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This paper investigates the stochastically exponential stability of reaction-diffusion impulsive stochastic cellular neural networks
(CNN). The reaction-diffusion pulse stochastic system model characterizes the complexity of practical engineering and brings
about mathematical difficulties, too. However, the difficulties have been overcome by constructing a new contraction mapping and
an appropriate distance on a product space which is guaranteed to be a complete space. This is the first time to employ the fixed
point theorem to derive the stability criterion of reaction-diffusion impulsive stochastic CNN with distributed time delays. Finally,
an example is provided to illustrate the effectiveness of the proposed methods.

1. Introduction

In 1988, cellular neural networks (CNN) were originally
introduced in [1, 2]. Since then, dynamic neural networks
have received extensive attention due to their classification,
associative memory, and parallel computing tasks and the
ability to solve complex optimization problems. It is gen-
erally known that almost all neural networks have similar
applications ([3–12]), but the key to the success of these
applications lies in the stability of the system. In fact, there
are a number of literatures involved in the stability analysis
of CNN ([5, 7, 12–14]). In practical engineering, time delay
and pulse are unavoidable. Since neural networks usually
have spatial properties, due to the existence of parallel paths
of various axonal sizes and lengths, it is necessary to intro-
duce continuous distributed delays to simulate them over a
given time horizon. Besides, many evolutionary processes,
especially the biological neural network in biological sys-
tems and bursting rhythm models in pathology, frequency-
modulated signal processing systems, are characterized by
abrupt changes of states at certain time instants. In addition,
electrons have diffusion behavior in inhomogeneous media.

Noise disturbance is unavoidable in real nervous systems,
which is a major source of instability and poor performance
in neural networks. A neural network can be stabilized
or destabilized by certain stochastic inputs. The synaptic
transmission in real neural networks can be viewed as a
noisy process introduced by random fluctuations from the
release of neurotransmitters and other probabilistic causes.
Hence, the above influent factors should be also taken into
consideration in stability analysis of neural networks. So,
in this paper, we consider a class of impulsive stochastic
reaction-diffusion cellular neural networks with distributed
delay. Lyapunov function method is one of the common
techniques to solve the stability of neural networks in recent
decades. However, every method has its limit. Different
methods lead to different criteria for stability criteria which
may imply innovations. Fixed point theory and method is
one of the alternative methods ([15–22]). Unlike the known
literature, we try to employ Banach fixed point theory in this
paper to derive the stability of impulsive stochastic reaction-
diffusion cellular neural networks with distributed delay. In
the next sections, we shall give some model descriptions
and preliminaries and employ Banach fixed point theorem,
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Hölder inequality, Burkholder-Davis-Gundy inequality, and
the continuous semigroup of Laplace operators to derive the
stochastically exponential stability criterion of the complex
system. Of course, to overcome the difficulty of the complex
mathematical model, we need to formulate a new contraction
mapping on a product space. Moreover, in order to guarantee
the completeness of product space, we need to give a reason-
able definition of distance. Finally, an example is provided to
illustrate the effectiveness of the proposed result.

2. Model Description and Preliminaries

Consider the following reaction-diffusion impulsive stochas-
tic cellular neural networks under Dirichlet boundary value:

𝑑𝑢𝑖 (𝑡, 𝑥) = −𝑞𝑖div∇𝑢𝑖 (𝑡, 𝑥) 𝑑𝑡 − [[𝑎𝑖𝑢𝑖 (𝑡, 𝑥)

− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝑡, 𝑥)) − 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝑡 − 𝜏 (𝑡) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝑡
𝑡−𝜌(𝑡)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝑡
+ 𝜎𝑖 (𝑢𝑖 (𝑡, 𝑥)) 𝑑𝑤𝑖 (𝑡) ,

𝑡 ̸= 𝑡𝑘, 𝑥 ∈ Υ, 𝑖 ∈ N

𝑢 (𝑡+𝑘 , 𝑥) = 𝑢 (𝑡−𝑘 , 𝑥) + 𝑔 (𝑢 (𝑡𝑘, 𝑥)) ,
𝑥 ∈ Υ, 𝑘 = 1, 2, . . .

