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Abstract. This paper provides a semantic analysis of admissible rules
and associated completeness conditions for arbitrary deductive systems,
using the framework of abstract algebraic logic. Algebraizability is not
assumed, so the meaning and significance of the principal notions vary
with the level of the Leibniz hierarchy at which they are presented. As
a case study of the resulting theory, the non-algebraizable fragments of
relevance logic are considered.

1. Introduction

Many researchers have considered the question: to what extent can we
interpret a logic plausibly in its own meta-language? Disjunction properties
are one manifestation of this concern. A problem in the reverse spirit is the
derivability of admissible rules. Following Lorenzen [29], we say that a rule
of inference is admissible in a formal system if its addition to the system
produces no new theorems. A simple example is the rule of necessitation,
x / �x, which is admissible (and not derivable) in quasi-normal modal
logics. Less trivially, the process of cut elimination shows that underivable
cut rules are admissible in suitable sequent calculi.

The algebraizable logics of Blok and Pigozzi [7] constitute the framework
for some prominent treatments of admissibility, such as Rybakov’s mono-
graph [62]. On the other hand, the quasi-normal modal systems and the cut-
free subsystems of substructural logics are not algebraizable. The present
paper analyzes the semantics of admissible rules in the context of arbitrary
deductive systems, indicating which tools of abstract algebraic logic [15, 21]
are really needed at various stages of the theory, while also supplying some
new results. The paper is largely self-contained, but its purpose is not to
survey the now-substantial literature on admissibility in particular systems,
such as intermediate, modal and fuzzy logics. The reader is referred to [62]
for work of this kind done before 1997. Important subsequent developments
are summarized, for instance, in [13], where ample references are given.

It is well known that certain logics possess no algebraic semantics at all.
Fortunately, however, every deductive system ` has a nontrivial semantics,
Mod∗(`), comprising its reduced matrix models [67]. For several reasons,
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this semantics is considered canonical in abstract algebraic logic, and it will
guide our analysis of syntactic notions throughout. For simplicity, we confine
the present discussion to sentential systems, although it is not necessary to
do so (see Section 11).

If 〈A, F 〉 is a matrix model of `, then F is called a ` –filter of the algebra
A, and 〈A, F 〉 can be collapsed to a reduced matrix model by ‘factoring
out’ the Leibniz congruence ΩAF . This is the largest congruence of A that
turns F into a union of congruence classes. The Leibniz operator of ` is
the collection, taken over all A, of the maps F 7→ ΩAF (F a ` –filter of
A). The action of this operator is purely algebraic—it depends only on the
structure of the signature.

Because the Leibniz operator is defined for every possible `, its behaviour
serves to classify deductive systems. The outcome is the Leibniz hierarchy,
which is depicted rather cryptically in the accompanying diagram. The num-
bers refer to less cryptic descriptions of the levels, recounted in the present
paper (but established elsewhere). Roughly speaking, the hierarchy cali-
brates the degree to which a deductive system admits algebraic treatment.
The arrows are implications between the indicated Ω–properties. Our aim
here is to analyze admissibility for systems at the ‘sub-algebraizable’ levels
of the hierarchy.

A portion of the Leibniz Hierarchy

finitely algebraizable

Ω is injective and continuous

finitely equivalential

Ω is continuous (6.2(i))

algebraizable

Ω is injective, order-preserving, and com-
mutes with homomorphic inverse images
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equivalential

Ω is order-preserving and commutes
with homomorphic inverse images (5.3)

weakly algebraizable

Ω is injective and
order-preserving (8.5)

protoalgebraic

Ω is order-preserving (4.1)

truth equational

Ω is completely order-reflecting (8.1)

Theorem 2.12 asserts that, in an arbitrary deductive system `, a rule
R is admissible iff every reduced matrix model of ` is a homomorphic im-
age of an R–validating subdirect product B of reduced matrix models of
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`. (If an element of B is designated, then so is its image; the converse is
not imposed.) There is no guarantee that B itself can be chosen reduced
(Fact 2.11), nor that its reduced subdirect factors will validate R. Obvi-
ously, this characterization becomes more attractive in systems where the
reduced matrix models are closed under subdirect products. These are ex-
actly the protoalgebraic logics, i.e., the ones where a rudimentary implication
connective is definable. Thus, R is admissible in a protoalgebraic system `
iff Mod∗(`) actually includes R–validating homomorphic pre-images for all
of its members. The characterization acquires a purely algebraic form in
weakly algebraizable systems, i.e., protoalgebraic ones where the designation
predicate is equationally definable over the reduced models. It takes an ‘al-
most algebraic’ form in order algebraizable logics. (See Theorems 4.4, 8.7
and 9.3.)

Theorem 4.7 shows that a protoalgebraic finitary system ` will be struc-
turally complete—in the sense that all of its admissible finite rules are
derivable—provided that all of its finitely generated relatively subdirectly
irreducible reduced matrix models are weakly projective in Mod∗(`). In
this case, moreover, ` is hereditarily structurally complete, i.e., all of its
finitary extensions are structurally complete as well. It is notable that no
Leibniz-condition stronger than protoalgebraicity is needed here. The result
applies, for instance, to the Gödel-Dummett logic LC (a.k.a. G) and to the
negation-less fragment of the system RMt (from relevance logic). For these
two systems, hereditary structural completeness was proved directly in [20]
and [45], respectively.

The equivalential deductive systems have a well-behaved generalized bi-
conditional (↔), and in the finitely equivalential ones, this bi-conditional
has a finite definition. To stipulate that all admissible rules of an equiv-
alential system ` are derivable (including the infinite ones) is to demand
that Mod∗(`) be the closure of a suitable free reduced matrix model un-
der the combination of isomorphisms, submatrices, direct products and a
fourth class operator whose meaning depends on the number of variables
(Theorem 5.7). This result extends an early finding of Prucnal and Wroński
[55]. A finitely equivalential finitary system ` is structurally complete iff
Mod∗(`) is generated as a universal Horn class by the same free reduced
model (Theorem 6.4). In that case, any two nontrivial members of Mod∗(`)
are contained, up to isomorphism, in a third member. And, in the event
of hereditary structural completeness, the finitary extensions of ` form a
distributive lattice—this is implicit in Gorbunov [23].

A further consequence of structural completeness in equivalential systems
is that any two nontrivial 0–generated reduced matrix models are isomor-
phic (Theorem 7.7). We do not need the full force of structural completeness
to prove this, however. It follows from a weak variant called overflow com-
pleteness, isolated recently by Wroński [72]. The proof utilizes an analysis of
the existential positive first order theory of Mod∗(`), inspired by the main
result of [72]. The analysis is given in Theorems 7.3 and 7.5, and it rules out
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overflow completeness for a large class of fuzzy and/or substructural logics
(Examples 7.8, 8.10).

None of the above results presupposes algebraizability. Natural admissi-
bility problems are abundant in non-algebraizable logics, but, to the best
of the present author’s knowledge, structural completeness has not yet been
established for any significant non-algebraizable system. A future excep-
tion might be the implication fragment BCIW of the relevance logic R.
The question of structural completeness for BCIW has been open for some
time. A little fresh light is thrown on this problem in Section 10, where a
case study of the non-algebraizable fragments of R is undertaken.

2. Admissible Rules

We work within a fixed but arbitrary algebraic language. Its signature
and its infinite set of variables—denoted by Var—are assumed to be well-
ordered (not necessarily countable). All algebras considered have this type,
unless we say otherwise. The universe of an algebra A is denoted as A,
and is assumed non-empty. Recall that (sentential) formulas are elements
of the absolutely free algebra Fm generated by Var , and substitutions are
endomorphisms of Fm. A rule is a pair 〈Γ, α〉, where Γ ∪ {α} ⊆ Fm. It is
a finite rule if the set Γ is finite.

Throughout this paper, ` denotes a (sentential) deductive system, i.e.,
a substitution-invariant consequence relation over formulas, cf. [15, 21, 68].
Thus, the theorems of ` are the formulas α such that ∅ ` α (briefly, ` α),
while the derivable rules of ` are just its elements, i.e., the pairs 〈Γ, α〉 for
which Γ ` α. Among other standard abbreviations, we signify ‘Γ ` α for all
α ∈ Π’ by Γ ` Π, and ‘Γ ` Π and Π ` Γ’ by Γ a` Π. The extensions of
` are the deductive systems in the same language that are supersets of `.
They form a set that is closed under arbitrary intersections.

Notation. (i) x, y, z (with or without indices) stand for distinct variables.
(ii) γ1, . . . , γn / α abbreviates a finite rule 〈{γ1, . . . , γn}, α〉.
(iii) T ` denotes the set of all theorems of `.
(iv) ` + 〈Γ, α〉 denotes the smallest extension of ` containing a rule 〈Γ, α〉.

Definition 2.1. ([29]) We call 〈Γ, α〉 an admissible rule of ` if every
theorem of ` + 〈Γ, α〉 is already a theorem of `.

Here, Γ need not be finite. Also, ` is not assumed finitary, i.e., there is no
guarantee that when Π ` ϕ, then Π′ ` ϕ for some finite Π′ ⊆ Π. If ` is
finitary and Γ is finite, then ` + 〈Γ, α〉 is still finitary. For in this case, ` is
axiomatized by some formal system F of axioms and finite inference rules,
i.e., it is the natural deducibility relation `F [31]. Then, ` + 〈Γ, α〉 is just
`F∪{〈Γ,α〉}. In the sequel, we often attribute properties of `F to F.

Note that `F remains a deductive system when we allow infinite inference
rules in F. Then, Γ `F α means that there is a possibly infinite well-ordered
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proof of α from Γ in F. The systems `F + 〈Γ, α〉 and `F∪{〈Γ,α〉} still coin-
cide. In particular, ` + 〈Γ, α〉 is just ``∪{〈Γ,α〉}. Even in this case:

Fact 2.2. 〈Γ, α〉 is admissible in ` iff every substitution that turns all the
formulas in Γ into theorems of ` also turns α into a theorem of `.

The argument from right to left proceeds by (possibly transfinite) induction
on the length of a proof in ` ∪{〈Γ, α〉}. Finite induction suffices when Γ is
finite and ` is finitary.

Recall that a (sentential) matrix 〈A, F 〉 comprises an algebra A and a
subset F of A. The designated elements of this matrix are the elements
of F , and 〈A, F 〉 is said to validate a rule 〈Γ, α〉 if h(α) ∈ F for every
homomorphism h : Fm → A such that h[Γ] ⊆ F . The rules validated by
the matrices in a class K constitute the consequence relation of K. This is
always a deductive system, but it is seldom finitary.

Since matrices are first order structures, we need not define their subma-
trices (i.e., substructures), direct and subdirect products, or ultraproducts.
By  Los’ Theorem, the validity of a finite rule persists in ultraproducts, while
the other three constructions preserve arbitrary rules. There are two possi-
ble definitions of a homomorphism between structures, however, so we need
to be explicit about this terminology:

Definition 2.3. A matrix homomorphism from 〈B, G〉 into 〈A, F 〉 is an
(algebraic) homomorphism h : A→ B such that h[G] ⊆ F , i.e., G ⊆ h−1[F ].

We call 〈A, F 〉 a homomorphic image of 〈B, G〉 if there is a matrix homo-
morphism h from 〈B, G〉 into 〈A, F 〉 such that h[B] = A.

Clearly, for any α ∈ Fm, the class of matrices validating 〈∅, α〉 is closed un-
der homomorphic images. Also, if 〈A, F 〉 is a subdirect product of matrices,
then each of the subdirect factors is a homomorphic image of 〈A, F 〉.

Note that we do not require h−1[F ] ⊆ G in Definition 2.3. Throughout
this paper, homomorphisms between structures preserve the indicated re-
lations (as well as all operations) but they are not assumed to reflect the
relations. Of course, an isomorphism is a bijective homomorphism whose
inverse is also a homomorphism. In particular, a matrix isomorphism pre-
serves and reflects the set of designated elements. More generally:

Definition 2.4. A matrix homomorphism h from 〈B, G〉 into 〈A, F 〉 is said
to be strict if G = h−1[F ].

In this case, every rule validated by 〈A, F 〉 is validated by 〈B, G〉 (and
conversely, if h[B] = A).

If θ is a congruence of an algebra A and F is a union of θ–classes of A,
then we abbreviate {a/θ : a ∈ F} as F/θ. In this case, the natural surjection
from 〈A, F 〉 to 〈A/θ, F/θ〉 is a strict matrix homomorphism, for if b ∈ A
and b/θ ∈ F/θ, then b ∈ F .

For any matrix 〈A, F 〉, the Leibniz congruence ΩAF is the largest con-
gruence of A for which F is a union of congruence classes. By Lemma 2.9
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below, ΩAF identifies the elements of A having the same definable prop-
erties in the first order equality-free language of 〈A, F 〉 (hence the allusion
to Leibniz, coined in [6]). In particular, ΩAF always exists. We omit the
superscript when A = Fm. We say that 〈A, F 〉 is (Leibniz-) reduced if no
non-identity congruence of A makes F a union of congruence classes, i.e., if
ΩAF is the identity relation idA = {〈a, a〉 : a ∈ A}. This means that any
strict matrix homomorphism from 〈A, F 〉 onto another matrix must be an
isomorphism, and reduced matrices were originally called ‘simple’ (see [67]).

