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Psychologists, neuroscientists, and economists often conceptualize decisions as arising from 
processes that lie along a continuum from automatic (i.e., “hardwired” or over-learned, but 
relatively inflexible) to controlled (less efficient and effortful, but more flexible). Control is 
central to human cognition, and plays a key role in our ability to modify the world to suit 
our needs. Given its advantages, reliance on controlled processing may seem predestined to 
increase within the population over time. Here, we examine whether this is so by introducing 
an evolutionary game theoretic model of agents that vary in their use of automatic versus 
controlled processes, and in which cognitive processing modifies the environment in which 
the agents interact. We find that, under a wide range of parameters and model assumptions, 
cycles emerge in which the prevalence of each type of processing in the population oscillates 
between two extremes. Rather than inexorably increasing, the emergence of control often 
creates conditions that lead to its own demise by allowing automaticity to also flourish, 
thereby undermining the progress made by the initial emergence of controlled processing. 
We speculate that this observation may have relevance for understanding similar cycles 
across human history, and may lend insight into some of the circumstances and challenges 
currently faced by our species. 
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1. Introduction 
 
Cognitive processes have long been conceptualized as lying along a continuum from automatic to 
controlled (Allport, 1954; Cohen, Dunbar, & McClelland, 1990; Kahneman & Treisman, 1984; 
Posner & Snyder, 1975; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). More automatic 
processes are more “hardwired” or over-learned, which leads to greater efficiency (e.g. greater 
speed and less effort) at the cost of reduced flexibility and less ability to adjust to the details of the 
current situation. More controlled processes, conversely, involve more deliberation and thought – 
requiring greater investment of time and effort, but allowing a greater degree of flexibility and 
sensitivity to specifics and/or circumstances of the particular decision. This distinction remains a 
fundamental tenet of cognitive psychology that has continued to be a focus of intensive research 
(Botvinick & Cohen, 2014; Evans & Stanovich, 2013), influencing thinking in the behavioral and 
neurobiological sciences more generally (e.g. Cushman (2013); Fudenberg and Levine (2006); 
Hare, Camerer, and Rangel (2009); (2003); Kahneman (2011); McClure, Laibson, Loewenstein, 
and Cohen (2004); Miller and Cohen (2001); Rand, Greene, and Nowak (2012); Stanovich and 
West (2000)).  

The remarkable capacity for controlled processing is considered one of the distinguishing 
characteristics of human cognition. Often termed "cognitive control", it is critical to every faculty 
that is considered to be distinctively human, including reasoning, problem solving, planning, and 
symbolic language, and the role that these play in the formation and function of societies. Given 
the virtues of controlled processing, and the externalities to which it gives rise (e.g. advanced 
technologies in virtually in every domain of human function, including agriculture, housing, 
transportation, communication and large-scale economics), one might imagine that the prevalence 
of cognitive control among agents in a population would be directly (positively) associated with 
the fitness of that population. If so, two corollaries would seem to follow: the spread of controlled 
processing within a population should be inexorable, and that spread should be associated with the 
inexorable success of the population. Here, we challenge these conclusions on theoretical grounds.  
 The work we present is inspired in part by observations of human history. Anthropological 
evidence suggests that many cultures that have developed advanced technologies — presumably 
evidence of the emergence of cognitive control within at least some proportion of the population 
— have ultimately met with demise (e.g. Diamond (2005); Richerson, Boyd, and Bettinger (2009); 
Schwindt et al. (2016); Turner and Sabloff (2012)). It is possible that this demise could have been 
induced by fully exogenous factors beyond the influence of the population (e.g. environmental 
shocks). It is also possible, however, that at least in some cases this demise could have arisen from 
a failure of the population as a whole to act with foresight (i.e., in a manner that controlled 
processing would seem to make possible) – for example, using new technologies to consume 
resources in an unsustainable way, leading to exhaustion of the environment or increased 
vulnerability to environmental shocks.  

Although the empirical evidence is at best suggestive, we believe that this possibility of 
controlled-based success within a population leading to lack-of-control-based failure is intriguing, 
and warrants formal exploration. In part, this is because it raises a question that has potentially 
profound consequences for the present circumstances of our species: why do populations 
comprised of agents with the rational faculties necessary to produce sophisticated technologies 
sometimes fail to act as rational stewards of such technologies? There are of course many possible 
responses to this question. One is that modern circumstances themselves refute the assertion: we 
have not met with, nor are we at risk of, such failure – the risks are either contrived, or are ones 
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that new technological innovations will resolve. This is a possibility. However, the cost of at least 
considering the risks of failure seems small, while the danger of failing to accurately identify and 
respond to that risk seems infinitely greater.  

It is in this spirit that we consider potentially fundamental dynamics that may occur as the 
capacity for cognitive control emerges in a population, spreads, and affects the environment 
— dynamics that we show can lead to cycles of growth followed by dramatic collapse as easily as 
they can lead to stability. Describing these dynamics in formal terms may, at the least, lay the 
foundation for exploring their relevance to the complex circumstances in which the human species 
presently finds itself. At best, they may help identify factors that could be leveraged to mitigate 
potential risks, and increase the likelihood of a stable and promising future. 
 Specifically, we explore the possibility that the increasing prevalence of controlled 
processing in a population (within and/or across its individuals), and the impact this has on the 
environment, can lead to initial improvements in the fitness of the population; but that, under a 
range of circumstances, this growth can sow the seeds of its own demise. We examine several 
scenarios that can produce this effect – and the reasons for it – using a formal theoretical approach 
that applies mathematical methods from non-linear dynamical systems analysis and population 
biology together with numerical methods and computational simulations.  

The models we present here implement the distinction between controlled and automatic 
processing in simple, but principled forms. While they certainly do not capture the full complexity 
of cognitive processes of which humans are capable, nor the underlying continuity of the spectrum 
from controlled to automatic processing (e.g., Cohen et al. (1990); Kahneman and Treisman 
(1984)), the models we present do capture critical distinctions that underlie the dimension of 
controlled vs. automatic processing. Furthermore, judicious simplification has allowed us to build 
population models of agents that incorporate this critical dimension of processing. This, in turn, 
has allowed us to pursue some of the first efforts to incorporate this fundamental construct of 
automatic versus controlled processing from cognitive psychology into population models, and 
use these to ask questions about the emergence, impact and evolution of psychological processes 
at the population level. 

 
2. Prior theoretical work 

 
While formal models have provided insight into the mechanisms underlying automatic 

and controlled processes and the impact of these processes on individual behavior (Cohen et al., 
1990; Miller & Cohen, 2001), these models have not addressed their interaction at the population 
level over the course of evolutionary timescales (whether cultural or genetic). Conversely, 
population models have largely ignored the dimension of controlled vs. automatic processing, 
instead just focusing on the evolution of agents’ behaviors rather than the underlying cognitive 
processes that drive that behavior.  

Despite this overall lack of consideration of evolution along the dimension of automatic 
versus controlled cognition, some work has begun to explore the population dynamics of factors 
that have much in common with this dimension. For example, Wolf, Doorn, and Weissing (2008) 
consider the population dynamics that arise from the competition between agents with 
“unresponsive personalities” that are inflexible in the face of a fluctuating environment (akin to 
reliance on automatic processing), and agents with “responsive personalities” that are able to 
change flexibility but must pay a cost to do so (akin to reliance on controlled processing). Their 
simulated agents face an environment that alternates between two possible states and each agent 
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must choose between two actions at any given time, with each action optimally matched to one 
of the two environmental states. Based on the assumption that the benefit of choosing the correct 
action is decreasing in the number of other agents who also choose that action (i.e. that the 
benefits of “responsiveness” are negatively frequency dependent), they show that stable 
coexistence of responsive and unresponsive agents is a robust feature of the resulting population 
dynamics. Notably, they do not observe any cyclical dynamics in the frequency of responsive 
versus unresponsive agents. 

Another example is the work of Bear and Rand (2016) and Bear, Kagan, and Rand 
(2017), who examine automatic and controlled processing in the context of the evolution of 
cooperation. Their agents play Prisoner’s Dilemma games that sometimes are one-shot (such that 
defection is always payoff-maximizing) and at other times involve future consequences (such 
that cooperation is payoff-maximizing if the other player also cooperates). Thus, their agents 
face a varying social environment. Agents can either use automatic processing, inflexibly 
choosing to cooperate or defect without conditioning on game type, or they can pay a cost to use 
controlled processing and base their action on game type. They find that evolution leads to a 
population in which automatic and controlled processing stably coexist within each individual if 
games with future consequences are sufficiently likely. That is, the equilibrium strategy is to (i) 
cooperate when using automatic processing, but (ii) sometimes exercise control (in trials for 
which the cost of control is sufficiently small) and switch to defection if it turns out the game is 
1-shot. Like Wolf et al. (2008), they do not observe cyclical dynamics in the extent of automatic 
versus controlled processing.  
 While these models have begun to address the population dynamics of automatic versus 
controlled processing, they do not present a general framework for studying this issue. Rather, 
each considers one specific application of the distinction between these types of processing. 
More importantly, these models omit a key feature of the natural world suggested above: not 
only can the environment (physical and/or social) determine the adaptive advantage of a 
particular cognitive style, but the prevalence of that cognitive style within the population may, in 
turn, impact the environment; that is, there can be feedback between environment and cognition 
(Cohen, 2005).  