𝑢𝑖 (𝑡, 𝑥) = 𝜁𝑖 (𝑡, 𝑥) , ∀ (𝑠, 𝑥) ∈ [−𝜏, 0] × Υ
𝑢 (𝑡, 𝑥) = 0, ∀ (𝑡, 𝑥) ∈ [0, +∞) × 𝜕Υ,

(1)

where Υ ⊂ 𝑅𝑚 is a bounded domain with the smooth
boundary 𝜕Υ. 𝑢𝑖(𝑡, 𝑥) is the state variable of the 𝑖th neuron
at time 𝑡 and in space variable 𝑥 for 𝑖 ∈ N with N ≜{1, 2, . . . , 𝑛}. 𝑓𝑖 denotes the active function of neuron. 𝑎𝑖 is
the rate with which the 𝑖th neuron will reset its potential
to the resting state in isolation when disconnected from the
networks and the external inputs. 𝑏𝑖𝑗, 𝑐𝑖𝑗, and ℎ𝑖𝑗 are elements
of feedback template. Let {𝑤𝑖(𝑡), 𝑡 ⩾ 0} be a real-valued
Brownian motion defined on the complete probability space{Ω,F,P} which has natural filtration {F𝑡}𝑡⩾0. Denote by
L2(Υ) the space of all real-valued square integrable functions
with the inner product ⟨𝜉, 𝜂⟩ = ∫

Υ
𝜉(𝑥)𝜂(𝑥)𝑑𝑥, for 𝜉, 𝜂 ∈

L2(Υ) which derives the norm ‖𝜉‖ = (∫
Υ
𝜉2(𝑥)𝑑𝑥)1/2 for𝜉 ∈ L2(Υ). 𝜎𝑖(⋅) is a Borel measurable function. Denote byΔ = ∑𝑚𝑗=1(𝜕2/𝜕𝑥2𝑗) the Laplace operator, with domainD(Δ) =𝑊1,20 (Υ) ∩ 𝑊2,20 (Υ), which generates a strongly continuous

semigroup 𝑒−𝑞𝑖𝑡Δ, where𝑊1,20 (Υ) and𝑊2,20 (Υ) are the Sobolev
spaces with compactly supported sets. div∇𝑢𝑖(𝑡, 𝑥) denotes
the divergence of ∇𝑢𝑖(𝑡, 𝑥) (see, e.g., [25, 26]). 𝑞𝑖 is the
diffusion coefficient, and time delays 𝜏(𝑡), 𝜌(𝑡) ∈ [0, 𝜏].
Besides, initial value 𝜁𝑖(𝑡, 𝑥) is continuous for (𝑠, 𝑥) ∈ [−𝜏, 0]×Υ. The fixed impulsive moments 𝑡𝑘 (𝑘 = 1, 2, . . .) satisfy

0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ with lim𝑘→+∞𝑡𝑘 = +∞. 𝑢(𝑡+𝑘 , 𝑥)
and 𝑢(𝑡−𝑘 , 𝑥) stand for the right-hand and left-hand limit of𝑢(𝑡, 𝑥) at time 𝑡𝑘, respectively. Further, suppose that 𝑢(𝑡−𝑘 , 𝑥) =
lim𝑡→𝑡−

𝑘
𝑢(𝑡, 𝑥) = 𝑢(𝑡𝑘, 𝑥), 𝑘 = 1, 2, . . ..

In this paper, we assume that
(H1) ‖𝑒−𝑞𝑖𝑡Δ‖ ⩽ 𝑀𝑒−𝛾𝑡, where 𝑀 > 0 and 𝛾 > 0 are

constants;
(H2)𝑓𝑖, 𝑔𝑖, and 𝜎𝑖 are Lipschitz continuous with Lipschitz

constants 𝐿 𝑖 > 0, 𝐺𝑖, and 𝑇𝑖 > 0 for 𝑖 ∈ N, respectively. In
addition, 𝑓𝑖(0) = 𝑔𝑖(0) = 0 = 𝜎𝑖(0), ∀𝑖 ∈ N.

Definition 1. For any 𝑇 > 0 and 𝑥 ∈ Υ, a stochastic
process 𝑢 = {(𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛(𝑡, 𝑥))}[0,𝑇] is called a
mild solution of impulsive system (1) if, for any 𝑖 ∈ N,𝑢𝑖(𝑡, 𝑥) ∈ C([0, 𝑇]; L2(Υ)) and, for any 𝑡 ∈ [0, 𝑇], 𝑢𝑖(𝑡, 𝑥)
is adapted toF𝑡 with

P{𝜔 : ∫𝑡
0
∫
Υ

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑠)󵄨󵄨󵄨󵄨2 𝑑𝑥 𝑑𝑠 < ∞} = 1, (2)

and the following stochastic integral equations hold for all 𝑖 ∈
N, a.s. for any 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ Υ,

𝑢𝑖 (𝑡, 𝑥) = 𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥) − ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥)

− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
+ ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)

+ 𝑒−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥)) , 𝑡 ⩾ 0
𝑢𝑖 (𝑡, 𝑥) = 𝜁𝑖 (𝑡, 𝑥) , ∀ (𝑠, 𝑥) ∈ [−𝜏, 0] × Υ,
𝑢 (𝑡, 𝑥) = 0, ∀ (𝑡, 𝑥) ∈ [0, +∞) × 𝜕Υ.