Notation. We abbreviate 〈A/ΩAF, F/ΩAF 〉 as 〈A, F 〉∗.

A matrix of the form 〈A, F 〉∗ is always reduced and, by the above remarks,
it validates the same rules as 〈A, F 〉. In particular:

Fact 2.5. 〈Γ, α〉 is admissible in ` iff it is validated by 〈Fm, T `〉∗.

This follows from Fact 2.2, which says in effect that 〈Γ, α〉 is admissible in
` iff it is validated by 〈Fm, T `〉. Consequently, the admissible rules of `
always form an extension of `. Finitarity is normally lost in the passage to
this extension (see Example 3.6). Moreover, when ` has a recursive set of
theorems, it may fail to have a recursive set of admissible finite rules [11, 69],
even if it is finitary and finitely axiomatized in a finite signature.

For any cardinal m, a first order structure (e.g., a matrix) is said to be
m–generated if its pure algebra reduct has a generating set with at most
m elements. Finitely generated means m–generated for some finite m. A
structure is finite if its universe is a finite set.

When 〈A, F 〉 validates all the derivable rules of `, it is called a matrix
model of `, and F is then called a ` –filter of A. The set Fi `A of all
` –filters of A is closed under arbitrary intersections, hence it becomes a
complete lattice Fi`A when ordered by set inclusion. The elements of
Fi `Fm are called ` –theories.

Definition 2.6. ([68]) A reduced matrix model 〈A, F 〉 of ` is said to be
relatively subdirectly irreducible (with respect to `), or briefly RSI, pro-
vided that, whenever 〈A, F 〉 is a subdirect product of reduced matrix models
〈Bi, Gi〉 (i ∈ I) of `, then at least one of the projections πj :

∏
i∈I Bi → Bj

restricts to a matrix isomorphism from 〈A, F 〉 onto 〈Bj , Gj〉.

This extends the usual notion of an algebra being relatively subdirectly
irreducible in a class of similar algebras (to which it belongs). We need to
recall the following.

Lemma 2.7. Let 〈A, F 〉 be a reduced matrix model of `.

(i) 〈A, F 〉 is RSI iff F is completely meet-irreducible in Fi`A.
(ii) If ` is finitary or 〈A, F 〉 is finite, then 〈A, F 〉 is isomorphic to a

subdirect product of RSI reduced matrix models of `.
(iii) If a rule 〈Γ, α〉 is underivable in `, then it is invalidated by some m–

generated reduced matrix model 〈C, H〉 of `, where m is the number
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of variables occurring in formulas from Γ∪{α}. If, in addition, ` is
finitary or 〈C, H〉 is finite, then 〈C, H〉 can be chosen RSI as well.

Proof. The proofs of (i) and (ii) can be found in [68, Sec. 3.7].

(iii) Let J be the intersection of all ` –theories containing Γ. Then 〈Γ, α〉
is invalidated by an obvious m–generated submatrix 〈B, G〉 of 〈Fm, J〉.
Although 〈B, G〉 need not be reduced, it validates the same rules as the
m–generated reduced matrix 〈B, G〉∗. Since 〈Fm, J〉 is a matrix model of
`, so are 〈B, G〉 and 〈B, G〉∗. Suppose ` is finitary or 〈B, G〉∗ is finite.
Then (ii) guarantees that 〈B, G〉∗ is isomorphic to a subdirect product of
RSI reduced matrix models 〈Bi, Gi〉 (i ∈ I) of `, each of which is still m–
generated, and 〈B, G〉∗ validates any rule validated by all of these subdirect
factors. Consequently, 〈Bi, Gi〉 invalidates 〈Γ, α〉 for some i ∈ I. �

The logical significance of reduced matrices comes from the following weak
variant of Lemma 2.7(iii).

Theorem 2.8. ([67]) The derivable rules of ` are exactly the rules validated
by the reduced matrix models of `.

In particular, the theorems of ` are just the formulas taking only desig-
nated values in every reduced matrix model of `.

Notation. Mod∗(`) denotes the class of all reduced matrix models of `.

As a semantics for `, the class of all matrix models is an unexciting variant
of the syntax, but Mod∗(`) is a much more algebraically structured class in
general. Theorem 2.8 yields the expected algebraic completeness theorems
in all familiar cases, e.g., the reduced matrix models of classical [resp. in-
tuitionistic] propositional logic are just the pairs 〈A, {>}〉 such that A is a
Boolean [resp. Heyting] algebra with greatest element >. More generally:

Lemma 2.9. Given a matrix 〈A, F 〉 and a, b ∈ A, we have a ≡ΩAF b iff the
following is true: for every formula α(x, y1, . . . , yn) and c̄ = c1, . . . , cn ∈ A,

αA(a, c̄) ∈ F iff αA(b, c̄) ∈ F .

A restricted form of Lemma 2.9 can be found in  Loś [30]. (In its present
form, it appears in [63] and [14].) The following facts are easily proved and
well known; see for instance [8] or [15]. Only item (iii) relies on Lemma 2.9.

Lemma 2.10. Let 〈A, F 〉 be a matrix model of `, and let h : B → A be a
homomorphism of algebras. Then

(i) 〈B, h−1[F ]〉 is also a matrix model of `,
(ii) h−1[ΩAF ] ⊆ ΩBh−1[F ], and

(iii) if h is surjective, then h−1[ΩAF ] = ΩBh−1[F ].

Admissibility and Homomorphisms.

We seek to clarify the relationship between admissible rules and surjective
homomorphisms. Consider a matrix model 〈A, F 〉 of ` and, for simplicity,



8 JAMES G. RAFTERY

assume that it is |Var |–generated. If 〈Γ, α〉 is admissible in `, then 〈A, F 〉
is a homomorphic image of a matrix model of ` + 〈Γ, α〉, viz. 〈Fm, T `〉. In
this case, the reduced matrix 〈Fm, T `〉∗ is also a model of ` + 〈Γ, α〉, but
〈A, F 〉 need not be a homomorphic image of 〈Fm, T `〉∗, even when 〈A, F 〉
is itself reduced. More strongly:

Fact 2.11. There exist a finitary system `, a finite admissible rule 〈Γ, α〉
of ` and a finite reduced matrix model 〈A, F 〉 of `, such that 〈A, F 〉 is
not a homomorphic image of any reduced matrix model of ` + 〈Γ, α〉.

Proof. In the subsignature �,♦,> of modal logic, the axiom > and the
inference rule ♦x / �♦x determine a finitary deductive system ` whose set
of theorems is {>}. It is easy to see that Fm/Ω{>} has just two elements,
viz. {>} and Fm \ {>}. Let A = 〈{⊥, a,>},�,♦,>〉, where ⊥, a,> are
distinct and � is the identity function and ♦⊥ = ⊥ and ♦a = ♦> = >.
Then 〈A, {>}〉 ∈ Mod∗(`). The rule �x / y is validated by 〈Fm, {>}〉∗,
but not by 〈A, {>}〉, so it is admissible and not derivable in `.

Now suppose 〈B, G〉 ∈ Mod∗(`) validates �x / y. We show that there
is no surjective matrix homomorphism from 〈B, G〉 to 〈A, {>}〉. Suppose,
on the contrary, that h is such a homomorphism. Then G 6= B, because
G ⊆ h−1[{>}] and |A| > 1. As 〈B, G〉 validates both ♦x / �♦x and �x / y,
it validates ♦x / y. So, since B 6⊆ G, it follows that �b,♦b /∈ G for all
b ∈ B. Let b, b′ ∈ B \ h−1[{>}]. Considering the form of any α(x, ȳ) ∈ Fm,
we see that for any c̄ ∈ B, we have αB(b, c̄) ∈ G iff αB(b′, c̄) ∈ G. Thus,
〈b, b′〉 ∈ ΩBG (by Lemma 2.9), i.e., b = b′ (as 〈B, G〉 is reduced). This
shows that at most one element of B is not mapped to > by h, contradicting
surjectivity. �

Despite Fact 2.11, admissibility can be characterized in terms of reduced
models and homomorphic images (and without reference to generative size).
The appropriate characterization is item (iii) below.

Theorem 2.12. The following conditions are equivalent.

(i) 〈Γ, α〉 is an admissible rule of `.
(ii) Every matrix model of ` is a homomorphic image of a matrix model

of ` + 〈Γ, α〉.
(iii) Every reduced matrix model of ` is a homomorphic image of a ma-

trix model of ` + 〈Γ, α〉 that is itself a subdirect product of reduced
matrix models of `.

In (ii) and (iii), ‘Every’ could be replaced by ‘Every finitely generated’, with-
out loss of strength (even if Γ is infinite). If ` is finitary then, in (iii), we
can replace ‘Every’ by ‘Every RSI’ (with or without ‘finitely generated’).

Proof. (i)⇒ (ii): Given a matrix model 〈A, F 〉 of `, let U be an absolutely
free algebra with free generating set Y , where |Y | = max {|Var | , |A|}. Then
there is a surjective homomorphism h : U → A. Let G be the least ` –filter
of U . Lemma 2.10(i) shows that h−1[F ] is a ` –filter of U , so G ⊆ h−1[F ],
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whence 〈A, F 〉 is a homomorphic image of 〈U , G〉. It remains to show that
〈U , G〉 validates 〈Γ, α〉. (This would follow from Fact 2.2 if A was given to
be |Var |–generated, as 〈U , G〉 would then be isomorphic to 〈Fm, T `〉, but
we must consider the possibility that |Y | > |Var |.) Let k : Fm → U be a
homomorphism such that k[Γ] ⊆ G. We must prove that k(α) ∈ G.

Since Fm is a |Var |–generated algebra, so is k[Fm]. In the subuniverse
lattice of any algebra, the finitely generated subuniverses are compact, so
each element of any generating set for k[Fm] belongs to the subalgebra
of U generated by a finite subset of Y . Thus, k[Fm] is contained in the
subalgebra of U generated by some X ⊆ Y , where |X| 6 |Var | (as Var is
infinite). Choose a bijection g : Z → Var , where X ⊆ Z ⊆ Y . Then g can
be extended to a homomorphism g̃ : U → Fm. Now g̃−1[T `] is a ` –filter
of U , by Lemma 2.10(i), so G ⊆ g̃−1[T `]. Therefore, g̃k[Γ] ⊆ T `. Since g̃k
is a substitution and 〈Γ, α〉 is admissible in `, we infer that g̃k(α) ∈ T `.

It is not immediate that k(α) ∈ G, as it may happen that g̃−1[T `] 6⊆ G.
Nevertheless, k(α) = ϕU (ū) for some ϕ ∈ Fm and some ū = u1, . . . , un ∈ X,
where u1, . . . , un are distinct (see [10, Thm. II.10.3(c)] if necessary). Since
g̃ and g agree on X, where g is injective, the variables g(u1), . . . , g(un) are
also distinct, and g̃k(α) is ϕ(g(u1), . . . , g(un)). Recall that this formula is a
theorem of `, so ϕ is a theorem as well, because ` is substitution-invariant.
Then k(α) = ϕU (ū) ∈ G, as G is a ` –filter of U .

(ii) ⇒ (iii): Let 〈A, F 〉 be a reduced matrix model of `, so ΩAF = idA.
By (ii), there is a matrix model 〈B, G〉 of ` + 〈Γ, α〉 and a surjective homo-
morphism h : B → A with h[G] ⊆ F . Then G ⊆ h−1[F ] ∈ Fi `B. Let

θ =
⋂

G⊆G′ ∈Fi `B
ΩBG′.

Using Lemma 2.10(iii), we obtain

θ ⊆ ΩBh−1[F ] = h−1[ΩAF ] = h−1[idA] = kerh.

There is therefore a well defined homomorphism h̃ from B/θ onto A, given

by h̃ : b/θ 7→ h(b). Observe that θ ⊆ ΩBG, i.e., G is a union of θ–classes,
so 〈B/θ,G/θ〉 is a matrix model of ` + 〈Γ, α〉 (because 〈B, G〉 is). Also,

h̃[G/θ] = h[G] ⊆ F . Now 〈B/θ,G/θ〉 is naturally isomorphic to a subdi-
rect product of all 〈B, G′〉∗ such that G ⊆ G′ ∈ Fi `B, and each of these
subdirect factors is a reduced matrix model of `.