The interaction between the behavior of agents in a population and the environment has 
been explored previously in evolutionary models (e.g., niche construction; Bergmüller and 
Taborsky (2010); Kendal, Tehrani, and Odling-Smee (2011); Laland, Odling-Smee, and Feldman 
(1999)) – but not, to our knowledge, the interaction between agents’ cognition and the 
environment.  Our group has recently begun an examination of the influence that such cognition-
environment feedback has on the evolutionary dynamics of the balance between controlled and 
automatic processing in the context of intertemporal choice (Tomlin, Rand, Ludvig, & Cohen, 
2015; Toupo, Strogatz, Cohen, & Rand, 2015).  

In this work, agents foraging for goods could engage in either automatic or controlled 
processing as they chose how much of those goods to consume and competed with their fellow 
agents for access to those goods. While automatic processing led to the immediate consumption 
of goods (and maximal instantaneous individual fitness), control – and the associated capacity 
for forethought and planning – allowed agents to make better use of the resources they acquired 
by consuming them in an optimal way (leading to higher long-term fitness). However, because 
control required time and effort, automatic processing led agents to be more likely to acquire 
goods during competitions. Furthermore, the intensity of competition and the abundance of 
resources (and therefore the importance of planning for the future) were allowed to vary based 
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on the extent of controlled processing in the population. This feedback gave rise to cyclic 
dynamics under a robust set of parameters using both agent-based simulations (Tomlin et al., 
2015) and differential equation modeling (Toupo et al., 2015), with populations alternating 
between high and low prevalence of controlled processing. However, like previous work, these 
models did not present a general analysis of the balance between automatic and controlled 
processing, but instead made a number of domain-specific assumptions tailored to the details of 
intertemporal decision-making in a particular context.  
 
3. The present work 

 
In this paper, we present a set of models that capture key features of automatic versus 

controlled processing, and their interactions with the environment, in a way that is fully general 
and not tied to any particular implementation. We begin with the simplest possible formulation 
(Minimal Model, Section 4), in which controlled processing generates higher fitness than 
automatic processing, but also carries a cost (which can vary based on the fraction of the 
population engaging in automatic processing). The Minimal Model consists of two differential 
equations respectively characterizing the population (fraction of agents engaging in controlled 
vs. automatic processing) and the environment (extent to which controlling processing 
outperforms automatic processing) that are coupled with some lag.  We examine the dynamics of 
this model in detail. We then demonstrate the robustness of the conclusions from this Minimal 
Model by considering a series of additional models that add complexity in varying ways, and 
show that all of these extensions also exhibit cyclical dynamics (Section 5).  

 
4. Minimal model 

4.1 Automatic versus controlled processing 

The minimal model of automatic versus controlled processing focuses on the trade-off 
between efficiency and flexibility of processing. Specifically, we assume that automatic processing 
supports efficient and typically effective behavior, achieved by encoding “pre-compiled” 
responses that are optimally adapted to a particular set of circumstances, but are slow to develop 
or change. In contrast, we assume controlled processing supports a more flexible range of 
responses that can adjust more quickly to changes in contingencies and thereby generate 
advantageous responses under a wider range of conditions, but that this comes at a cost (as 
discussed further below). This distinction bears a close relationship to the distinction between 
compiled (efficient but rigid) and interpreted (slower, more demanding, but more flexible) 
procedures in computer science. In an evolutionary context, the dimension aligns with different 
time scales of adaptation — automatic processing over longer (developmental, and/or traditional 
evolutionary) time scales, and controlled over much shorter (circumstance-by-circumstance).1  

We capture the advantage of flexibility conferred by control by stipulating that controlled 
processing results in a payoff from decision-making normalized to value 1, and automatic 
processing results in a discounted payoff of 1 − 𝑝𝑝 (with 0 <  𝑝𝑝 <  1). The flexibility of controlled 
                                                 
1 We should emphasize that automatic and controlled processing are not necessarily always in conflict: both modes 
of processing can arrive at the same response. In the work reported here, however, we focus on competition between 
these two extremes of processing, as there is mounting evidence that they may indeed compete in determining 
responses (e.g., Evans and Stanovich (2013); Greene, Nystrom, Engell, Darley, and Cohen (2004); McClure et al. 
(2004)) and we seek to understand the influence that such a trade-off has at the population level. 
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processing, however, comes at a cost (e.g., Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006; 
Gershman, Horvitz, & Tenenbaum, 2015; Griffiths, Lieder, & Goodman, 2015; Keramati, 
Dezfouli, & Piray, 2011; Posner & Snyder, 1975; Shenhav, Botvinick, & Cohen, 2013): it requires 
time and effort to attend to the relevant information and compute the optimal course of action that, 
at the least, imposes an opportunity cost with regard to other potentially advantageous behaviors 
(Kurzban, Duckworth, Kable, & Myers, 2013). To model this, we impose a fixed cost c upon the 
use of controlled processing. 

For simplicity, in the Minimal Model we consider the evolutionary dynamics of a 
population of agents that act exclusively in either a controlled or automatic manner. Specifically, 
let 𝑥𝑥 be the fraction of the population that is controlled (0 ≤  𝑥𝑥 ≤  1), and therefore 1 − 𝑥𝑥 be the 
fraction that is automatic. In the absence of cognition-environment feedback, the fitness of 
controlled agents is 𝑓𝑓𝑐𝑐 = 1 − 𝑐𝑐 (the decision-making payoff of 1 minus the cost of control, 𝑐𝑐), and 
the fitness of automatic agents is 𝑓𝑓𝑎𝑎 = 1 − 𝑝𝑝 (the inferior decision-making payoff of 1 − 𝑝𝑝, but 
with no additional cost).  

Thus, there are two environmental parameters that describe the nature of the world in which 
the agents operate: 𝑝𝑝, capturing the factors that favor the value of flexible controlled processing 
relative to inflexible automatic processing (e.g., how stable the environment is, how plentiful 
resources are, etc), and 𝑐𝑐, capturing how costly it is to exert cognitive control. 

4.2 Evolutionary dynamics 

Within this simple framework, we allow the frequency of controlled agents 𝑥𝑥 in the 
population to evolve according to the replicator equation (Hofbauer & Sigmund, 1998). The 
replicator equation implements a fairly general population dynamic, whereby the strategy with the 
higher payoff becomes more common in the population over time. This dynamic can equally well 
describe evolution that is genetic or cultural (e.g., in which social learning leads people to 
propagate successful behaviors observed in others). 

For our system, the replicator equation is specified by  

�̇�𝑥 = 𝑥𝑥(𝑓𝑓𝑐𝑐 − 𝜙𝜙), 
 

where ϕ is the average fitness of the population,  

𝜙𝜙 = 𝑥𝑥𝑓𝑓𝑐𝑐 + (1 − 𝑥𝑥)𝑓𝑓𝑎𝑎. 

Our subsequent analyses will use 𝜙𝜙 as a proxy for population size, since the replicator equation 
does not directly describe the size of the population (only the fraction of the population that is 
automatic versus controlled). Furthermore, in Section 5.5 we consider an agent based model in 
which the population size does vary, and show equivalent results. 

4.3 Cognition-environment feedback 

To incorporate cognition-environment feedback, we allow the prevalence of automatic 
versus controlled processing in the population 𝑥𝑥 to influence both 𝑝𝑝 and 𝑐𝑐; that is, both 𝑝𝑝 and 𝑐𝑐 
vary as a function of 𝑥𝑥.  
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4.3.1 Feedback of 𝑥𝑥 on 𝑝𝑝 
 
Our characterization of the effect of 𝑥𝑥 on 𝑝𝑝 is used to capture the influence that externalities 

of controlled processing can have on the environment (and therefore on the relative advantage of 
the flexibility allowed by control). For example, technological advances are an external 
consequence of the proliferation of controlled processing in the human population, and this has 
had clear consequences on our environment: abundance of food and shelter, fluidity and scope of 
social interaction, etc. Here, we begin by considering the simplest case in which such externalities 
close the gap between automatic and controlled processing: by making resources more plentiful 
and thus stabilizing the environment, the innovations created by controlled processing reduce the 
importance of being able to flexibly adapt and plan for the future. Automatic processing, 
conversely, can undermine many of these benefits (e.g., due to overconsumption, ill-advised, over-
use and/or inefficient use of resources, etc.). 

