. As I need this fact in sequel,
let me emphasize this: thecost of simulatinga Turing machineTe with
inputn, i.e.Te(n), by this Universal Turing machine, is simplye, the code
of the Turing machine to be simulated.

I next define the concept ofacceptable indices, due to Rogers (1958,
1967). The “usual” initial codingϕe is called the standard coding. Asystem
of indicesis any familyψ of mapsψn fromω onto the set ofn-ary partial
recursive functions. Usually, one can drop the mention of the number of
variables.

DEFINITION 2.2. A system of indicesφ is calledacceptableif there are
total recursive functionsf andg such thatφe ' ϕf (e) andϕe ' φg(e).
A system is thus acceptable if it is possible to go effectively from the stan-
dard coding to the system, andvice versa. Rogers has shown that a system
of indices is acceptable iff it satisfies both enumeration and parametriza-
tion, and that every acceptable system of indices satisfies the Fixed-Point
Theorem. (Cf. Rogers (1967), Odifreddi (1988).)

Hence, one can say that acceptable systems of indices provide the same
structure theory for recursive functions as the standard one. Thus, from
the point of view of computatiblity, it does not really make any difference
which acceptable system of indices one uses.

3. CHAITIN ’ S INCOMPLETENESS THEOREM

I shall next give the definition of Kolmogorov complexity, or algorithmic
complexity, and present Chaitin’s Theorem.

DEFINITION 3.1. Thealgorithmic complexityof numberx, K(x), is
defined as follows:K(x) = µe(ϕe(0) ' x); i.e. it is the leaste s.t.
ϕe(0) ' x.

There are actually many variant definitions in the literature, allowing in-
puts, confining to self-delimiting programs etc. But since this paper deals
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solely with Chaitin’s incompleteness theorem, such niceties of algorith-
mic information theory need not worry us. The simple definition above is
sufficient for this purpose.

Note thatϕx(0) ' y, considered as a relation, is r.e., or60
1. The algo-

rithmic complexityK(x) = y is defined asϕy(0) ' x & ∀z < y(¬ϕz(0) '
x) and henceK(x) = y, as a relation, is60

2.
In what follows, it is assumed that the formal systemF is recursively ax-

iomatizable and that it is “sufficiently rich” (contains Robinson-arithmetic
Q, or Q can be interpreted in it). Furthermore, it is assumed thatF is
sound, i.e. its theorems (at least those of the form “K(x) > y”) are true.
More formally, this can be expressed by the following reflection principle:
ProvF(dK(w) > ce)⇒ K(w) > c.

If ϕ is a formula inL(F), the Gödel number ofϕ is denoted bydϕe.
The arithmetized proof predicate ofF, saying thatx is the Gödel number
of a proof of a formula with Gödel numbery, is abbreviated byPrf F(x, y).
The provability predicateProvF(y) is then defined as∃xPrf F(x, y).

I am now ready to state Chaitin’s incompleteness theorem and discuss
different ways of proving it:

CHAITIN’S THEOREM 3.2. For every(sufficiently rich) formalized the-
ory F there is a constant c such thatF does not proveK(w) > c for
anyw.

Sketch of proof. Let Tm be a Turing machine that operates, informally
speaking, as follows:

Tm = “Find the leastx s.t.Prf F(x, dK(w) > ce)
for somew. Printw.”

Let us then pick some numberc such thatc > m. The only crucial thing
is thatc is a large number that can nevertheless be produced by a simple
subroutine that does not much enlarge the size of the machineTm.

One can show thatTm does not halt (and, hence, thatF does not prove
K(w) > c, for anyw). For assumeTm↓. Now Tm↓w ⇒ K(w) > c, be-
cause of the soundness assumption. On the other hand,Tm↓w⇒ K(w) ≤
m, by the definition ofK(x), and it was assumed thatm < c; hence
K(w) < c. Contradiction.

HenceTm↑, andF does not proveK(w) > c, for anyw.

