
Semantic Paradoxes

and

Transparent Intensional Logic

Jǐŕı Raclavský

Abstract

The paper describes the solution to semantic paradoxes pioneered by
Pavel Tichý and further developed by the present author. Its main fea-
ture is an examination (and then refutation) of the hidden premise of
paradoxes that the paradox-producing expression really means what
it seems to mean. Semantic concepts are explicated as relative to
language, thus also language is explicated. The so-called “explicit ap-
proach” easily treats paradoxes in which language is explicitly referred
to. The residual paradoxes are solved by the “implicit approach” which
employs ideas made explicit by the former one.

Introduction

Transparent Intensional Logic (TIL) is a rich and powerful logical system
capable to treat, inter alia, a great amount of natural language phenomena.
The aim of this rather short paper is to describe the TIL-based approach
to semantic paradoxes. Pavel Tichý, the originator of TIL, developed its
core ideas when he investigated and solved four versions of the Liar paradox
(Tichý 1988, section 44). The present author has elaborated his ideas into
an extensive theory in a number of writings (references are suppressed).

Semantic paradoxes (SPs), e.g. the Liar and Grelling’s heterological
paradox, are paradoxes concerning semantic concepts (e.g. truth, denota-
tion, reference). Among their premises (since paradoxes are arguments), it
always occurs a paradox-producing term (e.g. “This sentence is not true”)
which includes some semantic term expressing a semantic concept. A valu-
able solution to SPs should revise a. our uncritical (näıve) theory of seman-
tic concepts or b. our ordinary, uncritical derivation rules, suggesting thus
a critical theory of semantic concepts or derivation rules.

In recent decades, the classical ‘hierarchical’ approaches by Russell and
Tarski, and even three-(many-)valued approaches by Lukasiewicz, Kripke
and others, have been repudiated in favour of rather unclassical ones: Priest’s
paraconsistent logic (dialetheias), Gupta’s and Belnap’s revision theory (cir-
cular concepts and definitions), Field’s paracompleteness, contextualism. In

1

contrast to these recent approaches, the TIL-approach is rather classical,
offering an a.-style of explanation.

Here are the corner-stones of the TIL-approach:

a. critical examination, and then refutation, of the hidden premise of SPs
that the paradox-producing expression meanswhat it seems to mean (gen-
eralized from Tichý 1988, 228);

b. since it is a truism that an expression may mean (denote, refer to) some-
thing only relative to a particular language, semantic concepts are expli-
cated as inescapably relative to language (especially in Raclavský 2009),
thus also the concept of language is explicated (ibid.).

The paper is divided into three parts. The section “1. TIL basics” ex-
plains the notion of construction, explication of meanings (semantic scheme),
and the TIL type theory. The section “2. Explicit approach” provides an ex-
plication of language, explication of semantic concepts as explicitly relative
to language, and a principle of solution to (many) SPs. The last section “3.
Implicit approach” starts with an objection, the admission of which seems
to lead to the revenge problem; then, semantic concepts implicitly relative
to language are investigated and a solution to residual SPs is explained.

1 TIL basics

1.1 Constructions

One can distinguish two notions of function: function as a mere mapping
(hereafter function), i.e. function in ‘extensional’ sense, and function as
as̃tructured recipe, procedure, i.e. function in ‘intensional’ sense. Recall
that, for instance, Russell of the no-class theory repudiated functions in
the first sense while espousing functions in the letter sense (viz. his propo-
sitional functions). Tichý treats functions in both senses, the latter ones
explicated as certain constructions. For an extensive defence of the notion
of construction see (Tichý 1988).

Constructions are structured abstract extra-language procedures (roughly:
algorithms). Any object O is constructible by infinitely many equivalent
(more precisely v -congruent, where v is a valuation), yet not identical, con-
structions. Two features specify each construction C : i. which object O
(if any) is (v -)constructed by C ; ii. how C (v -)constructs O (by means of
which subconstructions).

