Monadic GMV-algebras

Jiří Rachůnek

Department of Algebra and Geometry Faculty of Sciences Palacký University of Olomouc Czech Republic

TANCL'07, Oxford 2007

- monadic structures = algebras with quantifiers = algebraic models for one-variable fragments of predicate calculi of logics
- Halmos, 1955: monadic Boolean algebras = algebraic model of the predicate calculus of classical two-valued logic in which only one variable occurs
- Rutledge, 1959: monadic MV-algebras (MMV-algebras) = algebraic model for one-variable fragment of the Łukasiewicz many-valued predicate calculus
- Georgescu, lorgulescu, Leustean, 1998
- Di Nola, Grigolia, 2004
- Belluce, Grigolia, Lettieri, 2005

GMV-algebras (generalized *MV*-algebras) = non-commutative generalizations of *MV*-algebras (Georgescu, Iorgulescu, 2001; Rachůnek, 2002)

the non-commutative Łukasiewicz infinite valued propositional logic \mathcal{PL} , GMV-algebras = an algebraic semantics of \mathcal{PL} (I. Leuştean, 2006)

 \mathcal{PL} - based on connectives \neg, \sim, \to and $\leadsto,$ and two deductive rules modus ponens

We define the monadic non-commutative Łukasiewicz propositional calculus \mathcal{MPL} and introduce and investigate monadic GMV-algebras (MGMV-algebras).

The monadic non-commutative Łukasiewicz propositional calculus \mathcal{MPL} is the logic containing \mathcal{PL} in which the following formulas are axioms for arbitrary formulas φ and ψ :

$$(M1) \qquad \varphi \to \exists \varphi, \ \varphi \leadsto \exists \varphi;$$

(M2)
$$\exists (\varphi \lor \psi) \equiv \exists \varphi \lor \exists \psi;$$

(M3)
$$\exists (\neg \exists \varphi) \equiv \neg \exists \varphi, \exists (\sim \exists \varphi) \equiv \sim \exists \varphi;$$

$$(\mathsf{M4}) \quad \exists (\exists \varphi \oplus \exists \psi) \equiv \exists \varphi \oplus \exists \psi;$$

$$(\mathsf{M5}) \quad \exists (\varphi \oplus \varphi) \equiv \exists \varphi \oplus \exists \varphi;$$

$$(\mathsf{M6}) \quad \exists (\varphi \odot \varphi) \equiv \exists \varphi \odot \exists \varphi.$$

Let $\forall \varphi \text{ mean} \sim (\exists (\neg \varphi))$. Then the deductive rules in \mathcal{MPL} are two modus ponens (MP \rightarrow) $\frac{\varphi, \ \varphi \rightarrow \psi}{\psi}$ and (MP \rightsquigarrow)

$$\frac{\varphi, \ \varphi \leadsto \psi}{\psi}$$
, and the necessitation (Nec) $\frac{\varphi}{\forall \varphi}$.

Let $A = (A; \oplus, \neg, \sim, 0, 1)$ be an algebra of type $\langle 2, 1, 1, 0, 0 \rangle$. Set $x \odot y := (x^- \oplus y^-)^{\sim}$ for any $x, y \in A$. Then A is called a generalized MV-algebra (briefly: GMV-algebra) if for any $x, y, z \in A$ the following conditions are satisfied:

(A1)
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z;$$

$$(\mathsf{A2}) \qquad x \oplus 0 = x = 0 \oplus x;$$

(A3)
$$x \oplus 1 = 1 = 1 \oplus x$$
;

(A4)
$$1^- = 0 = 1^-$$
;

(A5)
$$(x^{\sim} \oplus y^{\sim})^{-} = (x^{-} \oplus y^{-})^{\sim};$$

$$x \oplus (y \odot x^{\sim}) = y \oplus (x \odot y^{\sim}) = (y^{-} \odot x) \oplus y = (x^{-} \odot y) \oplus x;$$

$$(\mathsf{A7}) \quad (x^- \oplus y) \odot x = y \odot (x \oplus y^{\sim});$$

(A8)
$$x^{-\sim} = x$$
.