To capture these influences, we link the value of 𝑝𝑝 inversely to the fraction of controlled 
agents in the population 𝑥𝑥: as control increases in the population, the advantage of being controlled 
decreases. Because it takes time both for the externalities associated with controlled agents to 
develop and for any deleterious effects of automatic processing to undermine the advantages of 
these externalities, we incorporate lag into the feedback between 𝑝𝑝 and 𝑥𝑥. Specifically, we 
implement the additional differential equation  

 

�̇�𝑝 =
((1 − 𝑥𝑥) − 𝑝𝑝)

𝜏𝜏𝑝𝑝
 

 
such that 𝑝𝑝 always moves in direct opposition to 𝑥𝑥 (i.e. towards the current value of 1 − 𝑥𝑥), but 
with some time lag parameterized by 𝜏𝜏𝑝𝑝.  
 
4.3.2 Feedback of 𝑥𝑥 on 𝑐𝑐  

 
Feedback of 𝑥𝑥 on 𝑐𝑐  is used to capture the influence that the prevalence of automatic 

processing can have on the cost of cognitive control. We focus primarily on the case in which the 
presence of more automatic agents reduces the relative advantage of controlled agents. For 
example, automatic agents may respond more quickly or efficiently (outcompeting controlled 
agents for access to resources) and/or consume resources without regard to future need, thereby 
diminishing resources upon which controlled agents had planned to rely and, as a result, increasing 
the relative cost of being controlled. At the same time, the costs of control might be decreased by 
a greater preponderance of controlled agents in the population. For example, this may give 
controlled agents a greater opportunity to form coalitions or design institutions that facilitate or 
reward the use of control, or selectively sanction automatic agents (which reduces the relative cost 
of being controlled).2 

The prevalence of control in the population, 𝑥𝑥, is likely to impact the cost of control 𝑐𝑐 on 
a much faster time scale than the rate at which the externalities of control impact 𝑝𝑝 (the relative 
advantage it has over automatic processing, as described above). This is because the former 
                                                 
2 Note that these effects all involve costs that weigh more heavily on controlled or automatic agents (i.e. affect the 
relative fitness of control). Effects that reduce the fitness of both types of agents equally do not alter the model’s 
dynamics, because the replicator equation is driven by how each strategy’s fitness compares to the average fitness 
(and so adding or subtracting a constant from all payoffs has no effect). 
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typically emerges from direct interactions between individuals, or potentially from influences on 
the environment that occur relatively quickly (e.g., depletion through consumption) compared to 
environmental influences that affect 𝑝𝑝 (e.g., technological development and growth). Therefore, 
for simplicity, and in keeping with these assumptions, we implement the feedback of 𝑥𝑥 on 𝑐𝑐 as 
instantaneous (in the Two-lag Model we consider the more complex case where feedback of 𝑥𝑥 on 
𝑐𝑐 is lagged).  

Specifically, we modify the fitness of controlled agents 𝑓𝑓𝑐𝑐 such that an additional cost 
𝑤𝑤(1 − 𝑥𝑥) is added, where w is the intensity of the impact of the population state on the cost of 
control, yielding 𝑓𝑓𝑐𝑐 = 1 − (𝑐𝑐 + 𝑤𝑤(1 − 𝑥𝑥)). 

Although we focus on the case in which the presence of automatic agents increases the cost 
of control, this formulation can equally well describe the opposite case in which the presence of 
automatic agents decreases the cost of control. Such a situation might result from technologies or 
behaviors that, when employed by controlled agents, leverage the short-sighted behavior of 
automatic agents for the personal gain of the controlled agents (for example, in the domain of 
intertemporal choice, the design and sale of products providing instant gratification, but long-term 
costs – products that would primarily appeal to agents engaging in automatic processing). These 
situations correspond to cases in which 𝑤𝑤 < 0, which leads to the fitness of controls 𝑓𝑓𝑐𝑐 increasing 
with the frequency of automatic agents 1 − 𝑥𝑥.  
 
4.4 Results 
  

The Minimal Model is specified by the following system of two ODEs: 
 

�̇�𝑥 = 𝑥𝑥(𝑓𝑓𝑐𝑐 − 𝜙𝜙) = 𝑥𝑥 ��1 − �𝑐𝑐 + 𝑤𝑤(1 − 𝑥𝑥)�� − �𝑥𝑥 �1 − �𝑐𝑐 + 𝑤𝑤(1 − 𝑥𝑥)�� + (1 − 𝑥𝑥)(1 − 𝑝𝑝)�� 
 

�̇�𝑝 =
((1 − 𝑥𝑥) − 𝑝𝑝)

𝜏𝜏𝑝𝑝
 

with 𝑐𝑐 > 0 and 𝜏𝜏𝑝𝑝  >  0.  
Analyzing this system shows the existence of up to three fixed points.3 There are always 

fixed points at [𝑥𝑥 =  0,𝑝𝑝 =  1] (exclusively automatic agents in an inhospitable world) and 
[𝑥𝑥 =  1,𝑝𝑝 =  0] (exclusively controlled agents in a hospitable world). When 𝑐𝑐 + 𝑤𝑤 < 1, there is 
a third (interior) fixed point at �𝑥𝑥 = 1−𝑐𝑐−𝑤𝑤

1−𝑤𝑤
,𝑝𝑝 = 𝑐𝑐

1−𝑤𝑤
� where automatic and controlled agents 

coexist. 
These fixed points exhibit different stability characteristics. First, the fixed point [𝑥𝑥 =

 1,𝑝𝑝 =  0] is never stable given that 𝑐𝑐 >  0. That is, in a maximally hospitable world, automatic 
processing is just as successful as controlled processing because when 𝑝𝑝 = 0 there is no 
advantage of control. Thus, as long as there is any cost to control (𝑐𝑐 > 0), automatics will 
outperform controls. 

When 𝑐𝑐 + 𝑤𝑤 > 1, the fixed point [𝑥𝑥 =  0,𝑝𝑝 =  1] is stable, and the interior fixed point is 
not relevant (i.e. lies outside the interval [0,1]). In this case, the cost of control in an entirely 

                                                 
3 Fixed points are [x, p] pairs at which �̇�𝑥 = �̇�𝑝 = 0, such that when at a fixed point the system will remain there. A 
fixed point is stable if the system returns to the fixed point when perturbed away, and unstable if even a tiny 
perturbation causes the system to leave the fixed point. Thus, it is the identification of stable fixed points that is our 
goal for understanding potential evolutionary outcomes.  
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automatic population, 𝑐𝑐 + 𝑤𝑤, is larger than the relative advantage of controlled over automatic 
processing in a maximally inhospitable world, 1. Under these conditions, controlled agents are at 
an insurmountable disadvantage and unable to proliferate. 

When 𝑐𝑐 + 𝑤𝑤 < 1 (that is, when the cost of control in an entirely automatic population is 
less than control’s advantage in a maximally inhospitable world), the fixed point at [𝑥𝑥 =  0,𝑝𝑝 =
 1] becomes unstable and the interior fixed point becomes relevant (i.e. enters the interval [0,1]). 
Everywhere in this region, we observe coexistence between automatic and controlled processing. 
Thus, coexistence is a robust feature of this model, as it has been in other models that did not 
involve feedback between agents’ cognition and the environment (Bear et al., 2017; Bear & Rand, 
2016; Wolf et al., 2008). As long as the costs of control are not so large as to prevent controlled 
processing from emerging in the first place (i.e. to prevent controlled agents from invading the 
“state of nature” of automatic agents in an inhospitable world), both automatic and controlled 
processing will persist.  

Interestingly, however, the dynamics of this coexistence depend on how quickly the 
prevalence of control in the population 𝑥𝑥 diminishes the relative advantage of controlled 
processing 𝑝𝑝 (as captured by the lag parameter 𝜏𝜏𝑝𝑝). There is a critical value of 𝜏𝜏𝑝𝑝,  

 

𝜏𝜏𝑝𝑝∗ =
(1 − 𝑤𝑤)2

𝑐𝑐𝑤𝑤(1 − 𝑐𝑐 − 𝑤𝑤)
 

 
around which the dynamics change.  

When 𝜏𝜏𝑝𝑝 < 𝜏𝜏𝑝𝑝∗ such that change occurs sufficiently quickly, the interior fixed point is 
stable and the population settles there. At 𝜏𝜏𝑝𝑝 = 𝜏𝜏𝑝𝑝∗, however, the interior fixed point becomes 
unstable and a limit cycle is born (i.e. a Hopf bifurcation occurs). Thus, when 𝜏𝜏𝑝𝑝 > 𝜏𝜏𝑝𝑝∗ (i.e., 
feedback from 𝑥𝑥 on 𝑝𝑝 is sufficiently lagged, the proliferation of control occurs more quickly than 
the rate at which this diminishes its advantage), and we observe persistent cycles in the relative 
balance of automatic and controlled processing – unlike prior models lacking cognition-
environment feedback. A representative example of these cyclical dynamics is shown in Figure 1.  

