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In this paper, a class of nonlinear p-Laplace diffusion BAM Cohen-Grossberg neural networks (BAM CGNNs) with time delays is
investigated. In the case of p > 1 with p ≠ 2, the authors construct novel Lyapunov functional to overcome the mathematical
difficulties of nonlinear p-Laplace diffusion time-delay model with parameter uncertainties, deriving the LMI-based robust
stability criterion applicable to computer MATLAB LMI toolbox and deleting the boundedness of the amplification functions.
And in the case of p = 2, LMI-based sufficient conditions are also inferred for robust input-to-state stability of reaction-diffusion
Markovian jumping BAM CGNNs with the event-triggered control, which is different from those of many previous related
literature. In particular, the role of diffusion can be reflected in newly acquired criteria. Finally, numerical examples verify the
effectiveness of the proposed methods.

1. Introduction

In recent decades, reaction-diffusion neural networks have
been the subject of research due to the fact that electrons have
diffusion behaviors in an inhomogeneous magnetic field, and
the role of diffusion items have always been investigated and
discussed in many existing results ([1–4]). Since the conduc-
tion velocity of electrons and components is limited, the phe-
nomenon of time delays inevitably appears in various
practical projects. Thereby, time-delay reaction-diffusion
systems are relatively common objects of study. For example,
in [5], the following time-delay reaction-diffusion Cohen-
Grossberg neural networks (CGNNs) with impulse was stud-
ied (see [7, (7)]),

∂u
∂t

= ∇ ⋅ ℛ ∘ ∇u − A u B u

− C f u +Dg u t − τ t , x + J , t ≥ 0, t ≠ tk,

u t+k , x =Mu t−k , x +NH u t−k − τ t , x , k = 1, 2,… ,
1

where ℛ ∘ ∇u is Hadamard product of matrix ℛ and vector
gradient ∇u (see [6] for details).

In [7], the stability of the following BAM Cohen-
Grossberg neural networks (BAM CGNNs) with distributed
delays was discussed.

dx
dt

= −A x t B x t − Cf y t − τ t

+M
t

−∞
K t − s f x s ds

+ σ t, x t , y t − τ t dw t ,
dy
dt

= −A y t B y t − C g x t − τ t

+M
t

−∞
K t − s g x s ds

+ σ t, x t − τ t , y t dw t

2

The Cohen-Grossberg-type BAM neural network model
was initially proposed by Cohen and Grossberg [8] in 1983.
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The model not only generalizes the single-layer autoassocia-
tive Hebbian correlator to a two-layer pattern matched het-
eroassociative circuit but also possesses Cohen-Grossberg
dynamics, and it has promising application potentials for
tasks of classification, parallel computation, associative mem-
ory, and nonlinear optimization problems. Since then, a lot of
research has been done on BAM CGNNs models ([7, 9–11]).
Besides, owing to biological engineering backgrounds and
population dynamics, economics, physical engineering,
and other reasons, the stability of nonlinear diffusion systems
have received widespread attention [11–17]. For example,
in [11], the author studied the following nonlinear diffu-
sion fuzzy system, involved to time-delay BAM Cohen-
Grossberg neural networks.

∂ui t, x
∂t

= 〠
m

j=1

∂
∂xj

Dij t, x, u ∇ui t, x p−2 ∂ui
∂xj

− ai ui t, x

bi ui t, x − 〠
n

j=1
mij f j vj t, x

− ⋀
n

j=1
m̂ij f j vj t − τj t , x

− ⋁
n

j=1
m̌ij f j vj t − τj t , x , t ≥ 0, x ∈Ω,

∂uj t, x
∂t

= 〠
m

i=1

∂
∂xi

Dji t, x, u ∇uj t, x
p−2 ∂uj

∂xi
− cj vj t, x

dj vj t, x − 〠
n

i=1
njigi ui t, x

− ⋀
n

i=1
n̂jigi ui t − ρi t , x

− ⋁
n

i=1
ň jigi ui t − ρi t , x , t ≥ 0, x ∈Ω,

u θ, x = ϕ θ, x ,
v θ, x = υ θ, x ,  θ, x ∈ −∞,0 ×Ω,
u t, x = 0 ∈ Rn,

v t, x = 0 ∈ Rn, t, x ∈ R × ∂Ω
3

Under the complex conditions

λ1pD + pλmin AB > p − 1 p
p

n m + m̂ + m̌ λmaxAλmaxF

+ p
p
n n + n̂ + ň

1 − τ
λmaxCλmaxG,

λ1pD + pλmin CD > p − 1 p
p

n n + n̂ + ň λmaxCλmaxG

+ p
p
n m + m̂ + m̌

1 − τ
λmaxAλmaxF,

4

and other conditions, a stability result ([11, Theorem
3.2]) was given, where

D =min
jk

inf
t,x,u

Djk t, x, u ,

D =min
ji

inf
t,x,v

Dji t, x, v
5

In recent years, some methods and ideas of related litera-
ture ([5–45]) inspire our current work. In this paper, we shall
discuss the robust stability of nonlinear p-Laplacian diffusion
Takagi-Sugeno (T-S) fuzzy system with discrete delays and
distributed delays. Actually, T-S fuzzy models provide a suc-
cessful method to describe certain complex nonlinear system
using some local linear subsystems ([31, 32, 46]). Besides,
there exist parameter errors unavoidable in factual systems
due to aging of electronic components, external disturbance,
and parameter perturbations. Therefore, the robustness of
the system stability should be investigated, too. Our main
objectives are as follows:

(1) Changing (4) into linear matrix inequalities (LMIs)
applicable to computer MATLAB LMI toolbox,
which can be adapted to large-scale calculation in
practical engineering.

(2) Ensure that the nonlinear diffusion term plays a role
in the LMI-based stability criterion while in some
existing results ([6, Theorem 3.1], [18, Theorem
3.1], [19, Theorem 3.1],), the role of the nonlinear
diffusion term was neglected in their LMI-based
criteria.

(3) Deleting the boundedness of amplification function
ai · in some existing results (see, e.g., [7, 9, 19, 21]).

For these purposes, we need to achieve the following
works:

(i) Improve [11, Lemma 3.1] and make it adopted to
LMI-based criterion, in which the nonlinear diffu-
sion can play roles.

(ii) Construct a novel Lyapunov functional and design
comprehensive applications of variational method,
Young inequality, and LMI technique so that LMI-
based criterion can be derived for the nonlinear dif-
fusion fuzzy system with parameter uncertainties,
discrete delays, and distributed delays.

(iii) Relax the restrictions of amplification function ai ·
so that the boundedness of ai · is not necessary.
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At the same time, employing LMI technique guaran-
tees structuring LMI-based criterion.

(iv) Explore the input-to-state stability of reaction-
diffusion Markovian jumping BAM CGNNs with
time delays and the event-triggered control

For convenience’s sake, we still need to introduce some
standard notations:

(i) A = aij n×n ≥ 0 ≤0 : a nonnegative (nonpositive)
matrix, that is, aij ≥ 0 ≤0 for all i, j = 1, 2,… , n

(ii) A ≥ B ≤B : represents the matrix C= (A−B) satis-
fying C≥ 0 (≤4 0).

(iii) A = aij n×n > 0 <0 : a positive (negative) definite
matrix.

(iv) A = aij n×n ≥ 0 ≤0 : a nonnegative (nonpositive)
definite matrix.

(v) A1 ≥ A2 A1 ≤ A2 : this means A1 − A2 is a nonneg-
ative (nonpositive) definite matrix.

(vi) A1 > A2 A1 < A2 : this means A1 − A2 is a positive
(negative) definite matrix.