(iii) ⇒ (i): Let ϕ ∈ Fm be a non-theorem of `. Since ϕ involves only
finitely many variables, 〈∅, ϕ〉 is invalidated by some finitely generated re-
duced matrix model 〈A, F 〉 of `, which can be chosen RSI if ` is finitary
(see Lemma 2.7(iii)). Even in its restricted form, item (iii) of the present
theorem implies that 〈A, F 〉 is a homomorphic image of a matrix model
〈B, G〉 of ` + 〈Γ, α〉, so 〈B, G〉 cannot validate 〈∅, ϕ〉. Therefore, ϕ is not
a theorem of ` + 〈Γ, α〉. This shows that 〈Γ, α〉 is admissible in `. �
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Fact 2.11 shows that in Theorem 2.12(iii), the pre-image of the given
reduced model of ` can’t always be chosen reduced. Also, its reduced sub-
direct factors are not guaranteed to validate 〈Γ, α〉. Generally, a matrix
model 〈B, G〉 of ` won’t decompose subdirectly into reduced models of `,
unless θ = idB in the proof of (ii) ⇒ (iii). (This θ is called the Suszko
congruence of 〈B, G〉 w.r.t. ` in [16, 57].) For systems at certain levels
of the Leibniz hierarchy, however, the characterization in 2.12(iii) can be
simplified—see Sections 4 and 8.

3. Derivability of Admissible Rules

The observation below goes back at least to Makinson [32].

Theorem 3.1. The following conditions on a [finitary ] deductive system `
are equivalent.

(i) Every admissible [finite] rule of ` is derivable in `.
(ii) For every [finitary ] deductive system `1, if ` and `1 have the same

language and the same theorems, then `1 ⊆ `.

An extension `′ of ` is axiomatic if there is a set ∆ of formulas, closed
under substitution, such that for any set Γ∪{α} of formulas, we have Γ `′ α
iff Γ,∆ ` α. Note that ` counts as an axiomatic extension of itself. The
axiomatic extensions of `F all have the form `F′ , where F′ is obtained by
adding suitable axioms to F, without adding any new inference rules.

Theorem 3.2. The following conditions on a [finitary ] deductive system `
are equivalent.

(i) For every [finitary ] extension `′ of `, all admissible [finite] rules
of `′ are derivable in `′.

(ii) For every axiomatic extension `′ of `, all admissible [finite] rules
of `′ are derivable in `′.

(iii) Every [finitary ] extension of ` is an axiomatic extension of `.

Proof. The proof in the finitary case is given in [46, Thm. 2.6], and we can
imitate it in the non-finitary case, with the help of Theorem 3.1. �

Definition 3.3. (Pogorzelski [49, 50]) A deductive system is said to be
structurally complete if all of its admissible finite rules are derivable in it.

A finitary deductive system is said to be hereditarily structurally complete
if it and all of its finitary extensions are structurally complete.

Sufficient conditions for the derivability of admissible rules are given in
the next result. Partial converses will be supplied later, in Theorems 5.7
and 6.4. Item (ii) below is a variant of [55, Thm. 1], but the general notion
of a reduced matrix and the connection with Lemma 2.7(ii) are not made
explicit in [55].
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Theorem 3.4. Let ` be a finitary deductive system.

(i) Suppose that, for each finitely generated RSI reduced matrix model
〈A, F 〉 of `, there is a strict matrix homomorphism from 〈A, F 〉
into an ultrapower of 〈Fm, T `〉∗. Then ` is structurally complete.

(ii) Suppose that, for each |Var |–generated RSI reduced matrix model
〈A, F 〉 of `, there is a strict matrix homomorphism from 〈A, F 〉
into 〈Fm, T `〉∗. Then every admissible (finite or infinite) rule of
` is derivable in `.

Proof. (i) Let 〈Γ, α〉 be underivable in `, where Γ is finite. Lemma 2.7(iii)
shows that 〈Γ, α〉 is invalidated by some finitely generated RSI reduced ma-
trix model 〈A, F 〉 of `. By assumption, 〈A, F 〉 is mapped into an ultra-
power of 〈Fm, T `〉∗ by some strict matrix homomorphism g. Since g is
strict, 〈Γ, α〉 is not validated by the ultrapower. Consequently, it is not val-
idated by 〈Fm, T `〉∗, because Γ is finite. Then, by Fact 2.5, 〈Γ, α〉 is not
admissible in `, and so ` is structurally complete.

(ii) can be proved similarly, because every underivable rule of ` is in-
validated in some |Var |–generated RSI reduced matrix model of `, and no
ultrapower is involved in the statement of (ii). �

Recall that ` is said to be tabular if it has a finite matrix model that
invalidates 〈∅, α〉 whenever α is not a theorem of `. We say that ` is strongly
finite if it is the consequence relation of some finite set of finite matrices.

Theorem 3.5. ([67]) Every strongly finite deductive system is finitary.

A strongly finite system must be tabular, because a set of matrices and
its direct product validate the same rules of the form 〈∅, α〉. As a partial
converse, if a finitary tabular system has a deduction-detachment theorem
(DDT) in the sense of [9, 15], then it is strongly finite. This follows from
Corollary 2.5.20 and Theorem 2.6.2 in [15]. For our purposes, a fragment of
a deductive system ` is the set of all derivable rules of ` in some restricted
signature; it is obviously a deductive system in its own right. The following
example will be needed in subsequent arguments.

Example 3.6. The intermediate implicational logics are the finitary ex-
tensions of the → fragment of intuitionistic logic. All of these systems are
structurally complete [51] (hence hereditarily so), but only the tabular log-
ics among them can derive all of their own admissible infinite rules [54].
Thus, every non-tabular logic in this class is a finitary system whose system
of admissible rules is non-finitary. There are 2ℵ0 non-tabular logics of this
kind [70]. In view of Theorem 3.2(iii), the intermediate implicational logics
are axiomatic extensions of the → fragment of intuitionistic logic, so they
inherit the standard DDT, viz. Γ, α ` β iff Γ ` α→ β. There is therefore no
difference between tabularity and strong finiteness for these systems. Also,
all claims made in this example remain true if we add conjunction to the
signature [53].
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Medvedev’s logic of finite problems is an example of a finitary system that
is structurally complete, but not hereditarily so [52]. It seems to be the
only such sentential logic currently known, although an equational system
with similar features is identified in [4, Ex. 2.14.4]. Medvedev’s system is
not finitely axiomatizable [33].

4. Protoalgebraic Systems

The protoalgebraic deductive systems are the ones where a rudimentary
conditional (→) can be simulated by binary formulas. More exactly:

Theorem 4.1. ([6]) The following conditions on ` are equivalent.

(i) There is a set ρ of binary formulas ρ(x, y) of ` such that ` ρ(x, x)
and x, ρ(x, y) ` y.

(ii) Whenever F and G are ` –filters of an algebra A, with F ⊆ G,
then ΩAF ⊆ ΩAG.

(iii) Mod∗(`) is closed under subdirect products.

In this case, if ` is finitary, then the set ρ can be chosen finite in (i).

Definition 4.2. We say that ` is protoalgebraic if it satisfies the equivalent
conditions in Theorem 4.1.

Note that an extension of a protoalgebraic system is itself protoalgebraic.

For present purposes, a first order structure is said to be trivial if its
universe has just one element and all of its indicated relations are non-empty.
Thus, a trivial matrix validates all rules in its language. A reduced matrix
〈A, F 〉 is nontrivial iff F 6= A (since ΩAA = A× A = ΩA∅). In particular,
if ` is a consistent deductive system (i.e., T ` 6= Fm), then 〈Fm, T `〉∗ is
nontrivial. For in this case, T ` = ∅ or ΩT ` 6= Fm× Fm.

Notation. For any first order language L, and any class K of L–structures,
we use H(K), I(K), S(K), P(K), PS(K) and PU(K) to denote the respective
closures of K under homomorphic and isomorphic images, substructures,
direct and subdirect products, and ultraproducts. We interpret the direct
product (and any ultraproduct) of the empty family of L–structures as the
trivial L–structure with universe {∅}. Therefore, if K is closed under P (or
PS or PU), then K contains a trivial structure.

Let L be a first order language with equality. Recall that the atomic L–
formulas are either formal equations α = β between L–terms, or expressions
R(α1, . . . , αm), where R is a relation symbol of L, having (finite positive)
rank m, and α1, . . . , αm are L–terms. Atomic sentences are the universal
closures ∀x̄Φ of atomic formulas Φ. An atomic class is a class of structures
axiomatized by a set of atomic sentences. In the absence of relation symbols,
these are just varieties of algebras.

The atomic closure of a class K of L–structures is the smallest atomic
class containing K. It is equal to HSP(K) [35], which coincides with HPS(K)
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[25]. Consequently, K is itself an atomic class iff it is closed under H, S and
P, or equivalently, under H and PS. (Proofs of these generalized Birkhoff-
Kogalevskĭı theorems are accessible in [24, pp. 64, 82–3] as well.) In particu-
lar, if K is closed under PS, then H(K) is the atomic closure of K. Applying
this to Theorem 4.1(iii), we obtain:

Theorem 4.3. If ` is protoalgebraic, then H(Mod∗(`)) is the atomic clo-
sure of Mod∗(`).

It follows that S(Mod∗(`)) ⊆ H(Mod∗(`)) whenever ` is protoalgebraic,
although the matrices in S(Mod∗(`)) need not be reduced, and the ones in
H(Mod∗(`)) need not be models of `.

Theorem 4.4. Suppose ` is protoalgebraic. Then the following conditions
are equivalent.

(i) 〈Γ, α〉 is an admissible rule of `.
(ii) Every reduced matrix model of ` is a homomorphic image of a

reduced matrix model of ` + 〈Γ, α〉.
(iii) Mod∗(`) and Mod∗(` + 〈Γ, α〉) have the same atomic closure.

The last two assertions of Theorem 2.12 apply equally here in (ii).

Proof. Combine Theorems 2.12(iii), 4.1(iii) and 4.3. �

Example 4.5. The modal system S4MP has the theorems of S4 as its
axioms, and x, y ∨ ¬x / y (modus ponens) as its sole inference rule. It is
not algebraizable [15, Ex. 4.8.3] (nor even weakly algebraizable in the sense
of Section 8 below), but it is obviously protoalgebraic, with {y ∨ ¬x} in the
role of ρ in Theorem 4.1(i).

If we add the rule of necessitation, x / �x, to S4MP, we get a familiar
system for S4, whose reduced matrix models are just the pairs 〈A, {>}〉
where A is an interior algebra with greatest element >. The reduced matrix
models of S4MP itself are the pairs 〈A, F 〉 where A is an interior algebra
and F a lattice filter of A containing no �–closed lattice filter other than
{>}. Thus, the identity map a 7→ a makes 〈A, F 〉 a homomorphic image
of 〈A, {>}〉, witnessing Theorem 4.4(ii)’s criterion for admissibility of the
necessitation rule in an extremely simple way.

A matrix isomorphism from 〈B, G〉 onto a submatrix of 〈A, F 〉 is called
an embedding of 〈B, G〉 into 〈A, F 〉. An injective (i.e., one-to-one) matrix
homomorphism is an embedding iff it is strict. Thus, some injective matrix
homomorphisms are not embeddings.

Definition 4.6. A reduced matrix model 〈A, F 〉 of ` is said to be weakly
projective (with respect to `) provided that, whenever 〈A, F 〉 is a homo-
morphic image of a reduced matrix model 〈B, G〉 of `, then there is an
embedding from 〈A, F 〉 into 〈B, G〉.

This extends a common notion of weak projectivity in classes of algebras
(where the concepts of embedding and injective homomorphism coincide).
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Theorem 4.7. Suppose ` is protoalgebraic and finitary. If every finitely
generated RSI reduced matrix model of ` is weakly projective, then ` is
hereditarily structurally complete.

Proof. Consider an axiomatic extension `′ of `. By Theorem 3.2, it is
enough to show that `′ is structurally complete.

Let 〈A, F 〉 be a reduced matrix model of `′. Then Fi `′A is an interval
of the lattice Fi`A, because `′ is axiomatic over ` (see [15, Prop. 0.8.3]
if necessary). Therefore, F is completely meet-irreducible in Fi`′A iff it
is completely meet-irreducible in Fi`A. So, 〈A, F 〉 is RSI with respect to
`′ iff it is RSI with respect to `, by Lemma 2.7(i). Moreover, if 〈A, F 〉 is
weakly projective with respect to `, then it is clearly weakly projective with
respect to `′. This means that all the assumptions of the present theorem
persist in `′, so it suffices to show that ` is structurally complete.

By Theorem 4.4, an admissible finite rule 〈Γ, α〉 of ` is validated by
a homomorphic pre-image of each finitely generated RSI matrix 〈A, F 〉 in
Mod∗(`), and the pre-image can also be chosen reduced. By the weak pro-
jectivity assumption, every such 〈A, F 〉 embeds into its pre-image, whence
〈A, F 〉 itself validates 〈Γ, α〉. Thus, by Lemma 2.7(iii), 〈Γ, α〉 is derivable in
`, and so ` is structurally complete. �

An infinitary analogue of this result could be proved in the same way: if
every |Var |–generated RSI reduced matrix model of a protoalgebraic finitary
system ` is weakly projective, then every admissible (possibly infinite) rule
of an extension of ` is derivable in the extension. But the assumptions in
this result are very strong, and the only obvious applications are to systems
where every RSI reduced matrix model is finite. In contrast, Theorem 4.7
has nontrivial applications (see Example 8.9) and a partial converse (The-
orem 6.14). In the proof of Theorem 4.7, the appeal to Theorem 4.4 could
be replaced by an appeal to the following result.

