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Abstract. The proper treatment of computationalism, as the thesis that cognition is

computable, is presented and defended. Some arguments of James H. Fetzer against

computationalism are examined and found wanting, and his positive theory of minds

as semiotic systems is shown to be consistent with computationalism. An objection is

raised to an argument of Selmer Bringsjord against one strand of computationalism,

namely, that Turing-Test± passing artifacts are persons, it is argued that, whether or
not this objection holds, such artifacts will inevitably be persons.
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1. The proper treatment of computationalism

Computationalism isÐ or ought to beÐ the thesis that cognition is computable. But

what does this mean? What is meant by `cognition’ and by `computable’ ?

I take the vague term `cognition’ to cover the phenomena that others have called,

equally vaguely, `mental states and processes’ , `thinking’ , ìntelligence’, `mentality’,
or simply t̀he mind’. More speci® cally, this includes such things as language use,

reasoning, conceiving, perceiving, planning, and so onÐ the topics of such cognitive

disciplines as linguistics, cognitive psychology, and the philosophy of mind, among

othersÐ in general, of cognitive science. Perhaps this is still vague, but it will be

good enough for present purposes.

A slightly more precise story has to be told about `computable’ . Note, ® rst, that

I have said that computationalism is the thesis that cognition is computable, not

that it is computation (as Pylyshyn (1985, p. xiii) characterizes it). There is a subtle
but, I think, important diŒerence, as we shall see. The kind of thing that can be

computable is a function, i.e. a set of ordered pairsÐ ìnput± output’ pairs, to use

computer jargonÐ such that no two pairs have the same ® rst element but diŒerent

second elements. Roughly, a function is computable if and only if there is an

`algorithm’ that computes it, i.e. an algorithm that takes as input the ® rst elements
of the function’ s ordered pairs, manipulates them (in certain constrained ways), and

returns the appropriate second elements. To say that it is an algorithm that does

this is to say that there is an explicitly given, `eŒective procedure’ for converting the

input into the output. But what does this mean? Following my colleague Stuart C.

Shapiro, I tell my introductory computer science students that an algorithm is a
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procedure for solving a problem such that: (a) it is unambiguous for the computer

or human who will execute it, i.e. all steps of the procedure must be clear and
well-de® ned for the executor, and (b) it is eŒective, i.e. it must eventually halt and

it must be correct. ((a) and (b) are the constraints alluded to above.) However, to

be mathematically precise, an algorithm isÐ following Church’ s ThesisÐ a Turing-

machine program (or a recursive function, or a lambda expression, or any one of

the other, logically equivalent models of computation, for an excellent historical
discussion of the interrelationships of these concepts, see Soare (1996)). We’ ll return

to this notion in more detail, below.

Thus, to say that cognition is computable is to say that there is an algorithmÐ

more likely, a collection of interrelated algorithmsÐ that computes it. So, what does

it mean to say that something `computes cognition’ ? If mental (or psychological)
behaviour can be characterized in input± output terms as, perhaps, stimulus± response

pairs, thenÐ assuming the set of such pairs is a function (or several functions)Ð

cognition is computable if and only if there is an algorithm (or a collection of

algorithms) that computes this function (or functions). Another way to say this is

to say that cognition is a recursive function (or a set of recursive functions) (cf.

Shapiro 1992, p. 54, 1995, p. 517).
But note that it is quite possible, according to this characterization of computa-

tionalism, for cognition itselfÐ for mental states and processes, or brain states and

processesÐ not to be a computation, i.e. not to be the execution of an algorithm.

After all, a computable function need not be given as a computation: it might just

be a set of input± output pairs. Arguably, such a set is a trivial computation: a
table look-up. But there are other phenomena that are, or may be, computable but

not computations. One standard kind of example is illustrated by the solar system,

which, arguably, computes Kepler’ s laws. However, it could also be said that it is

Kepler’ s laws that are computable and that describe the behaviour of the solar

system, yet the solar system does not compute them, i.e. the behaviour of the solar
system is not a computation, even though its behaviour is computable. In theory, a

device could convert input into output in some mysterious, or causal but not com-

putational, way, yet be such that the function that is its input± output description

is computable. Perhaps the mind works this way: mental states and processesÐ i.e.

cognitionÐ may be computable but not computed . And similarly for the brain. That

is, possibly there are mindsÐ i.e. systems that have the input± output behaviour of
cognitionÐ that accomplish it non-algorithmically (and maybe human minds are

like this.) Personally, I do not believe that this is the case, but it is possibleÐ and it

is consistent with computationalism properly treated.

However, if cognition is thus computable, then any (physical) device that did per-

form cognitive computations would exhibit cognition. It would think. And it would
do so even if we (human) cognitive agents did not perform cognitive computations.

So, is computationalism true? I do not know , but I believe so. For one thing, I

have not seen any good arguments against itÐ people such as Dreyfus, Penrose, and

Searle notwithstanding. It is not that these people are necessarily wrong. It is just

that I do not think that this is the sort of issue that is ready to be refuted by an in-
principle argument. It may well be the case that someÐ maybe even allÐ aspects of

cognition are not computable. But I take the goal of computational cognitive science

to be the investigation of the extent to whichÐ and the ways in whichÐ cognition is

computable. And I take computationalismÐ understood now as the thesis that all

cognition is computableÐ to be its working hypothesis. In fact, much of cognition
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is known to be computable: most reasoning isÐ including ® rst-order, default, and

non-monotonic logics, belief revision, as well as searching and game playing. Much
of language is. Signi® cant aspects of visual perception, planning, and acting are.