(vii) λmax Φ and λmax Φ , λmin Φ denote the largest
and smallest eigenvalue of matrix Φ, respectively.

(viii) Denote C = cij n×n for any matrix C = cij n×n;

(ix) u t, x = u1 t, x , u2 t, x ,… , un t, x T for any
vector u t, x = u1 t, x , u2 t, x ,… , un t, x T .

(x) u t, x = u1 t, x , u2 t, x ,… , un t, x T ≥ 0 ≤0
implies ui t, x ≥ 0 ≤0 for all i = 1, 2,… , n

(xi) u t, x ≥ v t, x ≤v t, x implies ui t, x ≥ vi t, x
≤vi t, x for all i = 1, 2,… , n, where u t, x =
u1 t, x , u2 t, x ,… , un t, x T and v t, x =
v1 t, x , v2 t, x ,… , vn t, x T

(xii) I: identity matrix with compatible dimension.

(xiii) The Sobolev space W1,p Ω = u ∈ Lp Du ∈ Lp

(see [28] for details).

(xiv) Denote by λ1 the lowest positive eigenvalue of the
boundary value problem (see [28] for details)

−Δpς t, x = λς t, x , x ∈Ω,
ς t, x = 0, x ∈ ∂Ω

6

2. Preliminaries

Consider the following Takagi-Sugeno fuzzy p-Laplace
partial differential equations with distributed delay.

Fuzzy rule j:
If ω1 t is µj1 and ⋯ωs∗ t is µjs∗ then

∂u
∂t

= ∇ ⋅ D t, x, u ∘ ∇pu − A u t, x

B u t, x − Cj = ΔCj t f v t − τ t , x

+ Mj + ΔMj t
t

t−ρ t
f v s, x ds ,

∂v
∂t

= ∇ ⋅ D t, x, v ∘ ∇pv − A v t, x

B v t, x − Cj + ΔCj t g u t − τ t , x

+ Mj + ΔMj t
t

t−ρ t
g u s, x ds ,

u θ, x = ϕ θ, x ,
v θ, x = υ θ, x ,  θ, x ∈ −τ∗, 0 ×Ω,
u t, x = 0 ∈ Rn,
v t, x = 0 ∈ Rn,  t, x ∈ R × ∂Ω,

7

where ωk t k = 1, 2,… , s∗ is the premise variable and
µjk j = 1, 2,… , r ; k = 1, 2,… , s∗ is the fuzzy set that is char-
acterized by membership function. r is the number of the
if-then rules, and s is the number of the premise variables.
D t, x, u = diag D1 t, x, u ,D2 t, x, u ,… ,Dn t, x, u and
D t, x, v = diag D1 t, x, v ,D2 t, x, v ,… ,Dn t, x, v are
diffusion coefficients matrices. D ∘ ∇pu is Hadamard product
of matrix D and ∇pu (see e.g., [13] for details) and so is
D t, x, v ∘ ∇pv. Let p > 1 be a given scalar, and Ω ⊂ Rn be
a bounded domain with a smooth boundary ∂Ω of class C2

by Ω. Denote u t, x = u1 t, x , u2 t, x ,… , un t, x T ∈ Rn

and v t, x = v1 t, x , v2 t, x ,… , vn t, x T ∈ Rn. For any
given i ∈N ≜ 1, 2,… , n , ui t, x is the state variable of
the ith neuron at time t in space variable x and so is
vi t, x . f v t − τ t , x = f1 v1 t − τi t , x ,… , f i vi t −
τi t , x ,… , f n vn t − τi t , x T , and g u t − τ t , x =
g1 u1 t − τ1 t , x ,… , gi ui t − τi t , x ,… ,gn un t − τn
t , x T , in which f i vi t − τi t , x is the neuron acti-
vation function of the ith unit of time t − τi t in space
variable x and so is gi ui t − τi t , x . Both τi t and τi
t are discrete time delays with 0 ≤ τi t ≤ τ and 0 ≤ τi
t ≤ τ, ∀i ∈N . And distributed delays ρ t and ρ t with 0
≤ ρ t ≤ ρ and 0 ≤ ρ t ≤ ρ. In addition, the positive scalar
τ∗ =max τ, τ, ρ, ρ . Here, τ, τ, and τ∗ all may be +∞.
Besides, there is a positive scalar l0< 1 such that τi′ t ≤ l0
and τi′ t ≤ l0 for all i ∈N . A u t, x = diag a1 u1 t, x ,
… , ai ui t, x ,… , an un t, x , and A v t, x = diag a1
v1 t, x ,… , ai vi t, x ,… , an vn t, x , in which ai ui
t, x represents an amplification function and so does ai
vi t, x .B u t, x = b1 u1 t, x ,… , bi ui t, x ,… , bn un
t, x T , and B u t, x = b1 v1 t, x ,… , bi vi t, x ,… ,
bn vn t, x T , in which both bi ui t, x and bi vi t, x are
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appropriately behavior functions. Cj, Cj,Mj andMj are con-

nection weight strength coefficient matrices, and ΔCj t , Δ
Cj t , ΔMj t and ΔMj t are real-valued matrix functions
which represent time-varying parameter uncertainties.

By means of a standard fuzzy inference method, (7) can
be inferred as follows,

∂u
∂t

= ∇ ⋅ D t, x, u ∘ ∇pu − A u t, x

B u t, x − 〠
r0

j=1
hj w t

Cj + ΔCj t f v t − τ t , x

+ Mj + ΔMj t
t

t−ρ t
f v s, x ds ,

∂u
∂t

= ∇ ⋅ D t, x, v ∘ ∇pv − A v t, x

B v t, x − 〠
r0

j=1
hj w t

Cj + ΔCj t g u t − τ t , x

+ Mj + ΔMj t
t

t−ρ t
g u s, x ds ,

u θ, x = ϕ θ, x ,
v θ, x = υ θ, x ,
θ, x ∈ −τ∗, 0 ×Ω,

v t, x = 0 ∈ Rn,
v t, x = 0 ∈ Rn,
t, x ∈ R × ∂Ω,

8

where w t = w1 t ,w2 t ,… ,ws∗
t T , hj w t = wj w

t /∑r
k=1wk w t , andwj w t : Rs∗ → 0, 1 j = 1, 2,… ,

r0 is the membership function of the system with respect
to the fuzzy rule j. hj can be regarded as the normalized
weight of each if-then rule, satisfying hj ω t ≥ 0 and

∑r0
j=1hj ω t = 1.
Particularly in the case of p = 2, the system (8) is the

so-called reaction-diffusion impulsive Markovian jumping
BAM Cohen-Grossberg neural networks (BAM CGNNs).
Inspired by some methods and conclusions of some related
literature ([47–51]), we shall discuss the input-to-state stabil-
ity reaction-diffusion BAM CGNNs with the event-triggered
control in Section 4, for seldom existing literature involved to
such complex model with feedback control.

Lemma 2.1. aq−1b ≤ q − 1 /q aq + bq/q , ∀a, b ∈ 0, +∞ ,
and q > 1.

Note that Lemma 2.1 is the particular case of the famous
Young inequality.

Lemma 2.2 (Schur complement [52]) Given matrices Q t ,
S t , and R t with appropriate dimensions, where Q t =
Q t T and ℛ t =ℛ t T , then

Q t S t

ST t ℛ t
> 0, 9

if and only if

ℛ t > 0, Q t − S t ℛ−1 t ST t > 0, 10

or

Q t > 0, ℛ t − ST t Q−1 t ST t > 0, 11

where Q t , S t , and ℛ t are dependent on t.