For exact specification of constructions see (Tichý 1988, ch. 5). Four
basic kinds of constructions are specified there; having thus (where X is any
object or construction and C(i) is any construction):

i. variables x (not as letters!)

2

ii. trivializations 0X (‘constants’)

iii. compositions [C C 1 ... Cn] (‘applications’)1

iv. closures λxC (‘λ-abstractions’).

(Of course, definitions of subconstructions, free / bound variables, open
/ closed constructions should be added here.) Recall that constructions
are not λ-terms (which are expressions), λ-terms are only used to denote
constructions. Concepts can be aptly explicated as certain constructions
(e.g. Materna 2004).

1.2 Simple theory of types

Early development of TIL was framed within the simple theory of types
(STT ; cf. Tichý 1976).2 Let B (base) be a set of pair-wise disjoint collections
of (primitive) objects:

a. Every member of B is a type over B.

b. If ξ, ξ1, ..., ξn are (any) types over B, then (ξξ1...ξn), i.e. collection of
total and partial functions from ξ1, ..., ξnto ξ, is a type over B.

For the analysis of natural discourse Tichý utilized BTIL = {ι, o, ω, τ},
where ι collects individuals, o collects truth-values (just T and F), ω col-
lects possible worlds (serving as a modal index), and τ collects real numbers
(serving, inter alia, as a temporal index). Functions from possible world
– moment of time couples are called intensions; intensions include propo-
sitions, properties, relations-in-intension, individual offices, etc. (Among
non-intensions, the best known are classical unary or binary truth-functions,
identity relation between ξ-objects, quantifiers as subclasses of classes of ξ-
objects.)

1.3 Deduction

Tichý developed a deduction system with constructions (see papers in Tichý
2004). Because of partiality, classical derivation rules are a bit modified,
yet they are still rather classical. Derivation rules exhibit properties of (and
relations between) objects and even certain properties of their constructions.
I view definitions as certain ⇔-rules.

1.4 Explication of meaning

In order to explicate meanings of (natural) language, Tichý employed a se-
mantic scheme prècised as follows:

1Some compositions v -construct nothing.
2Of course, any STT is immune to Russell’s paradox.

3

an expression E
| E expresses (means) in L:

a construction C = the meaning of E in L
| C constructs:

an intension / non-intension = the denotatum of E in L

Empirical expressions (‘the Pope’, ‘tiger’, ‘It rains in Nice’, . . .) denote
intensions; non-empirical expressions (‘not’, ‘3’, . . .) denote non-intensions.
The value of an intension in a possible world W at a time-moment T is the
referent, in L, W and T , of an empirical expression. The denotatum (in L)
and referent (in L, W , T) of a non-empirical expression are construed as
identical.

To provide an example, the expression ‘The Pope is popular’ expresses
the construction λwλt [0Popularwt

0Popewt]. The construction constructs
a proposition which maps world-time couples to T or F or nothing (truth-
value gap). The proposition is the denotatum of the sentence in L. A partic-
ular value (if any) of the proposition in W , T is the referent of the sentence
in L, W , T .

Well-known arguments show that intensional or ‘sentencialistic’ analy-
ses of belief sentences (and other hyperintensional phenomena) are wrong.
Tichý thus suggested to construe belief attitudes as attitudes towards con-
structions of propositions (not towards mere propositions or expressions):
an agent only believes the construction expressed by the embedded sentence
(and no other, though equivalent, construction). For instance, the sentence

“X believes that the Pope is popular”

expresses the (2nd-order) construction

λwλt [0Believewt
0X 0λwλt [0Popularwt

0Popewt]].

Note that 0λwλt [0Popularwt
0Popewt] constructs just λwλt [0Popularwt

0Popewt]. Analogously, “X calculates 3 ÷ 0” expresses λwλt [0Calculatewt
0X 0[03 0÷ 00]]; the agent is reported to have an attitude towards the pro-
cedure [03 0÷ 00], not to its (non-existing) numerical result. Such explicit
‘mentioning’ of constructions by trivialization and other ways of constructing
of constructions (e.g. viaquantification over them) leads to the ramification
of STT.