3.1. Discussion: The Idea of the Proof

Like Gödel’s proof, this proof makes a positive use of a paradox. To quote
Chaitin:
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The proof of this closely resembles G. G. Berry’s paradox of ‘the first natural number

which cannot be named in less than a billion words’ [P. R.: But this sentence names the

very number in 14 words!]. . . The version of Berry’s paradox that will do the trick is ‘that

object having the shortest proof that its algorithmic information content is greater than a

billion bits’. . . (1982, p. 949)

In another context, Chaitin explains his theorem as follows:

The result. . . is the following computer program: ‘Find a series of binary digits that can be
proved to be of a complexity greater than the number of bits of this program.’ The program
tests all possible proofs in the formal system in order of their size until it encounters the
first one proving that a specific binary sequence is of a complexity greater than the number
of bits in the program. Then it prints the series it has found and halts.. . . The program
supposedly calculates a number that no program of its size should be able to calculate.. . .

The absurdity of this conclusion merely demonstrates that the program will never find the
number it is designed to look for. . . (1975, p. 52)

The idea of my proof-sketch above follows the proofs given by Davis
(1978) and Boolos (in (Boolos and Jeffrey, 1989)) quite closely. Strictly
speaking, however, there is an unsatisfactory gap in these proofs. Namely,
it is assumed that one can just pick a numberc which satisfies our need,
but this is left as a principle of faith. I shall next discuss two ways of
completing this proof.

3.2. The Fixed-Point Construction

The self-referential character of the crucial Turing machine already sug-
gests that we can, effectively, find a suitable number by applying Kleene’s
Fixed-Point Theorem. This is indeed one way to complete the proof.

Given a numberc, one can effectively find (a code number of) the
Turing machineTm that operates as defined above. Let us denote byf

the recursive function assigningm to c, i.e.f : c→ m. Now by the Fixed-
Point Theorem one can effectively find ane such thatTe ' Tf (e). By
definition,Tf (e) = “Find the leastx s.t.Prf F(x, dK(w) > ee) for somew.
Printw.”

As Te ' Tf (e), Te = “Find the leastx s.t. Prf F(x, dK(w) > ee) for
somew. Printw.”

One has thus effectively found ane that does the trick.

3.3. Chaitin’s Construction

Chaitin himself has used a different strategy to get his limiting constant.
Chaitin has published various proofs of his result, all somewhat different.
What I give now is, I think, a fair summary of the basic idea of his proofs.
Obviously, I have omitted or simplified many fine details.
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First, one definesKT (n), the algorithmic complexity of a number
(string)n relative to a specific Turing machineT , to be the size of the short-
est program (input) that, when given toT , producesn. Obviously, this may,
in many cases, leave some or all numbers without determinate complexity.
Next, Chaitin considers a Universal Turing machineTU that can simulate
any specific Turing machine. The “absolute” algorithmic complexity is
then defined to be the algorithmic complexity relative to such aTU (this,
of course, coincides with our above definition).

We recall that thecost of simulatingTe(n), by our Universal machine
TU , is simplye. This implies the crucial lemma of Chaitin’s proof:

LEMMA 3.3. For any Turing machineT and for anyn, K(n) ≤ KT (n)+
c, where the constantc is simply the code number ofT .

One next defines a specific purpose Turing machineT as follows:
The machine takes as its input ordered pairs(dAe, k) whereA is a

conjunction of the axioms of the formalized theory in question, andk is
a number. (I assume again that we can concatenatedAe andk to a single
input, having the sizedAe + k.) Let T operate, informally speaking, as
follows:
T = “Find the leastx s.t. PrfA(x, dK(w) > ce) for somew, where

c = dAe + 2k. Printw and halt.”
It can be assumed that the axiomsA are fixed in the following.
One then checks what the code number of this Turing machineT is.

Let us denote its code byn. If T halts, the complexity ofw relative to
T, KT (w), is by the defition of relative complexity≤ (dAe+k). Note that
n, as the code ofT , is the cost of simulatingT byTU . Hence the “absolute”
complexityK(w) ≤ (dAe + k)+ n, by the above lemma.