3. Robust Stability on Nonlinear p-Laplacian
Diffusion System in the Case of p ≠ 2

Throughout this paper, we assume that D t, x, u = diag D1
,… ,Dj …Dn and D t, x, v = D1,… ,Dj,… ,Dn , where
we denote Dj =Dj t, x, u and D j =D j t, x, v for short. In

addition, we always denote u t, x = u1 t, x , u2 t, x ,… ,
un t, x T and v t, x = v1 t, x , v2 t, x ,… , vn t, x T . De-
note u t, x by u and ui t, x by ui and so do v and vj.

Lemma 3.1. Let p > 1 be a positive real number, and Q =
diag q1, q2,… , qn a positive definite matrix. Let u and v be
a solution of (8). Then we have

Ω
〠
n

j=1
qjui 〠

n

k=1

∂
∂xk

Dj ∇uj
p−2 ∂uj

∂xk
dx

≤
Ω

u1
p/2, u2 p/2,… , un p/2 −λ1QD

u1
p/2

u2
p/2

⋮

un
p/2

dx,

Ω
〠
n

j=1
qjvi 〠

n

i=1

∂
∂xi

Dj ∇vj
p−2 ∂vj

∂xi
dx

≤
Ω

v1
p/2, v2 p/2,… , vn p/2 −λ1QD

v1
p/2

v2
p/2

⋮

vn
p/2

dx,

12
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Proof. Since u is a solution of (8), it follows by Gauss
formula and the Dirichlet zero boundary condition that

Ω
〠
n

j=1
qiuj 〠

n

k=1

∂
∂xk

Dj ∇uj
p/2 ∂uj

∂xk
dx

= −〠
n

k=1
〠
n

j=1 Ω
qjDj ∇uj

p−2 ∂uj

∂xk

2
dx

≤
Ω

u1
p/2, u2 p/2,… , un p/2 −λ1QD

u1
p/2

u2
p/2

⋮

un
p/2

dx

13

Another inequality can be similarly proved. And so the
proof is completed.

Remark 1. Lemma 3.1 improves [11, Lemma 3.1] and [18,
Lemma 2.3] for the first time, which makes a contribution
to the final LMI criterion.

Remark 2. In the case ofΩ = 0, a ⊂ R1 orW1,p
0 0, a , the first

eigenvalue

λ1 =
2
a

p−1 1/p

0

dt

1 − tP/p − 1 1/p

p

14

(see, e.g., [28]).

Remark 3. If Ω = x1, x2 T 0 < x1 < a, 0 < x2 < b ⊂ R2 and
p = 2, the first eigenvalue λ1 = π/a 2 + π/b 2 (see, e.g., [26]).

In this section, we suppose

(H1) There exist positive definite matrices A = diag
a1, a2,… , an , A = diag a1, a2,… , an , A = diag
a1, a2,… , an , and A = diag a1, a2,… , an such
that

0 < ai ≤
ai s
sp−2

≤ ai, 0 < ai

≤
ai s
sp−2

≤ ai, 0 ≠ s ∈ R, i = 1, 2,… , n ;
15

whereA u = diag a1 u1 , a2 u2 ,… , an un , and
A u = diag a1 u1 , a2 u2 ,… , an un .

(H2) There exists positive definite matrices B = diag
b1, b2,… , bn and B = diag b1, b2,… , bn such
that bi 0 = 0 = bi 0 and bi s /s ≥ bi, bi/s ≥
bi, 0 ≠ s ∈ R, i = 1, 2,… , n, where B u = b1 u1 ,
b2 u2 ,… , bn un

T and B u = b1 u1 , b2 u2 ,
… , bn un

T .

(H3) There are positive definite matrices F = diag
F1, F2,… , Fn and G = diag G1,G2,… ,Gn
such that f i s ≤ Fi s , gi s ≤ Gi s , ∀s ∈ R, i =
1, 2,… , n, where f v = f1 v1 ,… , f n vn

Tand
g v = g1 v1 ,… , gn vn

T .

Remark 4. The condition (H1) implies that the boundedness
of amplification functions ai and ai are unnecessary in the
case of p > 1 with p ≠ 2, for we may take ai s = ais

p−2, which
is actually unbounded for s ∈ −∞, +∞ . Below, we denote
for convenience

Cj t = Cj + ΔCj t

Cj t = Cj + ΔCj t ,
Mj t =Mj + ΔMj t

Mj t =Mj + ΔMj t ,

16

where Cj t = cijk t
n×n, Cj t = cijk t

n×n, Mj t =
mijk t

n×n, and Mj t = mijk t
n×n are diagonal matrices.

Theorem 3.2. Suppose that the conditions (H1)–(H3) hold
and p ≜ p1/p2 > 1 with p1 being an even number and p2
being an odd number. Besides, there are four nonnegative
matrices C∗, C∗, M∗, and M∗ such that

−C∗ ≤ ΔCj t ≤ C∗

−C∗ ≤ ΔCj t ≤ C∗,
−M∗ ≤ ΔMj t ≤M∗,

−M∗ ≤ ΔMj t ≤M∗

17

Assume, in addition,

K ≜

B −〠
r0

j=1
Cj + C∗ G + ρ Mj +M∗ G

−〠
r0

j=1
Cj + C∗ G + ρ Mj +M∗ G B

−1

≥ 0, 18
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and there is a positive definite matrix Q = diag q1, q2,… , qn
such that

λ1QD +QAB − 〠
r0

j=1

p − 1
p

QA Cj + C∗ F

+ ρ
p − 1
p

QA Mj +M∗ F

+ 1
p 1 − l0

QA Cj + C∗ G

+ ρ

p
QA Mj +M∗ G > 0,

19

and

λ1QD +QAB − 〠
r0

j=1

p − 1
p

QA Cj + C∗ G

+ ρ
p − 1
p

QA Mj +M∗ G

+ 1
p 1 − l0

QA Cj + C∗ F

+ ρ

p
QA Mj +M∗ F > 0,

20

then there exists the globally asymptotically robust stable
unique equilibrium point for (8).

Remark 5. Condition (4) does not complete the matrix form.
However, (19)–(20) are complete linear matrices inequalities,
which have even gotten better at dealing with the calculation
of the large operations involved in the practical engineering
by way of computer MATLAB programming.

Proof. There are three steps to the proof.

Step 1. We claim that the null solution is the unique equilib-
rium point for (8).

In fact, we know from (H2)–(H3) that bi 0 = bi 0 =
f i 0 = f i 0 = gi 0 = gi 0 = 0, and hence u = 0 and v = 0
are the equilibrium solution of (8).

Moreover, we prove that the equilibrium point is unique.
Indeed, it follows from (H1) that ai s > 0. Let (21) be an
equilibrium point for (8)

u

v
, 21

then we get

0

0
=

B u − 〠
r0

j=1
hj w t Cj t f v +Mj t

t

t−ρ t
f v ds

B v − 〠
r0

j=1
hj w t Cj t g u +Mj t

t

t−ρ t
g u ds

=

B u − 〠
r0

j=1
hj w t Cj t +Mj t ρ t f v

B v − 〠
r0

j=1
hj w t Cj t +Mj t ρ t g u

22

If (23) is another equilibrium point of (8)

u

v
, 23

we can actually deduce from (22) that

B u − B u

≤ 〠
r0

j=1
Cj t f v − f v + Mj t

t

t−ρ
f v − f v ds

≤ 〠
r0

j=1
Cj t f v − f v + Mj t

t

t−ρ
f v − f v ds ,

24

and then

B u − u ≤ 〠
r0

j=1
Cj t F v − v + Mj t

t

t−ρ
F v − v ds

= 〠
r0

j=1
Cj t F + ρ Mj t F v − v

= 〠
r0

j=1
Cj t + C∗ F + ρ Mj +M∗ F v − v

25

Similarly,

B v − v ≤ 〠
r0

j=1
Cj t G + ρ Mj t G u − u

= 〠
r0

j=1
Cj + C∗ G + ρ Mj +M∗ G v − v

26

Combining (25) and (26) implies
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and (18) yields

u − u

v − v
= 0 ∈ R2n, 28

or

u

v
=

u

v
29

Thereby, the null solution is the unique equilibrium point
for (8).