1.5 Tichý’s type theory

For precise definition of Tichý’s (ramified) type theory (TTT) see (Tichý
1988, ch. 5). TTT has three layers:

4

1. STT (given above) which classifies first-order objects;

2. 1st-(2nd -, ..., n−)order constructions (i.e. members of types *1, *2, ...,
*n, respectively) are constructions of 1st-(2nd-, ..., n−1-)order objects
(or constructions);

3. functions from or to constructions (they belong, e.g., to the type
(*1τ)).

The second level resembles to a Russellian ramified TT (RTT). Several
kinds of cumulativity are inherent in TTT (e.g., every k -order construction
is also a k+1-order construction). Known objections raised against Russell’s
RTT can be easily dismissed but one has to utilize a bit richer TTT than
TTT over BTIL.

I understand TTT as implementing four Vicious Circle Principles (here-
after VCPs).3 Each of them is in fact a consequence of the Principle of
Specification: one cannot precisely specify an item by means of the item
itself (already Russell stated such claim). The Functional VCP : no function
can contain itself among its own arguments or values (cf. the layer 1.). The
Constructional VCP : no construction can (v -)construct itself (cf. 2.; this
VCP resembles to that of Russell); to illustrate, a variable c for constructions
cannot be in its own range, it cannot v -construct itself – otherwise it would
not be specifiable. The Functional-Constructional VCP: no function F can
contain a construction of F among its own arguments or values (cf. 3.).
The Constructional-Functional VCP : no construction C can (v -)construct
a function having C among its own arguments or values (cf. 2. and 3.).

Concluding the section 1.: unlike logical systems of rivalling solutions
to SPs, it is explicitly stated what meanings are; the semantical theory is
hyperintensional (not intensional or extensional), i.e. its underlying TT is
ramified; the system is rather classical – bivalency and other classical logical
laws are accepted, yet partiality is treated (thus logical laws are adapted).

2 Explicit approach

2.1 Language as hierarchy of codes

Language can be viewed as a normative system, such that people who con-
form to it are capable to exchange, communicate pieces of information. For
our purposes it is sufficient to model language (in a synchronic sense) simply
as a function from (Gödelized) expressions to meanings. Within TIL, a k -
order code Lk is a function from real numbers to k -order constructions, it is

3E.g. (Raclavský 2009).

5

an (*kτ)-object (Tichý 1988, 228); there are various 1st-, 2nd-, ..., n-order
codes (ibid.).4

However, it is not sufficient to model (say) English by a single, say a 1st-
order, code. Rather, a whole hierarchy of codes (called ‘family’ in Raclavský
2009) should be invoked as a model of English. The key reason consists in
that English as a natural language is capable to code, to express by some of
its expression, constructions of higher orders.

It has a connection with an important fact about codes. No construction
of L1, most notably 0L1, is among constructions expressible-codable in L1.
Recalling the Functional-Constructional VCP, if 0L1 would be a value of L1,
L1 were not be specifiable at all. Unfortunately, 0L1 is naturally understood
as the meaning of “L1”, the name of L1. Thus when explicating “. . . in
English . . . ” as expressive of [. . . 0L1 . . .], we need to take into account
a higher-order code in which [. . . 0L1 . . .] is expressible.

From the just stated fact that no construction of a k-order code Lk is
codable in Lk(only in a higher-order code) it follows that no expression re-
ferring to Lk is endowed with meaning in Lk (only in a higher-order code).
By the compositionality-of-meaning principle, no expression E, the subex-
pression of which refers to Lk, is endowed with meaning in Lk.

Not any class of codes (of distinct orders) counts as a hierarchy of codes
by which a particular language can be explicated. Some conditions should
be imposed. A particular hierarchy of codes involves n codes L1, . . . , Ln

such that:

a. they are of n mutually distinct orders;

b. each expression having a meaning in Lk has the same meaning in Lk+1;

c. an expression lacking meaning in Lk can be meaningful in Lk+1.