(3)

Remark 2. In Definition 1, the mild solution of impulsive
system (1) is well defined due to [24, Lemma 3.1].
Lemma 3 (Hölder inequality). Assume that 1/𝑝 + 1/𝑞 = 1
with 𝑝 > 1, and 𝜑(𝑥) ∈ L𝑝(Υ), 𝜙 ∈ L𝑞(Υ); then,

∫
Υ
𝜑 (𝑥) 𝜙 (𝑥) 𝑑𝑥
⩽ (∫
Υ

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)1/𝑝 (∫
Υ

󵄨󵄨󵄨󵄨𝜙 (𝑥)󵄨󵄨󵄨󵄨𝑞 𝑑𝑥)1/𝑞 .
(4)

Lemma 4 (Banach contraction mapping principle). LetΘ be
a contraction operator on a complete metric space Γ; then there
exists a unique point 𝑢 ∈ Γ for which Θ(𝑢) = 𝑢.
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3. Main Result: Stochastically
Exponential Stability

Theorem5. Assume that (H1) and (H2) hold.Then, CNN (1) is
stochastically exponentially mean square stable if the following
condition holds:

0 < 𝜅 < 1, (5)

where 𝜇 = inf𝑘=1,2,...(𝑡𝑘+1 − 𝑡𝑘) > 0 and
𝜅 ≜ 6𝑀2 [[

1𝛾2 (max
𝑖∈N

𝑎2𝑖 )

+ 𝑛 1𝛾2max
𝑖∈N

( 𝑛∑
𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨2) 𝐿2𝑗) + 𝑛𝜏2𝛾2
+ 2𝑀2 (1 + 1𝛾2𝜇2)(max

𝑖∈N
𝐺2𝑖 ) + 2𝛾 (max

𝑖∈N
𝑇2𝑖 )]] .

(6)

Proof. Firstly, we need to formulate a contractionmapping on
a product space.

Let Γ𝑖 be the Banach space of allF𝑡-adapted mean square
continuous processes consisting of functions 𝑢𝑖(𝑡, 𝑥) at 𝑡 ⩾ 0
with 𝑡 ̸= 𝑡𝑘 such that E(𝑒𝛼𝑡‖𝑢𝑖(𝑡, 𝑥)‖2) → 0 as 𝑡 → +∞, where𝛼 ∈ (0, 𝛾) is a positive scalar. Now, we construct an operatorΘ ≜ (Θ1, Θ2, . . . , Θ𝑖, . . . , Θ𝑛) with Θ𝑖 : Γ𝑖 → Γ𝑖 as follows:
Θ𝑖 (𝑢𝑖) (𝑡, 𝑥) = 𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥) − ∫𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥)

− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
+ ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)

+ 𝑒−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥)) , 𝑡 ⩾ 0,

(7)

Θ𝑖 (𝑢𝑖) (𝑡, 𝑥) = 𝜁𝑖 (𝑡, 𝑥) , (𝑠, 𝑥) ∈ [−𝜏, 0] × Υ
Θ𝑖 (𝑢𝑖) (𝑡, 𝑥) = 0, ∀ (𝑡, 𝑥) ∈ [0, +∞) × 𝜕Υ. (8)

Equipped with the following distance:

dist (𝑢, V) = (Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥) − V𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2)1/2 ,
∀𝑢, V ∈ Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛,

(9)

Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛 becomes a complete metric space, where𝑢 = 𝑢(𝑡, 𝑥) = (𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛(𝑡, 𝑥))𝑇, V = V(𝑡, 𝑥) =(V1(𝑡, 𝑥), V2(𝑡, 𝑥), . . . , V𝑛(𝑡, 𝑥))𝑇.

Next, we are to apply contractive mapping theory to
complete the proof via three steps.

Step 1. From (7), for 𝑡 ∈ [0, +∞) \ {𝑡𝑘}∞𝑘=1, we claim thatΘ𝑖(𝑢𝑖)(𝑡) is mean square continuous. Indeed, let 𝛿 be a small
enough scalar:

E
󵄩󵄩󵄩󵄩Θ𝑖 (𝑢𝑖) (𝑡 + 𝛿, 𝑥) − Θ𝑖 (𝑢𝑖) (𝑡, 𝑥)󵄩󵄩󵄩󵄩2
⩽ 4E 󵄩󵄩󵄩󵄩󵄩𝑒−𝑞𝑖(𝑡+𝛿)Δ𝜁 (0, 𝑥) − 𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥)󵄩󵄩󵄩󵄩󵄩2
+ 4E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝛿

0
𝑒−𝑞𝑖(𝑡+𝛿−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥)

− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃

− ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥) −

𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥))
− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 4E 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝛿

0
𝑒−𝑞𝑖(𝑡+𝛿−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)

− ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 4E 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖(𝑡+𝛿)Δ ∑

0<𝑡𝑘<𝑡+𝛿

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))

− 𝑒−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 .