One next givesn as the latter member of input forT , i.e. let k = n.
Hence ifT halts, it has found a proof (fromA) thatK(w) > c, where
c = dAe + 2n. By the soundness assumption, this is indeed the case.
Thus, on one hand,K(w) > dAe + 2n. But on the other hand, it was
seen above thatK(w) ≤ (dAe + k) + n, and becausek is now equal to
n, K(w) ≤ (dAe + 2n. Contradiction.HenceT cannot halt, and there
cannot exist a proof (fromA) thatK(w) > c, wherec = dAe + 2n, for
anyw.

3.4. Discussion: Comparing the Two Methods

Although Chaitin’s way to his result is not the most direct one, one must
admit that it is in certain ways very ingenious. It manages to avoid any
direct self-reference, and hence one does not need to use the Fixed-Point
Theorem or some related advanced result of recursive function theory, that
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ON INTERPRETING CHAITIN’S INCOMPLETENESS THEOREM 575

some may find difficult to understand. Instead, only the quite generally
understandable ideas of a Universal Turing machine and the cost of sim-
ulating a specific purpose Turing machine are needed. On the other hand,
for a logician with good knowledge of recursive function theory, this route
may appear unnecessarily complicated. As a conclusion, it might be said
that it is a matter of personal taste which way of finding a suitable limiting
constant one prefers.

4. THE RECEIVED INTERPRETATION OFCHAITIN ’ S THEOREM

As was mentioned, Chaitin’s Theorem has generated quite a lot of dis-
cussion concerning its meaning and philosophical relevance. The interpre-
tation favoured by Chaitin himself has become the received view on the
matter, and has been faithfully repeated in the literature (see references in
note 1).

The following quotations from Chaitin’s publications are, I think, quite
presentative:

. . .I would like to measure the power of a set of axioms and rules of inference. I would like
to be able to say that if one has ten pounds of axioms and a twenty-pound theorem, then
that theorem cannot be derived from those axioms. (1982, p. 942)

Since complexity has been defined as a measure of randomness, this theorem implies that
in a formal system no number can be proved to be random unless the complexity of the
number is less than that of the system itself. (1975, p. 52)

. . . it is possible to prove that a specific object is of complexity greater thann only if n is
less than the complexity of the axioms employded in the demonstration (1977, p. 353).. . .

it is reasonable to measure the power of formal axiomatic theories in information-theoretic
terms. . . (1977, p. 357)

It is not the number of bits in the program itself that is the limiting factor but the number of
bits in the formal system as a whole. Hidden in the program are the axioms and rules of the
inference that determine the behaviour of the system and provide the algorithm for testing
proofs.. . . The size of the entire program therefore exeeds the complexity of the formal
system by a fixed number of bitsc. (The actual value ofc depends on the machine language
employed.) The theorem proved by the paradox can therefore be stated as follows: In a
formal system of complexityn it is impossible to prove that a particular series of binary
digits is of a complexity greater thann+ c, wherec is a constant that is independent of the
particular system employed. (1975, p. 52)

4.1. A Summary of the Received Interpretation

I shall now try to recapitulate and specify the main content of this interpre-
tation. First, following van Lambalgen, I shall call theminimalc such that
for all w, the formal systemF does not proveK(w) > c, thecharacteristic
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constantof the formal systemF, and denote it bycF. I think that it is useful
to analyze the received interpretation as consisting of two separate parts:

(1) One can reasonably measure the power, or the information content,
of formal axiomatic theories by the algorithmic complexity of axioms
(or, as it is sometimes suggested, axioms and rules of inference taken
together).

(2) The limiting constantcF (the “characteristic constant” ofF) depends
only on the complexity of the axioms ofF.

These together imply the familiar suggestion that the limiting constant of
a theory somehow reflects the power of the theory.