Of course, most of everyday communication takes place in the 1st-order
code L1 of a hierarchy. Higher-order coding means (e.g. L2) of a hierarchy
are invoked rarely – only when one comments parts of (say) English by means
of the other parts of English (in this way I implement the universality-of-
language principle).

Some remarks. Every code of the same hierarchy shares the same ex-
pressions (no predicates are forbidden); quantification over all of them is
unrestricted. Due to the order-cumulativity of objects, every k -order code
is also a k+1-order code, thus the type (*nτ) includes (practically) all codes
of the hierarchy; we can quantify over them. A hierarchy of codes is a cer-
tain class (it is an (o(*nτ))-object); thus one can quantify even over families.

4Let me add that any grammatically correct composition of atomic expressions is in-
cluded in a rich code.

6

Finally, a hierarchy of codes is a ‘system’ of coding vehicles, not a particu-
lar vehicle (‘language’); thus we investigate meanings of expressions in the
members of a hierarchy, e.g. in Ln, not in the hierarchy as a whole.

2.2 Explication of semantic concepts

According to the ‘explicit approach’, semantic concepts (concepts of seman-
tic properties and relations) are explicated as explicitly relative to language-
code. Here are some sample definitions5 (e.g. Raclavský 2009):

[0TheMeaningOfInn n ln] ⇔∗n [ln n]

[0TheDenotatumOfInξ n ln] ⇔ξ [0Γ(ξ∗n) [ln n]]

[0TheReferentOfInIζwt n ln] ⇔ζ [0Γ(ξ∗n) [ln n]]wt

The construction [ln n]] v -constructs the value (if any) of an n-order
code Ln for the expression E, i.e. E ’s meaning in Ln. The function Γ(ξ∗n)

maps any n-order construction C n to the ξ-object (if any) v -constructed by
C n.

Truth can be construed as a property of propositions, constructions, and
expressions (all defined in Raclavský 2008). Truth as a property of propo-
sitions can be defined as follows, having thus 2 kinds of such properties (p
ranges over propositions):

[0TrueπPwt p]⇔o pwt

[0TrueπTwt p]⇔o [0∃ λo [[o 0= pwt]
0∧ [o 0= 0T]]].

The first defined concept is a concept in the partial (‘P ’) sense: a propo-
sition P can be neither trueπP or falseπP ; the latter is a concept in the total
(‘T ’) sense: a proposition P is trueπT or not trueπT . Truth as a property of
constructions have 4 kinds (each having n instances); a construction Cn is
true∗n in W , T iff it v -constructs a proposition which is trueπ in W , T .

On the other hand, truth as a property of expressions is relative to a par-
ticular language-code (6 principal kinds):

[0TrueInP
wt e l

n]⇔o [0TrueπPwt [0Γ(π∗n) [ln e]]]

5Definitions can be aptly viewed as explications of the respective intuitive concepts.

7

[0TrueInT
wt e l

n]⇔o [0∃ λo [[o 0= [0Γ(π∗n) [ln e]] 0∧ [o 0= 0T]]].

Note the interrelation of truth and the other basic semantic concepts: an
expression E is true in Ln, W , T iff E expresses-means in Ln a construction
of a proposition which is trueπ in W , T , i.e. E refers (in Ln, W , T) to T.

2.3 Solution to SPs

Let me illustrate the solution to particular SPs on the example of the (Bel-
nap) Paradox of Adder. Its paradox-producing expression is this:

D: ‘1 + the denotatum of D’.

(The paradox: D denotes N ; N =1+the denotatum of D, i.e. N = 1 + N ;
but this is impossible because the adding-one function has no fixed point.)