 

 
Figure 1. Persistent cycles of automaticity and control emerge from the Minimal Model. Shown 
are the values of 𝑥𝑥, 1 − 𝑥𝑥, 𝑝𝑝, and 𝜙𝜙 as a function of time. The results were generated using 
numerical integration of the Minimal Model ODEs using 𝑤𝑤 =  0.15, 𝑐𝑐 =  0.5, and 𝜏𝜏𝑝𝑝  =  50, and 
initial conditions 𝑥𝑥 =  0.01, 𝑝𝑝 =  0.9. 
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The cycles shown in Figure 1 exhibit several distinct phases: 
1. The population begins with dominance by automatic agents (i.e., 𝑥𝑥 is small), in an 

inhospitable environment (i.e., 𝑝𝑝 is large). This population is small in size (i.e. has low 
average fitness). 

2. Controlled agents outperform automatic agents because of the advantage controlled 
processing has over processing in inhospitable environments. Thus, 𝑥𝑥 increases and 
correspondingly, subject to some lag, 𝑝𝑝 decreases. The population’s size increases as the 
controlled agents outperform the automatic agents and average fitness increases.  

3. With time, the externalities of control associated with the prevalence of controlled agents 
in the population (i.e. large 𝑥𝑥) lead to a progressively more hospitable environment, and 𝑝𝑝 
continues to decrease (with the associated increase in the fitness that would be achieved by 
an automatic agent).  

4. Once 𝑝𝑝 becomes sufficiently small, automatic processing becomes successful enough that 
the cost of control outweighs the relative benefit of controlled processing. Thus automatic 
agents begin to outperform controlled agents and proliferate, and automatic agents come 
to dominate the population (𝑥𝑥 decreases).  

5. Soon, however, the decreasing level of control in the population (small 𝑥𝑥) causes 𝑝𝑝 to 
increase. This causes the fitness of the predominantly automatic population to fall, leading 
to a population crash. 

6. This returns the system to its initial point, with a small population of automatic agents in 
an inhospitable world, and the cycle begins anew. 4 
 

Figure 2 illustrates the conditions necessary for such limit cycles to occur – in particular, the 
minimum amount of feedback lag required to induce a limit cycle, 𝜏𝜏𝑝𝑝∗. It is easiest to get limit 
cycles (i.e. the least amount of lag is required) when the fixed cost of control, c, is small and the 
population state’s influence over the cost of control, w, is large. Furthermore, the 𝜏𝜏𝑝𝑝 > 𝜏𝜏𝑝𝑝∗ 
condition indicates that 𝑤𝑤, 𝑐𝑐 > 0 is required for limit cycles (whereas only 𝑐𝑐 > 0 is required for 
stable coexistence). This shows that in the Minimal Model, the prevalence of automatic processing 
in the population must negatively impact the cost of control (𝑤𝑤 >  0) in order to generate cycles – 
no impact (𝑤𝑤 =  0) or a positive impact (𝑤𝑤 <  0) can lead to coexistence but not to cycles 
(although as we will see below, this particular result is not totally general: it is possible for cycles 
to arise with 𝑤𝑤 <  0 using the Threshold Model’s alternative formulation of cognition-
environment feedback). 

                                                 
4 It is important to note that when using the replicator equation, the fraction of controlled agents x can become 
arbitrarily small without actually reaching zero. Therefore, after the environment destabilizes and the population 
crashes, control is always able to re-invade. In reality, however, populations are finite and thus actual extinction may 
occur at the end of one of the downward spirals (although mutation and migration may also reintroduce control into 
an entirely automatic finite population, seeding a new cycle). 
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Figure 2. The extent to which there must be lag in the impact of the population composition 𝑥𝑥 on 
the advantage of control 𝑝𝑝, parameterized by 𝜏𝜏𝑝𝑝, in order to observe limit cycles varies depending 
on both the fixed cost of control 𝑐𝑐 and the cost imposed on control by automatic agents 𝑤𝑤. Cycles 
always emerge with sufficient lag (i.e if 𝜏𝜏𝑝𝑝 is sufficiently large), provided that c,w > 0. Shown is a 

contour plot of (1−𝑤𝑤)2

𝑐𝑐𝑤𝑤(1−𝑐𝑐−𝑤𝑤)
, the minimum 𝜏𝜏𝑝𝑝 required for limit cycles, with log10-transformed values 

indicated along contour lines (up to 103). Recall that 𝑐𝑐 < (1 −𝑤𝑤) is required for there to be an 
interior fixed point, and therefore no data exist in the upper right half of the figure. 

Why must there be sufficient lag in the influence of 𝑥𝑥 on 𝑝𝑝 for cycles to emerge? The 
answer involves hysteresis: The lag creates inertia in 𝑝𝑝, which prevents the population from settling 
on the interior equilibrium. When automatic agents are initially common and the environment is 
inhospitable (and automatic processing consequently performs poorly), controlled agents begin to 
proliferate. If the relative advantage of control 𝑝𝑝 diminishes rapidly enough, the population reaches 
equilibrium (i.e. reaches a state in which automatic and controlled processing have the same 
fitness). But if there is sufficient lag, the relative advantage of controlled processing remains 
relatively high as control proliferates, allowing the frequency of control to exceed the value it 
would occupy in the interior equilibrium. Once the advantage of controlled processing finally falls 
far enough, the system swings back in the opposite direction: automatics proliferate and enjoy a 
period of success, allowing the level of control to drop below that of the interior fixed point, thus 
reinitiating the cycle. 

In sum, we find that not only is coexistence between automatic and controlled agents a 
robust feature of this model, but so is cyclicity. As long as there is cognition-environment 
feedback, with a sufficient lag in the impact of that effect on the relative advantage of controlled 
processing, and the cost of control is not too large, persistent cycles emerge: the population 
alternates between periods of dominance by automatic and controlled processing, and the 
population fitness (and thus size) fluctuates accordingly.  It seems reasonable to imagine that such 
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lags may be characteristic of real-world systems; that is, the pace at which the negative secondary 
consequence of newly developed technologies accrue (e.g., bacterial resistance, or environmental 
damage from resource use) typically lags behind the initial positive impact of those technologies 
(i.e., protection from infection, or energy availability). 

5. Robustness across model specifications 

 It is reasonable to ask whether the results observed for the Minimal Model are specific to 
the simplicity and/or specific assumptions of that model.  To address this, we consider a series of 
related but more complex models that modify the Minimal Model in a number of different ways, 
and show that all of these produce results that are qualitatively equivalent to those of the Minimal 
Model.  

The first of these is the Two-lag Model (Section 5.1), which addresses the possibility that 
lag exists not only in the effects of control on the environment, but also in the effects of 
automaticity on the cost of control. Although the impact of automatic agents on the cost of control 
is likely to occur relatively quickly, because it emerges from direct interactions between 
individuals (e.g., competition) or short-term influences on the environment (e.g., consumption), it 
cannot literally be instantaneous (as assumed in the Minimal Model). The Two-lag Model assesses 
the impact of incorporating this extra lag by adding a third differential equation to the Minimal 
Model characterizing the extent to which automatic agents directly impact the fitness of controlled 
agents (also coupled to the population state with a lag).  

The second extension is the Consumption Model (Section 5.2), which considers the 
possibility that automatic agents impact the cost of control via their consumption (rather than just 
their presence): While some forms of impact on the cost of control – such as competition to acquire 
resources – likely depend on the number of other agents (prevalence), other forms – such as the 
shortsighted exploitation of resources by automatic agents that controlled agents had been 
expecting to be available in the future – depends on the total amount consumed by automatic agents 
(i.e. the product of the number of automatic agents and the amount each of those agents consume). 
To examine such interactions, the Consumption Model alters the Minimal Model’s implementation 
of how automatic agents influence the cost of control, such that this influence is weighted by the 
fitness (as a proxy for consumption behavior) of the automatic agents.  

The third is the Threshold Model (Section 5.3), which considers the robustness of the 
findings of the earlier models to how, precisely, the cognitive-environment feedback is 
implemented. While the Minimal Model considers gradual changes in the environment based on 
the population makeup, it is also possible that feedback occurs via a non-linear “tipping point,” 
such that the environment swings from improving to degrading once the level of control drops 
below a critical level. To examine such a scenario, the Threshold Model changes the coupling 
between population and environment, replacing the graduated dynamic of the previous models (in 
which the environment tracked the population state in a continuous way) with a discrete threshold 
dynamic.  