(10)

Firstly, we estimate

E
󵄩󵄩󵄩󵄩󵄩𝑒−𝑞𝑖(𝑡+𝛿)Δ𝜁 (0, 𝑥) − 𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥)󵄩󵄩󵄩󵄩󵄩2
⩽ E

󵄩󵄩󵄩󵄩󵄩(𝑒−𝑞𝑖𝛿Δ − 1) 𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥)󵄩󵄩󵄩󵄩󵄩2 󳨀→ 0,
if 𝛿 󳨀→ 0.

(11)

Next, we evaluate

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝛿

0
𝑒−𝑞𝑖(𝑡+𝛿−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥) −

𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥))

− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))
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− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃

− ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥) −

𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥))

− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

⩽ 2E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝛿

𝑡
𝑒−𝑞𝑖(𝑡+𝛿−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥)

− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 2E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥) −

𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥))

− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]] (𝑒−𝑞𝑖𝛿Δ − 1) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

󳨀→ 0, if 𝛿 󳨀→ 0.
(12)

Via Burkholder-Davis-Gundy inequality, we can conclude
that if 𝛿 → 0,

E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡+𝛿

0
𝑒−𝑞𝑖(𝑡+𝛿−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)

− ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

⩽ 8E∫𝑡
0
𝑀2𝑒−2𝛾(𝑡−𝜃) 󵄩󵄩󵄩󵄩󵄩𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) (𝑒−𝑞𝑖𝛿Δ − 1)󵄩󵄩󵄩󵄩󵄩2 𝑑𝜃

+ 8E∫𝑡+𝛿
𝑡

𝑀2𝑒−2𝛾(𝑡+𝛿−𝜃) 󵄩󵄩󵄩󵄩𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥))󵄩󵄩󵄩󵄩2 𝑑𝜃 󳨀→ 0.

(13)

Due to 𝑡 ̸= 𝑡𝑘, it is obvious that
E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖(𝑡+𝛿)Δ ∑

0<𝑡𝑘<𝑡+𝛿

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))

− 𝑒−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 󳨀→ 0,

if 𝛿 󳨀→ 0.
(14)

So, we have proved from (10)–(14) that Θ𝑖(𝑢𝑖)(𝑡) is mean
square continuous at 𝑡 ⩾ 0 with 𝑡 ̸= 𝑡𝑘.

Next, we claim that

lim
𝛿→0+

Θ𝑖 (𝑢𝑖) (𝑡𝑘 + 𝛿) = Θ𝑖 (𝑢𝑖) (𝑡𝑘) + 𝑔 (𝑢𝑖 (𝑡𝑘)) ,
lim
𝛿→0−

Θ𝑖 (𝑢𝑖) (𝑡𝑘 + 𝛿) = Θ𝑖 (𝑢𝑖) (𝑡𝑘) . (15)

Indeed, obviously, (11)–(13) hold for all 𝑡 = 𝑡𝑘, too. In
addition, let 𝛿 > 0 be small enough:

𝑒−𝑞𝑖(𝑡𝑘+𝛿)Δ ∑
0<𝑡𝑗<𝑡𝑘+𝛿

𝑒𝑞𝑖𝑡𝑗Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑗, 𝑥))
− 𝑒−𝑞𝑖𝑡𝑘Δ ∑

0<𝑡𝑗<𝑡𝑘

𝑒𝑞𝑖𝑡𝑗Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑗, 𝑥))
= 𝑔𝑖 (𝑢 (𝑡𝑘, 𝑥)) , 𝛿 󳨀→ 0+.

(16)

On the other hand, let 𝛿 < 0 be small enough:

𝑒−𝑞𝑖(𝑡𝑘+𝛿)Δ ∑
0<𝑡𝑗<𝑡𝑘+𝛿

𝑒𝑞𝑖𝑡𝑗Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑗, 𝑥))
− 𝑒−𝑞𝑖𝑡𝑘Δ ∑

0<𝑡𝑗<𝑡𝑘

𝑒𝑞𝑖𝑡𝑗Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑗, 𝑥)) = 0,
𝛿 󳨀→ 0−.

(17)

This together with (16) implies that (15) holds.