Here is my critical examination of the paradox:

a. If we do properly understand D, we have to bring out in which language-
code the denotation of D proceeds.

b. One thus disambiguates D to (say) ‘1 + the denotatum of D in L1’
(hereafter simply D).

c. Thus our understanding of D takes place in the (say) 2nd-order code L2

of English.

d. In L2, D means the 2nd-order construction [01 0+ [0TheDenotatumOfInτwt
0pDq 0L1]] (where 0pDq constructs the Gödelian number of D).

e. Being a 2nd-order construction, it cannot be expressed by D already in
the 1st-order code L1, thus D is without a meaning in L1.

f. Lacking meaning in L1, D has no denotatum in L1.

g. The construction [01 0+ [0TheDenotatumOfInτwt
0pDq 0L1]] constructs

nothing at all because the addition function obtains no suitable argument,
since [0TheDenotatumOfInτwt

0pDq 0L1] constructs nothing.

h. The premise of the paradox, that D denotes a number N , is refuted.

Quite analogously for various Liars, e.g. S: “S is not true”. The 2nd-
order construction λwλt [0¬ [0TrueInT

wt
0p Sq 0L1]] is not expressible in L1,

but in L2. In L2, S denotes a falseπ proposition because there is no trueπ

proposition denoted by S already in L1. Hence I reject the premise of the
respective paradox that the proposition denoted by S can be trueπ.

Contingent or strengthened versions of SPs make no counter-examples
for this kind of solution. All known principal paradoxes of denotation and

8

reference are solved in (Raclavský 2009, 2011). All kinds of the Liar are
solved in (Tichý 1988, section 44), (Raclavský 2009a).

Such solution seems to be a certain mix of ‘golden’ ideas of Russell (VCP,
hierarchy of propositional functions), Tarski (language/metalanguage) and
perhaps also Kripke (partiality of a truth-predicate). Yet there are also
significant dissimilarities. Unlike Russellian RTT, TTT treats both ‘exten-
sional’ and ‘intensional’ functions; the latter ones, viz. constructions, are
carefully individuated. Unlike in Tarski, language is explicated as a sys-
tem of expressions coding meanings-constructions (which conform to the
respective VCPs); moreover, semantic concepts are explicated as explicitly
language-relative. Unlike in Kripke, semantic concepts in the total sense are
explicated as well.

The important conclusion of the explicit approach: semantic concepts-
constructions involving a construction of a k-order code Lk are not expressible-
codable in (sufficiently rich) Lk. Thus every code (of a hierarchy) is limited
in its expressive power.

3 Implicit approach

One may raise the following objection to the explicit approach. As a solution
to SPs the explicit approach rightly applies only to those paradox-producing
expressions in which language is explicitly referred to; however, typical
paradox-producing expressions need no disambiguation to the form in which
language is explicitly referred to; hence, a number of SPs remains in fact
unresolved.

I can admit such objection. Nevertheless, I still claim that there is always
at least implicit relativity to language of such semantic terms (and the terms
are ambiguous after all).

In order to admit the objection, the following principle has to be adopted:

For every k+1-order construction of a property (relation) of expres-
sions which involves a construction of a code Lk (that is lk, 0Lk, etc.),
there is an equivalent (v -congruent) k -order construction of the very
same property (relation) involving no such construction of a code Lk.

To illustrate the principle, the 2nd-order construction:

λwλtλn [0¬ [0TrueInT
wt n 0L1]]

is equivalent to the 1st-order construction:

λwλtλn [0¬ [0TrueTL1wt n 0L1]].

9

Realize that λwλtλn [0¬ [0TrueTL1wt n 0L1]] is definable by means of λwλtλn
[0¬ [0TrueInT

wt n 0L1]]. Note also that “L1” in “0TrueTL1” indicates that
the respective concept is related just to L1, not to any other code (it is the
definiens which shows that, i.e. removes the ambiguity of the respective
intuitive concept). There is a number of such implicitly language-relative
semantic concepts; my way of their explication is obvious.

Now, the expression “not true” (without “in”) expresses in some code of
the hierarchy the construction λwλtλn [0¬[0TrueTL1wt n]] (i.e. “not true”
is not disambiguated, e.g., to “not true in L1”).