If we put $x \le y$ if and only if $x^- \oplus y = 1$ then $L(A) = (A; \le)$ is a bounded distributive lattice (0 is the least and 1 is the greatest element) with $x \lor y = x \oplus (y \odot x^-)$ and $x \land y = x \odot (y \oplus x^-)$.

GMV-algebras are in a close connection with unital ℓ -groups. (A unital ℓ -group is a pair (G, u) where G is an ℓ -group and u is a strong order unit of G.)

If G is an ℓ -group, and $0 \le u \in G$ then $\Gamma(G, u) = ([0, u]; \oplus, ^-, ^{\sim}, 0, u)$, where $[0, u] = \{x \in G: 0 \le x \le u\}$, and for any $x, y \in [0, u], x \oplus y = (x + y) \wedge u, x^- = u - x, x^{\sim} = -x + u$, is a GMV-algebra.

Conversely (A. Dvurečenskij), every GMV-algebra is isomorphic to $\Gamma(G,u)$ for an appropriate unital ℓ -group (G,u), and, moreover, the categories of GMV-algebras and unital ℓ -groups are equivalent.

If A is a GMV-algebra and $\exists: A \longrightarrow A$ is a mapping then \exists is called an existential quantifier on A if the following identities are satisfied:

- (E1) $x \leq \exists x$;
- $(E2) \qquad \exists (x \lor y) = \exists x \lor \exists y;$
- $(E3) \quad \exists ((\exists x)^{-}) = (\exists x)^{-}, \quad \exists ((\exists x)^{\sim}) = (\exists x)^{\sim};$
- $(E4) \quad \exists (\exists x \oplus \exists y) = \exists x \oplus \exists y;$
- $(E5) \quad \exists (x \odot x) = \exists x \odot \exists x;$
- $(\mathsf{E6}) \qquad \exists (x \oplus x) = \exists x \oplus \exists x.$

If A is a GMV-algebra and $\forall: A \longrightarrow A$ is a mapping then \forall is called a universal quantifier on A if the following identities are satisfied:

- (U1) $x \geq \forall x$;
- $(U2) \qquad \forall (x \wedge y) = \forall x \wedge \forall y;$
- (U3) $\forall ((\forall x)^-) = (\forall x)^-, \forall ((\forall x)^\sim) = (\forall x)^\sim;$
- $(\mathsf{U4}) \qquad \forall (\forall x \odot \forall y) = \forall x \odot \forall y;$
- $(\mathsf{U5}) \qquad \forall (x\odot x) = \forall x\odot \forall x;$
- $(\mathsf{U6}) \qquad \forall (x \oplus x) = \forall x \oplus \forall x.$

Lemma

Let A be a GMV-algebra.

- (a) If \exists is an existential quantifier on A then $(\exists x^-)^{\sim} = (\exists x^{\sim})^-$ for each $x \in A$.
- (b) If \forall is a universal quantifier on A then $(\forall x^-)^{\sim} = (\forall x^{\sim})^-$ for each $x \in A$.

Theorem

If A is a GMV-algebra then there is a one-to-one correspondence between existential and universal quantifiers on A. Namely, if \exists is an existential quantifier and \forall is a universal one on A, then the mapping $\forall_\exists:A\longrightarrow A$ and $\exists_\forall:A\longrightarrow A$ such that for each $x\in A$,

$$\forall_{\exists} x := (\exists x^{-})^{\sim} = (\exists x^{\sim})^{-}$$

and

$$\exists_{\forall} x := (\forall x^{-})^{\sim} = (\forall x^{\sim})^{-},$$

is a universal and an existential quantifier on A, respectively, and, moreover,

$$\exists_{(\forall \exists)} = \exists$$
 and $\forall_{(\exists \forall)} = \forall$.