Theorem 4.8. Let ` be protoalgebraic. Then every |Var |–generated re-
duced matrix model of ` is a homomorphic image of 〈Fm, T `〉∗.

Proof. Let 〈A, F 〉 ∈ Mod∗(`) be |Var |–generated. Then there is a function
from Var onto a generating set for A, and it extends to a homomorphism
h from Fm onto A. Now h−1[F ] is a ` –theory and T ` ⊆ h−1[F ]. Since `
is protoalgebraic and h is surjective and 〈A, F 〉 is reduced, it follows from
Theorem 4.1(ii) and Lemma 2.10(iii) that

ΩT ` ⊆ Ωh−1[F ] = h−1[ΩAF ] = h−1[idA] = kerh,

so the function h̃ : α/ΩT ` 7→ h(α) (α ∈ Fm) is a well defined homomor-

phism from Fm/ΩT ` onto A. Clearly, h̃[T `/ΩT `] ⊆ F . �

Fact 2.11 shows that Theorem 4.8 would fail if we dropped the assumption
that ` is protoalgebraic.
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5. Equivalential Systems

The equivalential deductive systems are the ones whose Leibniz operators
are atomically definable. More precisely:

Definition 5.1. A set ρ of binary formulas ρ(x, y) is called a set of equiva-
lence formulas for ` if, for every matrix model 〈A, F 〉 of ` and all a, b ∈ A,

a ≡ΩAF b iff ρA(a, b) ⊆ F .

We say that ` is equivalential if it has a set of equivalence formulas.

It follows from Theorem 2.8 that a deductive system has at most one set of
equivalence formulas, up to inter-derivability. Clearly, if ` is equivalential,
then so are its extensions. Equivalential systems originate in [55], where a
definition resembling the next lemma was given.

Lemma 5.2. ([68, pp. 222–3]) A set ρ of binary formulas is a set of equiv-
alence formulas for ` iff

` ρ(x, x),

x, ρ(x, y) ` y, and

ρ(x1, y1), . . . ,ρ(xn, yn) ` ρ(σ(x1, . . . , xn), σ(y1, . . . , yn))

for every connective σ in the signature of `, where n is the rank of σ.

Thus, equivalence formulas function as a generalized bi-conditional (↔),
and the Lindenbaum-Tarski construction can be carried out in a recognizable
fashion in any equivalential system.

Theorem 5.3. (cf. [8, 15, 27]) The following conditions on ` are equivalent.

(i) ` is equivalential.
(ii) ` is protoalgebraic and for every matrix model 〈A, F 〉 of ` and

every algebraic homomorphism h : B → A, we have

h−1[ΩAF ] = ΩBh−1[F ]

(even if h is not surjective).
(iii) ` is protoalgebraic and, whenever 〈B, G〉 is a submatrix of a matrix

model 〈A, F 〉 of `, then ΩBG = (B ×B) ∩ΩAF .
(iv) Mod∗(`) is closed under submatrices and direct products.

It is well known that if ` is equivalential, then 〈Fm, T `〉∗ is freely gen-
erated by {x/ΩT ` : x ∈ Var} in the concrete category Mod∗(`) (equipped
with all matrix homomorphisms). Indeed, for each 〈A, F 〉 ∈ Mod∗(`), any
function from {x/ΩT ` : x ∈ Var} into A can be extended to a matrix

homomorphism h̃ : 〈Fm, T `〉∗ → 〈A, F 〉, as in the proof of Theorem 4.8.
The difference is that we rely on Theorem 5.3(ii) instead of Lemma 2.10(iii)

when showing that h̃ is well defined, because the homomorphism in the role
of h is no longer guaranteed to be surjective. The map x 7→ x/ΩT ` is in-
jective on Var whenever ` is protoalgebraic and strongly consistent—in the
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sense that α 6` β for some α, β ∈ Fm. For then, in Theorem 4.1(i), we must
have ρ(x, y) 6⊆ T `, whence ρ 6= ∅ and x 6≡ΩT ` y (because ρ(x, x) ⊆ T `).

Lemma 5.4. Let h : 〈B, G〉 → 〈A, F 〉 be a matrix homomorphism between
matrix models of `, where 〈B, G〉 is reduced. If ` is equivalential and h
is strict, then h is injective, and therefore an embedding.

Proof. Let ρ be a set of equivalence formulas for `, and let b, b′ ∈ B with
h(b) = h(b′). Then h[ρB(b, b′)] = ρA(h(b), h(b′)) ⊆ F , so ρB(b, b′) ⊆ G, as
h is strict. Consequently, b = b′, because 〈B, G〉 is reduced. �

Notation. For any class K of similar first order structures, we define

U(K) = {A : every |Var |–generated substructure of A belongs to K}.

Lemma 5.5. U(Mod∗(`)) ⊆ Mod∗(`), for every deductive system `.

Proof. Clearly, if all |Var |–generated substructures of 〈A, F 〉 are matrix
models of `, then so is 〈A, F 〉 itself. Also, if 〈a, b〉 ∈ ΩAF and B is the
subalgebra of A generated by {a, b}, then 〈a, b〉 ∈ ΩB(F ∩B). This follows
from Lemma 2.9, and it shows that a matrix will be reduced whenever all
of its 2–generated submatrices are reduced. �

A class K of similar structures is called a UISP–class if it is closed under
the class operators U, I, S and P. The smallest such class containing K is
UISP(K).

Theorem 5.6. If ` is equivalential, then the map `′ 7→ Mod∗(`′) is a
bijection from the extensions of ` to the UISP–subclasses of Mod∗(`). Its
inverse sends a UISP–class K ⊆ Mod∗(`) to the consequence relation of K.

Proof. Let ρ be a set of equivalence formulas for ` (and hence for its ex-
tensions). Regardless of equivalentiality, when `′ and `′′ extend `, then

(1) `′ ⊆ `′′ iff Mod∗(`′′) ⊆ Mod∗(`′),

by Theorem 2.8. In particular, the map `′ 7→ Mod∗(`′) is injective on the
extensions of `. Equivalentiality ensures that each Mod∗(`′) is indeed a
UISP–class: see Theorem 5.3(iv) and Lemma 5.5. To prove surjectivity,
consider a UISP–class K ⊆ Mod∗(`), and let `′ be the consequence relation
of K. Then `′ is a deductive system extending `, and K ⊆ Mod∗(`′). For
the reverse inclusion, let 〈A, F 〉 ∈ Mod∗(`′). We must show that 〈A, F 〉 ∈
K.

Because Mod∗(`′) is closed under submatrices and K is closed under U,
we may assume that A is |Var |–generated. So, there is a surjective homo-
morphism h : Fm→ A. Note that h−1[F ] is a ` –theory, by Lemma 2.10(i).
Consequently, for each α ∈ Fm\h−1[F ], the rule 〈h−1[F ], α〉 is not derivable
in `′, i.e., there exist 〈Bα, Gα〉 ∈ K and a homomorphism gα : Fm → Bα
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such that gα[h−1[F ]] ⊆ Gα but gα(α) /∈ Gα (by definition of `′). Let
g : Fm→

∏
αBα be the homomorphism induced by all of the gα. Then

(2) h−1[F ] = g−1
[∏

α
Gα

]
.

Observe that 〈
∏
αBα,

∏
αGα〉 is a reduced matrix model of `′, because K

is closed under P and contained in Mod∗(`′). Now

(3) kerh = ker g,

by (2), because the law

x = y ⇐⇒ ρ(x, y) consists of designated elements

is valid throughout Mod∗(`′). It follows from (2) and (3) that the map
h(α) 7→ g(α) is a well defined isomorphism from 〈A, F 〉 onto a submatrix
of 〈
∏
αBα,

∏
αGα〉. Therefore, 〈A, F 〉 ∈ K, because K is closed under I, S

and P. �

Because the connectives and variables of a deductive system are assumed
to form sets, the extensions of the system also constitute a set. So, although
Mod∗(`) is a proper class, Theorem 5.6 allows us to treat its collection
of UISP–subclasses as a set—actually a lattice, ordered by ⊆, provided
that ` is equivalential. Then the bijection `′ 7→ Mod∗(`′) is a lattice anti-
isomorphism, by (1).

In the next result, the equivalence of conditions (i) and (iii) in the finitary
case is essentially due to Prucnal and Wroński (see [55, Thm. 2]).

Theorem 5.7. Let ` be equivalential. Then the following two conditions
are equivalent.

(i) Every admissible (finite or infinite) rule of ` is derivable in `.
(ii) Mod∗(`) = UISP 〈Fm, T `〉∗.

Moreover, these conditions imply the next one.

(iii) Every |Var |–generated RSI reduced matrix model of ` can be em-
bedded into 〈Fm, T `〉∗.

If ` is finitary, then all three of the above conditions are equivalent.

Proof. (i)⇔ (ii): By Fact 2.5 and Theorem 2.8, the admissible rules of
` are the rules validated by 〈Fm, T `〉∗, i.e., by UISP 〈Fm, T `〉∗, while
the derivable rules are the ones validated by Mod∗(`). Thus, (i) holds iff
UISP 〈Fm, T `〉∗ and Mod∗(`) validate the same rules. But both are UISP–
classes, so (i) and (ii) are equivalent, in view of Theorem 5.6.

(ii)⇒ (iii) is a consequence of the definitions, because SP(K) ⊆ PSS(K) for
any class K of similar structures, and Mod∗(`) is closed under submatrices.

If ` is finitary, then (iii)⇒ (i) instantiates Theorem 3.4(ii), because ma-
trix embeddings are strict. �

Combining Theorems 4.3, 4.4 and 5.6, we obtain:
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Theorem 5.8. Suppose ` is equivalential. Then every admissible rule
of ` is derivable in ` iff, for any UISP–class K, if K $ Mod∗(`) then
H(K) $ H(Mod∗(`)), i.e., Mod∗(`) 6⊆ H(K).

Given classes K1 ⊆ K2, both closed under I, S and P, we call K1 a relative
atomic subclass of K2 if K1 = K2 ∩C for some atomic class C. This amounts
to asking that K1 can be axiomatized, relative to K2, by some set of atomic
sentences. Since K2 ∩ H(K1) is the smallest relative atomic subclass of K2

containing K1, Theorem 5.8 readily implies the corollary below.

Corollary 5.9. Suppose ` is equivalential. Then the following conditions
are equivalent.

(i) Every extension of ` has the property that each of its admissible
rules is derivable.

(ii) For any UISP–classes K1,K2 ⊆ Mod∗(`), if K1 $ K2 then H(K1) $
H(K2).

(iii) Every UISP–subclass K of Mod∗(`) is a relative atomic subclass of
Mod∗(`), i.e., Mod∗(`) ∩H(K) = K.

6. Finitely Equivalential Systems

Let L be a first order language with equality. The (strict) universal Horn
sentences of L are the first order L–sentences of the form

∀x̄
((
&i<nΦi

)
=⇒ Ψ

)
,

where n ∈ ω and Φ0, . . . ,Φn−1,Ψ are atomic L–formulas. (If these atomic
formulas are variable-free, then the quantifier is not required, i.e., x̄ may
be empty.) Let K be a class of L–structures. We call K a (strict) universal
Horn class if it can be axiomatized by a set of universal Horn L–sentences.
The smallest such class containing K is ISPPU(K). This is a refinement,
by Grätzer and Lakser [26], of a result of Maltsev [35]. Thus, K is itself
a universal Horn class iff it is closed under I, S, P and PU. (Russian and
Polish authors often follow Maltsev in referring to universal Horn classes as
‘quasivarieties’, even if they do not consist of pure algebras.)

In the context of equivalential deductive systems, Mod∗(`) is a universal
Horn class iff it is elementary (i.e., axiomatizable by a set of first order sen-
tences), iff it is closed under ultraproducts. This follows from  Los’ Theorem
and Theorem 5.3(iv). In general, if Mod∗(`) is closed under ultraproducts,
then ` is finitary: see [15, Cor. 0.4.6].

Definition 6.1. A deductive system is said to be finitely equivalential if it
has a finite set of equivalence formulas (cf. Definition 5.1).

Theorem 6.2.

(i) ([8, 27]) ` is finitely equivalential iff ΩA⋃
i∈I Fi =

⋃
i∈I ΩAFi

whenever {Fi : i ∈ I} is a ⊆ –directed set of ` –filters of an algebra
A such that

⋃
i∈I Fi is still a ` –filter (as it will be, if ` is finitary).
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(ii) ([14, 8]) ` is finitary and finitely equivalential iff Mod∗(`) is a
universal Horn class.