Fourth is the Multiprocess Agent Model (Section 5.4), which allows for agents that are not 
dedicated automatic or controlled processors, but instead can use both modes of processing. 
Although some people may rely relatively more on automatic versus controlled processing 
(Barrett, Tugade, & Engle, 2004; Hofmann, Gschwendner, Friese, Wiers, & Schmitt, 2008), it is 
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clearly not the case that people rely wholly on one or the other type of process (as assumed for 
simplicity by the previous models). Thus, the Multiprocess Agent Model asks whether the simpler 
models’ findings are robust to the more realistic assumption that people engage in both automatic 
and controlled processing. It does so by introducing an agent-based simulation implementation of 
the Minimal Model in which agents probabilistically engage in either automatic or controlled 
processing in any given interaction. 

 Finally, the Variable Population Size Model (Section 5.5) examines the robustness of our 
findings to allowing changes in the absolute size of the population, rather than the prior models’ 
approach of examining changes in the relative frequency of automatic versus controlled agents. 
Furthermore, this model considers another externality of control: in addition to stabilizing the 
environment (and therefore reducing the relative advantage of control’s flexibility), controlled 
processing and associated technological innovation increases the carrying capacity (i.e. maximum 
population size the environment can support). To examine the effect of these factors, the Variable 
Population Size Model modifies the agent-based simulations of the Multiprocess Agent Model to 
allow the population a vary in size, constrained by the frequency of controlled processing, 
 
5.1 Two-lag Model 

 
In the Minimal Model, we assumed that the prevalence of automaticity in the population 

(1 − 𝑥𝑥) impacted the cost of control instantaneously by specifying the cost of control in 𝑓𝑓𝐶𝐶 to be 
𝑐𝑐 + 𝑤𝑤(1 − 𝑥𝑥). Here we show that extending the model to the case in which this feedback, like the 
influence of 𝑥𝑥 on the advantage of controlled processing 𝑝𝑝, is also lagged yields similar results. To 
do so, we specify the cost of control in 𝑓𝑓𝐶𝐶 to be 𝑐𝑐 + 𝑤𝑤, and add a differential equation for 𝑑𝑑𝑤𝑤/𝑑𝑑𝑑𝑑 
whereby w changes to follow (1 − 𝑥𝑥) with lag (in the same way that 𝑝𝑝 follows (1 − 𝑥𝑥) in the 
𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑 equation of the Minimal Model). Furthermore, we specify 𝑑𝑑𝑤𝑤/𝑑𝑑𝑑𝑑 such that 𝑤𝑤 need not vary 
fully between 0 and 1, but rather varies between 0 and some maximum value 𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 (with 0 <
𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 ≤ 1). For maximal generality, we also modify the 𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑 equation to have a maximum value 
𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀 (with 0 < 𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀 ≤ 1; the Minimal Model implicitly uses 𝑝𝑝𝑀𝑀 = 1). 

This gives us the following three-dimensional system: 

�̇�𝑥 = 𝑥𝑥�(1 − (𝑐𝑐 + 𝑤𝑤)) − (𝑥𝑥(1 − (𝑐𝑐 + 𝑤𝑤)) + (1 − 𝑥𝑥)(1 − 𝑝𝑝))� 
 

�̇�𝑝 =
((1 − 𝑥𝑥)𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀 − 𝑝𝑝)

𝜏𝜏𝑝𝑝
 

 

�̇�𝑤 =
((1 − 𝑥𝑥)𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 − 𝑤𝑤)

𝜏𝜏𝑤𝑤
 

 
Analyzing this system, we find a potential interior fixed point analogous to that in the 

Minimal Model at 𝑥𝑥 = 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀−𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀−𝑐𝑐
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀−𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀

,𝑝𝑝 = 𝑐𝑐𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀−𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀

,𝑤𝑤 = 𝑐𝑐𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀−𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀

, which is relevant (i.e. on 
the interval [0,1]) when 𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀 > 𝑐𝑐 + 𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 . The interpretation of this condition is straightforward: 
the maximum possible advantage of control must be larger than the maximum possible total cost 
of control (fixed cost + cost imposed by automatics).  
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As in the Minimal Model, a stability analysis finds that this interior fixed point can become 
unstable and give birth to a limit cycle via a Hopf bifurcation. Figure 3 shows a representative 
example of the dynamics of the 3-dimensional system that exhibits a series of phases similar to 
those in the simpler 2-dimensional Minimal Model.  

 

  
Figure 3. Persistent cycles of automaticity and control also emerge when both forms of feedback 
are lagged in the Two-lag Model. Shown are the values of 𝑥𝑥, 1 − 𝑥𝑥, 𝑝𝑝, 𝑤𝑤, and 𝜙𝜙 as a function of 
time. Results were generated using numerical integration of the Two-lag Model ODEs using 𝑐𝑐 =
 .5, 𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀  =  .3, 𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀  =  1, 𝜏𝜏𝑝𝑝  =  50, 𝜏𝜏𝑝𝑝  =  10, and initial conditions 𝑥𝑥 =  0.01,𝑝𝑝 =  0.9,𝑤𝑤 =
 0.1.  

 
Although we can analytically derive the exact condition required for the limit cycle to exist, 

this condition is too complex to be readily interpretable. However, to give a sense of its 
implications, Figure 4 shows where limit cycles occur in the [𝜏𝜏𝑝𝑝, 𝜏𝜏𝑤𝑤] plane for different values of 
𝑐𝑐 and 𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 (fixing 𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀  =  1, as in the Minimal Model). The most salient feature of Figure 4 is 
that, in order for limit cycles to occur, 𝜏𝜏𝑝𝑝  ≫  𝜏𝜏𝑤𝑤 must be satisfied; that is, the prevalence of control 
in the population 𝑥𝑥 must influence the relative advantage of controlled processing 𝑝𝑝 substantially 
more slowly than the prevalence of automaticity in the population influences the cost of control 
𝑤𝑤. We also see that the minimum lag required for cycling, as measured by the slope of the line in 
Figure 4, decreases as the maximum cost imposed by automatics 𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 increases.  
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Figure 4. For limit cycles to occur, as in the Minimal Model, the impact of the population on the 
environment must be substantially more lagged than the population’s impact on the cost of control 
(𝜏𝜏𝑝𝑝 > 𝜏𝜏𝑤𝑤). Shown is the Hopf bifurcation curve in the [𝜏𝜏𝑝𝑝, 𝜏𝜏𝑤𝑤] plane for different values of 𝑐𝑐 and 
𝑤𝑤𝑀𝑀𝑎𝑎𝑀𝑀 (fixing 𝑝𝑝𝑀𝑀𝑎𝑎𝑀𝑀  =  1). For a given set of parameters, limit cycles occur for [𝜏𝜏𝑝𝑝, 𝜏𝜏𝑤𝑤] pairs below 
the corresponding line. 
 

In sum, the Two-lag Model demonstrates that the results of the Minimal Model are robust 
to accounting for the fact that, in reality, the processes through which automatic agents increase 
the cost of control need not involve instantaneous feedback. For example, if automatic agents 
consume resources that controlled agents had planned to rely on in the future, the consequences of 
the behavior of current automatic agents will not be felt by controlled agents until some time in 
the future (i.e., when they attempt to use the already-consumed resources). 

5.2 Consumption Model 
 

In the Minimal Model and the Two-lag model, automatic agents influenced the cost of 
control in direct proportion to their frequency in the population. Here we examine the consequence 
of having automatic agents impact the cost of control via their consumption rather than simply 
their prevalence. Specifically, we link the cost of control to the product of the proportion of the 
population that is automatic 1 − 𝑥𝑥 and the average fitness (capturing consumption) of the 
automatic agents 1 − 𝑝𝑝. Thus we replace the Minimal Model’s cost of control term in 𝑓𝑓𝑐𝑐 of 𝑐𝑐 +
𝑤𝑤(1 − 𝑥𝑥) with the alternative formulation 𝑐𝑐 + 𝑤𝑤(1 − 𝑝𝑝)(1 − 𝑥𝑥). This yields the following system 
of two ODEs: 

 
�̇�𝑥 = 𝑥𝑥 ��1 − �𝑐𝑐 + 𝑤𝑤(1 − 𝑝𝑝)(1 − 𝑥𝑥)�� − �𝑥𝑥 �1 − �𝑐𝑐 + 𝑤𝑤(1 − 𝑝𝑝)(1 − 𝑥𝑥)�� + (1 − 𝑥𝑥)(1 − 𝑝𝑝)�� 
 

�̇�𝑝 =
((1 − 𝑥𝑥) − 𝑝𝑝)

𝜏𝜏𝑝𝑝
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Analyzing this system shows that although the analytic expressions are now even more 
complex (and thus harder to directly interpret), we again observe regimes in which there is 
coexistence between automatic and controlled agents, as well as ones in which there are limit 
cycles. Both coexistence and limit cycles are more robust than in the Minimal Model. 
Coexistence is more robust in that no homogeneous population make-up is ever stable in the 
Consumption Model: we only find coexistence or limit cycles. As in the Minimal Model, if 
automatic agents increase the cost of control (𝑤𝑤 > 0) then limit cycles can occur if cognition-
environment feedback is sufficiently lagged (i.e. 𝜏𝜏𝑝𝑝 exceeds a specified threshold). Figure 5 
illustrates the minimum amount of feedback lag required to induce a limit cycle. Because 
coexistence is more robust in the Consumption Model than the Minimal Model, limit cycles are 
also more robust: they can occur no matter how large the magnitude of 𝑤𝑤 (unlike in the Minimal 
Model, which requires 𝑤𝑤 < 1 − 𝑐𝑐 for either coexistence or limit cycles). Nonetheless, as in the 
Minimal Model, it is easiest to get limit cycles when the fixed cost of control 𝑐𝑐 is small but the 
cost imposed by automaticity 𝑤𝑤 is large.  