What we should do is to see how much of cognition can be computed. The history

of computational cognitive science is much too short for us to give up on it yet.

Is computationalism as I have characterized it trivial? Quite the contrary, for

it needs to be demonstrated that the cognitive functions are computable, and to

do this, we need to devise appropriate algorithms. This is by no means a trivial
task, as the history of AI has shown. The central question of cognitive science, as

I and many other computational cognitive scientists see it, is not (merely): how

is human cognition accomplished? Human cognition may, for all we know, not

be accomplished computationally. Rather, the central question is the more Kantian

one: how is cognition possible? Computationalism properly treated is the hypothesis
that cognition can be accomplished computationally, i.e. that it is computable.

2. Fetzer’s treatment of computationalism

In `Mental Algorithms’ , Fetzer (1994) asks whether minds are computational systems,

and there, as well as in `People Are Not Computers’ (Fetzer 1998),1 he answers in the

negative. I believe that there are (or will be, in the golden age of cognitive science)

some computational systems that are minds, and I believe that mentality (cognition)
is computable. But, as we have seen, the computationalist should also be willing to

believe that it is possible that not all minds are computational systems if by that is

meant that possibly not all minds behave computationally.

Thus, it is misleading for Fetzer to say that `the idea that human thought

requires the execution of mental algorithms appears to provide a foundation for

research programs in cognitive science’ (Fetzer 1994, p. 1, my italics). Rather, what
provides the foundation is the idea that thought in general (and human thought in

particular) can be explained (or described, or accounted for) in terms of algorithms

(call them `mental algorithms’ if you will). As I noted, this is, or can be seen

as, an elaboration of behaviourism: behaviourism was concerned with describing

human thought in stimulus± response terms (i.e. input± output terms) and only those.
Cognitivism posits processes that mediate the stimulus (input) with the response

(output). And computational cognitivism posits that those processes are computable

(cf. Rapaport 1993).

Let’ s consider the notion of an algorithm in a bit more detail. It is di� cult to talk

about what an algorithm is, since the notion is an informal one. What licenses its

use is Church’ s Thesis, the fact that all formal explications of the informal notion
have turned out to be logically equivalent, thus giving support to its being more

than just an intuitively plausible idea. I oŒered one informal speci® cation above, due

to Shapiro. Fetzer oŒers two variants: (1) `algorithms . . . are de® nite (you always

get an answer), reliable (you always get a correct answer), and completable (you

always get a correct answer in a ® nite interval of time)’ (Fetzer 1994, p. 4)2 and
(2) `algorithms are . . . completely reliable . . . procedures . . . that can be carried

out in a ® nite number of steps to solve a problem’ (Fetzer 1998, p. 375). In all

three cases, the informal notion of algorithm is a relative one: an algorithm is an

algorithm for a problem or question. Thus, if an alleged algorithm for some problem

P fails to solve P correctly, it fails to be an algorithm for P . However, it does not
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necessarily thereby fail to be an algorithm, for it may be an algorithm for some

other problem P ¢.
This is where the notion of a `heuristic’ enters. Consider an AI program that

uses heuristic game-playing techniques to play chess. It may not always make the

`best’ move, but if it makes a move that is `good enough’, that will su� ce for the

purposes of playing chess. Yet it is an algorithm that does this, not the algorithm

you thought it was, perhaps, but an algorithm nonetheless. A heuristic for problem
P can be de® ned as an algorithm for some problem P ¢, where the solution to P ¢ is

`good enough’ as a solution to P (cf. Korf 1992, Shapiro 1992, pp. 54± 55, Findler

1993, Herman 1993, and Korfhage 1993.) Thus, to argue, as Fetzer (1994, p. 6) does,

that computationalism is false to the extent that it relies on heuristics `rather’ than

algorithms is to set up a false dichotomy: the heuristics that AI researchers and
computational cognitive scientists use are algorithms. In fact, in AI we do not need

guaranteed solutions at all, just algorithmic processes that are cognitive. It is best

to stick to the Turing-machine analysis of `algorithm’ (i.e. of computation) and omit

any reference to the problem for which an algorithm is designed. What is important

for computationalism properly treated is whether cognitive processes are algorithmic

(i.e. computable) in the Turing-machine sense.
Are there functions that are intuitively algorithmic but are not recursive or Turing-

computable? Fetzer cites Cleland (1993), who `appeals to a class of \mundane

functions", which includes recipes for cooking and directions for assembling devices,

as examples of eŒective procedures that are not Turing computable’ , because they

manipulate `things rather than numerals’ (Fetzer 1994, p. 15). However, this takes
the standard introduction-to-computer-science analogy for an algorithm and tries to

make more of it than is there. The computationalist’ s point is not that cooking, for

example, is algorithmic in the sense that the recipe is an algorithm to be f̀ollowed’

(and, incidentally, computers do not `follow’ algorithms, they execute them) but

that cooking is the result of algorithmic processes: I can write a very complex
program for a robot who will plan and execute the preparation of dinner in an

algorithmic fashion, even using `pinches’ of salt, but the recipe is not an algorithm.