In (ii), if Dx formalizes ‘x is designated’, and if ρ is a finite set of equiv-
alence formulas for `, then Mod∗(`) is axiomatized by

∀x ∀y
(
x = y ⇐⇒ &ρ∈ρDρ(x, y)

)
as well as all

(4) ∀x̄
((
&γ∈ΓDγ

)
=⇒ Dα

)
such that 〈Γ, α〉 is a derivable finite rule of `. If ` is the deducibility relation
of a finitary formal system F, then we may restrict (4) to the inference
rules 〈Γ, α〉 of F, including the axioms (considered as pairs 〈∅, α〉). Now
Theorem 5.6 specializes as follows.

Theorem 6.3. (cf. [15, p. 190]) If ` is finitely equivalential and finitary,
then `′ 7→ Mod∗(`′) is a lattice anti-isomorphism from the finitary exten-
sions of ` to the universal Horn subclasses of Mod∗(`). Its inverse sends
a universal Horn class K ⊆ Mod∗(`) to the consequence relation of K.

Theorem 6.4. Let ` be finitary and finitely equivalential. Then the fol-
lowing conditions are equivalent.

(i) ` is structurally complete.
(ii) Mod∗(`) = ISPPU 〈Fm, T `〉∗.
(iii) Every finitely generated RSI reduced matrix model of ` can be em-

bedded into an ultrapower of 〈Fm, T `〉∗.

The proof is similar to that of Theorem 5.7, but we exploit Theorems 6.3
and 3.4(i), rather than 5.6 and 3.4(ii).

Corollary 6.5. Let ` be finitely equivalential and finitary.

If ` is structurally complete, then Mod∗(`) has the joint embedding
property, i.e., whenever 〈A, F 〉 and 〈B, G〉 are nontrivial reduced matrix
models of `, then there exists 〈C, H〉 ∈ Mod∗(`) such that both 〈A, F 〉
and 〈B, G〉 can be embedded into 〈C, H〉.

Proof. A universal Horn class has the joint embedding property iff it is
generated by a single structure (see [36, p. 288] or [24, Prop. 2.1.19]), so the
result follows from Theorem 6.4(ii). �

Recall that an L–structure A is said to be locally embeddable into a class K
of L–structures if every finite subset B of the universe of A can be extended
to an isomorphic copy of a structure from K, in such a way that the A–
induced relations and partial operations on elements of B are preserved.
In this case, A itself can be embedded into an ultraproduct of a non-empty
subfamily of K (see [24, Thm. 1.2.8]). The converse holds when the signature
is finite, because the tables of relations and partial operations on a finite
subset of A are then embodied in a first order (existential) sentence, whose
negation must persist in ultraproducts of non-empty families. For a single
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structure C, we take ‘locally embeddable into C’ to mean locally embeddable
into {C}. In conjunction with Theorem 3.4(i) and the implication (i)⇒ (iii)
from Theorem 6.4, these remarks yield:

Corollary 6.6. If every finitely generated RSI reduced matrix model of a
finitary system ` is locally embeddable into 〈Fm, T `〉∗, then ` is struc-
turally complete. The converse holds if ` is also finitely equivalential, with
a finite signature.

For finitely equivalential finitary systems, any generating class for the uni-
versal Horn class Mod∗(`) can play the role of the finitely generated RSI
reduced matrix models in the sufficient condition for structural complete-
ness given by Corollary 6.6. (This follows from the implication (ii)⇒ (i) in
Theorem 6.4.) A purely algebraic specialization of this last claim appears
in [12, Thm. 3.3].

Definition 6.7. We say that ` has the strong finite model property if every
finite rule that is underivable in ` is invalidated by some finite matrix model
of `. (The model can be chosen reduced and RSI, by Lemma 2.7(iii).)

Theorem 6.8. Let ` be a finitely equivalential finitary deductive system
with the strong finite model property, having a finite signature.

Then ` is structurally complete iff every finite RSI reduced matrix model
of ` can be embedded into 〈Fm, T `〉∗.

Proof. (⇒) This follows from Corollary 6.6, because a finite structure is
locally embeddable into a structure C iff it is embeddable into C.

(⇐) Let 〈Γ, α〉 be an admissible finite rule of `. By Fact 2.5, 〈Γ, α〉 is
validated by 〈Fm, T `〉∗. So, by assumption, 〈Γ, α〉 is validated by all finite
RSI reduced matrix models of `, and is therefore derivable in `, by the
strong finite model property. �

If an equivalential system is tabular (e.g., if it is strongly finite), then it is
finitely equivalential, because there are only finitely many binary operations
on a finite set.

Theorem 6.9. If ` is equivalential and strongly finite, then each of its RSI
reduced matrix models is finite.

Proof. Let M be a finite set of finite reduced matrices whose consequence
relation ` is equivalential. Then ` is finitely equivalential and finitary (see
Theorem 3.5), and since it is the consequence relation of M, it is also the
consequence relation of the universal Horn subclass ISPPU(M) of Mod∗(`),
whence Mod∗(`) = ISPPU(M), by Theorem 6.3. The latter is really ISP(M),
because the isomorphic closure of a finite set of finite matrices is closed under
ultraproducts. So, Mod∗(`) = IPSS(M). In particular, every RSI matrix in
Mod∗(`) embeds into a member of M, and is therefore finite. �
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Theorem 6.10. Let ` be strongly finite and equivalential, with a finite
signature. If ` is structurally complete, then each of its admissible infinite
rules is derivable in `.

Proof. As above, ` is finitely equivalential and finitary. Since ` is strongly
finite, it has the strong finite model property. If ` is also structurally
complete then, by Theorems 6.8 and 6.9, every RSI reduced matrix model
of ` can be embedded into 〈Fm, T `〉∗. In this case, by Theorem 5.7, every
admissible (possibly infinite) rule of ` is derivable in `. �

Definition 6.11. If ρ is a set of equivalence formulas for `, and if ρ(α, β)
consists of theorems of `, then α and β are said to be logically equivalent in
`. (This makes sense, because equivalence formulas are essentially unique.)
An equivalential system is locally tabular if it has only finitely many logically
inequivalent formulas in n fixed variables, for every finite n.

If an equivalential system is tabular, then it is locally tabular, and if it
is locally tabular then it is finitely equivalential. All of the intermediate
implicational logics are locally tabular, by Diego’s Theorem [18, 38]. So,
by the results cited in Example 3.6, we cannot weaken strong finiteness to
local tabularity in Theorem 6.10. On the other hand, Theorem 6.9 can
be generalized as follows: if a locally tabular equivalential system has, up
to isomorphism, only finitely many finite RSI reduced matrix models, then
it has no infinite RSI reduced matrix model. The proof adapts that of
Quackenbush’s Theorem [10, Thm. V.3.8] and uses Lemma 2.7(ii).

A universal Horn class K is said to be primitive if every universal Horn
subclass of K is a relative atomic subclass of K. Theorem 5.8 and Corol-
lary 5.9 finitize as follows, via Theorem 6.3.

Theorem 6.12. Let ` be finitely equivalential and finitary.

(i) ` is structurally complete iff, for any universal Horn class K, if
K $ Mod∗(`) then Mod∗(`) 6⊆ H(K).

(ii) ` is hereditarily structurally complete iff Mod∗(`) is primitive.

Gorbunov proved that, for any primitive universal Horn class K, the
lattice of universal Horn subclasses of K is distributive (see [23] or [24,
Prop. 5.1.22]). Combining this with Theorems 6.3 and 6.12(ii), we obtain:

Theorem 6.13. If a finitely equivalential finitary deductive system is hered-
itarily structurally complete, then its finitary extensions form a distributive
lattice.

(The finitary extensions are axiomatic in this case, by Theorem 3.2.)

A universal Horn class K is said to be locally finite if every finitely gener-
ated member of K is finite. An equivalential deductive system ` is locally
tabular iff Mod∗(`) is locally finite. Indeed, an n–element subset of Var ,
factored by ΩT `, generates a submatrix 〈An, Fn〉 of 〈Fm, T `〉∗ that is
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reduced (by Theorem 5.3(iv)), and the homomorphic images of 〈An, Fn〉 in-
clude all n–generated reduced matrix models of ` (by an obvious adaptation
of Theorem 4.8). Now ` is locally tabular iff 〈An, Fn〉 is finite for all finite
n, iff Mod∗(`) is locally finite.

A further finding of Gorbunov is that a locally finite universal Horn class
K is primitive iff every finite relatively subdirectly irreducible member of
K is weakly projective in K (see [23] or [24, Prop. 5.1.24]). This yields the
following result, which is a partial converse for Theorem 4.7.

Theorem 6.14. Let ` be equivalential, locally tabular and finitary. Then
` is hereditarily structurally complete iff every finite RSI reduced matrix
model of ` is weakly projective.

7. Overflow Rules

Again, let L be a first order language with equality. Recall that, up to
logical equivalence, an existential positive L–sentence is a sentence of the
form ∃x̄Φ, where Φ is a disjunction of one or more L–formulas, each of
which is a conjunction of one or more atomic L–formulas. (If no variable
occurs in Φ, then no quantifiers are required.)

In Bergman [4], a quasivariety K of algebras is said to be structurally
complete if every proper subquasivariety of K generates a proper subvariety
of the variety H(K). By [4, Thm. 2.7], every existential positive first order
sentence over a structurally complete variety K is either true throughout K
or false in all nontrivial members of K. This is a one-way implication, but
Wroński [72] isolates a weak form of structural completeness that exactly
characterizes Bergman’s condition on existential positive sentences, while
demanding only that K be a quasivariety of algebras. Wroński’s characteri-
zation asks that K should satisfy every (finite) quasi-equation

(5)
(
&i<n αi = βi

)
=⇒ x = y

such that (i) x, y are distinct variables absent from the equations on the
left of =⇒, and (ii) for every substitution h, if K satisfies h(αi) = h(βi) for
all i < n, then K satisfies h(x) = h(y) [72, Fact 2]. A natural phrasing
of (ii) is ‘(5) is admissible in the equational consequence relation of K.’
Theorems 7.3 and 7.5 below are inspired by these insights. (It is possible
to unify the present account with the framework of [4, 72], by considering
Gentzen systems—see Section 11.)

In [72], the quasi-equation (5) is called an ‘overflow rule’ if (i) holds. In
our context, the following definition is appropriate.

Definition 7.1. If Γ is a set of formulas of `, none of which contains an
occurrence of the variable y, then 〈Γ, y〉 is called an overflow rule of `.

For the rest of this section, L denotes the first order language, with equal-
ity, of Mod∗(`), and Var (the set of variables of `) also serves as the set of
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variables of L. Recall that the unary designation predicate D belongs to L.
By an existential positive L–condition, we shall mean a formal expression

(6) ∃x̄
∨
i∈I&j∈Ji Φij ,

where I and all of the Ji are non-empty possibly infinite sets, every Φij

is an atomic L–formula, and x̄ is a possibly infinite (and possibly empty)
sequence of variables, including all that occur in (6).

Lemma 7.2. Let 〈A, F 〉 be a nontrivial reduced matrix model of `, let
〈Γ, y〉 be an overflow rule of `, with Γ 6= ∅, and let x̄ be the sequence of
variables occurring in Γ (taken in any order).

Then ∃x̄&γ∈ΓDγ is true in 〈A, F 〉 iff 〈A, F 〉 does not validate 〈Γ, y〉.

The proof is easy, because a nontrivial reduced matrix has at least one non-
designated element and, for the purpose of assigning values to variables, y
is independent of the variables in Γ.

Theorem 7.3. If every equality-free existential positive L–condition is true
either in every member of Mod∗(`) or in no nontrivial member of Mod∗(`),
then every admissible overflow rule of ` is derivable in `.

The converse holds if ` is equivalential, in which case it applies to all
existential positive L–conditions, not only the equality-free ones.

Proof. We may assume without loss of generality that ` is strongly consis-
tent, so the matrix 〈Fm, T `〉∗ is nontrivial.

(⇒) Let 〈Γ, y〉 be an underivable overflow rule of `. We need to show that
〈Γ, y〉 is inadmissible in `, so we may assume that Γ 6= ∅. By Theorem 2.8,
〈Γ, y〉 is invalidated by some reduced matrix model 〈A, F 〉 of `, which must
be nontrivial, as the trivial matrices validate all rules. Now ∃x̄&γ∈ΓDγ is
true in 〈A, F 〉, by Lemma 7.2, and it is an equality-free existential positive
L–condition, so it is true in all reduced matrix models of `, by assumption.
In particular, it is true in 〈Fm, T `〉∗. By Lemma 7.2 again, 〈Fm, T `〉∗
does not validate 〈Γ, y〉, so 〈Γ, y〉 is inadmissible in `, by Fact 2.5.

(⇐) Consider an existential positive L–condition ∃x̄Φ that is true in
some nontrivial reduced matrix model 〈A, F 〉 of `, where Φ is a formal
disjunction of expressions Φi, i ∈ I, each of which is a formal conjunction of
atomic L–formulas. Then ∃x̄Φi is true in 〈A, F 〉 for some i ∈ I. It suffices
to show that ∃x̄Φi is true in every reduced matrix model of `.