Remark 6. In ordinary differential systems, the uniqueness of
the equilibrium solution can be determined by the existence
of the equilibrium solution and its global asymptotic stability.
However, (8) is a partial differential system, including two dif-
ferent variables: t and x. Since the existence of the equilibrium
solution and its global asymptotic stability only determines the
equilibrium solution which is unique about variable t, but it
may be not unique on variable x.Hence, it is necessary to ver-
ify the uniqueness of the equilibrium solution.

Step 2. To derive LMI-based criterion in which the nonlinear
diffusion terms can play roles, we need to construct new
Lyapunov-Krasovskii functionals as follows:

V t = V1 t +V2 t +V3 t + V4 t

+V5 t +V6 t ,
30

where

v1 t =
Ω
uT t, x Qu t, x

dx = 〠
n

i=1 Ω
qiu

2
i dx,

v2 t =
Ω
vT t, x Qv t, x

dx = 〠
n

j=1 Ω
qiv

2
j dx,

31

v3 t = 2
1 − l0

〠
n

i=1
〠
r0

j=1
〠
n

k=1
aiqi cijk + c∗ijk Fk

Ω

t

t−τk t

vk s, x p

p
dsdx,

v4 t = 2
1 − l0

〠
n

i=1
〠
r0

j=1
〠
n

k=1
aiqi cijk + c∗ijk Gk

Ω

t

t−τk t

uk s, x p

p
dsdx,

32

v5 t = 2
p
〠
r0

j=1 Ω

0

−ρ
dσ

t

t+σ
v1 s, x p/2,… , vn s, x p/2

QA Mj +M∗ F

v1 s, x p/2

v2 s, x p/2

⋮

vn s, x p/2

dsdx,

33

v6 t = 2
p
〠
r0

j=1 Ω

0

−ρ
dσ

t

t+σ
u1 s, x p/2,… , un s, x p/2

QA Mj +M∗ G

u1 s, x p/2

u2 s, x p/2

⋮

un s, x p/2

dsdx,

34

Remark 7. The uncertainty of parameters brings a difficulty
to design the Lyapunov functions. If imitating the previous
Lyapunov functions in existing literature, for example, let

v3 t = 2
1 − l0

〠
n

i=1
〠
r0

j=1
〠
n

k=1
aiqi cijk t Fk

Ω

t

t−τk t

vk s, x p

p
dsdx,

35

one can find it impossible that the sufficient conditions of
stability criterion can be derived. In addition, Lyapunov
functions (33) and (34) help us to derive the complete lin-
ear matrix inequality condition for the stability criterion of
nonlinear diffusion system (8).

Step 3.We claim that the null solution is globally asymptoti-
cally robust stable.

Evaluating the time derivation of V1 t along the trajec-
tory of the (8), we can derive from Lemma 3.1

B −〠
r0

j=1
Cj + C∗ F + ρ Mj +M∗ F

−〠
r0

j=1
Cj + C∗ G + ρ Mj +M∗ G B

u − u

v − v
≤ 0 ∈ R2n, 27
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v1′ t ≤
Ω
2 −λ1U

T t, x QDU t, x − uTQA u B u dx

+ 2
Ω
〠
r0

j=1
hj w t u TQA u Cj t

f v t − τ t , x dx

+ 2
Ω
〠
r0

j=1
hj w t u TQA u

Mj t
t

t−ρ t
f v s, x dsdx,

36

where we simply denote

U t, x =

u1 t, x P/2

u2 t, x P/2

⋮

un t, x P/2

,

v t, x =

v1 t, x p/2

v2 t, x p/2

⋮

vn t, x p/2

,

37

and

U t − τ t , x =

u1 t − τ1 t , x P/2

u2 t − τ2 t , x P/2

⋮

un t − τn t , x P/2

,

V t − τ t , x =

v1 t − τ1 t , x P/2

v2 t − τ2 t , x P/2

⋮

vn t − τn t , x P/2

38

It follows by (H1), (H2), and the conditions on the
parameter p that

sai s bi s ≥ aibis
p, ∀s ∈ R 39

So combining (H1), (H2), and (39) results in

2
Ω
uTQA u B u dx = 2

Ω
〠
n

i=1
uiqiai ui bi ui dx

≥ 2
Ω
〠
n

i=1
qiaibiu

p
i dx

=
Ω
UT t, x 2QABU t, x dx,

40

From Lemma 2.1, (H1), and (H3), we get

2
Ω
〠
r0

j=1
hj w t uTQA u Cj t f v t − τ t , x dx

≤ 2〠
r0

j=1 Ω
u TQ A u Cj t f v t − τ t , x dx

≤ 2〠
n

i=1
〠
r0

j=1
〠
n

k=1
aiqi cijk t Fk

Ω

p − 1
p

ui
p + vk t − τk t , x p

p
dx

= 〠
r0

j=1 Ω
UT t, x 2 p − 1

p
QA Cj t F U t, x

+ 〠
r0

j=1 Ω
VT t − τ t , x 2

p
QA Cj t F V

t − τ t , x dx ≤ 〠
r0

j=1 Ω
UT t, x

2 p − 1
p

QA Cj t F U t, x + 〠
r0

j=1 Ω
VT t − τ t , x

2
p
QA Cj + C∗ F V t − τ t , x dx,

41

where Cj t = cijk t
n×n.

Besides, we can conclude from (H2), (H3), and Lemma
2.1 that

2
Ω
〠
r0

j=1
hj w t uTQA u Mj t

t

t−ρ t
f v s, x dsdx

≤ 2〠
r0

j=1 Ω

t

t−ρ t
u TQ A u Mj t f v s, x dsdx

≤ 2〠
n

i=1
〠
r0

j=1
〠
n

k=1
aiqi mijk t Fk

Ω

t

t−ρ
ui

p−1 vk s, x dsdx

≤ 〠
r0

j=1 Ω
UT t, x 2ρ p − 1

p
QA Mj t F U t, x dsdx

+ 〠
r0

j=1 Ω

t

t−ρ
VT s, x 2

p
QA Mj +M∗ F V

s, x dsdx,
42

where Mj t = mijk t
n×n.