A suitably-programmed Turing machine can cook (or so the working hypothesis of

computational cognitive science would have it).

But is all of cognition algorithmic? Fetzer makes two claims that reveal, I think,

a serious misunderstanding of the computational cognitive enterprise:

The strongest possible version of the computational conception would therefore appear to
incorporate the following claims: that all thinking is reasoning, that all reasoning is reckoning,
that all reckoning is computation, and that the boundaries of computability are the boundaries
of thought. Thus understood, the thesis is elegant and precise, but it also appears to suŒer
from at least one fatal ¯ aw: it is (fairly obviously, I think) untrue! The boundaries of thought
are vastly broader than those of reasoning, as the exercise of imagination and conjecture
demonstrates. Dreams and daydreams are conspicuous examples of non-computational thought
processes. (Fetzer 1994, p. 5, cf. 1998, p. 381)

The ® rst claim, that all thinking is reasoning, is a red herring. I agree with

Fetzer that t̀he boundaries of thought are vastly broader than those of reasoning ’ :

when I recall a pleasant afternoon spent playing with my son, I am not reasoning
(there are no premises or conclusions), but I am thinking, andÐ the computationalist

maintainsÐ my thinking is computable. In this case, my recollection (my reverie, if

you will) is the result of a computable (i.e. algorithmic) mental process.

However, a slight amendment to Fetzer’ s slippery slope makes me willing to

slide down it: although not all thinking is reasoning, all reasoning is reckoning, all
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thinking (including reckoning) is computable, and the boundaries of computability

are the boundaries of thought.
This last point is also disputed by Fetzer, who says that `computability does not

de® ne the boundaries of thought. The execution of mental algorithms appears to

be no more than one special kind of thinking’ (Fetzer 1994, p. 2). On the working

hypothesis that all thinking is computable, computability does de® ne the boundaries

of thought, and even if mental algorithms are just `a special kind of thinking’ , they
are an important kind, because systems other than humans can execute them, and

these systems can thus be said to think. But the computationalist should, as noted,

be willing to recognize the possibility that actual thinkings, even though computable,

might not take place by computation.3 In that sense, I can agree with Fetzer.4 But

this is merely to say that some acts of thinking might be computable but not carried
out computationally.

The notion of `boundaries’ , however, is a slippery one. An analogy might clarify

this. The distance between locations A and B might be `drivable’ Ð i.e. one can get

from A to B by driving. But it might also be `walkable’ Ð i.e. one can get from A to B

by walking (cf. McCarthy 1968 (see reference for reprint version 1985, p. 300)). If any

two locations are drivable but also walkable, then in one sense drivability does not de-
® ne the boundaries of getting from any A to any B, because it is also walkable. Yet, in

another sense, drivability does de® ne the boundaries: any two locations are drivable.

The second mistaken claim concerns dreaming. To say that dreams are not

computational (Fetzer 1998, p. 379) because they themselves do not compute any

(interesting) functions, or because they are not heuristics, or because t̀hey have no
de® nite starting point and no de® nite stopping point’ (Fetzer 1998, p. 379) is beside

the point. The point is that (or whether) there are computational processes that can

result in dreams. In fact, this point holds for all mental states and processes: the

question is not whether a particular mental state or process is itself an algorithm

that computes something, but whether there are algorithms that result in that mental
state or process.

Dreams, in any case, are a bad example, since neuroscientists are not really sure

what they are or what purposes they serve. My understanding is that they result

from possibly random neuron ® rings that take place when we sleep and that are

interpreted by us as if they were due to external causes.5 Suppose for the sake

of argument that this is the case. Then, insofar as our ordinary interpretations of
neuron ® rings in non-dreamlike situations are computable, so are dreams.

What about `a certain look, a friendly smile, a familiar scent [that] can trigger

enormously varied associations of thoughts under what appear to be the same

relevant conditions’ (Fetzer 1994, p. 13) or `the associative character of ordinary

thought’ (as exempli® ed in the stream-of-consciousness `Cornish Game Clams’ ex-
ample (Fetzer 1998, pp. 385± 387))? Fetzer says `that these thought processes do not

satisfy the computational conception and therefore properly count against it’ (Fetzer

1998, p. 387). Again, however, what computationalism properly treated says is, not

that such thoughts are algorithms, but that they can be the results of algorithms.

Programs like Racter arguably behave in this associative way, yet are computa-
tional, and spreading-activation theories of associationist thinking can account for

this behaviour computationally (cf. Quillian 1967). And, of course, `what appear to

be the same relevant conditions’ may in fact be diŒerent ones.