 

 

Figure 5. Shown is a contour plot of the minimum 𝜏𝜏𝑝𝑝 required for limit cycles in the Consumption 
Model, with log10-transformed values indicated along contour lines (up to 103).  

 These observations show that the limit cycles observed in the Minimal Model when 
cognition-environment feedback is sufficiently lagged are robust to the alternative implementation 
of the cost of control, in the Consumption Model, in which the consumption of automatic agents, 
rather than their prevalence per se, increases the cost of control.  
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5.3 Threshold Model  
 

In all of the models presented thus far, cognition-environment feedback was implemented 
in a continuous form, such that the advantage of controlled processing always moved in 
opposition to the fraction of the population that was controlled: 𝑝𝑝 followed 𝑥𝑥, subject to lag. 
Here, we change the form of this feedback (i.e. the specification of 𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑) to instead operate via 
a discrete threshold dynamic.  

Specifically, the Threshold Model assumes that excess time/energy is required for 
controls to invest in technological innovation, and therefore that p decreases if 𝑥𝑥𝑓𝑓𝑐𝑐 (the product 
of the fraction of controlled agents and the fitness of those controlled agents) is greater than a 
threshold 𝑇𝑇, and increases if not. In order to keep 𝑝𝑝 bounded on the interval [0,1], we also add a 
factor of 𝑝𝑝(1 − 𝑝𝑝) to 𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑. Combining this alternative formulation of 𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑 with the 
Consumption Model5 presented in the previous section yields the following set of two ODEs: 

 
�̇�𝑥 = 𝑥𝑥�1 − (𝑐𝑐 + 𝑤𝑤(1 − 𝑝𝑝)(1 − 𝑥𝑥)) − (𝑥𝑥(1 − (𝑐𝑐 + 𝑤𝑤(1 − 𝑝𝑝)(1 − 𝑥𝑥))) + (1 − 𝑥𝑥)(1 − 𝑝𝑝))� 

 

�̇�𝑝 = 𝑝𝑝(1 − 𝑝𝑝)
𝑇𝑇 − 𝑥𝑥(1 − (𝑐𝑐 + 𝑤𝑤(1 − 𝑝𝑝)(1 − 𝑥𝑥)))

𝜏𝜏𝑝𝑝
 

 
Analyzing this model finds six possible fixed points. However, only three of these fixed 

points are ever stable. The resulting dynamics depend critically on 𝑤𝑤, the impact that the 
consumption of automatic agents has on the cost of control.  

When the consumption of automatic agents increases the cost of control (𝑤𝑤 > 0), the 
results are qualitatively similar to the Minimal Model and the Consumption Model. When 𝑇𝑇 >
1 − 𝑐𝑐, it is very difficult for controlled agents to make the environment more hospitable for 
automatics (and thereby reduce their own relative advantage 𝑝𝑝): Even when controls entirely 
dominate the population, 𝑥𝑥𝑓𝑓𝑐𝑐 is not sufficiently large to exceed the threshold 𝑇𝑇 and thereby 
decrease p. As a result, the only stable fixed point involves the complete dominance of control, 
𝑥𝑥 = 1,𝑝𝑝 = 0. However, so long as 𝑇𝑇 < 1 − 𝑐𝑐, there is an interior fixed point at 
�𝑥𝑥 = 𝑇𝑇(𝑤𝑤 + 1)

𝑇𝑇𝑤𝑤 − 𝑐𝑐 + 1
,𝑝𝑝 =  𝑐𝑐 + 𝑤𝑤 (1− 𝑇𝑇)

1+𝑤𝑤
� which leads to coexistence when 𝜏𝜏𝑝𝑝 < 𝑐𝑐 + 𝑤𝑤 (1− 𝑇𝑇)

1+𝑤𝑤
and limit 

cycles (via a Hopf bifurcation) when 𝜏𝜏𝑝𝑝 > 𝑐𝑐 + 𝑤𝑤 (1− 𝑇𝑇)
1+𝑤𝑤

. Thus, as in the other models, lag in the 
cognition-environment feedback can lead to cycling.6  

The foregoing analysis focused on the situation in which the consumption of automatic 
agents increased the cost of control (0 <  𝑤𝑤 < 1).  However, the behavior of the model is more 
complex and qualitatively distinct from the previous models when the consumption of automatic 
agents decreases the cost of control (−1 < 𝑤𝑤 < 0). For example, controlled agents might profit 
from the consumption of automatic agents by selling the automatic agents products that exploit 
their lack of control (e.g. unhealthy but delicious food). It remains the case that [𝑥𝑥 = 1,𝑝𝑝 = 1] is 
stable when 𝑇𝑇 > 1 − 𝑐𝑐 . There is also the possibility of another stable fixed point involving the 
coexistence of automatic and controlled agents at [𝑥𝑥 = (𝑤𝑤 + 𝑐𝑐)/𝑤𝑤,𝑝𝑝 = 0] when 𝑤𝑤 < −𝑐𝑐 and 

                                                 
5 The threshold implementation of the Minimal Model yields much more complex conditions which are intractable, 
so we focus on the Consumption Model when considering threshold updating of 𝑝𝑝. 
6 Numerical simulations indicate the existence of additional limit cycles when 𝑤𝑤 > 0 not born out of a Hopf 
bifurcation, but we do not characterize the details of those limit cycles here.  
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𝑇𝑇 < (𝑤𝑤 + 𝑐𝑐)/𝑤𝑤 . Here, it is very easy for controlled agents to make life easier for automatics and 
as a result the advantage of controlled processing disappears (𝑝𝑝 goes to 0). However, because the 
consumption of automatic agents benefits controlled agents, some fraction of controls can still 
survive in the population even in the absence of a decision-making based advantage. (Note that 
these two fixed points can co-occur, such that there is bistability between them and the initial 
conditions determine which fixed point evolution favors.)  

Finally, when (𝑤𝑤 +  𝑐𝑐)/𝑤𝑤 <  𝑇𝑇 <  1 − 𝑐𝑐 , neither of these fixed points is stable and instead 
we again see the interior fixed point at �𝑥𝑥 = 𝑇𝑇(𝑤𝑤 + 1)

𝑇𝑇𝑤𝑤 − 𝑐𝑐 + 1
,𝑝𝑝 =  𝑐𝑐 + 𝑤𝑤 (1− 𝑇𝑇)

1+𝑤𝑤
� as the only possibility. 

Unlike the case when 𝑤𝑤 > 0 (or the results from the previous models), this point is stable when 
𝜏𝜏𝑝𝑝 > 𝑐𝑐 + 𝑤𝑤 (1− 𝑇𝑇)

1+𝑤𝑤
 and leads to limit cycles when 𝜏𝜏𝑝𝑝 < 𝑐𝑐 + 𝑤𝑤 (1− 𝑇𝑇)

1+𝑤𝑤
. In other words, when automatic 

consumption benefits control, limit cycles emerge when cognition-environment feedback occurs 
sufficiently quickly rather than sufficiently slowly. Figure 6 shows the critical lag required for 
cycles, and Figure 7 shows sample cycles arising when 𝑤𝑤 > 0 and 𝑤𝑤 < 0. 

 

 
Figure 6. Shown is a contour plot of the critical 𝜏𝜏𝑝𝑝 required for limit cycles in the Consumption 
Model, with 𝜏𝜏𝑝𝑝 values indicated along contour lines. Above the 𝑤𝑤 = 0 line (indicated in red), the 
indicated value is the minimum 𝜏𝜏𝑝𝑝 required for cycles. Below the 𝑤𝑤 = 0 line, the indicated value 
is the maximum 𝜏𝜏𝑝𝑝 that allows cycles. Note that because of the modification of the 𝑑𝑑𝑝𝑝/𝑑𝑑𝑑𝑑 equation, 
absolute magnitudes of 𝜏𝜏𝑝𝑝 cannot be meaningfully compared with those of the prior models. 
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Figure 7. Cyclical dynamics arise from the replicator model with automatics decreasing the cost 
of cognitive control, provided that p changes sufficiently quickly. Shown are the values of 𝑥𝑥, 1 −
𝑥𝑥, 𝑝𝑝, 𝜙𝜙, and the bonus received by controlled agents from automatic agents 𝑝𝑝(1 − 𝑥𝑥) as a 
function of time. Results generated using numerical integration of the two model ODEs using 
𝑐𝑐 =  .2, 𝜏𝜏𝑝𝑝  =  0.05,𝑇𝑇 =  0.5, and (a) 𝑤𝑤 = 0.2 versus (b) 𝑤𝑤 = −0.2. 