So we have
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v1′ t ≤
Ω
UT t, x

−2λ1PD − 2QAB + 〠
r0

j=1
2 p − 1

p
QA Cj t F

+ 2ρ p − 1
p

QA Mj t F U t, x

+ 〠
r0

j=1 Ω
VT t − τ t , x 2

p
QA Cj + C∗ F V

t − τ t , x dx + 〠
r0

j=1 Ω

t

t−ρ
VT s, x

2
p
QA Mj +M∗ F V s, x dsdx

43

Besides, we get by (32)

v3′ t ≤
2

1 − l0
〠
n

i=1
〠
r0

j=1
〠
n

k=1
aiqi cijk + c∗ijk Fk

Ω

vk t, x p

p
dx − 2〠

n

i=1
〠
r0

j=1
〠
n

k=1
aiqi

cijk + c∗ijk Fk
Ω

vk t − τk t , x p

p
dx

= 〠
r0

j=1 Ω
VT t, x 2

p 1 − l0
QA Cj + C∗ F V t, x dx

− 〠
r0

j=1 Ω
VT t − τ t , x 2

p
QA Cj + C∗ F

V t − τ t , x dx,
44

One can deduce from (33) that

v5′ t = 〠
r0

j=1 Ω

0

−ρ
VT t, x 2

p
QA Mj +M∗ F V t, x dx

− 〠
r0

j=1 Ω

0

−ρ
VT t + s, x 2

p
QA Mj +M∗ F

V t + s, x dsdx

= 〠
r0

j=1 Ω
VT t, x 2

p
QA Mj +M∗ F V s, x dx

− 〠
r0

j=1 Ω

t

t−ρ
VT s, x 2

p
QA Mj +M∗ F V

s, x dsdx

45

Hence,

v1′ t + v3′ t + v5′ t

≤ 2
Ω
UT t, x

−λ1QD −QAB + 〠
r0

j=1

p − 1
p

QA Cj t F

+ ρ
p − 1
p

QA Mj t F U t, x + 2
Ω
VT t, x 〠

r0

j=1

1
p 1 − l0

QA Cj + C∗ F + ρ

p
QA Mj +M∗ F

V t, x dx

46

Similarly, we can deduce from V 2 , V 4 , and V 6
that

V 2′ t +V 4′ t +V 6′ t

≤ 2
Ω
VT t, x

−λ1QD −QAB + 〠
r0

j=1

p − 1
p

QA Cj t G

+ ρ
p − 1
p

QA Mj t G V t, x + 2
Ω
UT t, x 〠

r0

j=1

1
p 1 − l0

QA Cj + C∗ G + ρ

p
QA Mj +M∗ G

U t, x dx

47

Therefore, (17), (19), and (20) yield

V ′ t ≤ 2
Ω
UT −λ1QD −QAB + 〠

r0

j=1

p − 1
p

QA Cj t F

+ ρ
p − 1
p

QA Mj t F

+ 1
p 1 − l0

QA Cj + C∗ G

+ ρ

p
QA Mj +M∗ G U

+ 2
Ω
VT −λ1QD −QAB + 〠

r0

j=1

p − 1
p

QA Cj t G

+ ρ
p − 1
p

QA Mj t G

+ 1
p 1 − l0

QA Cj + C∗ F

+ ρ

p
QA Mj +M∗ F V ≤ 0

48
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It follows by the standard Lyapunov functional theory
that the null solution of (8) is globally asymptotically robust
stable. And the proof is completed.

Remark 8. There have been some other approaches removing
boundedness of amplification functions. For example, in
[53], an appropriate Lyapunov-Krasovskii functional is set
up to derive the LMI-based μ-stability for discrete time-
delay system. This is really a good result. However, in this
paper, our system model (8) is the continuous system differ-
ent from the discrete system ([54, (1)]). Of course, the main
results of this paper are inspired by some methods and ideas
of these documents.

Remark 9. The Lyapunov functionals (33) and (34) are simi-
lar to the quadric form different from those of [11, 13, 14, 20].
Actually, the quadric form and matrix form help us to derive
the LMI-based criterion.

Remark 10. The boundedness of amplification functions ai
and aj may be unbounded while amplification functions are
always proposed to be bounded in many existing results
(see, e.g., [7, 9, 18–21]).

If the diffusion phenomena are ignored, (8) degenerates
into the following BAM CGNNs with discrete and distrib-
uted time-varying delays:

dx
dt

= −A x t B x t − 〠
r0

j=1
hi w t

Cj + ΔCj t f y t − τ t

+ Mj + ΔMj t
t

t−ρ t
f y s ds ,

dy
dt

= −A y t B y t − 〠
r0

j=1
hi w t

Cj + ΔCj t g x t − τ t

+ Mj + ΔMj t
t

t−ρ t
g x s ds ,

x s = ϕ s ,
y s = υ s ,

s ∈ −τ∗, 0
49

Since in ordinary differential systems, the uniqueness of
the equilibrium solution can be determined by the existence
of the equilibrium solution and its global asymptotic stability,
and the diffusion items disappear, we can directly deduce the
following corollary from Theorem 3.2:

Corollary 3.3. Suppose that the conditions (H1)–(H3) hold.
Besides, there are four nonnegative matrices C∗, C∗,M∗, and
M∗ such that

−C∗ ≤ ΔCj t ≤ C∗,

−C∗ ≤ ΔCj t ≤ C∗,
−M∗ ≤ ΔMj t ≤M∗,

−M∗ ≤ ΔMj t ≤M∗,

50

and there is a positive definite matrix Q = diag q1, q2,… , qn
such that

QAB − 〠
r0

j=1

p − 1
p

QACjF + ρ
p − 1
p

QAMjF

+ 1
p 1 − l0

QACjG + ρ

p
QAMjG > 0,

51

and

QAB − 〠
r0

j=1

p − 1
p

QACjG + ρ
p − 1
p

QAMjG

+ 1
p 1 − l0

QACjF + ρ

p
QAMjF > 0,

52

then there exists the unique globally asymptotically robust sta-
ble equilibrium point for (49).

Remark 11. For the BAM CGNNs (53), Corollary 3.3 deletes
the boundedness of amplification functions ai and aj,
improving related results (see, e.g., [7, 9, 18, 19, 21]). This
is also shown below (Table 1).

Table 1: Comparisons of amplification function aj uj t, x in
related results.

Theorems and
examples

Boundedness conditions of aj

Theorem 3.2,
(Corollary 3.3),
Example 5.1

No requirements

[9, Theorem 2.1,
Theorem 3.1,
and Example 1]

0 < a < aj r < a, ∀r ∈ R

[2, Theorem 1
and Example 1]

0 < aj ≤ aj r ≤ aj, ∀r ∈ R

[3, Theorem 3.1
and Example 4.1]

0 < a j ≤ aj r <∞with aj′ r r ≥ 0, ∀r ∈ R

[3, Theorem 3.1
and Example 4.1]

0 < a j ≤ aj r , ∀r ∈ R

[5, Theorem 4
and Example 1]

0 < aj ≤ aj r ≤ aj, ∀r ∈ R

[6, Theorem 3.1
and Example 4.1]

0 < aj ≤ aj r ≤ aj, ∀r ∈ R
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4. Input-to-State Stability of Markovian
Jumping Reaction-Diffusion BAM
CGNNs with Event-Triggered Control in the
Case of p = 2

In this section, we consider the followingMarkovian jumping
reaction-diffusion BAM CGNNs with event-triggered con-
trol under Dirichlet zero-boundary value.

∂u
∂t

= ∇ ⋅ D t, x, u ∘ ∇u − A u t, x

B u t, x − ζ v t, x

− 〠
r0

j=1
hi w t Crj + ΔCrj t f v t − τ t , x

+Mrjφ v̂ t, x ,

∂u
∂t

= ∇ ⋅ D t, x, v ∘ ∇v − A v t, x

B v t, x − ζ u t, x

− 〠
r0

j=1
hi w t Crj + ΔCrj t g u t − τ t , x

+Mrjφ û t, x ,

53

for all t > 0, the initial value is u θ, x = ϕ θ, x , v θ, x =
ψ θ, x , and ∀ θ, x ∈ −τ∗, 0 ×Ω, where u, v represent feed-
back, and u, v represent the unknown exogenous disturbance
of the neuron. For any k = 0, 1, 2,… , the time tk is the trig-
gering time or update time. Between the triggering times tk
and tk+1, the feedback control is designed as

û t, x = ξu tk, x ,
v̂ t, x = ηv tk, x ,

t ∈ tk, tk+1 ,
54

where t0 = 0, û t, x = û1 t, x ,… , ûn t, x T , v̂ t, x =
v̂1 t, x ,… , v̂n t, x T , ξ = diag ξ1,… , ξn , and η = diag
η1,… , ηn . Here ξi and ηi are constants for all i.