Instead of algorithms, some writers on computationalism, such as Haugeland

(1985), talk about `automatic formal systems’ Ð essentially, syntactic, i.e. symbol-
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manipulation, systems (cf. Fetzer 1994, pp. 2± 3). Fetzer says that `what turns a purely

formal system into a cognitive system . . . is the existence of an \interpretation" in
relation to which the well-formed formulae, axioms, and theorems of that formal

system become meaningful and either true or false’ (Fetzer 1994, pp. 2± 3). That is

one way of turning a syntactic system into a cognitive one. But it is important to

see that this is an external, third-person attribution of cognition to the system, for

it is an external agent that provides the interpretation (cf. Rapaport 1988). This is
one aspect of Dennett’ s (1971) ìntentional stance’.

But another way of turning a syntactic system into a cognitive oneÐ as I have

argued in `Syntactic Semantics’ and `Understanding Understanding’ (Rapaport 1988,

1995)Ð is to ensure that the formal system is su� ciently rich and has some input±
output connections with the external world. (The `some’ hedge is to allow for cases of

`handicapped’ humans, cf. Maloney (1987, 1989, Ch. 5) and Shapiro (1995, pp. 521±

522).) Such a rich syntactic system need have no interpretation externally imposed on

it. Syntax can give rise to semantics of a holistic, conceptual-role variety. Most likely,

some of the formal system’ s internal symbols (or terms of its language of thought, or

nodes of its semantic network) would be internal representations of external entities,
causally produced therefrom by perception. And others of its internal symbols (or

terms, or nodes) would be concepts of those perceptually-produced symbols. As

I argue in `Understanding Understanding’ (Rapaport 1995), these would be the

system’ s internal interpretations of the other symbols. This would be the system’ s

® rst-person ìnterpretation’ of its own symbols.

Fetzer would probably not agree with my analysis of syntax and semantics.

Unfortunately, he does not provide arguments for claims such as the following:

When . . . marks [that form the basis for the operation of a causal system without having any
meaning for the system] are envisioned as syntax , . . . they are viewed as the . . . bearers of
meaning, which presupposes a point of view. In this sense, syntax is relative to an interpretation,
interpreter or mind.

It is the potential to sustain an interpretation that quali® es marks as elements of a formal
system . . . . (Fetzer 1994, p. 14.)

But why is syntax thus relative? Who `views’ the marks as `bearers of meaning’?

And why do the marks of a formal system need `the potential to sustain an

interpretation’ ? The only way I will grant this without argument is if we allow the

system itself to provide its own interpretation, by allowing it to map some marks into

others, which are `understood’ by the system in some primitive way. This process of
self-interpretation, however, turns out to be purely syntactic and computable (see

Rapaport 1995 for elaboration).

Let me now turn to Fetzer’ s positive theory, that minds are not computational

systems but semiotic systems (Fetzer 1994, p. 17). A semiotic system, according to
Fetzer, is something `for which something can stand for something else in some

respect or other’ (Fetzer 1994, p. 17). Thus, a semiotic system consists of three

entities and three relations: the three entities are a sign, a sign user (e.g. a mind),

and what the sign stands for. The sign could be either an ìcon’ (which resembles

what it stands for), an ìndex’ (which causes or is an eŒect of what it stands for),
or else a `symbol’ (which is conventionally associated with what it stands for). None

are `merely syntactical marks’, i.e. ` \symbols" in the computational sense’ (Fetzer

1994, p. 17). As for the three relations, the sign and what it stands for participate in

a `grounding’ relation, the sign and its user participate in a `causal’ relation, and all

three participate in an ìnterpretant’ relation.
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If minds are semiotic systems, and semiotic systems are not computational, then

neither are minds. Fetzer gives two reasons for the second premise: [1] `the same
sign may be variously viewed as an icon . . . , as an index . . . , or as a symbol . . . ,

and . . . [2] inductive reasoning employing heuristics . . . , which are usually reliable

but by no means eŒective procedures, appears to be fundamental to our survival’

(Fetzer 1994, pp. 17± 18). But, in the ® rst case, I fail to see what the ambiguity of

signs has to do with not being computational. And, in the second case, heuristics
are, as we have seen, eŒective procedures. In addition, computational theories of

inductive reasoning are a major research area in AI (cf. Angluin and Smith 1992

and Muggleton and Page (in press)). So what are the details of Fetzer’ s arguments?

Consider Fetzer’ s ® gure 1 (Fetzer 1994, p. 19), reproduced here as ® gure 1. It raises

more questions than it answers: what is the causation relation between sign-user z

and sign S? Which causes which? What is the grounding relation between sign S and

thing x that S stands for? The diagram suggests that sign S is grounded by thing x
that it stands for, which, in turn, suggests that the two binary relations ìs grounded

by’ and `stands for’ are the same. But Fetzer says that sign S stands for thing x

for sign-user z, which is a 3-place relation that is not shown or easily showable in

® gure 1. What is shown instead is a binary ìnterpretant’ relation between sign-user

z and thing x, yet earlier we were told that the interpretant relation was a 3-place
one. I oŒer a slightly clearer diagram in ® gure 2.

So why are semiotic systems and computational systems disjoint?

. . . the marks that are manipulated by means of programs might be meaningful for the users
of that system . . . but are not therefore meaningful for use by that system itself. (Fetzer 1998,
p. 375, my boldface, cf. Fetzer 1998, p. 383.)