It should be noted that in part (2) there occurs some degree of vague-
ness: sometimes it is said that it is the length of the axioms that is relevant,
sometimes the complexity of axioms, sometimes the size or complexity of
axioms and rules of inference taken together. However, my critical discus-
sion below applies to any of these alternatives.

4.2. Critique of the Received Intepretation

As mentioned above, Michiel van Lambalgen (1989) has criticized this
received view. He says that this interpretation is “at present only scantly
supported by facts”. According to him, “[w]hat matters is not so much the
information content of the formal systemS as a whole, but rather that of
its intersectionS′ with the set of statements of the form ‘K(w) > m’ ”. He
then refers to a result of Kreisel and Levy (1968), and argues that there are
an infinite number of even stronger number theoriesSn, which lie between
PA andZF, and have the same characteristic constantc. Van Lambalgen
emphasizes that “we do not even know whethercZF > cPA!. . . and, worse,
we even have no idea how to establish results of this sort.”

I agree with the basic points of this criticism, but I shall show that much
more can be said about this issue. I think that when one reaches the end
of this paper it will be clear that not only is the received interpretation “at
present only scantly supported by facts”, but that it is completely at odds
with facts.2 First, I give a couple of strong counterexamples to the received
view, which use admittedly manipulated andad hoc,but still acceptable (in
Rogers’ sense, see above 2.2), coding systems. These serve as preparation
to the more general considerations that follow. My discussion shows also
that the last question raised by van Lambalgen, i.e. whethercZF > cPA and
how to establish such results, is not actually well defined.
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5. HOW TO MAKE THE CHARACTERISTIC CONSTANT ZERO

As an amusing application of the Fixed-Point Theorem, I now show how
to collapse the characteristic constant to zero, in any formalized theory.

THEOREM 5.1. For any formal systemF, it is possible to define an ac-
ceptable system of indices in which the characteristic constantcF = 0.

Proof. Let us fix the formal systemF containing elementary arithmetic for
which we want to prove the theorem. Assume that some initial bijective
codingπ of Turing machines onto natural numbers is given: they can thus
be enumerated asT0, T1, T2, . . ..

Let us next define a code-switching functionπn (relative to givenn) as
follows:

πn(x) =
{0, if x = n,
x + 1, if x < n,
x, if x > n.

Obviously, given the initial codingπ and the parametern, one can
effectively obtain the new coding determined byπn. Call the algorithmic
complexity relative to this new codingKn, i.e.Kn(x) = µz(∃y[πn(y) =
z ∧ Ty↓x]).

Algorithmic complexity is arithmetical, and one can construct an arith-
metic formula that defines it (for the initial coding). Given this formula,
one can then effectively find a formula that definesKn for givenn, simply
by formalizing the above definition ofπn. Also, given the Gödel number
of the former formula, one can effectively find the Gödel number of the
latter formula.

One can then also effectively find the Turing machineTm (whose code
is m in the initial coding) that searches for the leastx such that for some
numberp, Prf F(x, dKn(p) > 0e), and when it finds it (if such ax exists)
prints thep for whichx proves this.

Now the trick is to find a machine which would operate like this and
have its own initial code number as the parametern in Kn.

Informally, the desired machine could be described as follows: “Start-
ing from 0, check of every number whether it is (a Gödel number of) a
proof of a formula of the formKe(p) > 0) for some numberp. If such
a theorem is found, print the particular numberp for which this fact is
proved. And lete be the (initial) code number ofthis program.”

More formally, this self-reference can be handled as follows:
There is a recursive functionf (x) such that given the parametern in

Kn, f (n) = m is the (initial) code numberm of the Turing machine as
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described above. By the Fixed-Point Theorem, there is ane s.t. Te and
Tf (e) compute the same function.

Such aTe is a machine of the desired sort. Moreover, the proof of the
Fixed-Point Theorem not only tells us that such a numbere exists; it also
explicitly produces it. Hence, one can effectively find such ane.