If A is a GMV-algebra and \exists is an existential quantifier on A then the couple (A, \exists) is called a monadic GMV-algebra (an MGMV-algebra, in brief).

Every existential quantifier on an MGMV-algebra A is a closure operator on A (and every universal quantifier on A is an interior operator on A).

Let M be a GMV-algebra and X be a non-empty set. M^X forms, with respect to the pointwise operations, also a GMV-algebra.

For any $p \in M^X$, put $R(p) := \{p(x) : x \in X\}$, the range of p.

Definition

A subalgebra A of M^X is called a functional monadic GMV-algebra if A satisfies the following conditions:

- (i) for every $p \in A$ there exist $\sup_M R(p) = \bigvee R(p)$, $\inf_M R(p) = \bigwedge R(p)$;
- (ii) for every $p \in A$, the constant functions $\exists p$ and $\forall p$ defined such that

$$\exists p(x) := \bigvee R(p), \quad \forall p(x) := \bigwedge R(p),$$

for any $x \in X$, belong to A.

Theorem

If M is a GMV-algebra, X is a non-empty set and $A \subseteq M^X$ is a functional monadic GMV-algebra, then (A, \exists) is a monadic GMV-algebra.

If (A, \exists) is an MGMV-algebra, put $\exists A := \{x \in A : x = \exists x\}$.

Lemma

If (A, \exists) is an MGMV-algebra then $\exists A$ is a subalgebra of the GMV-algebra A.

Let A be a GMV-algebra and B be its subalgebra. Then B is called relatively complete if for each element $a \in A$, the set $\{b \in B: a \le b\}$ has a least element.

A subalgebra *B* of a *GMV*-algebra *A* is called m-relatively complete if it is relatively complete and satisfies the following conditions:

(MRC1) For every $a \in A$ and $x \in B$ such that $x \ge a \odot a$ there is an element $v \in B$ such that $v \ge a$ and $v \odot v \le x$.

(MRC2) For every $a \in A$ and $x \in B$ such that $x \ge a \oplus a$ there is an element $v \in B$ such that v > a and $v \oplus v < x$.

Theorem

If (A, \exists) is an MGMV-algebra then $\exists A$ is an m-relatively complete subalgebra of the GMV-algebra A.

Let A be a GMV-algebra, B a subalgebra of A and $h: B \longrightarrow A$ a mapping. Then a mapping $\exists_h: A \longrightarrow B$ is called a left adjoint mapping to h if $\exists_h(a) \leq x \iff a \leq h(x)$ for each $a \in A$ and $x \in B$.

If \exists_h , moreover, satisfies the identities

 $\exists_h(a \odot a) = \exists_h(a) \odot \exists_h(a), \exists_h(a \oplus a) = \exists_h(a) \oplus \exists_h(a), \text{ then } \exists_h \text{ is called a left } m\text{-adjoint mapping to } h.$

Theorem

There are one-to-one correspondences among

- 1. MGMV-algebras;
- 2. pairs (A, B), where B is an m-relatively complete subalgebra of a GMV-algebra A;
- 3. pairs (A, B), where B is a subalgebra of a GMV-algebra A such that the canonical embedding h : B → A has a left m-adjoint mapping.

Theorem

Let L be a linearly ordered GMV-algebra, $n \in \mathbb{N}$ and $D = \{\langle a, \ldots, a \rangle : a \in L\}$ be the diagonal subalgebra of a direct power L^n . Let A be a subalgebra of the GMV-algebra L^n containing D. Then there exists an existential quantifier \exists on A such that $\exists A = D \cong L$ holds in the MGMV-algebra (A, \exists) .

Example

Let G be the group of all matrices of the form

and where the group binary operation is the common multiplication of matrices. Set

$$(a,b):=\left(egin{array}{cc}a&b\\0&1\end{array}
ight).$$

For any (a, b), $(c, d) \in G$ we put

$$(a,b) \leq (c,d) \iff a < c \text{ or } a = c, b \leq d.$$

Then $G = (G, \leq)$ is a linearly ordered (non-commutative) group and, e.g., u = (2, 0) is its strong order unit.

