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Abstract

“Randomized dictatorship,” one of the simplest ways to solve bargaining sit-

uations, works as follows: a fair coin toss determines the “dictator”—the player

to be given his first-best payoff. The two major bargaining solutions, that

of Nash (1950) and that of Kalai and Smorodinsky (1975), Pareto-dominate

this process. However, whereas the existing literature offers axiomatizations

of the Nash solution in which this domination plays a central role (Moulin

(1983), de Clippel (2007)), it does not provide an analogous result for Kalai-

Smorodinsky. This paper fills in this gap: a characterization of the latter is

obtained by combining the aforementioned domination with three additional

axioms: Pareto optimality, individual monotonicity, and a weakened version of

the Perles-Maschler (1981) super additivity axiom.
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1 Introduction

The classic bargaining problem, originated in Nash (1950), is defined as a pair (S, d),

where S ⊂ R2 is the feasible set, representing all possible (v-N.M) utility agreements

between the two players, and d ∈ S, the disagreement point, is a point that specifies

their utilities in case they do not reach a unanimous agreement on some point of S.

The following assumptions are made on (S, d):

• S is compact and convex;

• d < x for some x ∈ S;1

• For all x ∈ S and y ∈ R2: d ≤ y ≤ x⇒ y ∈ S.

Denote by B the collection of all such pairs (S, d). A solution is any function

µ : B → R2 that satisfies µ(S, d) ∈ S for all (S, d) ∈ B. Given a feasible set S,

the weak Pareto frontier of S is WP (S) ≡ {x ∈ S : y > x ⇒ y /∈ S} and the

strict Pareto frontier of S is P (S) ≡ {x ∈ S : y 	 x ⇒ y /∈ S}. The best that

player i can hope for in the problem (S, d), given that player j obtains at least

dj utility units, is ai(S, d) ≡ max{xi : x ∈ Sd}, where Sd ≡ {x ∈ S : x ≥ d}.

The point a(S, d) = (a1(S, d), a2(S, d)) is the ideal point of the problem (S, d). The

Kalai-Smorodinsky solution, KS, due to Kalai and Smorodinsky (1975), is defined by

KS(S, d) = P (S)∩ [d; a(S, d)].2 The Nash solution, N , due to Nash (1950), is defined

to be the unique maximizer of (x1−d1)(x2−d2) over Sd. Nash showed that this is the

unique solution that satisfies the following axioms, in the statements of which (S, d)

and (T, e) are arbitrary problems.

1Vector inequalities: xRy if and only if xiRyi for both i ∈ {1, 2}, R ∈ {>,≥}; x 	 y if and only

if x ≥ y & x 6= y.
2Given two vectors x and y, the segment connecting them is denoted [x; y].
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Weak Pareto Optimality (WPO): µ(S, d) ∈ WP (S).3

Individual Rationality (IR): µi(S, d) ≥ di for all i ∈ {1, 2}.

Let FA denote the set of positive affine transformations from R to itself.4

Independence of Equivalent Utility Representations (IEUR): f = (f1, f2) ∈

FA × FA ⇒ f ◦ µ(S, d) = µ(f ◦ S, f ◦ d).5

Let π(a, b) ≡ (b, a).

Symmetry (SY): [π ◦ S = S]&[π ◦ d = d]⇒ µ1(S, d) = µ2(S, d).

Independence of Irrelevant Alternatives (IIA): [S ⊂ T ]&[d = e]&[µ(T, e) ∈

S]⇒ µ(S, d) = µ(T, e).

Whereas the first four axioms are widely accepted, IIA has raised some criticism.