But why are they not meaningful for the system? I have argued in `Syntactic

Semantics’ and `Understanding Understanding’ that with enough structure, they can

be meaningful for the system. For example, consider a program that (a) computes
the greatest common divisor of two natural numbers, (b) that has a `knowledge

base’ of information about arithmetic and about what a greatest common divisor

is, and (c) that has natural-language competence (i.e. the ability to interact with the

user in natural language, cf. Shapiro and Rapaport (1991)). Such an AI program

can be asked what it is doing and how it does it, it can answer that it is computing
greatest common divisors, and it can explain what they are and how it computes

them, in exactly the same sort of way that a human student who has just learned

Figure 1. Fetzer’s diagram of a semiotic system (from Fetzer 1998, p. 384).
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how to compute them can answer these questions. Not only does the user of such

a system ascribe an interpretation to it, according to which the user says that the
system is computing greatest common divisors, but the system itself can be said to

`understand’ what it is doing. It could even turn around and ascribe to the user an

interpretation of the user’ s greatest-common-divisor± computing behaviour!

Such a possibility shows that it is incorrect to say, as Fetzer does, that t̀he marks

. . . are not . . . meaningful for use by that system itself ’. Fetzer says that this is

because the `grounding relationship between these marks and that for which they

stand’ is absent (Fetzer 1994, p. 18). But why is it absent in, say, my greatest-
common-divisor± computing computational agent but not in the human student

who computes greatest common divisors? And does Fetzer really think that it is the

grounding relation that is absent, or rather the relation of sign S standing for thing

x for computer z that is absent? It would seem that the point he wants to make is

that although sign S might stand for thing x, it does not do so for the computer z,
but only for a human user of the computer.

At this point, Fetzer refers to his ® gure 2 (reproduced here as ® gure 3), which is
supposed to be like ® gure 1 except that the grounding relation between sign S and

thing x is missing. But there are other diŒerences: sign S is now called an ìnput’ ,

thing x is called an `output’ , and sign-user z is called a programÐ presumably, a

program for a mental algorithm. But who ever said that t̀he marks by means of

which’ digital computers `operate’ are only the input? Or that what they stand for
are the output? (And, anyway, what does it mean for sign S to stand for thing x yet

not be grounded by x?)

Consider Cassie, a computational cognitive agent implemented in the SNePS

knowledge-representation and reasoning system by our research group at SUNY

BuŒalo (Shapiro and Rapaport 1987). As a reader of narratives, Cassie’s input

is English sentences (Shapiro and Rapaport 1995). Her output is other English

sentences expressing her understanding of the input or answering a question that

was input. The marks by means of which Cassie operates are not these sentences, but

Figure 2. Another diagram of a semiotic system: sign-user z causes sign S , thing

x grounds sign S , and the 3-place interpretant relation is that sign S stands for

thing x for sign-user z.
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the nodes of her internal semantic-network `mind’ . They are not the input (though

they may be causally produced by the input).

Do these marks mean anything? Yes: some of them stand for, or are grounded

by, whatever in the external world caused them to be built. But Cassie can have no
direct access to such external things, so this is not what they mean for her . Do they

mean anything for Cassie? Again, yes: their meaning for her is their location in

Cassie’s entire semantic network. Insofar as some of these marks are directly caused

by external objects, and others are concepts of those marks, then those others stand

in a grounding relation to the directly caused ones. But all of this is internal toÐ and
meaningful toÐ Cassie (cf. Ehrlich 1995 and Rapaport 1995). And it is all syntactic

symbol manipulation. And it is all computable.

I conclude that computationalism properly treated withstands Fetzer’ s objections

and that the semiotic approach is consistent with it.

3. Bringsjord’s treatment of computationalism

In `Computationalism Is Dead, Now What?’ Bringsjord (1998) analyses computa-
tionalism into four postulates and a theorem:

Computationalism consists of the following four propositions.
CTT: A function f is eŒectively computable if and only if f is Turing-computable.
P=aTM: Persons are Turing machines.
TT: The Turing Test is valid.
P-BUILD: Computationalists will succeed in building persons.
TT-BUILD: Computationalists will succeed in building Turing Test-passing artifacts. (This
proposition is presumably entailed by its predecessor.)

(Bringsjord 1998, p. 395).

As a true believer in computationalism properly treated, I accept all ® ve, with

one small caveat about P=aTM: I would prefer to say, not that persons are Turing

machines, but that minds areÐ even better, that cognition is computable, in fact,

putting it this way links it more closely to Bringsjord’ s CTT.

Bringsjord, however, denies P-BUILD. (Since he accepts TT-BUILD, it follows

that he must reject P=aTM.) He does not, however, oŒer us a de® nition of `per-
son’. In Chapter IX, `Introspection’ , of his book, What Robots Can and Can’t Be

Figure 3. Fetzer’ s diagram of a (computational) symbol system (from Fetzer 1998,

p. 384).
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(Bringsjord 1992), to which he refers us for the defense of his denial of P-BUILD,

he argues that persons satisfy `hyper-weak incorrigibilism’ but that robots cannot.
I shall argue that robots can satisfy this feature, and I will conclude with some

observations on the nature of personhood that suggest a more general way in which

P-BUILD can be defended.