Let ρ be a set of equivalence formulas for `. Then ρ 6= ∅, because `
is strongly consistent. Every equational subformula α = β of Φi can be
replaced in Φi by &ρ∈ρ Dρ(α, β), without affecting the truth of ∃x̄Φi in
any reduced matrix model of `. We may therefore assume that Φi has the
form &γ∈ΓDγ for some non-empty Γ ⊆ Fm. Since Var is an infinite set,
we may also assume that some y ∈ Var does not occur in any member of Γ
(otherwise, by standard cardinality arguments, the set of apparent variables
of Γ can be replaced by a |Var |–element proper subset of itself, without
affecting the truth of ∃x̄Φi in any L–structure). Then, because ∃x̄Φi is
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true in 〈A, F 〉, which is nontrivial, Lemma 7.2 shows that 〈A, F 〉 does not
validate the overflow rule 〈Γ, y〉. Consequently, 〈Γ, y〉 is not derivable in `.
So, by assumption, 〈Γ, y〉 is not admissible in `. This means that 〈Γ, y〉 is
not validated by 〈Fm, T `〉∗, by Fact 2.5. It follows from Lemma 7.2 that
∃x̄Φi is true in 〈Fm, T `〉∗.

It is easy to see that the truth of ∃x̄Φi persists in homomorphic images
and in superstructures. But every |Var |–generated reduced matrix model
of ` is a homomorphic image of 〈Fm, T `〉∗, by Theorem 4.8, and every
reduced matrix model of ` has |Var |–generated submatrices, all of which
still belong to Mod∗(`), by Theorem 5.3(iv). So, ∃x̄Φi is true in every
reduced matrix model of `, as required. �

Definition 7.4. We shall say that ` is overflow complete if every admissible
finite overflow rule of ` is derivable in `.

Finitizing Theorem 7.3 and its proof, we obtain:

Theorem 7.5. Let ` be finitely equivalential. Then ` is overflow complete
iff every existential positive L–sentence holds either in all of the nontrivial
reduced matrix models of `, or in none of them.

Remark 7.6. If ` is merely equivalential and overflow complete, then the
equality-free existential positive (finite) L–sentences still hold either in all
or in none of the nontrivial members of Mod∗(`). This is established by the
proof of Theorem 7.3.

Note that a matrix is 0–generated only if its signature includes a constant
symbol (because we exclude empty structures from consideration).

Theorem 7.7. Let ` be equivalential. If ` is overflow complete, then any
two nontrivial 0–generated reduced matrix models of ` are isomorphic.

Proof. Let 〈A, F 〉 ∈ Mod∗(`) be 0–generated and nontrivial, so ` has a
constant symbol, c say. The map x 7→ cA (x ∈ Var) extends to a homomor-
phism g : Fm → A, and g must be surjective, because A is 0–generated.
Since T ` ⊆ g−1[F ] and ` is equivalential (hence protoalgebraic), Theo-
rem 4.1(ii) shows that ΩT ` ⊆ Ωg−1[F ].

Because ` has a constant symbol, its variable-free formulas constitute
a subalgebra B of Fm. Let G = T ` ∩ B, so 〈B, G〉∗ ∈ Mod∗(`). By
Theorem 5.3(iii) and Lemma 2.10(iii),

ΩBG = (B ×B) ∩ΩT ` ⊆ Ωg−1[F ] = g−1[ΩAF ] = ker g,

as 〈A, F 〉 is reduced. Thus, g̃ : α/ΩBG 7→ g(α) (α ∈ B) is a well defined
matrix homomorphism from 〈B, G〉∗ to 〈A, F 〉, and g̃ is surjective, again
because 〈A, F 〉 is 0–generated.

We show that g̃ is strict. For each α ∈ B, the expression Dα is an
existential positive L–sentence, because α is a variable-free formula of `.
For the same reason, if α ∈ B and g̃(α/ΩBG) ∈ F , then Dα is true in



ADMISSIBLE RULES AND THE LEIBNIZ HIERARCHY 25

〈A, F 〉. In this case, since 〈A, F 〉 is nontrivial and reduced, and since `
is overflow complete, it follows from Remark 7.6 that Dα is true in all
members of Mod∗(`). Then α ∈ T `, by Theorem 2.8, whence α ∈ G,
i.e., α/ΩBG ∈ G/ΩBG. This confirms that g̃ is strict. Consequently, g̃ is
an embedding, by Lemma 5.4, and so g̃ : 〈B, G〉∗ ∼= 〈A, F 〉. But 〈B, G〉∗ is
fixed, so the proof is complete. �

Example 7.8. Substructural logics that lack the weakening axiom

x→ (y → x)

are often formulated with an inferential negation, ¬x = x → f , where f is
a constant symbol. In these systems, {x → y, y → x} is a set of equiva-
lence formulas. In a reduced matrix model, the cardinality of the submatrix
generated by {f} may vary with the choice of model, even if we restrict the
signature to →. For example, the 4–element algebra in the proof of Theo-
rem 10.10 is → generated by {f}, and so is the 2–element Boolean algebra
(where f is the lower element). So, when f and → are both definable, these
algebras become 0–generated. Since they are not isomorphic, Theorem 7.7
rules out overflow completeness (and thereby structural completeness) for
countless substructural logics with →, f , and without weakening. Not all of
these systems are algebraizable.

It is easy to see that a deductive system is overflow complete iff, for each
of its underivable finite rules, there is a substitution turning all of the rule’s
premises into theorems. Recently, Cintula and Metcalfe [12] have studied
this condition under the name passive structural completeness.

8. Truth Equational and Weakly Algebraizable Systems

A deductive system is truth equational if its unary designation predicate
is equationally definable over its reduced matrix models. To be precise, the
theorem below was proved in [57] (and more directly in [59, Thm. 37]).

Theorem 8.1. The following conditions on ` are equivalent.

(i) There is a set τ of pairs τ = 〈τ`(x), τr(x)〉 of unary formulas such
that, for every reduced matrix model 〈A, F 〉 of ` and every a ∈ A,

a ∈ F iff
(
τA` (a) = τAr (a) for all τ ∈ τ

)
.

(ii) Whenever Fi (i ∈ I) and G are ` –filters of an algebra A, such that⋂
i∈I ΩAFi ⊆ ΩAG, then

⋂
i∈I Fi ⊆ G.

For example, in the reduced matrix models of classical or intuitionistic
propositional logic, the displayed condition in (i) is realized as ‘a ∈ F iff
a = >’. In substructural logics without weakening, this is no longer true,
but instead, (i) is witnessed by ‘a ∈ F iff a = a ∨ (a→ a)’.

Definition 8.2. We say that ` is truth equational if it satisfies the equiva-
lent conditions of Theorem 8.1.
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Observe that this demand persists in extensions. The reduced matrix
models of a truth equational system ` are evidently determined by their
algebra reducts, i.e., whenever 〈A, F 〉, 〈A, G〉 ∈ Mod∗(`), then F = G. In
fact, this remains true for subdirect products of reduced matrix models.

Notation. We denote by Alg∗(`) the class of all algebra reducts A of re-
duced matrix models 〈A, F 〉 of `. The algebraic counterpart Alg(`) of `
is defined as IPS(Alg∗(`)), the closure of Alg∗(`) under subdirect products
(and isomorphisms).

Remark 8.3. If τ and τ ′ are both as in Theorem 8.1(i), then(
&τ∈τ τ`(x) = τr(x)

)
⇐⇒

(
&τ∈τ ′ τ`(x) = τr(x)

)
is clearly valid in Alg∗(`), and therefore in Alg(`).

Note that Alg(`) = Alg∗(`) if ` is protoalgebraic, by Theorem 4.1(iii).
Even if ` is not protoalgebraic, truth equationality permits a slight relax-
ation of the admissibility criterion in Theorem 2.12(iii). This follows from
the first item in the next lemma.

Lemma 8.4. Let 〈A, F 〉 and 〈B, G〉 be matrix models of a truth equational
system `, where 〈A, F 〉 is reduced, and let h : B → A be an algebraic
homomorphism.

(i) If 〈B, G〉 is a subdirect product of reduced matrix models of ` (in
particular, if 〈B, G〉 is itself reduced), then h is a matrix homomor-
phism from 〈B, G〉 into 〈A, F 〉.

(ii) If h is a matrix homomorphism from 〈B, G〉 into 〈A, F 〉, and G is
a union of (kerh)–classes, then h is strict.

(iii) Every injective matrix homomorphism from 〈B, G〉 into 〈A, F 〉 is
an embedding.

Proof. Let τ be as in Theorem 8.1(i).

(i) Let 〈B, G〉 be a subdirect product of reduced matrix models 〈Bi, Gi〉
(i ∈ I) of `, and let b ∈ G. Then, for each i ∈ I, we have b(i) ∈ Gi,
because 〈Bi, Gi〉 is a homomorphic image of 〈B, G〉. Thus, for all τ ∈ τ
and i ∈ I, we have τBi

` (b(i)) = τBi
r (b(i)), because 〈Bi, Gi〉 is reduced, and

so τB` (b) = τBr (b). Then τA` (h(b)) = h(τB` (b)) = h(τBr (b)) = τAr (h(b)) for
all τ ∈ τ . Since 〈A, F 〉 is reduced, this implies that h(b) ∈ F , as required.

(ii) Let h(b) ∈ F , where b ∈ B. We must show that b ∈ G. For each
τ ∈ τ , we have h(τB` (b)) = τA` (h(b)) = τAr (h(b)) = h(τBr (b)), as 〈A, F 〉 is

reduced. Thus, kerh identifies τB` (b) with τBr (b). But kerh ⊆ ΩBG, as G

is a union of (kerh)–classes, so τB` (b) ≡ΩBG τ
B
r (b) for all τ ∈ τ . Therefore,

b/ΩBG ∈ G/ΩBG, as 〈B, G〉∗ ∈ Mod∗(`), and so b ∈ G.

(iii) is an instance of (ii), because G is a union of idB–classes. �

Theorem 8.5. ([17]) The following conditions on ` are equivalent.

(i) ` is both protoalgebraic and truth equational.
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(ii) For every algebra A, the map F 7→ ΩAF is injective and order-
preserving (with respect to ⊆) on the ` –filters of A.

(iii) For every algebra A, the map F 7→ ΩAF defines a lattice isomor-
phism from the ` –filters of A onto the Alg(`)–congruences of A,
i.e., the congruences θ such that A/θ ∈ Alg(`).

Definition 8.6. ([17]) We say that ` is weakly algebraizable if it satisfies
the equivalent conditions of Theorem 8.5.

Admissibility in weakly algebraizable systems can be characterized in
terms of pure algebras, rather than matrices, as follows.

Theorem 8.7. Let ` be weakly algebraizable. Then the following conditions
are equivalent.

(i) 〈Γ, α〉 is an admissible rule of `.
(ii) Every algebra in Alg(`) is a homomorphic image of an algebra be-

longing to Alg(` + 〈Γ, α〉).
(iii) Every algebra in Alg(`) is a homomorphic image of one in which(

&τ∈τ , γ∈Γ τ`(γ) = τr(γ)
)

=⇒
(
&τ∈τ τ`(α) = τr(α)

)
is valid, where τ is as in Theorem 8.1(i).

Proof. Since ` and its extensions are protoalgebraic and truth equational,
Theorem 4.4 and Lemma 8.4(i) combine to prove the equivalence of condi-
tions (i) and (ii) of the present theorem. The meaning of (iii) is independent
of the choice of τ , by Remark 8.3, and the equivalence of (ii) and (iii) is just
a consequence of the definitions. �

Theorem 8.7 generalizes [46, Thm. 7.11], which dealt only with alge-
braizable systems; the present proof is also simpler. Algebraizability was
introduced in [7] and is discussed in detail in [9, 15, 21, 48]. For present
purposes, it suffices to note that

a deductive system ` is [finitely] algebraizable iff it is both truth
equational and [finitely] equivalential.

The usual definition of algebraizability asks that ` be equivalent—in a suit-
able sense—to the equational consequence relation of a class C of pure al-
gebras. (In this case, we can choose C = Alg(`) = Alg∗(`).) The pertinent
notion of equivalence is discussed in several recent papers, particularly [5],
but we shall not need to use it here. Orthologic is an example of a weakly
algebraizable system that is not algebraizable, see [17, 34]. In this example,
{〈x,>〉} can play the role of τ in Theorem 8.1(i).

We do not need the full force of algebraizability in order to prove the next
result. It follows from Theorem 4.7, via Lemma 8.4(i),(iii).

Theorem 8.8. Suppose that ` is finitary and weakly algebraizable. If every
finitely generated relatively subdirectly irreducible algebra in Alg(`) is weakly
projective in Alg(`), then ` is hereditarily structurally complete.
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As Alg(`) is closed under subdirect products, it is a variety iff it is closed
under homomorphic images of the algebraic kind. In this case, an algebra in
Alg(`) will be relatively subdirectly irreducible in Alg(`) iff it is subdirectly
irreducible in the absolute sense.