Let Ω ,ϒ,ℙ be the given probability space where Ω
is the sample space, ϒ is σ, the algebra of subset of the
sample space, and ℙ is the probability measure defined
on ϒ. Let S = 1, 2,… , n0 and the random form process
r t : 0, +∞ → S be a homogeneous, finite-state Markov-
ian process with right continuous trajectories with generator
Π = γij n0×n0

and transition probability from mode i at time

t to mode j at time t + Δt, i, and j ∈ S.

ℙ r t + δ = j r t = i =
γijδ + o δ , j ≠ i,
1 + γijδ + o δ , j ≠ i,

55

where γij ≥ 0 is transition probability rate from i to j j ≠ i

and γii = −∑n0
j=1,j≠iγij, δ > 0 and lim

δ→0
o δ /δ = 0.

Let e t, x = e1 t, x ,… , en t, x T and e t, x =
e1 t, x ,… , en t, x T be the error signal defined by

e t, x = u tk, x − u t, x ,
e t, x = v tk, x − v t, x ,

t ∈ tk, tk, + 1 ,
56

then we actually get

û t, x = ξ u t, x + e t, x ,
v̂ t, x = η v t, x + e t, x ,

t ≥ 0
57

Define the event-triggering mechanism by

tk+1 = inf t > tk θ u 2
L2 + v 2

L2 + ε u 2
L2 + v 2

L2

− u t − τ t 2
L2 + v t − τ t 2

L2

−W e 2
L2 + e 2

L2 < 0 ,
58

where θ > 0, ε ∈ 0, 1 , and W > 0.

Remark 12. Such that tk+1 is always defined well on many
occasions. For example, let initial value u θ, x = ϕ θ, x ≡ 0,
v θ, x = ψ θ, x ≡ 0, and ∀ θ, x ∈ −τ∗, 0 ×Ω, then we must
get t1 > 0.

In this section, we assume that the conditions (H1)–(H3)
hold still in the case of p = 2.

Besides, suppose that

(H4) ζ v = ζ1 v1 , ζ2 v2 ,… , ζn vn
T with a positive

definite matrix L = diag l1, l2,… , ln such that

ζi s − ζi t ≤ li s − t , ∀s, t ∈ Rn, i = 1, 2,… , n 59

(H5) φ v̂ = φ1 v̂1 , φ2 v̂2 ,… , φn v̂n
T with a positive

definite matrix L̂ = diag l̂1, l̂2,… , l̂n such that

φi s − φi t ≤ l̂i s − t , ∀s, t ∈ Rn, i = 1, 2,… , n 60

For any mode r ∈ S,

Crj t = Crj + ΔCrj t ,

Crj t = Crj + ΔCrj t ,
61

which do not have to be diagonal matrices or other special
matrices.

11Complexity



In addition, we assume that

f 0 = g 0 = 0 = ζ 0 = φ 0 , 62

which can guarantee that u = 0, and v = 0 is a trivial solution
of (53).

Besides, there are nonnegative matrices Cr∗ and Cr∗ such
that

−Cr∗ ≤ ΔCrj t ≤ Cr∗,

−Cr∗ ≤ ΔCrj t ≤ Cr∗

63

Before giving the man result of this section, we need the
following lemma:

Lemma 4.1 ([54]) Let x ∈ Rn, y ∈ Rn, and ε > 0. Then we have

xTy + yTx ≤ εxTx + ε−1yTy 64

Definition 4.2. System (53) is called robust stochastic input-
to-state in mean square stable for all admissible uncertainties
satisfying (63), if for t > 0, there exist function β ∈Kℒ and
γ ∈K such that

E u 2
L2 + v 2

L2 ≤ β t, E u 0, x 2
L2 + v 0, x 2

L2

+ γ u 2
L2 + ∥v∥2L2 ,

65

where K = γ ⋅ ∣γ R+ → R+ is continuous strictly increas-
ing with γ 0 = 0 with R+ = 0,∞ , Kℒ = β ⋅ , ⋅ ∣β t, ⋅
∈K for each fixed t, β t, y is decreasing for fixed y and
lim
t→∞

β t, y = 0 .

Theorem 4.3. Assume the conditions (H1)–(H5) hold. Sup-
pose that there is a sequence of positive definition matrices
Pr r ∈ S and positive scalars α1, α2, α3, and α4 such that the
following LMI conditions hold for any mode r ∈ S:

where I represents the identity matrix with suitable dimension
under different cases for convenience.

Qr = 2λ1PrD + 2PrAB − 〠
n0

j=1
γr j Pj −

1
α1

I − 2r0α4ξ2L̂
2 − εr0I,

Qr = 2λ1PrD + 2PrAB − 〠
n0

j=1
γr j Pj −

1
α3

I − 2r0α2η2L̂
2 − εr0I

67

If, in addition,

max λmax 2r0α2η2L̂
2 , λmax 2r0α4ξ2L̂

2 ≤ r0W, 68

then (53) is a robust stochastic input-to-state stable in mean
square.

Proof. Construct the Lyapunov-Krasovskii functionals as
follows:

Qr PrA Cr1 + Cr∗ F ⋯ PrA Crr0 + Cr∗ F
1
α2

PrA Mr1 ⋯
1
α2

PrA Mrr0

∗ −I ⋯ 0 0 ⋯ 0
∗ ∗ ⋱ 0 0 … 0
∗ ∗ ⋯ −I 0 ⋯ 0
∗ ∗ ⋯ ∗ −I ⋯ 0
∗ ∗ ∗ ∗ ∗ ⋱ 0
∗ ∗ ∗ ∗ ∗ ⋯ −I

> 0,

Qr PrA Cr1 + Cr∗ G ⋯ PrA Crr0 + Cr∗ G
1
α2

PrA Mr1 ⋯
1
α2

PrA Mrr0

∗ −I ⋯ 0 0 ⋯ 0
∗ ∗ ⋱ 0 0 … 0
∗ ∗ ⋯ −I 0 ⋯ 0
∗ ∗ ⋯ ∗ −I ⋯ 0
∗ ∗ ∗ ∗ ∗ ⋱ 0
∗ ∗ ∗ ∗ ∗ ⋯ −I

> 0,

66
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V t, r = V1 t, r + V2 t, r , r ∈ S,

