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�
1. Introduction. Although Church and Turing presented their path-breaking

undecidability results immediately after their explication of effective decidability in
1936, it has been generally felt that these results do not have any direct bearing
on ordinary mathematics but only contribute to logic, metamathematics and the
theory of computability. Therefore it was such a celebrated achievement when Yuri
Matiyasevich in 1970 demonstrated that the problem of the solvability of Diophan-
tine equations is undecidable. His work was building essentially on the earlier work
by Julia Robinson, Martin Davis and Hilary Putnam (1961), who had showed that
the problem of solvability of exponential Diophantine equations is undecidable.
One should note, however, that although it was only Matiyasevich’s result which
finally solved Hilbert’s tenth problem, already the earlier result had provided a
perfectly natural problem of ordinary number theory which is undecidable.1

Nevertheless, both the set of Diophantine equations with solutions and the set
of exponential Diophantine equations with solutions are still semi-decidable, that
is, recursively enumerable (i.e., Σ01); if an equation in fact has a solution, this
can be eventually verified. More generally, they are — as are their complements,
the sets of equations with no solutions, which are Π01 — also Trial and Error
decidable (Putnam [1965]), or decidable in the limit (Shoenfield [1959]), for every
∆02 set is (and conversely). This last-mentioned natural “liberalized” notion of
decidability has begunmore recently to play an essential role e.g., in so-calledFormal
Learning Theory (see e.g., Osherson, Stob, and Weinstein [1986], Kelly [1996]).2

Later, the researchers in Diophantine decision problems have studied various
problems related to the cardinality of solutions (see Davis [1972], Davis, Putnam,
and Robinson [1976], Smoryński [1977]; cf. Davis [1973], [1977], Matiyasevich
[1993], Smoryński [1991]). But to date the strongest results explicitly presented in
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1It should be added that these were not the first problems from ordinary mathematics which were

shown to be undecidable. There were, for example, various problems related to the theory of groups
which hadbeen shown to be undecidable already earlier. For a goodoverview, seeDavis [1977]. However,
the problems ofMatiyasevich and Robinson, Davis and Putnam were arguably unique in their simplicity
and elementary nature, and in any case the first natural undecidable problems from ordinary arithmetic.
2Note also that by Post’s Theorem, every ∆02 set is recursive in some Σ

0
1 or some Π

0
1 set, and con-

sequently, is recursive in a Σ01 complete set such as the Halting set K0. This also confirms my view

that no ∆02 set is “strongly undecidable” but “decidable in a weak sense” (being decidable relative to a

semi-decidable set), and that in order to be really “strongly undecidable” a set must be beyond ∆02.
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the literature are that neither the set of equations with only finitely many solutions
nor the set of equations with infinitely many solutions are recursively enumerable
(see e.g., Smoryński [1991, p. 240–241]). However, this does not rule out that they
might still be Trial and Error decidable (i.e., ∆02). Davis, Putnam, and Robinson
[1976] conjecture that the infinity case for ordinary Diophantine equations is not
(more exactly, they conjecture that it has the degree 0 � � ), but this case remains open.3

Now it is of course easy, in terms of Turing machines, jumps etc., to present
problems that are not even Trial and Error decidable. But it seems to me that there
would be some interest in presenting explicitly a natural problem from elementary
arithmetic which is so strongly undecidable that it is not even Trial and Error
decidable (in other words, not decidable in the limit). The aim of this little note is
to present such a problem (or rather, a couple of problems).4 Actually, this can be
achieved quite easily by combining a few known results. Although for a specialist,
this could be pointed out in few lines, I think the phenomenon may have a wider
interest, and therefore in what follows, I shall go into the issue in more detail and
try to make the treatment relatively self-contained.

�
2. Some theoretical prerequisites.

Definition 1. ADiophantine equation is an equationof the formP(x1, . . . , xn) =
P � (x1, . . . , xn), where P and P � are polynomials with integer coefficients. An
exponential Diophantine equation is an equation of the form P(x1, . . . , xn) =
P � (x1, . . . , xn), where P and P � are expressions constructed from variables and
particular natural numbers using addition, multiplication and also exponentiation.

Definition 2. A system of indices is called acceptable if it is possible to go
effectively from the standard coding system to the system and vice versa (see Rogers
[1958], [1967]).

Definition 3. Let us denote the partial recursive function with (in the standard
coding) the code e by fe , and the recursively enumerable set that is the domain of
fe byWe .

3It is striking how extremely close Davis, Putnam, and Robinson [1976] come to state explicitly
the key observation of this paper, but they somehow just leave it dangling. First, they do make (in
p. 372) quite explicit the relation between the possible existence of finite-fold definitions for ordinary
Diophantine equations (which is an open problem) and the degree of unsolvability of the problem
of determining whether a Diophantine equation has infinitely many solutions. But because they here
consider only ordinary Diophantine equations, and not exponential Diophantine equations, they are
only able tomake the conjecturementioned. But second, only a few pages earlier, they did state explicitly
the then recent result by Matiyasevich, our Fact 3, that every recursively enumerable set has a singlefold
exponential Diophantine representation. It would have been indeed a small step to state explicitly the
conclusion at stake here. Thus the fact must have been at the time quite obvious to Davis, Matiyasevich
andRobinson– but it was never stated explicitly. And surprisingly, there is simply no hint of it in the later
literature, not even in quite comprehensive accounts of the field such as the books (Smoryński [1991])
or (Matiyasevich [1993]). So the fact remains that no-one has never explicitly presented, in this field, a
problem which goes beyond ∆02.
4I do not intend to claim that the problems I consider in this paper are the first problems fromordinary