 
In sum, the Threshold Model provides further evidence that the occurrence of limit cycles 

is robust when automaticity increases the cost of control, and cognition-environment feedback is 
sufficiently lagged (although here it is easiest to get cycles when both the fixed and variable 
costs of control are small). Furthermore, the Threshold Model extends the conditions under 
which limit cycles can emerge, now including situations in which automaticity decreases the cost 
of control (i.e. when controls benefit from the presence of automatics), albeit through a different 
mechanism in which the cognition-environment feedback must occur quickly rather than slowly. 
Such a situation might result from technologies or behaviors that, when employed by controlled 
agents, leverage the short-sighted behavior of automatic agents (for example, in the domain of 
intertemporal choice, the sale of products providing instant gratification, but long-term costs – 
products that would primarily appeal to agents engaging in automatic processing).   

 
5.4 Multiprocess Agent Model 
 

In all of the models described so far, agents were binary: they were either exclusively 
automatic or controlled. Here, following on previous work (Bear et al., 2017; Bear & Rand, 
2016; Tomlin et al., 2015), we describe an agent-based model in which each agent exhibits a 
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probabilistic mix of control and automatic processing. We conducted simulations of this model 
to examine how the probability of control within agents evolves over the course of generations in 
response to the same factors implemented in the ODEs described above. 

In this model, each agent i implemented controlled processing with an agent-specific 
probability 𝑥𝑥𝑖𝑖 (and correspondingly implemented automatic processing with an agent-specific 
probability 1 − 𝑥𝑥𝑖𝑖). Adapting the Minimal Model formulation, the fitness of an agent 𝑖𝑖 that 
exhibited control with probability 𝑥𝑥𝑖𝑖 in a population for which the mean probability of control 
was 〈𝑥𝑥〉 was given by the sum of the fitness of controlled processing and of automatic processing 
in the current population and environment, weighted by that agent’s probability of engaging in 
controlled and automatic processing, respectively:  

𝑓𝑓𝑖𝑖 = 𝑥𝑥𝑖𝑖�1 − (𝑐𝑐 + 𝑤𝑤(1 − 〈𝑥𝑥〉)� + (1 − 𝑥𝑥𝑖𝑖)(1 − 𝑝𝑝𝑡𝑡) 
 
where 𝑐𝑐 is the fixed cost of control, 𝑤𝑤 is the impact of automatic processing on the cost of 
controlled processing, and 𝑝𝑝𝑡𝑡 is the relative advantage of controlled processing in generation 𝑑𝑑.  

We examined the stochastic evolutionary dynamics of a population of 𝑁𝑁 = 100 such 
agents using the pairwise comparison process (Traulsen, Pacheco, & Nowak, 2007): In each 
generation, one agent was picked at random to potentially update its strategy, and another agent 
was picked at random to potentially reproduce. The updater was replaced by a copy of the 
reproducer with probability 1

1+𝑒𝑒−𝑠𝑠(𝜋𝜋𝑇𝑇−𝜋𝜋𝐿𝐿) where 𝑠𝑠 is the intensity of selection, 𝜋𝜋𝑇𝑇 is the fitness of 
the potential reproducer (teacher), and 𝜋𝜋𝐿𝐿 is the fitness of the potential updater (learner); 
otherwise, no change occurred in that generation. Alternatively, with probability 𝑢𝑢 a mutation 
occurred; in that case, instead of adopting the other agent’s strategy, the updater adopted a new 
strategy sampled from a uniform distribution on the interval [0,1]. (Simulations using local 
mutation produced equivalent results.) 

In addition to this standard evolutionary dynamic, we also implemented cognition-
environment feedback by updating the advantage of controlled processing in each generation, 
such that 

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡−1 + (1−𝑀𝑀)−𝑝𝑝𝑡𝑡−1
𝜏𝜏𝑝𝑝

. 

Figure 8 shows that this agent-based model, in which agents implemented a probabilistic 
distribution of controlled versus automatic processing, displays qualitatively similar dynamics to 
the analytic models described above, in which automatic versus controlled processing was a 
binary, deterministic variable.  
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Figure 8. Agent-based simulations of the Multiprocess Agent Model using 𝑁𝑁 = 100, 𝑠𝑠 = 10, 𝑐𝑐 =
0.5,𝑤𝑤 = 0.15, and (A) 𝜏𝜏𝑝𝑝 = 100, (B) 𝜏𝜏𝑝𝑝 = 1000 or (C) 𝜏𝜏𝑝𝑝 = 10000. Shown are the population 
average value of 𝑥𝑥, the value of 𝑝𝑝, and the population average value of 𝜙𝜙 as a function of time.  
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We see that when τp becomes sufficiently large, the dynamics of the system transition from 

co-existence to oscillations. In this regime, once the agents (which were initialized to use 
exclusively automatic processing) developed sufficient control and began to improve the 
environment, environmental richness improved quickly and substantially. This improvement 
lessened agents’ dependence on controlled processing for survival, and therefore automatic 
processing became more prevalent. This increased prevalence of automatic processing exacerbated 
the competitive disadvantage of using cognitive control, thus further eroding the frequency of 
control. Eventually, the prevalence of control was not sufficient to maintain improvements to the 
environment, thereby returning the environment to its original state and re-initiating the cycle. 

In sum, the Multiprocess Agents Model demonstrates that cycles of automaticity and 
control observed in the analytic models extend to a model in which agents engage 
probabilistically in both types of processing. 

5.5 Variable Population Size Model 
 
 In the service of tractability, the models described above did not consider changes in the 
size of the population, instead examining changes in the relative frequency of automatic versus 
controlled processing. Here, we examine the impact of allowing the size of the population to 
grow and shrink.  

To do so, we define strategies, payoffs, and updating of the environmental parameter 𝑝𝑝 as 
in the Multiprocess Agent Model, and modify reproduction as follows. At the beginning of each 
simulation, the population is initialized at size 𝑁𝑁0. Each generation, an agent is selected 
proportional to fitness to reproduce. When probability 𝑢𝑢, a mutation occurs and an agent with a 
random strategy is added to the population; with probability 1 − 𝑢𝑢, a copy of the selected agent 
is added to the population. If the new population size 𝑁𝑁 exceeds the environment’s carrying 
capacity 𝐾𝐾, agents are selected at random to die until 𝑁𝑁 ≤ 𝐾𝐾. 

Rather than fixing 𝐾𝐾 at some pre-determined level, we allow 𝐾𝐾 to vary with the 
population’s make-up. Controlled processing’s ability to flexibly plan for the future, and to 
develop technological innovations, suggests that greater levels of control in the population 
should be associated with a larger carrying capacity: in the same way that control can make the 
environment more stable (as modeled by feedback on 𝑝𝑝), it can also make the environment richer 
and able to support a larger population. To implement this logic, we set 𝐾𝐾 = 𝑁𝑁0 + ∑ 𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=1  , such 
that the carrying capacity is increased above the baseline 𝑁𝑁0 by the extent to which agents 
engage in controlled processing. 
 Figure 9 shows that the Variable Population Size Model can generate similar cyclical 
dynamics to those of the previous models. However, the current simulations have the important 
added ability to directly demonstrate population booms and crashes associated with the rise and 
fall of controlled processing. As agents becomes more likely to exercise control the 
environment’s carrying capacity 𝐾𝐾 increases, which in turn leads to an increase in population 
size 𝑁𝑁. As in the other models, the increase in control eventually leads to enough of a decrease in 
p that automaticity can reinvade. As automaticity increases (i.e. control decreases), carrying 
capacity 𝐾𝐾 decreases, driving the population size back towards its initial baseline level of 𝑁𝑁0.   
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Figure 9. Agent-based simulations of the Variable Population Size Model using 𝑁𝑁0 = 30, 𝑠𝑠 =
10, 𝑐𝑐 = 0.5,𝑤𝑤 = 0.15, and 𝜏𝜏𝑝𝑝 = 10000. Shown are (A) the population average value of 𝑥𝑥 and 
the value of 𝑝𝑝, and (B) the population size, both as a function of time. 

 
 In sum, the Varying Population Size model shows that the cycles observed in the 
previous models were not an artifact of considering only relative frequency of automatic versus 
controlled processing, and provides a demonstration of the impact these oscillations can have on 
population size. 
 