The idea behind a typical such criticism is that the bargaining solution could, or even

should, depend on the shape of the feasible set. In particular, Kalai and Smorodinsky

(1975) noted that when the feasible set expands in such a way that for every feasible

payoff for player 1 the maximal feasible payoff for player 2 increases, it may be the

case that player 2 loses from this expansion under the Nash solution. Given x ∈ Sd,

let gSi (xj) be the maximal possible payoff for i in S given that j’s payoff is xj, where

{i, j} = {1, 2}. What Kalai and Smorodinsky noticed, is that N violates the follow-

3A natural strengthening of this axiom is Pareto Optimality (PO), which requires µ(S, d) ∈ P (S)

for all (S, d) ∈ B.
4i.e., the set of functions f of the form f(x) = αx+ β, where α > 0.
5If fi : R → R for each i = 1, 2, x ∈ R2, and A ⊂ R2, then: (f1, f2) ◦ x ≡ (f1(x1), f2(x2)) and

(f1, f2) ◦A ≡ {(f1, f2) ◦ a : a ∈ A}.
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ing axiom, in the statement of which (S, d) and (T, d) are arbitrary problems with a

common disagreement point.

Individual Monotonicity (IM):

[aj(S, d) = aj(T, d)]&[gSi (xj) ≤ gTi (xj) ∀x ∈ Sd ∩ Td]⇒ µi(S, d) ≤ µi(T, d).

Furthermore, they showed that when one deletes the controversial IIA from the list

of Nash’s axioms and replaces it by IM, a characterization of KS obtains.

The class of solutions that satisfy the three common axioms to Nash and Kalai-

Smorodinsky is large, and includes interesting and intuitive solutions. For example,

it includes the Perles-Maschler solution (due to Perles and Maschler (1981)) and the

equal area solution (due to Anbarci and Bigelow (1994)).6 There is no wonder, then,

that IIA is viewed as one of the most essential properties exhibited by N , and the

same is true for the relation between IM and KS.

One of the simplest ways to solve bargaining problems is by a lottery: the players

flip a fair coin and the winer (say, player i) gets to be the “dictator,” who obtains his

first-best payoff, ai(S, d), while the loser obtains dj. It seems reasonable to demand

that a “good” solution be better than this randomized dictatorship. Formally, it seem

reasonable to impose the following axiom on the solution, in the statement of which

(S, d) is an arbitrary problem.

Midpoint Domination (MD): µ(S, d) ≥ 1
2
d+ 1

2
a(S, d).

6The equal area solution for (S, d) is defined to be the point u ∈ P (S) such that [d;u] splits

Sd into two parts with equal area; a description of the Perles-Maschler solution will be given in

subsection 2.1 below.
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Both N and KS satisfy this axiom.7 In fact, Moulin (1983), in one of the simplest and

most elegant axiomatizations of N , showed that it is characterized by IIA and MD

alone.8 Anbarci (1998), who considered the bargaining model with the normalization

d = 0 ≡ (0, 0), showed that KS is characterized by IM and the following axiom.

Balanced Focal Point (BFP): If S = conv hull{0, (a, b), (λa, 0), (0, λb)} for some

λ ∈ [1, 2], then µ(S,0) = (a, b).

Note that for the particular value λ = 2, BFP becomes the requirement that MD

be satisfied on triangles. It therefore seems that MD is closely related to the two

main pillars of bargaining theory, N and KS. Moulin’s and de Clippel’s results

formalize this point clearly regarding the relation between MD and N . Anbarci’s

result “almost” makes the analogous point regarding KS. The “almost” here is due

to two reasons. First, BFP is not MD. Second, whereas the axioms MD, IM, and IIA

enjoy clear economic interpretations, the intuition behind BFP is less obvious.9 The

goal of the current paper is to push forward in the direction pointed out by Anbarci

and provide an MD-based axiomatization for KS. This is done in the next section.

Section 3 concludes, and the Appendix collects a few technicalities.

2 The main result

When one scales a problem by a fixed factor, a new problem obtains; that is, given

(S, d) ∈ B and c > 0, (cS, cd) ∈ B.10 When one adds two feasible sets, a new feasible

7That KS satisfies MD is obvious; the fact that N satisfies it was proved by Sobel (1980).
8A related result has been obtained by de Clippel (2007), who showed that N is characterized

by MD and one other axiom—disagreement point convexity (see his paper for the details).
9The justification for BFP is that the equal areas to the north-west and south-east of the focal

point (a, b) can be viewed as representing equivalent concessions.
10cS ≡ {cs : s ∈ S}.
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set obtains. These basic properties have intuitive economic interpretations,11 and

they call for some discipline that a “reasonable” solution is expected to adhere to.