V1 t, r =
Ω
uT t, x Pru t, x dx,

V2 t, r =
Ω
vT t, x Prv t, x dx,

69

where each Pr r ∈ S is positive definition diagonal matrix.-
Due to

v̂ t, x = η v t, x + e t, x , 70

we get

v̂ t, x T v̂ t, x ≤ 2 v Tη2 v + e t, x Tη2 e t, x , 71

and

2
Ω
u TPrA u 〠

r0

j=1
Mrj φ v̂ t, x dx

≤ 2〠
r0

j=1 Ω
u TPrA Mrj L̂ v̂ t, x dx

≤ 〠
r0

j=1 Ω

1
α2

u TPrA Mrj Mrj
TAPr u

+ α2 v̂ t, x TL̂
2
v̂ t, x dx

≤ 〠
r0

j=1 Ω

1
α2

u TPrA Mrj Mrj
TAPr u + 2α2 v Tη2L̂

2
v

+ 2α2 e t, x Tη2L̂
2
e t, x dx,

72

where u = u t, x and v = v t, x .
Similarly, we get

2
Ω
u TPrL v t, x dx

≤
Ω

1
α1

u T u + α1 v t, x TLPrPrL v t, x dx
73

Next,

2〠
r0

j=1 Ω
u TPrA u Crj t f v t − τ t , x dx

≤ 2〠
r0

j=1 Ω
u TPrA Crj t F v t − τ t , x dx

≤ 〠
r0

j=1 Ω
u TPrA Crj t FF Crj t

TAPr u dx

+ r0
Ω
v t − τ t , x T v t − τ t , x dx

74

Let L be the weak infinitesimal operator, then we get

ℒV1 t, x ≤
Ω
u t, x T

−2λ1PrD − 2PrAB + 〠
n0

j=1
γr j Pj +

1
α2

I

+ 〠
r0

j=1
PrA Crj t FF Crj t

TAPr

+ 〠
r0

j=1

1
α2

PrA Mrj Mrj
TAPr u t, x dx

+
Ω
v t, x T α1LPrPrL v t, x dx

+ r0
Ω
v t − τ, x T v t − τ t , x dx

+
Ω
v t, x T 2r0α2η2L̂

2
v t, x

+
Ω
e t, x T 2r0α2η2L̂

2
e t, x dx

75
Similarly,

ℒV2 t, x ≤
Ω
u t, x T

−2λ1PrD − 2PrAB + 〠
n0

j=1
γr j Pj +

1
α3

I

+ 〠
r0

j=1
PrA Crj t GG Crj t

T
APr

+ 〠
r0

j=1

1
α4

PrA Mrj Mrj
T
APr v t, x dx

+
Ω
u t, x T α3LPrPrL u t, x dx

+ r0
Ω
u t − τ t , x T u t − τ t , x dx

+
Ω
u t, x T 2r0α4ξ2L̂

2
u t, x

+
Ω
e t, x T 2r0α4ξ2L̂

2
e t, x dx

76
Hence, we get

ℒV t, r ≤
Ω
u t, x T

−2λ1PrD − 2PrAB + 〠
r0

j=1
γr j Pj

+ 1
α1

I + 〠
r0

j=1
PrA Crj t FF Crj t

TAPr

+ 〠
r0

j=1

1
α2

PrA Mrj Mrj
TAPr + 2r0α4ξ2L̂

2
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That means

ℒV t, x ≤ −Θr u 3
L2 + v 3

L2

+ r0 u t − τ t 2
L2 + v t − τ t 2

L2

+Ψ e 3
L2 + e 3

L2 +Φr u 3
L2 + v 3

L2 ,
78

where

Θr =min λmin Qr − 〠
r0

j=1
PrA Crj + Cr∗ FF Crj + Cr∗

TAPr

− 〠
r0

j=1

1
α2

PrA Mrj Mrj
TAPr , λmin

Qr − 〠
r0

j=1
PrA Crj + Cr∗ GG Crj + Cr∗

T
APr

− 〠
r0

j=1

1
α4

PrA Mrj Mrj
T
APr ,Ψ =max

λmax 2r0α2η2L̂
2 , λmax 2r0α4ξ2L̂

2 ≤ r0W,

79

and

Φr =max λmax α3LPrPrL , λmax α1LPrPrL 80

In addition, for any t ∈ tk, tk+1 , the definition of tk+1
derives

θ u 2
L2
+ v 2

L2
+ ε u 2

L2
+ v 2

L2

− u t − τ t 2
L2 + u t − τ t 2

L2

−W e 2
L2 + e 2

L2 ≥ 0

81

So we get

ℒV t, r ≤ − Θr − εr0 u 2
L2 + u 2

L2

+ Φr + θr0 u 2
L2 + v 2

L2 ,
82

or

ℒV t, r ≤ −β1 u 2
L2 + v 2

L2 + β2 u 2
L2 + v 2

L2 , 83

where (66) and Schur complement lemma yield that Θr − ε
r0 > 0 and hence β1 > 0 with β1 = min

r∈S
Θr − εr0 and β2 =

max
r∈S

Φr + θr0 > 0.
Furthermore, Dynkin’s formula yields

d
dt

EV t, r = ELV t, r

≤ −β1 u 2
L2 + v 2

L2 + β2 u 2
L2 + v 2

L2

≤ −
β1

λmaxPr
EV t, r + β2 u 2

L2 + v 2
L2

≤ −β3EV t, r + β2 u 2
L2 + v 2

L2 ,
84

where

β3 = min
r∈S

β1
λmaxPr

> 0 85

Applications of the Comparison principle to (84) reaches

EV t, r ≤ EV 0, r e−β3t −
β2 u 2

L2 + v 2
L2

β3
e−β3t − 1

≤ EV 0, r e−β3t + β2 u 2
L2 + v 2

L2

β3

≤ λmaxPr u 0, x 2
L2 + v 0, x 2

L2 e−β3t

+ β2 u 2
L2 + v 2

L2

β3
,

86
which derives

u 2
L2 + v 2

L2 ≤
λmaxPr

λmaxPr
u 0, x 2

L2 + v 0, x 2
L2 e−β3t

+ β2 u 2
L2 + v 2

L2

β3λminPr
,

87
which together with Definition 4.2 implies that (53) is robust
stochastic input-to-state stable in mean square.

Remark 13. Theorem 4.3 provides a new stability criterion
which is different from the existing criteria of [55–59]. In

u t, x dx +
Ω
v t, x T

−2λ1PrD − 2PrAB + 〠
n0

j=1
γr j Pj +

1
α3

I

+ 〠
r0

j=1
PrA Crj t GG Crj t

T
APr

+ 〠
r0

j=1

1
α4

PrA Mrj Mrj
T
APr + 2r0α2η2L̂

2

v t, x dx +
Ω
u t, x T α3LPrPrL u t, x dx

+
Ω
v t, x T α1LPrPrL v t, x dx

+ r0
Ω
u t − τ t , x T u t − τ t , x dx

+ r0
Ω
v t − τ t , x T v t − τ t , x dx

+
Ω
e t, x T 2r0α4ξ2L̂

2
e t, x dx

+
Ω
e t, x T 2r0α2η2L̂

2
e t, x dx

77
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addition, to the best of our knowledge, it is the first time to
investigate input-to-state stability of reaction-diffusion
time-delay system with event-triggered control. Especially,
the diffusion items play roles in the criterion.

5. Numerical Examples

Example 5.1. Consider (8) with the following parameters:
p = 8/3, u = u1 t, x , u2 t, x T , v = v1 t, x , v2 t, x T ∈ R2,
x ∈Ω = 0, π , and then the first eigenvalue

λ1 =
2
π

8/3 −1 1/ 8/3

0

dt

1 − t8/3/ 8/3 1/ 8/3

8/3

= 9558

88

(see Remark 2).