Hyper-weak incorrigibilism is essentially the following thesis (Bringsjord 1992,

pp. 333± 335):

(1) Let F be a contingent property (i.e. one such that it is possible for something
to have it and possible for something (else) to lack it).

(2) Let s be a cognitive agent.

(3) Let C ¢ be a set of `psychological’ or `Cartesian’ properties (such as being sad ,

being in pain, being happy, or seeming to see a ghost).

(4) Let C ¢¢ be de® ned as follows: if F ¢ Î C¢, then seeming to have F ¢ Î C ¢¢.
(5) Suppose F Î C ¢¢ (i.e. F is of the form: seeming to have F ¢, for some F ¢ Î C ¢,

thus seeming to be sad , seeming to be in pain, seeming to be happy (and seeming
to seem to see a ghost?) are all in C ¢¢).

(6) Then it is necessary that if s believes that Fs, then Fs (i.e. it is necessary that

if you believe that you seem to have F ¢, then you seem to have F ¢).

Now, Bringsjord’ s argument concerns (1) l̀ogicist cognitive engineering’ (as op-

posed to connectionist cognitive engineering), where cognitive engineering is roughly

the interdisciplinary attempt to build a (computational) cognitive agent, and (2) a

proposition he calls AILOGFOUND , namely:

If [logicist cognitive engineering] is going to succeed, then the robots to be eventually produced
by this research eŒort will be such that

(i) if there is some signi® cant mental property G that persons have, these robots must also
have G,

(ii) the objects of their `beliefs’ (hopes, fears, etc.)Ð the objects of their propositional atti-
tudes Ð are represented by formulas of some symbol system, and these formulas will be
present in these robots’ knowledge bases, and

(iii) they will be physical instantiations of automata (the physical substrate of which will
be something like current silicon hardware, but may be something as extravagant as
optically-based parallel hardware).

(Bringsjord 1992, pp. 330± 331.)

He uses hyper-weak incorrigibilism to refute AILOGFOUND as follows: from the claim

that hyper-weak incorrigibilism is a signi® cant mental property that persons have

(which I will not for the moment deny) and from (i), ìt follows . . . that the ¯ ashy

robot (call it `r’ ) to be eventually produced by Cognitive Engineering will be able
to introspect infallibly with respect to C ¢¢’ (Bringsjord 1992, p. 341). Therefore, by

instantiating hyper-weak incorrigibilism to robot r, we get:

" F[(F is contingent Ù F Î C ¢¢) É e(BrFr É Fr)]: (1)

By (ii), this implies:

" F[(F is contingent Ù F Î C ¢¢) É e((! Fr @ Î D( V )) É Fr)], (2)

where ! Fr @ denotes the ® rst-order formula corresponding to the proposition `Fr’,

V is a set of ® rst-order formulas that r `believes initially’, and D( V ) = {a | V & a }
is the robot’ s knowledge base (Bringsjord 1992, p. 340). The underlying assumption

here is that for robot r to believe a proposition is for a ® rst-order representation of
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the proposition to be an element of robot r’ s knowledge base, or, as it is sometimes

called, the robot’ s `belief box’.

Next, let F
V Î C ¢¢, Bringsjord suggests taking seeming to be in pain as F

V
. Hence,

e[(! F
V
r @ Î D( V )) É F

V
r]: (3)

(For example, necessarily, if the formula `r seems to be in pain’ is in robot r’ s belief

box, then r seems to be in pain.)

Suppose that ØF
V
r, for example, that it is not the case that the robot seems to be

in pain. (Bringsjord does not specify this assumption, but I think that it is needed

for what follows.) Now, `since it’ s physically possible that the hardware substrate

of r fail, and since, in turn, it’ s physically possible that this failure be the cause of

! F
V
r @ Î D( V )’ (Bringsjord 1992, p. 342), we have:

{(! F
V
r @ Î D( V ) Ù ØF

V
r), (4)

which contradicts (3). Therefore, AILOGFOUND is false. Therefore, logicist cognitive

engineering will fail.

There are a number of questions I have about this argument. For one thing, what

does it mean for a cognitive agent to seem to have a property? It could mean that

it seems to someone else that the agent has the property, for example, it might seem

to me that the robot is in pain if it acts (as if) in pain. But for seeming to have a
property to make sense in hyper-weak incorrigibilism, I think it has to mean that

it seems to the agent that the agent itself has the property.6 But, then, what does

this mean for the robot? Does it mean that there is a `seeming box’ such that if the

® rst-order formula expressing that the robot has the property is in the seeming-box,

then it seems to the robot that it has the property? Not only does this make seeming
to have a property much like believing oneself to have it, but I suggest (without

argument) that that is just what it is. At any rate, let us suppose so for the sake of

argument.7 Then the brunt of hyper-weak incorrigibilism is this:

e(BrBrF ¢r É BrF ¢r), (5)

where F ¢ Î C ¢, e.g. necessarily, if the robot believes that it believes itself to be in
pain, then it believes itself to be in pain.