The scaling property is expressed in the following axiom, in the statement of which

(S, d) is an arbitrary problem.

Homogeneity (HOM): For all c > 0: µ(cS, cd) = cµ(S, d).

Set addition is considered in the following axiom, which is due to Perles and Maschler

(1981); in its statement, (S, d) and (T, d) are arbitrary problems with a common dis-

agreement point.

Super Additivity (SA): µ(S, d) + µ(T, d) ≤ µ(S + T, d).12

Any solution that satisfies HOM and SA automatically satisfies the following axiom;

in its statement, (S, d) and (T, d) are arbitrary problems with a common disagreement

point.

Super Additivity* (SA*): For all λ ∈ [0, 1]: λµ(S, d) + (1 − λ)µ(T, d) ≤ µ(λS +

(1− λ)T, d).

SA* provides the players the incentives to reach early agreements in situations that

involve uncertainty regarding the feasible set.13 This axiom, however, is rather strong.

The following is a substantial weakening of it; in its statement, (S, d) and (T, d) are

arbitrary problems with a common disagreement point.

11See Thomson (1994) for a detailed discussion of these interpretations.
12S + T ≡ {s+ t : s ∈ S, t ∈ T}.
13Myerson (1981) considers essentially the same axiom, but in a slightly different model; in his

model there are only feasible sets, and no disagreement points.
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Restricted Super Additivity (RSA): For all λ ∈ [0, 1]:

[S = Sd]&[T = Td]&[a(S, d) = a(T, d)]⇒

λµ(S, d) + (1− λ)µ(T, d) ≤ µ(λS + (1− λ)T, d).

In words, RSA imposes the requirement of SA*, but only on pairs of problems which

are “similar,” in the sense that both are embedded in a common rectangle of best

and worst outcomes. It is straightforward that KS satisfies this property. On the

other hand, the other major solution, N , does not.14 With this axiom at hand, we

are ready to turn to the main result.

Theorem 1. A solution µ satisfies PO, MD, IM, and RSA if and only if µ = KS.

Proof. It is easy to check that KS satisfies the axioms. Let µ be an arbitrary solution

that satisfies them. Let (S, d) be an arbitrary problem. Wlog, we can assume that

d = 0. Let a ≡ a(S, d) and let k ≡ KS(S, d). The midpoint of the aforementioned

problem is m ≡ 1
2
a. Let θ ∈ (0, 1) be the number that satisfies (1 − θ)m + θa = k.

Let ∆ ≡ conv hull{0, (a1, 0), (0, a2)}, let R ≡ {x ∈ R2 : 0 ≤ x ≤ a} and let Q ≡

(1 − θ)∆ + θR. By MD, µ(∆, d) = m. By PO, µ(R, d) = a. By RSA, µ(Q, d) = k.

Now, let T ≡ conv hull(∆ ∪ {k}). The combination of PO, IM, and the fact that

µ(Q, d) = k implies µ(T, d) = k. By IM, µ(S, d) = k.

2.1 Independence of the axioms

The midpoint solution, m(S, d) ≡ 1
2
d + 1

2
a(S, d), satisfies all of the axioms from

Theorem 1 but PO.15 The equal loss solution, EL(S, d) ≡ a(S, d)−(l, l), where l is the

minimal number such that the aforementioned expression is in S, satisfies all of them

14See the Appendix.
15Consider the following modification of m(S, d): m∗(S, d) ≡ m(S, d) + (e, e), where e is the

maximal number such that the aforementioned expression is in S. It is easy to check that this

solution satisfies WPO, MD, IM, and RSA; it shows that PO cannot be weakened to WPO without

rendering the conclusion of Theorem 1 false.
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but MD (this solution is due to Chun (1988)). The following solution satisfies all the

axioms but RSA. Given an arbitrary (S, d), let us denote, for short, its ideal point and

midpoint by a and m, respectively. Consider the following piecewise linear monotone

path solution: it assigns to each (S, d) the point P (S)∩{[m; (1
2
a1+ 1

2
m1,m2)]∪ [(1

2
a1+

1
2
m1,m2); a]}. It is easy to see that this solution satisfies PO, MD, and IM.