Example 8.9. RMt denotes the extension of relevance logic by the mingle
axiom x→ (x→ x). Here, relevance logic is formulated with the Acker-
mann truth constant t (see Section 10 for more details). Although RMt is
not structurally complete, its negation-less fragment ` (i.e., its →, ·,∧,∨, t
fragment) is hereditarily structurally complete. For reasons explained in
[45, 46], this cannot be proved by generalizing the syntactic method known
as ‘Prucnal’s trick’ (deriving from [51]). But ` is algebraizable and the alge-
braic criterion of Theorem 8.8 can be applied. Indeed, Alg(`) is the locally
finite variety of positive Sugihara monoids (PSMs), and it is proved in [45]
that every finite subdirectly irreducible PSM is projective (hence weakly
projective) in this variety.

For an algebraizable finitary system `, if the class Alg(`) is elemen-
tary, then it is a quasivariety. In this case, ` is structurally complete iff
every proper subquasivariety of Alg(`) generates a proper subvariety of
H(Alg(`))—cf. Bergman’s definition in Section 7.

Example 8.10. FLew denotes intuitionistic affine linear logic without expo-
nentials (sometimes called ‘BCK–logic’). It is algebraizable, and Alg(FLew)
is the variety of all bounded integral commutative residuated lattices, see
for instance [22]. Let ` be a consistent axiomatic extension of the S–
fragment of FLew, where S includes at least → and ⊥. Then Alg(`) is
a quasivariety, but it need not be a variety [71]. We define x→0 y = y
and x→n+1 y = x→ (x→n y) for n ∈ ω. A member of Alg(`) satisfying
x →n y = x →n+1 y is said to be n–contractive, and every finite algebra in
Alg(`) is n–contractive for some finite n. If ` is overflow complete, then
Alg(`) contains no simple algebra on more than two elements that is n–
contractive for a finite n—in particular, Alg(`) contains no finite simple
algebra other than the 2–element Boolean algebra. The proof uses Theo-
rem 7.5 and the existential positive sentence

∃x (xn = ⊥ & ¬x 6 x),

which can be written in terms of →,⊥ as

∃x (x→n ⊥ = ⊥ → ⊥ & (x→ ⊥)→ x = ⊥ → ⊥).

This sentence is false in the unique 2–element member of Alg(`), but it
would be true in any simple n–contractive member having more than two
elements. The proof details can be found in [46, Prop. 10.5], but the present
account is a slight improvement, as we do not assume here that Alg(`) is
a variety. This rules out overflow completeness for a large class of fuzzy
logics—e.g., the finite MV–chains on three or more elements are simple
algebras, so they cannot belong to Alg(`) if ` is overflow complete.
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Since the appearance of [46], a somewhat different explanation of Exam-
ple 8.10 has been given in [12, Thm. 5.16].

9. Order Algebraizable Systems

Several prominent non-algebraizable systems ` are still order algebraiz-
able in the sense of [60] (see Section 10 for examples). The definition asks
that ` be equivalent, in the sense of [5], to the inequational consequence
relation of a class of partially ordered algebras. Here, however, it is conve-
nient to work with the following characterization, whose correctness follows
immediately from [60, Thm. 7.1, Cor. 6.7].

Characterization 9.1. ` is order algebraizable iff its language includes a
set ρ of binary formulas ρ(x, y) such that, for every reduced matrix model
〈A, F 〉 of `, the set A is partially ordered by the relation

a 6F b iff ρA(a, b) ⊆ F

and, moreover,

x a`
⋃
{ρ(τ`(x), τr(x)) : τ ∈ τ}(7)

for a suitable set τ of pairs of unary formulas τ = 〈τ`(x), τr(x)〉.
In this case, we say that ` is ρ–order algebraizable and, by its ρ–ordered

algebras, we mean the structures 〈A,6F 〉 arising as above from all of its
reduced matrix models 〈A, F 〉.

Under these assumptions, for any 〈A, F 〉 ∈ Mod∗(`) and a ∈ A, we have

(8) a ∈ F iff (τ`(a) 6F τr(a) for all τ ∈ τ ) ,

by (7) and the definition of 6F . Consequently, the map sending F to
6F is injective on the ` –filters of any A ∈ Alg∗(`). There is no differ-
ence here between Alg∗(`) and Alg(`), because every ρ–order algebraizable
system is protoalgebraic—in fact equivalential, with equivalence formulas
ρ(x, y) ∪ ρ(y, x) [60].

The order algebraizable systems do not appear to constitute a level of
the Leibniz hierarchy, as they seem to have no simple Ω–characterization,
but they are a mathematically natural subclass of the equivalential systems.
Clearly, an extension of a ρ–order algebraizable system ` is itself ρ–order
algebraizable, and if τ and τ ′ both satisfy the demands of 9.1, then(

&τ∈τ τ`(x) 6 τr(x)
)
⇐⇒

(
&τ∈τ ′ τ`(x) 6 τr(x)

)
is valid in the ρ–ordered algebras of `.

Remark 9.2. LetA andB be algebras, and let6 and6′ be binary relations
on A and B, respectively. The conventions of Sections 2 and 4 dictate that
we call 〈A,6〉 a homomorphic image of 〈B,6′〉 iff there is a surjective
(algebraic) homomorphism h : B → A such that, whenever b1, b2 ∈ B with
b1 6′ b2, then h(b1) 6 h(b2).
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Theorem 9.3. Let ` be ρ–order algebraizable. Then the following condi-
tions are equivalent.

(i) 〈Γ, α〉 is an admissible rule of `.
(ii) Every ρ–ordered algebra of ` is a homomorphic image of a ρ–

ordered algebra of ` + 〈Γ, α〉 (in the sense of Remark 9.2).
(iii) Every ρ–ordered algebra of ` is a homomorphic image of one in

which(
&γ∈Γ, τ∈τ τ`(γ) 6 τr(γ)

)
=⇒

(
& τ∈τ τ`(α) 6 τr(α)

)
is valid, where τ is as in Characterization 9.1.

Proof. (i)⇔ (ii): Since order algebraizable systems are protoalgebraic, it
suffices to observe that the criterion in Theorem 4.4(ii) is equivalent, for
`, to the one in 9.3(ii). Indeed, given reduced matrix models 〈A, F 〉 and
〈B, G〉 of ` and a surjective homomorphism h : B → A, we have h[G] ⊆ F
iff h preserves order when considered as a map from 〈B,6G〉 to 〈A,6F 〉.
This follows from (8) and the definitions of 6G and 6F , because h preserves
the formulas occurring in ρ and in τ .

(ii)⇔ (iii) follows from the definitions, using (8). �

Because a ρ–order algebraizable system ` is equivalential, its ρ–ordered
algebras constitute a UISP–class of L–structures, where L is the first order
language with equality having one (binary) relation symbol 6 and the con-
nectives of ` as function symbols. We denote this UISP–class by OAlgρ(`).
If it is elementary (and thus a universal Horn class) for a suitable ρ, we
say that ` is elementarily order algebraizable. In that case, ρ can be cho-
sen finite (whence ` is finitely equivalential), and OAlgρ(`) is axiomatized
by the anti-symmetry law ∀x ∀y ((x 6 y & y 6 x) =⇒ x = y) and suitable
sentences all of the form

∀x̄
((
&i<n αi(x̄) 6 βi(x̄)

)
=⇒ α(x̄) 6 β(x̄)

)
,

with n ∈ ω. This does not force Mod∗(`) to be a universal Horn class,
however, and ` need not be finitary [58].

A partially ordered algebra 〈A,6〉 comprises an algebra A and a partial
order 6 of its universe A. When ` is elementarily ρ–order algebraizable,
then any universal Horn subclass K of OAlgρ(`) consists of partially ordered
algebras, by definition. Nevertheless, the atomic class H(K) may include
structures 〈A,6〉 where6 is not a partial order, because both anti-symmetry
and transitivity may be lost in the formation of homomorphic images. It
is therefore preferable to work with OAlgρ(`) ∩ H(K), the relative atomic
subclass of OAlgρ(`) generated by K. From Theorem 6.12(i), we obtain:

Theorem 9.4. Suppose ` is elementarily ρ–order algebraizable and fini-
tary. Then ` is structurally complete iff every proper universal Horn sub-
class of OAlgρ(`) generates a proper relative atomic subclass of OAlgρ(`).
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Every algebraizable system is order algebraizable, because the identity
relation is a partial order. Structural completeness has been established for
few (if any) significant non-algebraizable logics, but there is at least one
interesting conjecture of this kind in the literature. That is Problem 10.6
below, and Theorems 6.8, 9.3 and 9.4 are potentially relevant to it.

10. Fragments of Relevance Logic: A Case Study

The most natural examples of order algebraizable systems (apart from
algebraizable ones) are the intensional fragments of relevance logic, linear
logic, and other substructural logics without weakening. In exponential-free
linear logic, no fragment with implication is structurally complete [46], but
the contraction axiom turns relevance logic into a more complex case study,
with some open problems.

Relevance logic is traditionally identified with the theorems of a formal
system R (sometimes called Rt), whose signature is ∧,∨, ·,→,¬, t. For re-
cent surveys, see [19, 37, 61]. The postulates of R in any restricted signature
S constitute a formal system RS . In particular, R ·,→, t is

(B) (x→ y)→ ((z → x)→ (z → y)) (prefixing)

(C) (x→ (y → z))→ (y → (x→ z)) (exchange)

(I) x→ x (identity)

(W) (x→ (x→ y))→ (x→ y) (contraction)

x→ (y → (y · x))

(x→ (y → z))→ ((y · x)→ z)

t

t→ (x→ x)

(MP) x, x→ y / y (modus ponens).

Whenever {→} ⊆ S ⊆ {·,→, t}, then RS axiomatizes the S–fragment of
`R [40]. Because of this, we shall not bother to distinguish notationally
between RS and `RS

, and we refer to RS itself as the S–fragment of R. (In
[40], fragments are considered as sets of theorems, rather than as subsets of
a deducibility relation, but the above axiomatization is separative even for
rules. This point is discussed in more detail in [28, 66].)

If {→} ⊆ S ⊆ {·,→, t}, then RS is not (even weakly) algebraizable [7],
but it is elementarily ρ–order algebraizable with witness τ , where

ρ(x, y) = {x→ y} and τ (x) = {〈x→ x, x〉}.

We can replace τ (x) by {〈t, x〉} when t belongs to S. The {x→ y}–ordered
algebras of R ·,→, t are the Church monoids of [40], defined below.

Definition 10.1. A Church monoid 〈A,6〉 comprises an algebra A =
〈A; ·,→, t〉 and a partial order 6 of A, where

(i) 〈A; ·, t〉 is a commutative monoid (i.e., t ∈ A and · is a commutative
and associative binary operation on A, with a · t = a for all a ∈ A),
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(ii) for all a, b, c ∈ A, if a 6 b then a · c 6 b · c,
(iii) for all a, b ∈ A, max6{c ∈ A : a · c 6 b} exists and is equal to

a→ b, and
(iv) 〈A; ·,6〉 is square increasing, i.e., a 6 a · a for all a ∈ A.

The joint content of (ii) and (iii) could be put more succinctly as follows:

(ii)′ for all a, b, c ∈ A, we have c 6 a→ b iff a · c 6 b.

The binary operation → is called residuation. In any Church monoid, →
is completely determined by · and 6, and it follows from (ii)′ that

(9) a 6 b iff t 6 a→ b.

Because R ·,→, t is order algebraized by Church monoids, with τ = {〈t, x〉},
the following well known fact is a manifestation of (8).

Fact 10.2. For any set Γ ∪ {α} of formulas of R ·,→, t , we have Γ `R α
iff every Church monoid satisfies ∀x̄ ((&γ∈Γ t 6 γ) =⇒ t 6 α).

Theorem 10.3. ([46]) The rule x→ t, (x→ t)→ t / x is admissible in
R ·,→, t , and therefore in R→, t . Consequently, R ·,→, t and R→, t are not
structurally complete.

The proof in [46] relies on a characterization of admissibility that was
confined to algebraizable systems. Thus, it detours through an algebraizable
conservative extension of R ·,→, t . The detour can be eliminated, however,
because Theorem 9.3 prescribes nothing more than order algebraizability.
The argument in [46] shows that every Church monoid is a homomorphic
image of one that satisfies

(10) ∀x (x→ t = t =⇒ x = t) .

Note that (10) amounts to

∀x ((t 6 x→ t & t 6 (x→ t)→ t) =⇒ t 6 x) ,

in view of (9). Thus, x→ t, (x→ t)→ t / x is admissible in R ·,→, t, and it
remains admissible in R→, t , because · does not occur in it. It is underivable
in these systems, as it is underivable even in the stronger system of classical
logic (where t is logically equivalent to y → y).

Theorem 10.3 does not settle the problem of structural completeness for
R ·,→ , but this question is rather easily disposed of by syntactic arguments,
as follows.