This leads to another problem I have with Bringsjord’ s argument: the assumption
underlying the inference to the belief-box version of hyper-weak incorrigibilism (2) is

somewhat simplistic. Sophisticated computational cognitive agents need not equate

belief in a proposition P with the mere presence of a representation of P in the

knowledge base. For example, for reasons independent of the present considerations

(see Shapiro and Rapaport 1992 and Rapaport et al. 1997), we represent Cassie’ s
believing a proposition in two distinct ways: one way is by `asserting’ the node

representing the propositional object of her mental act of believing. This is a `¯ ag’

that is roughly equivalent to placing the node in a `belief box’, as in the (simpli® ed)

semantic-network representation using the assertion ¯ ag of Cassie’ s belief that John

is rich, as shown in ® gure 4. The other way is to represent explicitly that Cassie
herself believes the proposition in question, as in the (simpli® ed) semantic-network

representation using an explicit `I (Cassie) believe that’ operator, as shown in ® gure 5.

One reason for allowing these two diŒerent representations is that we want to be

able to represent that Cassie believes that she believes something even if she believes

that it is not the case. This can be done roughly as shown in ® gure 6. Here, Cassie
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believes that she herself believes M1, but she does not: M2 represents her believing

that she herself believes M1, M3 represents her belief that ØM1.

But now, given our interpretation of seeming to be in pain (say) as believing oneself
to be in pain, what happens on the simplistic belief-box theory? The consequent of

(5) becomes:

! Fr @ Î D( V ), (6)

i.e. a formula representing the proposition that r is in pain is in r’ s belief box. But

what is the antecedent of (5)? The question is: How does one represent nested beliefs

in a belief-box theory? Bringsjord says that we need an epistemic logic and that

! BrFr @ Î D( V )Ð but then how does ! BrFr @ being in D( V ) relate to ! Fr @ being

in D( V )? Bringsjord does not say, so let me speculate that, in fact, nested beliefs

Figure 4. M1 is a simpli® ed SNePS representation of the proposition that John is

rich, using an assertion ¯ ag (!) to indicate that Cassie believes it.

Figure 5. M2 is a simpli® ed SNePS representation of the proposition that Cassie

believes M1. The `I-pointer’ to the node that represents Cassie indicates that the

node labeled `Cassie’ is her self-concept. She would express M2 as `I believe that
John is rich’. Since M2 is asserted, Cassie believes that she (herself ) believes that

John is rich. If M1 were asserted, then Cassie would believe that John is rich. But
M1 is not asserted, so it is not the case that Cassie believes that John is rich (even

though she believes that she believes it) (see Rapaport et al. (1997)) for more on

the `I-pointer’ ).
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collapse: BrBrFr just becomes ! Fr @ Î D( V ). But then (5) is a tautology. Hence,

any robot satis® es hyper-weak incorrigibilism.

Let me trade on the kind words of Bringsjord in his footnote 3, in which he

praises our work on Cassie, and suggest how Cassie would fare in this case. First,

hyper-weak incorrigibilism would have to be part of her `unconscious’ processing
mechanism, much as her reasoning ability isÐ i.e. hyper-weak incorrigibilism would

not be encoded explicitly as a `conscious’ belief but would govern the way she thinks.

Second, what it would mean is this: whenever Cassie believed (via the assertion ¯ ag)

that she believed (represented via the `I (Cassie) believe that’ operator) that she is in

pain (say), then she would believe (via the assertion ¯ ag) that she was in painÐ i.e.
asserting `Cassie believes that she herself is in pain’ would automatically assert that

Cassie was in pain. In ® gure 7, hyper-weak incorrigibilism would mean that if M12

were asserted, then M10 would automatically also be asserted. Now suppose that

Cassie believes (via assertion) that she is not in pain (M11 in ® gure 7). And suppose

that a hardware failure asserts a Cassie-believes-that belief that she herself is in

pain (M12 in ® gure 7). Hyper-weak incorrigibilism would then assert that she is in
pain (i.e. it would cause an assertion operator to be applied to M10 in ® gure 7),

contradicting her explicit (asserted) belief that she is not in pain, i.e. M10 and M11,

both asserted, are inconsistent.

What actually happens with Cassie? At this point, the SNePS belief-revision system

(SNeBR (Martins and Shapiro 1988, Martins and Cravo 1991, Cravo and Martins

1993, Ehrlich 1995)) is invoked, alerting Cassie to the fact that her beliefs are

inconsistent, and she would have to give one of them up. Whichever one she gives up

will maintain hyper-weak incorrigibilism, for either she will correct the hardware

failure and unassert M12, the Cassie-believes-that belief that she is in pain, or she
will decide that she is in pain after all.

Thus, I do not think that Bringsjord has made his case that AILOGFOUND and

therefore logicist cognitive engineering fail, and hence that hyper-weak incorrigibil-
ism rules out Turing-Test± passing artifacts from personhood. Moreover, why could

Figure 6. M3 represents the proposition that ØM1. The min-max-arg case frame says

that at least 0 and at most 0 of the propositions pointed to by the arg arc are true.
M3 is asserted, so Cassie believes ØM1. Since M2 is also asserted, Cassie believes

that she believes M1, but she also believes that ØM1. (See Shapiro and Rapaport

1987 and Martins and Shapiro 1988 for details.)
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not an analogous neural hardware (i.e. brain) failure cause a similar problem for

us? Maybe hyper-weak incorrigibilism is not a necessary feature of persons after
all. (Indeed, if hyper-weak incorrigibilism were implemented in Cassie’s mind as

an explicit `rule’ that she believed, then, when she realized that her beliefs were

inconsistent, she could simply reject it instead of either M12 or M10!)