As an example of a solution that satisfies all the axioms but IM, the following

bargaining solution, the Perles-Maschler solution, PM , presents itself as a candidate.

This solution is defined on Bo: the class of problems (S, d) ∈ B where d = 0, S = Sd,

and WP (S) = P (S).16 Given (S, d) as above, PM(S, d) is the unique point u ∈ P (S)

that satisfies:

∫ u

(0,a2)

√
−dxdy =

∫ (a1,0)

u

√
−dxdy, (1)

where the integrals are taken along the arcs of ∂S = P (S).17 It is well-known that

this solution satisfies PO and RSA (in fact: SA and SA*), and that it violates IM.

What is left to prove is that it satisfies MD. To this end, the following lemma will be

useful.

Lemma 1. Let a, b > 0, let l ∈ (0, a] and let h ∈ (0, b]. Let S ≡ conv hull{0, (a +

l, 0), (0, b+ h), (a, b)}. Then MP (S,0) ≥ 1
2
(a+ l, b+ h).

Proof. Make the assumptions of the lemma. Let S1 ≡ {x ∈ S : x2 ≥ b} and S2 ≡ {x ∈

S : x1 ≥ a}. Let T1 ≡ S1 − (0, b) and T2 ≡ S2 − (a, 0). By Lemma 3.2 in Perles and

Maschler (1981), S = T1 + T2. Therefore, since MP is supper additive, MP (S,0) ≥
16The choice d ≡ 0 is a mere normalization; equivalently, one can consider the collection of all

(S, d) with a common d and where S = Sd, which is simply a d-translation of the Perles-Maschler

setting.
17The solution MP can be defined also for problems for which WP (S) 6= P (S), but then the

expression (1) needs to be amended in order to account for the possibility that the Pareto boundary

contains a segment parallel to an axis. This is only a technically that I will ignore for the sake of

the ease of presentation.
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MP (T1,0)+(T2,0) = MP (S1,0)+(S2,0)−(a, b) = (a
2
, b+ h

2
)+(a+ l

2
, b
2
)−(a, b). The

last equality follows from the fact that the combination of SY and IEUR implies that

MD is satisfied on triangles, and MP indeed satisfies the aforementioned axioms.

Proposition 1. For every (S, d) ∈ Bo and i ∈ {1, 2}: MPi(S, d) ≥ 1
2
ai(S, d).

Proof. Since MP is continuous on Bo,18 it is enough to prove the proposition for the

case where S = Sd is a polygon. Let n denote the number of sides of ∂S. I will prove

the proposition by induction on n. The statement of the proposition is obviously

true for n = 1, and, by Lemma 1, it is also true for n = 2. I will therefore assume

correctness for n− 1 and prove for n, where n ≥ 3.

Let (S, d) ∈ Bo be such that S = Sd is a polygon, and let n ≥ 3 be the number of

sides of ∂S. Select two points, q1, q2 ∈ ∂S, such that:

1. S1 ≡ {x ∈ S : x2 ≥ q12} and S2 ≡ {x ∈ S : x1 ≥ q21} are triangles,

2. at least one of q1 and q2 is a vertex of S, and

3. S1 and S2 have the same area.

By 2, S2 ≡ {x ∈ S : x1 ≥ q11, x2 ≥ q22} is a polygon and ∂S2 has fewer than n sides

(specifically, n−1 or n−2). Let Ti be the translate of Si to the origin. By Lemma 3.3

in Perles and Maschler (1981), S = (T1 + T3) + T2. By Lemma 1, MP (T1 + T3,0) ≥
1
2
a(T1 + T3,0) and by the induction’s hypothesis MP (T2,0) ≥ 1

2
a(T2,0). Since MP

is supper additive, MP (S) = MP ((T1 + T3) + T2) ≥ MP (T1 + T3) + MP (T2), and

therefore MP (S) ≥ 1
2
[a(T1 + T3,0) + a(T2,0)]. The observation that a(T1 + T3,0) +

a(T2,0) = a((T1 + T3) + T2,0) completes the proof.