Step 2. We claim that

E (𝑒𝛼𝑡 󵄩󵄩󵄩󵄩Θ𝑖 (𝑢𝑖 (𝑡, 𝑥))󵄩󵄩󵄩󵄩2) 󳨀→ 0, if 𝑡 󳨀→ +∞. (18)

Indeed, we have the following inequality similar to (10):

E (𝑒𝛼𝑡 󵄩󵄩󵄩󵄩Θ𝑖 (𝑢𝑖) (𝑡, 𝑥)󵄩󵄩󵄩󵄩2) ⩽ 4E (𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥)󵄩󵄩󵄩󵄩󵄩2)
+ 4E{{{{{

𝑒𝛼𝑡
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥)
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− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}}}}

+ 4E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2)

+ 4E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2) ,

𝑡 ⩾ 0.
(19)

Condition (H1) yields

E (𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩𝑒−𝑞𝑖𝑡Δ𝜁 (0, 𝑥)󵄩󵄩󵄩󵄩󵄩2) ⩽ E (𝑀2𝑒−(2𝛾−𝛼)𝑡 󵄩󵄩󵄩󵄩𝜁 (0, 𝑥)󵄩󵄩󵄩󵄩2)
󳨀→ 0, if 𝑡 󳨀→ +∞. (20)

For any given 𝜀 > 0, the assumptionE(𝑒𝛼𝑡‖𝑢𝑖(𝑡, 𝑥)‖2) → 0
tells us that there exists 𝑡∗ > 0 such that

E (𝑒𝛼𝑡 󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2) < 𝜀, ∀𝑡 ⩾ 𝑡∗. (21)

Moreover, Hölder inequality gives

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝑎𝑖𝑢𝑖 (𝜃, 𝑥) 𝑑𝜃󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2) ⩽ 𝑀2𝑎2𝑖𝛾
⋅ E(𝑒𝛼𝑡 ∫𝑡

0
𝑒−𝛾(𝑡−𝜃) 󵄩󵄩󵄩󵄩𝑢𝑖 (𝜃, 𝑥)󵄩󵄩󵄩󵄩2 𝑑𝜃) ⩽ 𝑀2𝑎2𝑖𝛾

⋅ E(𝑒−(𝛾−𝛼)𝑡𝑡∗𝑒𝛾𝑡∗ max
𝜃∈[0,𝑡∗]

(󵄩󵄩󵄩󵄩𝑢𝑖 (𝜃, 𝑥)󵄩󵄩󵄩󵄩2) + 𝜀 1𝛾 − 𝛼) ,
(22)

which together with the arbitrariness of 𝜀 derives
E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝑎𝑖𝑢𝑖 (𝜃, 𝑥) 𝑑𝜃󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2) 󳨀→ 0,
if 𝑡 󳨀→ +∞.

(23)

Besides,

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

⩽ E(𝑀 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝑒−(𝛾−𝛼)𝑡 ∫𝑡
0
𝑒𝛾𝜃 󵄩󵄩󵄩󵄩󵄩𝑢𝑗 (𝜃, 𝑥)󵄩󵄩󵄩󵄩󵄩 𝑑𝜃)

2

.
(24)

Using similar methods of (21) and (22), we can deduce from
(24) that

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2) 󳨀→ 0,
if 𝑡 → +∞.

(25)

Similar to that of (24) and (22), we can also obtain

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥)) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

⩽ E[[𝑀
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 1𝛾 (𝑒−(𝛾−𝛼)𝑡𝑒𝛾𝜏 (𝑡∗ + 𝜏)

⋅ max
𝑠∈[−𝜏,𝑡∗+𝜏]

(𝑒𝛾𝑠 󵄩󵄩󵄩󵄩󵄩𝑢𝑗 (𝑠, 𝑥)󵄩󵄩󵄩󵄩󵄩2) + 𝜀𝑒𝛾𝜏 1𝛾 − 𝛼)]] .

(26)

Now, similar to that of (22), we know from (26) that

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥)) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

󳨀→ 0, if 𝑡 󳨀→ +∞.
(27)

Similarly, Hölder inequality yields

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

⩽ 𝑀2E[[
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨ℎ𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 𝜏𝛾
⋅ (𝑒−(𝛾−𝛼)𝑡𝜏 max

𝜃∈[−𝜏,𝑡∗+𝜏]

󵄩󵄩󵄩󵄩󵄩𝑢𝑗 (𝑠, 𝑥)󵄩󵄩󵄩󵄩󵄩2 1𝛾𝑒𝛾(𝑡∗+𝜏) + 𝜀𝜏𝑒𝛼𝜏

⋅ 1𝛾 − 𝛼)]] .