6. Discussion 

We have described a series of models that examine the evolutionary dynamics of mixed 
populations of agents that implement different forms of cognitive processing along the dimension 
from automatic to controlled. Our implementation of cognitive processing was designed to capture, 
as simply as possible, the most fundamental and commonly assumed differences along this 
dimension: automatic processing that is efficient but rigid, and controlled processing that is costly 
but flexible (Kahneman, 2011; Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). We 
implemented differences in efficiency by assigning a cost to the use of control, and differences in 
flexibility by assuming that controlled processing led to a fitness advantage relative to automatic 
processing in decision-making (e.g. because controls can plan for the future and adapt more 
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quickly to the exigencies of the situations they encounter). We also implemented cognition-
environment feedback by allowing increases in the frequency of controlled processing to make the 
environment more hospitable – and therefore to reduce the advantage of control.  

We found that limit cycles arose in all of the models we considered, and across a wide 
range of parameters: recurrent boom-and-bust dynamics in which control flourished and the 
population grew, only to be undermined by an ensuing rise in automaticity, leading to a crash in 
control and population size. Consistently across models, it was the case that such cycles could arise 
when (i) the prevalence (or consumption) of automatic agents increased the cost of control, and 
(ii) there was sufficient lag in the influence of controlled agents on the environment, relative to the 
rate at which automatic processing imposed its costs on control. This relationship seems like a 
reasonable approximation of real world relationships: the stabilizing influence of control-based 
technologies on the environment takes longer to develop and have its impact than the direct costs 
that automatic agents impose on controlled agents via competition and/or short-sighted 
consumption. Moreover, we observed that these cyclical dynamics were typically most likely to 
arise in situations in which controlled processing entailed a relatively small fixed cost, but incurred 
a large loss of fitness from the presence of automatic agents, conditions that may also align well 
with some real-world circumstances (for example, the over-use of antibiotics).  

There was some divergence across models, however, regarding situations in which 
automaticity created a benefit for control (rather than imposing a cost). While in most of the models 
cycles were not possible in this regime (only coexistence), the Threshold Model differed: in that 
case, cycles were possible provided cognition-environment feedback was sufficiently fast. 
Although this finding appears to be less general across the models we have considered7, it is 
intriguing because it expands the space in which cycles can occur into a domain where controlled 
agents exploit the weakness of automatic agents. More generally, our results are interesting from 
a dynamical perspective: although cyclic behavior commonly emerges in evolutionary dynamics 
of three or more strategies (Szolnoki et al., 2014), here we observe that environmental feedback 
enables cycles with only two strategies.  

It is important to note that the effects we report are independent of whether the underlying 
mechanisms of evolution are genetic or cultural (Richerson & Boyd, 2005). Thus, they may help 
explain observations of human societies in the past, and may have relevance to our own time. 
Anthropologists and archeologists have written about a repeated pattern in human history: the 
emergence of highly successful societies that expand greatly as a consequence of technological 
innovation, only to eventually collapse (Diamond, 2005; Richerson et al., 2009; Schwindt et al., 
2016; Turner & Sabloff, 2012). Such collapses may have occurred for a number of reasons, 
including environmental shocks or other factors external to the population, or the overuse of 
technologies by those (presumably controlled) agents who created them. The models we introduce 
here suggest another possible route to collapse: even if controlled agents exercise forethought and 
use the technologies they generate wisely so as not — themselves — to over-exploit the 
environment, the flourishing of control and its attendant technologies can invite the concomitant 
flourishing of automaticity, which in turn can increase the likelihood of collapse due to the short-
sightedness and inability to adapt to changing environments (including those brought about by the 
new technologies) that are defining features of automatic processing. These findings illustrate a 
                                                 
7 We also found cyclical dynamics in a previously unreported agent-based inter-temporal choice model where 
automatic agents benefited controlled agents (Tomlin et al, mimeo). 
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mechanism that may be responsible — at least in part — for cyclical dynamics: the pace at which 
controlled processing generates benefits, relative to the pace at which automatic “free-riders” 
impose costs on controlled processing (also see Cohen (2005)). In the present work, we leveraged 
formal models to demonstrate the plausibility of such cyclical dynamics, and to identify 
quantitative relationships and boundary conditions for these effects.  

The models we describe may also be relevant to modern issues and concerns, providing a 
quantitative framework within which to consider and potentially address them. For example, the 
pace at which new antibiotics can be developed is slow relative to the pace at which their overuse 
can produce harm (particularly to those who exercise restraint). Similarly, the pace at which new 
forms of energy (and the technologies based on them) can be developed is slow relative to the pace 
at which their abuse can cause damage, and provide (short-term) relative advantage to those who 
overconsume. The emergence of these technologies is, without a doubt, a reflection of the uniquely 
human capacity for cognitive control. Similarly, the behaviors that afflict our society most (e.g., 
drug addiction and failures to save for retirement) are short-sighted forms of behaviors that are 
thought to reflect the influence of automatic processing (Angeletos, Laibson, Repetto, Tobacman, 
& Weinberg, 2001; O'Donoghue & Rabin, 1999; Wiers et al., 2007). It is likely that the same is 
true for subtler, but potentially just as damaging, behaviors (such as overuse of antibiotics, or 
overconsumption of nonrenewable resources). Considerable research has been devoted to 
understanding the dynamics of technological developments and their impact from historical, 
sociological, economic and environmental perspectives (e.g., Abernathy and Utterback (1978); 
Mokyr (1992); Perez (2003); Rogers (1962)), but none of these studies appear to take account of 
the fundamental psychological processes that drive these dynamics. Conversely, considerable 
research in psychology and neuroscience has addressed the mechanisms underlying the 
automaticity and control (Daw, Niv, & Dayan, 2005; Hare et al., 2009; McClure et al., 2004), but 
have not examined how these interact at the population level. The models we have described 
provide a first step toward bridging these levels of analysis, and suggest that doing so may reveal 
fundamental principles that yield consistent effects, and factors that may influence these. 

In the tradition of theoretical work within evolutionary and population biology, the models 
we described here are as simple as possible. This simplicity naturally omits potentially important 
aspects of cognitive function. For example, while it is generally recognized that there is a 
continuum between automatic and controlled processing, and that the automaticity of many 
processes is dependent on the context in which they are executed (e.g., Cohen et al. (1990); 
Kahneman and Treisman (1984)), automatic vs. controlled processing was implemented in binary 
form in our models. Implementing automatic vs. controlled processing in a more graded and 
context-sensitive manner, and more nuanced and realistic forms of controlled processing in 
population-scale models is an important direction for future work. Nonetheless, the robustness of 
the effects we observed across a variety of model implementations considered here suggest the 
possibility that these are general properties of the evolution of populations comprised of agents 
with a heterogeneous mixture of proclivities for automatic vs. controlled processing.  

Future work should also investigate the effects of environments with nonuniform spatial 
structure, in which agents could flexibly adapt to localized distributions of resources to produce 
“cultural topologies” that may vary in their expression of automatic vs. controlled processing, and 
cases in which the bias toward automatic vs. controlled processing may anticipate (and attempt to 
counteract) the risks associated with automatic processing. It will also be informative to develop 
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models tailored to specific domains in which the dimension of automaticity has been suggested to 
play an important role, such as we have begun to do for intertemporal choice (Tomlin et al., 2015; 
Toupo et al., 2015); this might include dietary and other health-related behaviors, savings, and 
behaviors that impact the environment. Cooperative social dilemmas are another important domain 
to explore using the current framework, as the individually optimal behavior may not be optimal 
at the population level and so controlled processing may itself lead to collapse (Rand, 2016) – 
although socially optimal cooperation can also be individually optimal if, for example, the 
interactions are stochastically repeated or institutions exist which sanction non-cooperation 
(Jordan, Peysakhovich, & Rand, 2015), in which case control should support cooperation (Rand, 
2016).  Finally, an important direction for future work will be to examine domains of function in 
which the distinction between controlled and automatic processing is not as stark as we have 
treated it here. As noted in the introduction, it is widely recognized that processes lie along a 
continuum of automaticity, and that the degree to which processing relies on control depends in 
large measure on the context in which it occurs. Implementing this more realistic portrayal of 
control will add considerable complexity to any model, though it may be important for addressing 
some of the issues discussed above that may be sensitive to the context in which behavior occurs.  

In sum, the models we described introduce a fundamental dimension of cognitive function 
into population-level models, and examine the consequences this has for evolutionary dynamics. 
Our findings suggest that a robust feature of these dynamics is a cyclic pattern, in which controlled 
process initially flourishes, but then sets the stage for its own demise. This suggests that the advent 
of controlled processing in a population sets in motion a “treadmill”, in which the very advances 
that are afforded by controlled processing simultaneously set in motion regressive forces — 
engendered by the presence of automatic processing in the population — that must be outweighed 
and outpaced if the population as a whole is to progress in a steady and/or reach a stable state. It 
is our fervent hope that further analyses of the sort we have presented here may lead to strategies 
that will help promote such a positive outcome, and avert the fate that has befallen many previous, 
advanced cultures. 
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