However, there is a danger of revenge of a paradox if one assumes that
“not true” expresses this construction already in the 1st-order code L1.

It is readily seen that the Functional-Constructional VCP and related
principles are incapable to preclude the revenge (as they do in explicit cases).
Thus I can appeal here to nothing but the proof – easily generalizable from
Tichý’s Corollaries 44.1-4 (Tichý 1988, 292-293) − that a k -order code
cannot code constructions like λwλtλn [0¬ [0TrueTLkwt n]].6

Here is the crucial idea of the proof. Assume, for reductio, that S ex-
presses in L1 a construction of a (total) proposition P, thus S denotes (in
L1) P ; however, the construction λwλt [0¬ [0TrueTLkwt

0pSq]] constructs
a (total) proposition Q which is trueπ if the proposition denoted by S in L1

is not trueπ (Q is falseπ if the proposition denoted by S in L1 is trueπ); thus
P cannot be identical with Q, hence S cannot express in L1 a construction
identical (or, more broadly, equivalent) with λwλt[0¬ [0TrueTLkwt

0pSq]].
How to explain this fact? As we have seen, concepts-constructions such

as λwλtλn [0¬ [0TrueTL1wt n 0L1]] are definable by means of constructions
explicitly employing the code L1. It follows that such concept is relative
to language as code after all. Indeed, λwλtλn [0¬ [0TrueTL1wt n 0L1]] and
λwλtλn [0¬ [0TrueInT

wt n 0L1]] construct one and the same property which
is related to L1. (Hence, all semantic properties and relations are relative to
language as code.) The purpose of any code is to discuss matters external
to it; it is not purpose of a code to discuss its own semantic features (cf.
Tichý 1988, 231). We thus concluded, similarly as in the previous section,
that every code is limited in its expressive, coding power (cf. ibid., 233).

The final conclusion. Tarski’s famous Undefinability Theorem says that
semantic predicates concerning L are not definable in L. The TIL-approach
to semantic concepts fully confirms it. Of course, it is added that the re-
spective concepts are definable (the constructions exist and they may even
construct something), yet they cannot be coded-expressed in a sufficiently
rich L.7

6Analogously for other semantic terms and concepts.
7A remark. A partial truth-predicate could be added only to that object language-code

which has a limited expressive power (natural language is not such), i.e. a language not
allowing to form a (meaningful) total untruth-predicate from the partial truth-predicate
or a language not containing any equivalent of the total untruth-predicate. To illustrate

10

References

[1] Materna, P. (2004). Conceptual Systems. Berlin: Logos.

[2] Raclavský, J. (2008). Explications of Kinds of Being True (in Czech).
SPFFBU B, 53 (1), 89-99.

[3] Raclavský, J. (2009). Names and Description: Logico-Semantical In-
vestigations (in Czech). Olomouc: Nakladatelstv́ı Olomouc.

[4] Raclavský, J. (2009a). Liar Paradox, Meaning and Truth (in Czech).
Filosofický časopis, 57 (3), 325-351.

[5] Raclavský, J., Zouhar, M. (2011). Paradoxes of Denotations and Ref-
erence. (ms.).

[6] Tichý, P. (1976). Introduction to Intensional Logic. (unpublished ms.).

[7] Tichý, P. (1988). The Foundations of Frege’s Logic. Walter de Gruyter.

[8] Tichý, P. (2004). Pavel Tichý’s Collected Papers in Logic and Philoso-
phy. V. Svoboda, B. Jespersen, C. Cheyne (eds.), University of Otago
Press, Filosofia.

the second possibility, consider [0Babigwt n] ⇔o [0∃ λo [[o 0 = [0TrueInP
wt n 0L1]

0∧ [o 0 = 0T]]] (the definiens is in fact a total concept of truth of expressions); one
cannot safely add the predicate “babig” so defined to the object-language L1.

11