(28)

Similar to (22), we can conclude from (28) that

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

󳨀→ 0, if 𝑡 󳨀→ +∞.
(29)

Hence,

E
{{{{{
𝑒𝛼𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [[𝑎𝑖𝑢𝑖 (𝜃, 𝑥) −

𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥))

− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}}}}
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⩽ 4E 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒𝛼𝑡 ∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝑎𝑖𝑢𝑖 (𝜃, 𝑥) 𝑑𝜃󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 4E 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
𝛼𝑡 ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 4E 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
𝛼𝑡 ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗 (𝜃

− 𝜏 (𝜃) , 𝑥)) 𝑑𝜃󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 + 4E 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒

𝛼𝑡 ∫𝑡
0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

ℎ𝑖𝑗

⋅ ∫𝜃
𝜃−𝜌(𝜃)

𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 󳨀→ 0,

if 𝑡 󳨀→ +∞.
(30)

Burkholder-Davis-Gundy inequality andHölder inequal-
ity derive

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2)
⩽ 8E(𝑀2𝑇2𝑖 𝑒−(2𝛾−𝛼)𝑡𝑡∗ max

𝜃∈[0,𝑡∗]
𝑒2𝛾𝜃 󵄩󵄩󵄩󵄩𝑢𝑖 (𝜃, 𝑥)󵄩󵄩󵄩󵄩2)

+ 8𝜀E(𝑀2𝑇2𝑖 √ 14𝛾 (𝛾 − 𝛼)) ,
(31)

which together with the arbitrariness of 𝜀 implies

E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2) 󳨀→ 0,
if 𝑡 󳨀→ +∞.

(32)

Next, we may assume that 𝑡𝑙−1 < 𝑡∗ ⩽ 𝑡𝑙 and 𝑡𝑗−1 < 𝑡 ⩽ 𝑡𝑗.
In addition, one can deduce from (H1)

E
{{{𝑒
𝛼𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘⩽𝑡∗

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}}

⩽ E[𝑀𝑒(𝛼/2)𝑡𝑒−𝛾𝑡( ∑
0<𝑡𝑘⩽𝑡𝑙

𝑀𝑒𝛾𝑡𝑘𝐺𝑖 󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡𝑘, 𝑥)󵄩󵄩󵄩󵄩)]
2

󳨀→ 0, if 𝑡 󳨀→ +∞.

(33)

Besides, we can estimate by means of definite integral

E{𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
𝑡∗<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}

⩽ 𝜀𝐺2𝑖𝑀4E(𝑒−(1/2)(2𝛾−𝛼)𝑡 ∑
𝑡𝑙⩽𝑡𝑘⩽𝑡𝑗−1

𝑒(1/2)(2𝛾−𝛼)𝑡𝑘)
2

⩽ 𝜀E(𝑀2𝐺𝑖 (1 + 2𝜇 (2𝛾 − 𝛼)))
2 .

(34)

Moreover, the arbitrariness of 𝜀 implies

E{𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
𝑡∗<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2} 󳨀→ 0,
if 𝑡 󳨀→ +∞.

(35)

Hence, if 𝑡 → +∞,

E
{{{𝑒
𝛼𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2}}}

⩽ 2E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘⩽𝑡∗

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

+ 2E(𝑒𝛼𝑡 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
𝑡∗<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2)

󳨀→ 0.

(36)

Combining (19), (20), (23), (30), (32), and (36) results in
(18).

Step 3. Finally, we claim that Θ is a contractive mapping onΓ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛.
Indeed, from the above two steps, we know Θ𝑖(Γ𝑖) ⊂ Γ𝑖,

and then Θ(Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛) ⊂ Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛.
On the other hand, for any 𝑖 ∈ N and𝑢, V ∈ Γ1×Γ2×⋅ ⋅ ⋅×Γ𝑛,
Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩Θ𝑖 (𝑢𝑖) (𝑡, 𝑥) − Θ𝑖 (V𝑖) (𝑡, 𝑥)󵄩󵄩󵄩󵄩2

⩽ 6Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝑎𝑖 (𝑢𝑖 (𝜃, 𝑥)

− V𝑖 (𝜃, 𝑥)) 𝑑𝜃󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 + 6Emax

𝑖∈N
sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ

⋅ 𝑛∑
𝑗=1

𝑏𝑖𝑗 (𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑓𝑗 (V𝑗 (𝜃, 𝑥))) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2
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+ 6Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑐𝑖𝑗
⋅ (𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))
− 𝑓𝑗 (V𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 6Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

ℎ𝑖𝑗

⋅ (∫𝜃
𝜃−𝜌(𝜃)

[𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) − 𝑓𝑗 (V𝑗 (𝑠, 𝑥))] 𝑑𝑠) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 6Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ [𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥))

− 𝜎𝑖 (V𝑖 (𝜃, 𝑥))] 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 6Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ [𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥))

− 𝑔𝑖 (V𝑖 (𝑡𝑘, 𝑥))]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 .