However, it follows that this program will never halt, and hence, one
cannot proveKe(p) > 0, for anyp. For if one could prove such a theorem,
the programe would halt, and print a numberp for which this was prov-
able, by a proof with the smallest Gödel number. Hence the complexity
of p is at most the code ofTe. But in the coding determined byπn it
is by definition 0 (i.e.πe(e) = 0), and henceKe(p) = 0. On the other
hand, we have proved thatKe(p) > 0. Assuming soundness, this is true.
Contradiction.This proves the claim. 2

5.1. Discussion: Consequences

Note that if one applies this construction to some strong system, say, to
full infinistic Zermelo-Fraenkel set theoryZFC, and the coding of Turing
machines is kept fixed, the characteristic constant of every sound theory
from the weakest elementary arithmetic (e.g. Robinson’sQ) to ZFC is the
same, namely 0.

This shows clearly that, under some acceptable codings, the character-
istic constants of theories having radically different stengths, whether mea-
sured by proof-theoretical strength or algorithmic complexity of axioms,
may be the same.

6. HOW TO MAKE THE CHARACTERISTIC CONSTANT ARBITRARILY

LARGE

One can also, on the other hand, easily construct a situation where the
“characteristic constant” of a formal system, satisfying this time certain ex-
tra constraints, becomes arbitrarily large. This constructions shows clearly
that a theory may well prove a number to have a complexity larger than the
complexity of the theory. I merely give a sketch of the idea.

6.1. The Construction

Let F be a formalized theory containing elementary arithmetic. LetTF be
a Turing machine that prints the axioms ofF and halts. Let us simply
stipulate that the code of this machineTF is 1. Assume further thatF is
strong enough to prove thatTF prints its axioms and halts (this does not
apper to be a very strong assumption).
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The initial state is denoted byq1. Consider next the Turing machine:
q2 0 0q2. Obviously this machine does not even start, and this trivial fact
is certainly provable in any formalized theory containing elementary arith-
metic. Then fix a coding in the following way: let the code of the above

machine be 2, and up to some chosen numbern (e.g.n = 10101010

) let the
machineTk (k ≤ n) consist of the above instructionq2 0 0q2, repeated
k − 1 times. Obviously, one can then also prove inF that none of these
machines prints anything.

Then let the machineTn+1 consist of the instructionq1 0 1 q2, i.e. the
machine prints 1 and halts. That it does so can also be proved in elementary
arithmetic. Hence, we can prove inF thatK(1) > n. Therefore, the chara-
teristic constantcF of the theoryF considered must be even larger than
this. And of course, the numbern can be chosen as large as one wants.

On the other hand, the complexity of the axioms (or, in the alternative
approach, axioms and rules of inference) under this coding is 1. Hence,
under this coding,F can prove a specific string to be of a complexity much
greater than the complexity of its axioms.

6.2. Discussion: Natural and Unnatural Codings

At this point one may protest that the codings I have used above (in 5.1 and
6.1) are quite bizarre and unnatural. This I grant, of course. But these cases
exemplify how much depends on the coding system used, and I think that
it is not tenable to claim that some unique coding is natural and has a priv-
iledged status, whereas all the others are artificial. Moreover, one cannot
even claim that a particular way of representing the class of computable
functions (Turing machines, recursive functions,λ-definability, Post sys-
tems, URIM-programs, etc.) is priviledged. Further, even if some “canon-
ical” coding technique and an approach to computability is fixed, any
change in the abritrary order in which one codes, say, instructions of Tur-
ing machines, or recursive functions, may change radically the values of
characteristic constants.

In what follows, I shall show that my case against the received interpre-
tation does not ultimately rest on odd coding systems. The evidence below
will show beyond reasonable doubt that the received view is simply and
unquestionably false.

7. THE TRUE SOURCE OF THE CHARACTERISTIC CONSTANT

Above considerations at least strongly suggest that the value of the “char-
acteristic constant” of a formalized theory does not reflect the power or
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the information content of axioms. What, then, one may ask, is the true
source of “characteristic constants”? Fortunately, I can give an exact an-
swer to this.