18i.e., if (Sn,0) ⊂ Bo is such that Sn converges to S in the Hausdorff metric and (S,0) ∈ Bo, then

MP (Sn,0) converges to MP (S,0).
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3 Conclusion

MD expresses the demand that a bargaining solution should be unambiguously bet-

ter than “randomized dictatorship.” RSA provides, at least under some restrictions

on the underlying uncertainty, incentives for early agreements. PO is obvious. Fi-

nally, IM is, informally speaking, the essence of the Kalai-Smorodinsky solution. In

this paper I have shown that in the 2-person bargaining problem, this solution is

uniquely pinned down by these axioms. The axioms are independent. In the process

of proving this independence it was shown that the Perles-Maschler solution, like the

Kalai-Smorodinsky and Nash solutions, satisfies MD. This result is of interest in its

own right.

The model can be formulated for the n-person case in an analogous manner to

the 2-person description from above; the definitions and axioms have straightfor-

ward (and well-known) multi-person counterparts. Since Theorem 1 extends to the

n-person case and its proof is essentially unchanged relatively to the 2-person case, a

full-fledged re-formulation of the model in n dimension is omitted. However, some re-

marks regarding the independence of the axioms are in place. The midpoint solution

and the piecewise linear monotone path solution from above have counterparts in the

multi-person case. The equal-loss solution, on the other hand, may fail to exist when

there are more than two players. Nevertheless, it is well-defined in the (n-person)

model in which the assumption of compact feasible sets is replaced by unbounded-

ness from below, or free disposal.19 Finally, the existence of a multi-person solution

that satisfies all the axioms but IM is also nontrivial. In the Appendix I describe a

rich domain of 3-person problems on which such a solution exists.

Acknowledgments Many thanks to Ehud Kalai, Jim Schummer, Rann Smorodin-

sky, and Alan Miller for their helpful comments.

19In such a model, RSA needs to be amended so that “S = Sd” (“T = Td”) is replaced by

“S = comprehensive hull of Sd” (“T = comprehensive hull of Td”).
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Appendix

The following example shows that N fails to satisfy RSA.

Example 1: Let S = conv hull{0, (1, 0), (0, 2)} and let T ≡ conv hull(S∪{(1, 1+ε)}),

for some small ε > 0. Let Q ≡ ε
1+ε

S + 1
1+ε

T . We have that N(S,0) = (1
2
, 1),

N(T,0) = (1, 1 + ε), and N(Q,0) = (1, 1). The requirement of RSA fails for player 2.

Bellow is a construction of a 3-person solution that satisfies all the axioms but IM.

The generalization to any n ≥ 3 is straightforward.

Example 2: Given a 3-person bargaining problem (S, d), define the set X(S, d) as

follows:

X((S, d)) ≡ {(a, b) : (a, b,m3(S, d)) ∈ S}.

Consider the domain of smooth 3-person problems: those 3-person (S, d) such that

WP (S) = P (S), and where P (S) does not contain hyperplanes; that is, for all distinct

x, y ∈ P (S) and α ∈ (0, 1), the point αx+(1−α)y is not in P (S). Define the solution

µ∗ on this domain by:

µ∗(S, d) ≡ (MP1(X((S, d)), (d1, d2)),MP2(X((S, d)), (d1, d2)),m3(S, d)).

It is easy to see that this solution satisfies (the multi-person counterparts of) PO,

RSA, and MD.
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