(37)
Besides, it follows by the Hölder inequality that

Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ𝑎𝑖 (𝑢𝑖 (𝜃, 𝑥) − V𝑖 (𝜃, 𝑥)) 𝑑𝜃󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 ⩽ 𝑀2
⋅ 1𝛾2 (max

𝑖∈N
𝑎2𝑖 )Emax

𝑖∈N
sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝜃, 𝑥) − V𝑖 (𝜃, 𝑥)󵄩󵄩󵄩󵄩2 ,
Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑏𝑖𝑗
⋅ (𝑓𝑗 (𝑢𝑗 (𝜃, 𝑥)) − 𝑓𝑗 (V𝑗 (𝜃, 𝑥))) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 ⩽ 𝑛𝑀2 1𝛾2

⋅max
𝑖∈N

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 𝐿2𝑗)Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥) − V𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2 ,
Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ 𝑛∑

𝑗=1

𝑐𝑖𝑗
⋅ (𝑓𝑗 (𝑢𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥)) − 𝑓𝑗 (V𝑗 (𝜃 − 𝜏 (𝜃) , 𝑥))) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

⩽ 𝑛𝑀2 1𝛾2max
𝑖∈N

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 𝐿2𝑗)Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥)
− V𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2 ,

Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ

⋅ 𝑛∑
𝑗=1

ℎ𝑖𝑗 (∫𝜃
𝜃−𝜌(𝜃)

[𝑓𝑗 (𝑢𝑗 (𝑠, 𝑥)) − 𝑓𝑗 (V𝑗 (𝑠, 𝑥))] 𝑑𝑠) 𝑑𝜃
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

⩽ 𝑛𝑀2𝜏2 1𝛾2max
𝑖∈N

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨ℎ𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 𝐿2𝑗)Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥)
− V𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2 ,

Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒
−𝑞𝑖𝑡Δ ∑
0<𝑡𝑘<𝑡

𝑒𝑞𝑖𝑡𝑘Δ

⋅ [𝑔𝑖 (𝑢𝑖 (𝑡𝑘, 𝑥)) − 𝑔𝑖 (V𝑖 (𝑡𝑘, 𝑥))]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 ⩽ 𝑀4 (max

𝑖∈N
𝐺2𝑖 )

⋅ [2Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥) − V𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2

+ 2Emax
𝑖∈N

sup
𝑡⩾−𝜏

(1𝜇𝑒−𝛾𝑡 ∫
𝑡

0
𝑒𝛾𝑠 󵄩󵄩󵄩󵄩𝑢𝑖 (𝑠, 𝑥) − V𝑖 (𝑠, 𝑥)󵄩󵄩󵄩󵄩 𝑑𝑠)2]

⩽ 2𝑀4 (1 + 1𝛾2𝜇2)(max
𝑖∈N

𝐺2𝑖 )Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡, 𝑥)
− V𝑖 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2 ,

(38)

where we assume that 𝑡𝑗−1 < 𝑡 ⩽ 𝑡𝑗.
In addition, it follows from Burkholder-Davis-Gundy

inequality that

Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝑡

0
𝑒−𝑞𝑖(𝑡−𝜃)Δ

⋅ [𝜎𝑖 (𝑢𝑖 (𝜃, 𝑥)) − 𝜎𝑖 (V𝑖 (𝜃, 𝑥))] 𝑑𝑤𝑖 (𝜃)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 ⩽ 2𝛾

⋅ 𝑀2 (max
𝑖∈N

𝑇2𝑖 )Emax
𝑖∈N

sup
𝑡⩾−𝜏

󵄩󵄩󵄩󵄩𝑢𝑖 (𝜃, 𝑥) − V𝑖 (𝜃, 𝑥)󵄩󵄩󵄩󵄩2 .
(39)

Now, combining (37)–(39) gives

dist (Θ (𝑢) , Θ (V)) ⩽ √𝜅 dist (𝑢, V) ,
∀𝑢, V ∈ Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛, (40)

where 𝜅 is defined as (6), satisfying 0 < 𝜅 < 1. This
implies that Θ : Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛 → Γ1 × Γ2 ×⋅ ⋅ ⋅ × Γ𝑛 is a contraction mapping such that there exists
the fixed point 𝑢 ≜ (𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛(𝑡, 𝑥)) of Θ
in Γ1 × Γ2 × ⋅ ⋅ ⋅ × Γ𝑛, which implies that 𝑢 is a solution
of CNN (1), satisfying E(𝑒𝛼𝑡‖Θ𝑖(𝑢𝑖(𝑡, 𝑥))‖2) → 0, 𝑡 →+∞ so that Emax𝑖∈Nsup𝑡⩾−𝜏(𝑒𝛼𝑡‖Θ𝑖(𝑢𝑖(𝑡, 𝑥))‖2) → 0, 𝑡 →+∞.Therefore, CNN (1) is stochastically exponentially mean
square stable.
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Table 1: Comparison of the complexity of system models in the literature related to fixed point theory.