Closer reflection shows that the value ofcF is actually determined sim-
ply by the smallest (by its code) Turing machine which does not halt, but
for which this cannot be proved inF. For consider the smalleste for which
¬∃xϕe(0) ' x is true but cannot be proved in given formal systemF.
It follows that it is impossible to prove inF that ϕn(0) ' m& ∀z <
n¬ϕz(0) ' m, for anym and anyn > e, since one cannot inF refute the
possibility thate is such az. That is, one cannot prove that any particular
number has a complexity greater thane.

Now it is really hard to see why the code of such a Turing machine
would reveal anything interesting about the “power” or “information con-
tent” of F. Note that it may happen (as our above considerations, as well
as van Lambalgen’s earlier arguments, already show) that theories of enor-
mously different strength (in any reasonable sense) have this constant in
common.

Note, by the way, that this observation provides almost trivial proof
of Chaitin’s Theorem (although somewhat less constructive, in the sense
that it does not exhibit any particular constant), given the well-known
fact that no formal system can prove all the true sentences of the form
¬∃xϕe(0) ' x.

8. CONFUSING USE AND MENTION

In my analysis of the received interpretation, I isolated the claim that it is
reasonable to measure the power or information content of a formal system
by the complexity of its axioms (or, alternatively, its axioms and rules of
inference). I shall next argue that this claim is highly implausible, and is
most likely based on confusion between mention and use.

To begin, I take for granted the basic proof-theoretical notion of strength,
according to which theoryF1 is at least as strong asF2, if F1 proves every
theorem thatF2 proves. It is indeed very difficult to consider seriously any
notion of power, strength or information content of a theory that violates
this natural notion. But the idea of measuring them by the complexity of
axioms is clearly in odds with this intuitive picture. A weak theory may
very well be more difficult to axiomatize, i.e. be more complex, than a
strong theory properly containing it.

As a ridiculously simple example, take as a theoryF1 some very large
and (with respect to given coding) enormously complex finite set of equa-
tions of the formn = n. Now according to the received interpretation, this
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theory is extremely powerful or informative. But of course, it is in fact very
weak and quite useless. It is contained in the very simple and trivial theory
F2 that consist of the single axiom(∀x)(x = x).

To take examples of theories in actual use, the full impredicative second
order arithmeticZ2 is in fact simpler to present than most of its weaker
subtheories used in logic. Also, the axioms of strictly finitistic primitive
recursive arithmeticPRA appear to be more complex than the axioms of
boldly infinistic Zermelo-Fraenkel set theoryZFC, but it is indeed hard
to give any interesting sense to the claim thatPRA is more powerful, or
has greater information content, thanZFC. Simply stated, power, or infor-
mation content, of a theory is completely independent from the syntactical
difficulty of representing it.

I think there is a clear case of confusion here between use and men-
tion, a distinction whose inportance has been emphasized especially by
Quine (1940). He has nicely illustrated this distinction by the example that
Boston (word used) contains some 800,000 people, but “Boston” (word
mentioned) contains six letters. It was a related confusion in statistical in-
formation theory that led Carnap and Bar-Hillel to the fundamental distinc-
tion between semantic information and syntactic information, i.e. between
the information content of a sentence and the probability of its syntactical
presentation (see Bar-Hillel (1964)).

In the present context, the relevance of this distinction is exemplified
by the fact that in a suitable language the sentence expressing (used) that a
particular object has a very large complexity, e.g. “K(n) > m” (for a large
m), may itself have a quite simple (when mentioned) syntactical form.

Now Chaitin’s metaphor that “if one has ten pounds of axioms and
a twenty-pound theorem, then that theorem cannot be derived from those
axioms”, if referring to Chaitin’s theorem, seems to commit this confusion,
i.e. it compares the complexity of axioms as mentioned and the complex-
ity asserted by a theorem when used. Now one may ask what happens if
axioms and theorems are compared in the same level. But of course, one
can derive from any axiom system, however simple in its syntactic form,
theorems having arbitrarily complex syntactical form. Hence, if one com-
pares the complexity of axioms (mentioned) and theorems (mentioned),
the claim is trivially false.