mathematics which have been proved to be beyond ∆02. One shouldmention in particular Lempp’s proof

that the problemwhether a finitely presented group is a torsion-free group isΠ02 complete (Lempp [1997]).
Nevertheless, I think that the present problems are so far the most natural and elementary ones, and
that because they are related to elementary arithmetic, they may be quite useful in various applications,
e.g., in foundational considerations, such as my own application to the intuitionistic theories.
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Fact 1. Both Diophantine and exponential Diophantine equations provide an
acceptable indexing for recursively enumerable sets (see e.g., Smoryński [1977],
[1991]).

Fact 2.

(i) The infinity problem: the set
�
n :Wn is infinite � is Π02 complete;

(ii) the finiteness problem: the set
�
n : Wn is finite � is Σ02 complete (see Rogers

[1967, p. 326]).

At this point, it might be tempting to conclude from these two facts alone that
the set of Diophantine equations with infinitely many solutions is similarly Π02
complete. However, this does not follow, for it may happen that a finite set S has a
Diophantine representation by an equation P(x, y) such that � yP(x, y) � x � S,
but that the equation is yet satisfied by infinitely many sequences of parameters y.
Therefore, there is no direct correspondence between the infinity or finiteness of a
recursively enumerable set and the infinity or finiteness of solutions of an equation
that provides a representation for the set.
However, for exponential Diophantine equations a stronger property, which en-
ables us to avoid the above problem, is known to hold (Matiyasevich [1974]):

Definition 4. An exponential Diophantine representation � xP(x, y) for a recur-
sively enumerable relation R(y) is called a singlefold representation if ( � !x)P(x, y)

� R(y). (‘ � !’ means ‘there is exactly one’; x and y are sequences of variables.)
Fact 3. Every recursively enumerable set has a singlefold exponential Diophan-
tine representation (Matiyasevich [1974]).

It is not known whether a similar fact holds for the ordinary Diophantine equa-
tions; this is the reason why I consider in this paper only exponential Diophantine
equations.
Finally, it can be seen easily that:

Fact 4. The exponential Diophantine equations which provide a singlefold rep-
resentation for all recursively enumerable sets also provide an acceptable indexing
for recursively enumerable sets.

In other words, it is possible to go effectively from a standard code of a recur-
sively enumerable set to an exponential Diophantine equation which singlefoldly
represents the set, and back.

�
3. The main observation. Now Facts 2–4 easily give the desired results:

Theorem 1.

(i) The set of exponential Diophantine equations with infinitely many solutions is
Π02 complete.
(ii) The set of exponential Diophantine equations with only finitely many solutions
is Σ02 complete.

Proof. By the form of their definitions, these sets are Π02 and Σ
0
2, respectively. By

Facts 3 and 4, the set of Diophantine equations which provide a singlefold represen-
tation for recursively enumerable sets with infinitely (finitely) many solutions is Π02
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complete (Σ02 complete). If one could know (from an oracle) in general the exponen-
tial Diophantine equations with infinitely many solutions, one could also indicate
in particular which ones of the equations that provide a singlefold representation for
a recursively enumerable set have infinitely many solutions. Therefore, the general
case is also Π02 complete (and similarly for finiteness and Σ

0
2 completeness.) �

And thus we have achieved a couple of problems of the desired sort, formulated
strictly in terms of ordinary number theory, which are strongly undecidable in the
sense that they are neither semi-decidable nor co-semi-decidable, and not even Trial
and Error decidable or decidable in the limit.

�
4. On intuitionistic and classical theories. Although there is certainly an impor-

tant philosophical difference between classical and intuitionistic mathematics, it is
not at all easy to provide elementary mathematical statements which are provable
only classically but not intuitionistically. For example, if a Diophantine equation
has a solution, this can be proved both in classical and intuitionistic arithmetic. One
cannot always prove, in a chosen axiomatic theory, that a Diophantine equation has
no solution even if this is true, but one can prove this for exactly the same equations
in a theory independently of whether one uses intuitionistic or classical logic. This
is explained by the remarkable conservativity phenomenon established by Harvey
Friedman in 1978.

Fact 5 (Friedman [1978]). PA is conservative over HA for Π02-sentences. The
same holds for various classical theories of arithmetic, analysis, type theory and set
theory, over their intuitionistic counterparts.

However, the conservativity does not hold for Σ02 sentences. Recall then that we
have seen that the set of exponential Diophantine equations with only finitely many
solutions is Σ02 complete. As the set of true Σ

0
2 sentences is also Σ

0
2 complete, these

two sets can be reduced to each other, and it follows that:

Theorem 2. There are exponential Diophantine equations with only finitely many

solutions such that this fact can be established only in a theory with classical logic, but

not in the corresponding theory using intuitionistic logic.

Here we then have a natural, elementary arithmetical property which makes a
difference between intuitionistic and classical theories.5
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