Theorem 5 [16] [15] [23] [24]
Using fixed point theory Yes Yes Yes Yes Yes
Impulse model Yes No No Yes Yes
Distributed delays Yes No No No No
Reaction-diffusion model Yes No No No No
Itô stochastic model Yes No No No No
Equations type Integrodifferential (partial) eq. Differential eq. Differential eq. Differential eq. Integrodifferential eq.
Stability type Stochastically exponential Exponential Exponential Exponential Exponential

4. Numerical Example

Consider the following impulsive stochastic reaction-diffu-
sion CNN with distributed delay:

𝑑𝑢𝑖 (𝑡, 𝑥) = −𝑞𝑖div∇𝑢𝑖 (𝑡, 𝑥) 𝑑𝑡 − [[𝑎𝑖𝑢𝑖 (𝑡, 𝑥)

− 𝑛∑
𝑗=1

𝑏𝑖𝑗sin( 𝑗10𝑢𝑗 (𝑡, 𝑥))
− 𝑛∑
𝑗=1

𝑐𝑖𝑗sin 𝑗10 (𝑢𝑗 (𝑡 − 𝜏 (𝑡) , 𝑥))

− 𝑛∑
𝑗=1

ℎ𝑖𝑗 ∫𝑡
𝑡−𝜌(𝑡)

sin( 𝑗10𝑢𝑗 (𝑠, 𝑥)) 𝑑𝑠]]𝑑𝑡
+ sin (0.05𝑖𝑢𝑖 (𝑡, 𝑥)) 𝑑𝑤𝑖 (𝑡) ,

𝑡 ̸= 𝑡𝑘, 𝑥 ∈ Υ, 𝑖 ∈ N

𝑢 (𝑡+𝑘 , 𝑥) = 𝑢 (𝑡−𝑘 , 𝑥) + 0.1𝑗 sin (𝑢 (𝑡𝑘, 𝑥)) ,
𝑥 ∈ Υ, 𝑘 = 1, 2, . . .

𝑢𝑖 (𝑡, 𝑥) = 𝜁𝑖 (𝑡, 𝑥) , (𝑠, 𝑥) ∈ [−𝜏, 0] × Υ
𝑢 (𝑡, 𝑥) = 0, 𝑢 ∈ [0, +∞) × 𝜕Υ,

(41)

where we suppose Υ = (0, 𝜋), 𝑛 = 2, 𝜏 = 3, 𝜇 = 1.5, 𝑎𝑖 = 0.5𝑖,𝑏𝑖𝑗 = 0.01(𝑖 + 𝑗) = 𝑐𝑖𝑗 = ℎ𝑖𝑗, and 𝑞𝑖 = −1.Then, via computing
the eigenfunctions of −Δ, we can obtain that ‖𝑒𝑡Δ‖ ⩽ 𝑒−𝜋2𝑡, 𝑡 ⩾0, so that we can take 𝛾 = 𝜋2,𝑀 = 1. In addition, differential
mean value theorem yields󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin(

𝑗10𝑢𝑗 (𝑡, 𝑥)) − sin ( 𝑗10V𝑗 (𝑡, 𝑥))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑗10 󵄨󵄨󵄨󵄨󵄨𝑢𝑗 (𝑡, 𝑥) − V𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨 ,
(42)

and then we get 𝐿𝑗 = 𝑗/10, 𝑗 = 1, 2. Similarly, we can
compute that 𝐺𝑖 = 0.1𝑖, 𝑇𝑖 = 0.05𝑖, and 𝑖 = 1, 2. Finally,
we can compute (6) on a computer running Matlab software,
obtaining 𝜅 = 0.8716 ∈ (0, 1). Therefore, Theorem 5 tells
us that CNN (41) is stochastically exponentially mean square
stable.

Table 1 is presented to compare the complexity of neural
networks investigated in various literatures via fixed point
theorems and techniques.

Remark 6. Impulsive reaction-diffusion Itô-type stochastic
model gives a lot of mathematical difficulties in deriving
the stability criterion. Motivated by some methods and
techniques of the above-mentioned literature ([3–31]), this is
the first time for us to analyze such a complexmodel byway of
fixed point theorem. Our model is closer to real engineering
so that it is more complex than those of the previous
literature, and we utilize Banach fixed point theorem, Hölder
inequality, Burkholder-Davis-Gundy inequality, and the con-
tinuous semigroup of Laplace operators to overcome the
difficulties. Besides, the distance defined in this paper satisfies
the triangle inequality, which is another point different from
those of previous related literatures.

5. Conclusions

Since our CNN model involves pulse and Laplacian oper-
ators, our model is different from the previous model
([15–22]), which also implies some difficulties in math-
ematical techniques. Motivated by the previous literature
related to fixed point theory ([15–22, 25–31]), the authors
employed Banach fixed point theorem, Hölder inequality,
Burkholder-Davis-Gundy inequality, and the continuous
semigroup of Laplace operators to derive the stochasti-
cally exponential stability criterion of impulsive stochastic
reaction-diffusion cellular neural networks with distributed
delay.
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