9. ON STRENGTHS AND CHARACTERISTIC CONSTANTS OF THEORIES

Let us now return to the examination of characteristic constants. Recall
that it was shown in Section 7 that the value of a characteristic constant is
actually determined by the smallest (by its code) Turing machine that does
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not halt but for which this cannot be proved. Next, I give some further ex-
amples that clearly illuminate the problems of the received interpretation.

First, consider some theoryF with characteristic constantc. One can
then form two extensions ofF, call themF1 andF2, such that we add toF1

the (true) sentence thatTc does not halt, and toF2 a similar (true) sentence
about some other machineTd (c < d), i.e. thatTd does not halt. But now
cF2 = cF, whilecF1 > cF. But there is no reason to expect thatF1 is in some
sense more powerful, or has larger information content, thanF2. Neither
can one grant that the algorithmic complexity of the axioms ofF1 is larger
than that ofF2.

Second, consider second order arithmeticZ2, which is an extremely
strong theory, much more than enough to prove any theorem of ordinary
mathematics. Let us compare it to extremely weak Robinson arithmeticQ.
If it happens (this depends on coding, as we have seen) thatcQ < cZ2, let us
add toQ all true sentences of the form¬∃xϕe(0) ' x which are provable
in Z2, for all e < cZ2. Call this finite extensionQ∗. It follows from a result
of Kreisel and Levy (1968)3 that Q∗ cannot possibly come even close to
the strength ofZ2. On the other hand, the characteristic constants ofZ2 and
Q∗ are the same, and hence, they should, according to the received view,
have the same “information content” of “power”.

Furthermore, we may add toQ∗ one more true sentence¬∃xϕe(0) ' x
for the firste for which Z2 does not prove this (i.e.e = cZ2). Call this
theoryQ∗∗. Now the characteristic constant of this theory is bigger than
that ofZ2. But could one conclude thatQ∗∗ is a more “powerful” theory or
that it has larger “information content”? No, not in any reasonable sense of
the words. Strictly speaking, the proof-theoretical strenghts ofQ∗∗ andZ2

are incomparable, as they both can prove some facts that the other cannot.
But in all relevant respects,Z2 is an enormously more powerful theory
thanQ∗∗, which can prove hardly any mathematical results, whereas, as
was said, all ordinary mathematics can be developed inZ2.

10. THE COMPLEXITY OF AXIOMS AND THE CHARACTERISTIC

CONSTANT

The cases in the two sections above depend at least partly on my (very rea-
sonable, I think) commitment to the proof-theoretical notion of strength.
There still remains the question whether one could avoid my criticism by
simply stipulatively defining that the information content (or “power”) of
a formal theory is the algorithmic complexity of its axioms (or axioms and
rules of inference). The answer is negative: even this would not save the re-
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ceived interpretation; there isn’t any connection between the characteristic
constant and the algorithmic complexity of the axioms of a theory.

Perharps the simplest consideration that shows this is the following:
Given a relatively simple formalized theory, e.g.Q, one can construct for
it extremely complicated (in the sense of complexity of axioms)extensions
by definitions. But every such an extension is aconservativeone, i.e. it
proves only the same facts as the original theory (for these notions, see e.g.
Shoenfield (1967)), and thus their characteristic constants are the same.
Hence the characteristic constant of a theory does not depend at all on the
complexity of its axioms (or axioms and rules of inference).

11. DIAGNOSIS OF THE RECEIVED INTERPRETATION

Let us try to understand what are the reasons that have led to the received
interpretation. The key to the issue is Chaitin’s way to prove his theo-
rem. There, Chaitin uses a specific purpose Turing machine. It is useful
to analyze what is really contained in this crucial Turing machine. We can
distinguish four different procedures: there are (1) an instruction to find the
leastx satisfying the following condition; (2) an algorithm for generating,
in “size order”, all proofs of given theory; (3) an algorithm that examines
whether or not a given theorem is of the formK(w) > c; and (4) an
algorithm that extracts the numberw from dK(w) > ce, printsw and
makesT halt.