Theorem 10.4. The rule x · y / x is admissible in R ·,→, t , and therefore
in R ·,→ . Consequently, R ·,→ is not structurally complete.

Proof. We use a single-conclusion sequent calculus G such that, for any
formula α of R ·,→, t , the sequent Bα is provable in G iff α is a theorem
of R. We require, as usual, that G has the cut elimination property and
the subformula property. Various calculi of this sort are available—see for
instance [47, 65]. In these systems, no axiom has the form Bα · β. The
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inference rule schemata are such that any cut-free proof of Bα · β in G,
involving no connective other than ·,→, t, must end with an execution of

∆ B α Σ B β

∆,Σ B α · β (B ·)

in which ∆ and Σ are empty. Thus, by the cut-elimination and subformula
properties, if α · β is a theorem of R ·,→, t , then Bα is provable in G, i.e.,
`R α. This establishes that x ·y / x is admissible in R ·,→, t , and it remains
admissible in R ·,→ , because it does not involve t. It is underivable in R,
however, by Fact 10.2, because the implication t 6 x · y =⇒ t 6 x is not
valid in every Church monoid. Indeed, consider the Church monoid with
identity 1 on the chain −2 < −1 < 1 < 2, where a · b is the element of
{a, b} with the greater absolute value when |a| 6= |b|, and is otherwise the
minimum of {a, b}. To invalidate the implication, set x = −1 and y = 2. �

Combining Theorems 10.4 and 9.3, we obtain a fact about residuated
structures that is not obvious on algebraic grounds:

Corollary 10.5. Every Church monoid is a homomorphic image of one that
satisfies ∀x ∀y (t 6 x · y =⇒ t 6 x).

The above results say nothing about the pure implication fragment R→
of R. This fragment is better known as BCIW, because it is axiomatized
by (B), (C), (I), (W) and modus ponens.

Problem 10.6. ([64]) Is BCIW structurally complete?

In [64], Slaney and Meyer gave a syntactic proof that the ∧,→ fragment
of R is structurally complete. They expressed hopes for a similar theorem in
the case of BCIW, but predicted a need to resort to algebraic methods. In
fact, hereditary structural completeness for R∧,→ can be inferred from the
arguments in [64] (see [46] for a generalization of this result). On the other
hand, BCIW is not hereditarily structurally complete—see Remark 10.11.

The theory in Section 9 was motivated in part by the remark about alge-
braic methods in [64] (and the fact that BCIW is order algebraizable but
not algebraizable). The {x → y}–ordered algebras of BCIW are the →,6
subreducts of Church monoids. They are finitely axiomatized structures,
and BCIW has the strong finite model property (see [41, 44, 66]). Never-
theless, Problem 10.6 remains open, and even the following special cases
seem difficult:

Problem 10.7. Is the rule (x→ (x→ x))→ x / x admissible in BCIW?

Problem 10.8. If a rule involving only one variable is admissible in BCIW,
must it be derivable in BCIW?

Because of the interest in Problem 10.6, we include here an observation
(Theorem 10.10) that connects these three problems together. We exploit
the following result of Meyer, in which we set

|x| := x→ x and α := x→ |x| .
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Theorem 10.9. ([39]) Up to logical equivalence, the one-variable formulas
of BCIW are exactly the following six, where the Hasse diagram puts β
below γ iff β → γ is a theorem of BCIW.

r��r
@

@
r rr @

@
�
�

r

(α→ |x|)→ x

α

|x|

α→ |x|

x

α→ x

This is the order reduct of the {x → y}–ordered algebra of BCIW that
comes from 〈Fm1, T1〉∗, where Fm1 is the free→ groupoid on one generator
x, and T1 is its intersection with the theorems of BCIW. In the diagram,
each formula β abbreviates its own equivalence class modulo logical equiva-
lence (i.e., modulo ΩT1). The 6× 6 Cayley table for → is given in [39]. Of
the six displayed formulas, only |x| and α→ |x| are theorems of BCIW.

Theorem 10.10. If the rule

(11) (x→ (x→ x))→ x / x

is admissible in BCIW, then BCIW is not structurally complete.

If (11) is not admissible in BCIW, then every admissible one-variable
rule of BCIW is derivable in BCIW.

Proof. For the first assertion, we need only note that (11) is underivable in
BCIW. This follows from Fact 10.2, because the implication

t 6 (x→ |x|)→ x =⇒ t 6 x

is not valid in the Church monoid 〈A; ·,→, t,6〉 with the following Hasse
diagram, where ⊥ · a = a for all a ∈ A, and f · f = > = a · > whenever
⊥ 6= a ∈ A. Indeed, (x→ |x|)→ x takes the value > when we set x = f .
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@
@
@

s���
s
@

@
@

>

t f

⊥

For the second assertion, suppose that there exists a one-variable rule

(12) α1, . . . , αn / β

that is admissible but underivable in BCIW, and choose (12) so that n is as
small as possible. We need to show that (11) is then admissible in BCIW.
Since (12) is underivable, β is not a theorem of BCIW, hence n > 0. Any
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αi that is a theorem of BCIW could be omitted from (12), contradicting
the minimality of n, so no αi is a theorem. Similarly, αi → αj cannot be a
theorem unless i = j, for otherwise we could omit αj from (12). This means
that {α1, . . . , αn} is an anti-chain in the Hasse diagram of Theorem 10.9,
hence n 6 2. Finally, because (12) is underivable, there is no i for which
αi → β is a theorem, i.e., we must have αi 66 β in the Hasse diagram, for all
i. So (12) must be (11) or one of the following.

(i) α, α→ x / x

(ii) α, x / (α→ |x|)→ x

(iii) α, α→ x / (α→ |x|)→ x

(iv) α / x

(v) α / α→ x

(vi) α / (α→ |x|)→ x

(vii) x / α

(viii) x / (α→ |x|)→ x

(ix) α→ x / α

(x) α→ x / (α→ |x|)→ x

We show, however, that each of (i)–(x) is either derivable or inadmissible in
BCIW, thus completing the proof.

Obviously, (i) is derivable. To see that (ii) is derivable, observe that the
theorem (α→ |x|)→ (α→ |x|) is logically equivalent in BCIW to

α→ (x→ ((α→ |x|)→ x)),

thanks to several applications of (C). Modus ponens does the rest. And,
because (i) and (ii) are derivable, so is (iii).

We claim that none of (iv)–(x) is admissible in BCIW.

To see that (iv) is not admissible, substitute x→ |x| for x. The premise
of (iv) becomes (x→ |x|)→ ((x→ |x|)→ (x→ |x|)), which is a theorem of
BCIW, because both

(x→ |x|)→ (x→ x) and (x→ x)→ ((x→ |x|)→ (x→ |x|))
are theorems (use (W) and (B)). But the conclusion of (iv) becomes x→ |x|,
which is not a theorem.

If (v) were admissible, then the same would be true of (iv), by modus
ponens. So (v) is not admissible. Similarly, the inadmissibility of (vi) follows
from that of (iv), because α→ |x| is a theorem.

To see that (vii) is inadmissible, substitute (x→ (x→ y))→ (x→ y) for
x, so the premise of (vii) becomes the theorem (W). This substitution turns
α into a formula, δ say, and it suffices to show that δ is not a theorem of
BCIW, i.e., that it is not a theorem of R. The set

A = {0} ∪ {2n : n ∈ ω} ∪ {∞}
can be made into a Church monoid 〈A; ·,→, 1,6〉, where 6 is the conven-
tional total order and · is ordinary multiplication on the finite elements of
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A, while 0 ·∞ = 0 and a ·∞ = ∞ whenever 0 6= a ∈ A. In this structure,
0 → a = ∞ = a → ∞ for all a ∈ A, and ∞ → a = 0 unless a = ∞, while
a → 0 = 0 unless a = 0. For finite nonzero a, b ∈ A, the value of a → b is
b/a if a divides b; otherwise it is 0. Substituting 2 for x and 8 for y, we find
that the value of (x→ (x→ y))→ (x→ y) is (2→ 4)→ 4 = 2→ 4 = 2. So
the corresponding value of δ is 2→ (2→ 2) = 2→ 1 = 0. Since t = 1 66 0,
it follows that δ is not a theorem of R, and hence that (vii) is inadmissible
in BCIW. Moreover, this argument can be extended to show that (viii) is
inadmissible, because (0→ |2|)→ 2 =∞→ 2 = 0.

Finally, note that x → (α → x) is a theorem of BCIW (apply (C) to
(W)). Therefore, the inadmissibility of (ix) and (x) follows from that of (vii)
and (viii), using modus ponens. �

Remark 10.11. A problem of Avron [2] asks whether the rule

x, (x→ (y → y))→ (x→ y) / y

is admissible in BCIW. As Avron observes, it is admissible but not derivable
in the → fragment of `RMt (see Example 8.9), which is stronger than
BCIW. This explains why BCIW is not hereditarily structurally complete.

In the literature, the most prominent admissible rule of relevance logic is
the underivable disjunctive syllogism x, y ∨ ¬x / y, known as (γ). The
admissibility of (γ) in R was proved in [42]. R is algebraizable, and
Alg(R) is the variety of De Morgan monoids [1, 7]. These are distribu-
tive lattice-ordered Church monoids with an involution. In [43], there is a
construction showing (in effect) that every subdirectly irreducible De Mor-
gan monoid is a homomorphic image of a De Morgan monoid satisfying
(t 6 x & t 6 y ∨ ¬x) =⇒ t 6 y.

By Theorem 7.5, a fragment of relevance logic with negation cannot be
overflow complete, because the existential positive sentence ∃x (x = ¬x)
holds in the 3–element De Morgan monoid and fails in the 2–element De
Morgan monoid. On the other hand, R ·,→, t and its fragments with →
are vacuously overflow complete, as they have no admissible overflow rules.
Indeed, Church monoids satisfy |t| = t = t · t and ||x|| = |x| = |x| · |x|, so all
formulas in ·,→, t [resp. ·,→] become theorems of R under the substitution
that sends all variables to t [resp. to |x| for a fixed variable x].

11. Sequent Systems

Gentzen systems may be regarded as generalized sentential deductive sys-
tems: in the role of sentential formulas, we have suitably shaped sequents
of formulas α1, . . . , αm B β1, . . . , βn, with the understanding that such a
sequent is sent by any substitution h to

h(α1), . . . , h(αm) B h(β1), . . . , h(βn).
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Sentential systems may then be identified with the Gentzen systems in which
all permissible sequents have the shape B ϕ. The [in]equational consequence
relations of classes of [ordered] algebras are special Gentzen systems.

The Leibniz classification of sentential logics can be extended to Gentzen
systems `, provided that we generalize the matrix theory appropriately. The
designated elements of a matrix 〈A, F 〉 (i.e., the elements of F ) are formal
sequents of elements of A, whose shapes are among those permitted by `.
The Leibniz congruence ΩAF is the largest congruence θ of A such that,
whenever a1, . . . , am B am+1 , . . . , an ∈ F and ai ≡ θ bi for i = 1, . . . , n,
then b1, . . . , bm B bm+1 , . . . , bn ∈ F . Again, a matrix 〈A, F 〉 is reduced
if ΩAF is the identity relation. Theorem 2.12 remains true in this setting.
The Ω–characterizations of protoalgebraicity, truth equationality and [finite]
equivalentiality can be retained as definitions; for order algebraizability, see
[60]. The available model-theoretic characterizations remain valid, and the
syntactic characterizations are modified in natural ways—see [56] and its
references. Modulo these changes, the main results of Sections 4–9 remain
true as well, because they make no essential use of special syntax, and
rely mostly on Ω–properties instead. Since equational consequence relations
are Gentzen systems, results about structurally complete classes of algebras
(such as those in [4]) are encompassed in this unified setting.

Substructural Gentzen systems that enjoy cut elimination are typically
at least order algebraizable, but their cut-free subsystems cannot even be
assumed protoalgebraic. So the results of Sections 4–9 cannot be used to
explain cut elimination, although Theorem 2.12 is still applicable. The re-
duced matrix models of cut-free systems are not easily isolated, however,
and it seems difficult to extract the criteria of Theorem 2.12(iii) directly
from algebraic proofs of cut elimination (such as the one in [3]).
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Studies in Universal Logic, Birkhäuser, Basel-Boston-Berlin, 2008.

[51] T. Prucnal, On the structural completeness of some pure implicational propositional
calculi, Studia Logica 30 (1972), 45–52.

[52] , Structural completeness of Medvedev’s propositional calculus, Rep. Math.
Logic 6 (1976), 103–105.

[53] , Structural completeness of some fragments of intermediate logics, Bull. Sect.
Logic 12 (1983), 41–44.

[54] , Structural completeness of purely implicational intermediate logics, in G.
Dorn, P. Weingartner (eds.), ‘Foundations of Logic and Linguistics. Problems and
Their Solutions’, Plenum Press, New York & London, 1985, pp. 31–41.
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