Let a1 u1 = 0 1 u21
3 1 + cos2 u1 + 1 , a2 u2 = 0 2 u22

3 , a1
v1 = 0 2 u21

3 , a2 v2 = 0 1 u22
3 1 + sin4 v2 − 10 , b1 u1

= 2u1 1 + sin2u1 , b2 u2 = 2 5u2 , d1 u1 = 2v1 1 + cos2u1 ,
d2 u2 = 2 7u2 , f1 v1 = 0 16v1 sin v1, f2 v2 = 0 166v2, g1
u1 = 0 15u1 sin u1, g2 u2 = 0 17u2, τ1 t = τ2 t = t/2 =
τ1 t = τ2 t , ρ1 t = ρ2 t = ρ1 t = 5 = ρ2 t , and l0 = 0 5,
ρ = ρ = 5,

A =
0 1 0
0 0 2

,

A =
0 2 0
0 0 2

= A,

A =
0 2 0
0 0 1

,

B =
2 0
0 2 5

,

B =
2 0
0 2 7

,

D t, x, u =
0 003 0
0 0 006

,

D t, x, u =
0 0033 0

0 0 0057
,

F =
0 16 0
0 0 166

,

G =
0 15 0
0 0 17

89

Let r0 = 2, and

C1 =
−0 053 0 0011
0 0018 0 085

,

C2 =
0 086 0 0009

−0 0011 0 0085
,

C1 =
0 036 0 001

−0 0011 0 085
,

C2 =
0 035 0 0011

−0 0009 0 088
,

M1 =
−0 023 0 0013
0 0008 0 072

,

M2 =
0 076 0 0003

−0 0002 0 0072
,

M1 =
0 036 0 0003

−0 0009 0 036
,

M2 =
0 032 0 0003

−0 0002 0 077
,

C∗ =
0 033 0 0011

−0 0018 0 0063
,

C∗ =
0 0063 0 0013
0 0012 0 00036

,

M∗ =
0 0033 0 0061
−0 0019 0 0013

,

M∗ =
0 0033 0 0011
0 0039 0 0066

90
So we can use MATLAB software to compute (18),

obtaining

K =

2 0000 0 −0 1078 −0 0693

0 2 5000 −0 0644 −0 0813

−0 0685 −0 1081 2 0000 0

−0 0734 −0 1251 0 2 7000

−1

=

0 5014 0 0018 0 0271 0 0129

0 0009 2 4012 0 0130 0 0121

0 0172 0 0217 0 5016 0 0011

0 0137 0 0186 0 0013 0 3713

≥ 0

91
Moreover, utilizing MATLAB LMI toolbox to solve LMIs

(19)–(20) reaches the feasibility data as follows:
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Q =
46 6134 0

0 46 9921
92

Now, one can conclude from Theorem 3.2 that there
exists the globally asymptotically robust stable unique equi-
librium point for (8).

Remark 14. From Table 1, we know, our new results (Theo-
rem 3.2 and Corollary 3.3) is novel because the boundedness
of amplification functions becomes unnecessary.

Remark 15. From Table 2, we know, our Theorem 3.2 is
novel, different from those of existing results.

Example 5.2. Consider (63) with the following parameters:
Ω = 0, 10 × 0, 10 and u = u1, u2 T , v = v1, v2 T ∈ R2,
and x = x1, x2 ∈Ω ⊂ R2. And so λ1 = 0 02π2 = 0 1974 (see
Remark 3).

Let a1 u1 = 0 1 u21
3 1 + cos2 u1 + 1 , a2 u2 = 0 2 u22

3 ,
a1 v2 = 0 2 v21

3 , a2 v2 = 0 1 v22
3 1 + sin4 v2 − 10 , b1 u1

= 2u1 1 + sin2u1 , b2 u2 = 2 5u2, d1 v1 = 2v1 1 + cos2v1 ,
d2 v2 = 2 7v2, f1 v1 = 0 16v1 sin v1, f2 v2 = 0 166v2, g1
u1 = 0 15u1 sin u1, g2 u2 = 0 17u2, τ1 t = τ2 t = t/2 =
τ1 t = τ2 t ,

A =
0 1 0
0 0 2

,

A =
0 2 0
0 0 2

= A,

A =
0 2 0
0 0 1

B =
2 0
0 2 5

,

B =
2 0
0 2 7

,

D t, x, u =
0 003 0
0 0 006

,

D t, x, u =
0 0033 0

0 0 0057
,

F =
0 16 0
0 0 166

,

G =
0 15 0
0 0 17

93

Let r0 = 2 = n0, and

C11 =
−0 053 0 0011
0 0018 0 085

,

C12 =
0 086 0 0009

−0 0011 0 0058
,

C11 =
0 036 0 001

−0 0011 0 016
,

C12 =
0 035 0 0011

−0 0009 0 088
,

M11 =
−0 023 0 0013
0 0008 0 072

,

M12 =
0 076 0 0003

−0 0002 0 0027
,

M11 =
0 036 0 0003

−0 0009 0 036
,

M12 =
0 032 0 0003

−0 0002 0 077
,

C1∗ =
0 033 0 0011

−0 0018 0 0063
,

C1∗ =
0 0063 0 0013
0 0012 0 00036

,

C2∗ =
0 0058 0 0013
0 0012 0 00053

,

C21 =
−0 049 0 0014
0 0018 0 085

,

C22 =
0 089 0 0009

−0 0018 0 0058
,

C21 =
0 054 0 001

−0 0011 0 016
,

Table 2: Comparisons of our results with other results related to
reaction-diffusion.

Related results
Value
of p

Diffusion
plays a role

Applicable to MATLAB
LMI toolbox

Our Theorem 3.2 p > 1 Yes Completely applicable

[19, Theorem 3.1] p > 2 No Not

[8, Theorem 3.1] p = 2 Yes

[11, Theorem 3.2] p > 1 No Not

[16, Theorem 1–3] p = 2 Yes Not

[18, Theorem 3.1] p > 1 No Yes
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C22 =
0 043 0 0011

−0 0009 0 088
,

M21 =
−0 032 0 0013
0 0008 0 072

,

M22 =
0 083 0 0003

−0 0002 0 0027
,

M21 =
0 043 0 0003

−0 0009 0 036
,

M22 =
0 039 0 0003

−0 0002 0 077
,

C2∗ =
0 0043 0 0011
−0 0018 0 0063

,

ξ =
0 0010 0

0 0 0015
,

η =
0 0021 0

0 0 0033
,

ζ v = ζ1 v1 , ζ2 v2
T

= 0 01 sin v1, 0 02 sin2v2 φ û

= φ1 û1 , φ2 û2
T

= 0 01 sin3û1, 0 02û2
94

Let θ = 0 01, ε = 0 001, and W = 0 5 and then we can
compute and verify that (68) is satisfied. Now using com-
puter MATLAB LMI-toolbox to solve LMI (66) gives the fea-
sibility data as follows:

P1 =
7 7856 0

0 6 899
,

P2 =
6 6189 0

0 6 9973
,

α1 = 1 5346,
α2 = 1 5986,
α3 = 1 1323,
α4 = 0 9869

95

According to Theorem 4.3, (53) is robust stochastic
input-to-state stable in mean square.

Remark 16. This paper is inspired by the methods and con-
clusions of the previous literature [55–59]. But the sufficient
conditions of Theorem 4.3 is easier to be verified than those
of existing results.

6. Conclusions

In this paper, we mainly provided two novel conclusions for
p-Laplace diffusion BAM CGNNs. In the case of p > 1 with
p ≠ 2, the authors construct novel Lyapunov functional to
overcome the mathematical difficulties of nonlinear p-
Laplace diffusion time-delay model with parameter uncer-
tainties, deriving the LMI-based robust stability criterion
applicable to computer MATLAB LMI toolbox, deleting the
boundedness of the amplification functions. On the other
hand, when p = 2, LMI-based sufficient conditions are also
inferred for robust input-to-state stability of reaction-
diffusion Markovian jumping BAM CGNNs with the event-
triggered control, which is different from those of many pre-
vious related literature. As far as we are concerned, seldom
literature involved a reaction-diffusion stochastic system
with time delays and the event-triggered control. It is the first
time to explore the method for the stability analysis of this
system. Finally, numerical examples illustrate the effective-
ness and feasibility via computer MATLAB LMI toolbox.
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