These four procedures together make up the crucial Turing machine
T . The code number ofT , and thus the cost of simulatingT , depends on
all these “subprograms”, how they are put together, and most of all, the
coding system used. Note that it depends essentially on both the Gödel
numbering of the formalized theory, and then on the coding of Turing
machines. Clearly, it is an overstatement to say that the constant obtained
by Chaitin’s method depends only on the complexity of the axioms and
rules of inference, that is, on part (2) alone. (Of course, it is a recursive
function of this part, given the rest.)

However,the fatal mistakeof the received intepretation is to think that
Chaitin’s proof somehow gives theminimal limiting constant, “the charac-
teristic constant”, of the theory under consideration. But of course, there is
no a priori reason to think that thesufficientconstant effectively obtained
by Chaitin’s trick is equal to the minimal characteristic constant of the
given theory. In fact, one can prove that, in general, it is not.

For assume Chaitin’s method does provide us with the minimal such
numberc. Starting with some simple arithmetic theory (say, Robinson’s
Q), we could find the “smallest” Turing machine, with codec, that does
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not halt but for which this cannot be proved. One may then add toQ the
true sentence¬∃xϕc(0) ' x. Now by applying this procedure repeatedly
it would be possible to generate one by one all the Turing machines that do
not halt, i.e. the set of Turing machines not halting would be recursively
enumerable. As the set of Turing machines that do halt is in fact recursively
enumerable, by Post’s classical theorem both sets would now be recursive,
and we would have an effective method for deciding the halting problem.
But the halting problem is, of course, undecidable. Hence Chaitin’s method
cannot, in general, provide us with the minimal, “characteristic” constant!

I suspect that the reason for thinking otherwise might be some sort of
unintented confusion between necessary and sufficient conditions.

12. CONCLUSIONS

I think that my arguments above show convincingly that the received in-
terpretation of Chaitin’s incompleteness theorem is false.

Only by confusing use and mention, or the complexity of syntactical
form and semantical content, is it possible to maintain that it is reasonable
to measure the power of theories by the algorithmic complexity of their
axioms. The value of a real limiting constant, the minimal “characteristic
constant”, does not have any connection to the complexity of axioms, or
the rules of inference. Rather the “quantitative measures” obtained in these
considerations depend on accidental features of Gödel numberings and
codings of Turing machines used.

Nevertheless, I don’t think these conclusions imply that Chaitin’s in-
completeness theorem is not an interesting result. I myself think it is, only
a widely misunderstood one. As such, it is in good company with many
other important and famous results.
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NOTES

1 To give some evidence for the claim: Martin Davis has included Chaitin’s Theorem
in his well known review article on basic results on computability (Davis, 1978), together
with the classical result of Post, Turing, Gödel and Church. George Boolos has is turn
added Chaitin’s Theorem to the third edition of the respected textbookComputability and
Logicby Boolos and Jeffrey (1989). See also Delahaye (1989).

Chaitin himself has succesfully popularized his result e.g. in Scientific American
(Chaitin, 1975). Chaitin’s Theorem has also found its way into many influental popular sci-
ence books; see e.g. Stewart (1992), Rucker (1987), Ruelle (1991). Two papers by Chaitin
are even included in a well known recent anthology on the philosophy of mathematics
(Tymoczko (ed.) (1986)).

However, I would like to emphasize that my claim concerning the fame of the result
should not, as such, be interpreted to claim anything about its actual relevance for logic or
its true philosophical depth.

2 Actually, the arguments given by van Lambalgen justify a much stronger claim than
his quoted expression. I think they are strong enough to refute the received interpretation.

3 This is, by the way, the same result as the one appealed to by van Lambalgen (see 4.2
above), i.e. Theorem 11 in p. 121 of (Kreisel and Levy, 1968).
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