In any case, I reject clause (ii) of AILOGFOUND (the clause that posits belief

boxes). Replacing it with a more sophisticated belief-representation mechanism can,

I believe, save computationalism. At the very least, it shows that P-BUILD has not
yet been refuted.

But suppose Bringsjord can strengthen his argument to meet my objections. I still
think that P-BUILD is true, for an entirely diŒerentÐ and more generalÐ reason.

Suppose that TT-BUILD is true (as both Bringsjord and I hold). I maintain that such

Turing-Test± passing artifacts will be such that we will, in fact treat them morally

as if they were personsÐ i.e. they will have the moral and perhaps legal status of

persons (cf. Asimov (1976) and Rapaport (1988)). That is, our concept of person will
be broadened to include not only human persons, but non-human computational

ones. In much the same way that our concept of mind can be broadened to include

not only human minds but other animal and computational ones, thus making Mind

something like an abstract data type implemented in humans, other animals, and

computers, so we will come to see an `abstract data type’ Person as implemented
in both humans and robots. (Legally, corporations already implement it, cf. Willick

(1985) and Rapaport (1988, Section 4.2).) I maintain, that is, that it would be morally

wrong to harm an entity that, in virtue of passing the Turing Test, we accept as

being intelligent, even if philosophers like Fetzer, Bringsjord, and Searle are right

about propositions like P-BUILD. We already consider it morally wrong to harm

Figure 7. M10 represents that Cassie is F, M12 represents that Cassie believes that

she herself is F, M11 represents ØM10. By hyper-weak incorrigibilism, if M12 is

assertedÐ i.e. if Cassie believes M12, i.e. if Cassie believes that she herself believes

that she herself is F, i.e. if Cassie believes that she herself seems to be FÐ then
M10 must be assertedÐ i.e. Cassie believes that she herself is F, i.e. Cassie seems

to be F. If M11 is asserted, then Cassie believes ØM10, i.e. Cassie believes that

she herself is not F, i.e. Cassie does not seem to be F. If both M10 and M11 are

asserted, then Cassie has inconsistent beliefs, and SNeBR will be invoked (see

text).
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non-human animals, and the more intelligent (the more human-like?) the animal, the

more it seems to be morally wrong. Surely we would owe intelligent robots no less.8

Notes

1. An interesting title given that, at the time that Turing wrote his original paper

on what are now called `Turing machines’, a `computer’ was a human who did
computations for a living!

2. Shapiro, in conversation, has pointed out to me that interactive algorithms,

such as those used by our Cassie system for natural-language interaction with

a (human) user (Shapiro and Rapaport 1987, 1995, Rapaport 1988, Shapiro

1989), are not reliable or completable, yet they are clearly algorithmic.
3. Although, on Occam’s-razor± like grounds, any such non-computational think-

ing might be so marginal as to be eliminable.

4. I might even be able to agree with Penrose: Penrose’ s arguments, as I under-

stand them, are of the form: if mental phenomena are quantum processes,

then they are not algorithmic (Penrose 1989, cf. Fetzer 1994, p. 10). It is im-

portant to remember, however, that the antecedent has not been established,
not even by Penrose. Even so, if mental phenomena are computable, then

even if they are not computed , perhaps because they are quantum phenomena,

computationalism wins.

5. Note the need to posit the brain’s (or the mind’ s) ability to be partitioned

into syntax-like neuron ® rings that are interpreted by semantic-like neuron
® rings. But it is all just neuron ® rings, i.e. syntax (see below). Also note the

methodologically solipsistic nature of this theory.

6. This use of t̀he agent itself ’ is a `quasi-indicator’ , see Casta~neda (1966),

Rapaport (1986) and Rapaport et al. (1997).

7. In discussion, Bringsjord has oŒered the following counterexample to my
identi® cation of seeming to have a property with believing oneself to have

it: in the case of optical illusions in which appearance diŒers from reality,

such as the M�uller± Lyer illusion, in which two lines of equal length appear to

have diŒerent lengths, it seems to me that the lines have diŒerent lengths even

while it is the case that I sincerely believe them to have the same length. I

agree that this shows that seeming to have a property can diŒer from believing
oneself to have it. However, arguably this is not a case of what Bringsjord

calls `Cartesian’ properties. For Cartesian properties, I think that seeming to

have a property is believing oneself to have it.

8. An ancestor of this paper was presented as part of an invited symposium, `Are

Minds Computational Systems?’ , at the 88th Annual Meeting of the Southern
Society for Philosophy and Psychology, Nashville, 5 April 1996, with other

papers by James H. Fetzer and Selmer Bringsjord. I am grateful to Fetzer

for organizing the symposium and to Bringsjord, Fetzer, and members of the

SNePS Research Group for comments on earlier versions.
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