Hence $A = \Gamma(G, u)$ is a linearly ordered non-commutative GMV-algebra in which

$$(a,b)\oplus(c,d)=(\min(ac,2), \min(ad+b, 0)),$$

$$(a,b)^{-} = \left(\frac{2}{a}, -\frac{2b}{a}\right),$$
$$(a,b)^{\sim} = \left(\frac{2}{a}, -\frac{b}{a}\right).$$

$$(a,b)^{\sim}=\left(\frac{2}{a},-\frac{b}{a}\right).$$

Let us now consider the (non-commutative) GMV-algebra $M = A^2$. For any $((a, b), (c, d)) \in M$ we put

$$\exists ((a,b), (c,d)) = \max\{(a,b), (c,d)\}.$$

Then by the previous theorem, $\exists: M \longrightarrow M$ is an existential quantifier on the non-commutative GMV-algebra M and, moreover, $\exists M$ is isomorphic with A.

Let *A* be a *GMV*-algebra and $\emptyset \neq I \subseteq A$. Then *I* is called an ideal of *A* if the following conditions are satisfied:

- (I1) if $x, y \in I$ then $x \oplus y \in I$;
- (I2) if $x \in I$, $y \in A$ and $y \le x$ then $y \in I$.

The set $\mathcal{I}(A)$ of all ideals in a GMV-algebra A ordered by set inclusion is a complete lattice (a Brouwerian lattice, moreover).

Let (A, \exists) be an MGMV-algebra and let I be an ideal of the GMV-algebra A. Then I is called a monadic ideal (in short: m-ideal) of (A, \exists) if the following condition is valid: $x \in I \implies \exists x \in I$.

The set $\mathcal{I}(A, \exists)$ of *m*-ideals of any *MGMV*-algebra (A, \exists) is a complete lattice with respect to the order by set inclusion.

Theorem

If (A, \exists) is a MGMV-algebra then the lattice $\mathcal{I}(A, \exists)$ is isomorphic to the lattice $\mathcal{I}(\exists A)$ of ideals of the GMV-algebra $\exists A$.

a) If A is a GMV-algebra and $I \in \mathcal{I}(A)$ then I is called a normal ideal of A if

$$x^- \odot y \in I \iff y \odot x^\sim \in I$$
,

for every $x, y \in A$.

b) If (A, \exists) is an MGMV-algebra and θ is a congruence on A, then θ is called an m-congruence on (A, \exists) provided

$$(x, y) \in \theta \implies (\exists x, \exists y) \in \theta,$$

for every $x, y \in A$.

Theorem

For any MGMV-algebra there is a one-to-one correspondence between its m-congruences and normal m-ideals.

The class \mathcal{MGMV} of all MGMV-algebras is a variety of algebras of type $\langle 2, 1, 1, 0, 1 \rangle$.

Theorem

The variety \mathcal{MGMV} is arithmetical.

Definition

An ideal P of a GMV-algebra A is called prime if P is a finitely meet-irreducible element in the lattice $\mathcal{I}(A)$.

A prime ideal P is called minimal if P is a minimal element in the set of prime ideals of A ordered by inclusion.

A *GMV*-algebra *A* is called representable if *A* is isomorphic to a subdirect product of linearly ordered *GMV*-algebras.

Theorem

For a GMV-algebra A the following conditions are equivalent:

- (1) A is representable.
- (2) There exists a set S of normal prime ideals such that $\cap S = \{0\}$.
- (3) Every minimal prime ideal is normal.

Theorem

Let (A, \exists) be an MGMV-algebra satisfying the identity $\exists (x \land y) = \exists x \land \exists y$. Then (A, \exists) is a subdirect product of linearly ordered MGMV-algebras if and only if A is a representable GMV-algebra.

