
Implementation is semantic interpretation:

Further thoughts

WILLIAM J. RAPAPORT

Department of Computer Science and Engineering,

Department of Philosophy, and Center for Cognitive Science

201 Bell Hall

State University of New York at Buffalo, Buffalo, NY 14260-2000

phone: 716-645-3180 x 112

fax: 716-645-3464

email: rapaport@cse.buffalo.edu

Web: http://www.cse.buffalo.edu/ ∼rapaport/

June 10, 2005

1

Abstract

This essay explores the implications of the thesis that implementation is

semantic interpretation. Implementation is (at least) a ternary relation:I is an

implementation of an “Abstraction”A in some mediumM. Examples are presented

from the arts, from language, from computer science, and from cognitive science,

where both brains and computers can be understood as implementing a “mind

Abstraction”. Implementations have side effects due to the implementing medium;

these can account for several puzzles surrounding qualia. Finally, a benign

argument for panpsychism is developed.

Keywords:implementation; panpsychism; qualia; semantic interpretation; simulation;

syntactic semantics.

2

1 Implementation, semantics, and syntactic semantics

In an earlier essay (Rapaport 1999), I argued that implementation is semantic

interpretation. The present essay continues this line of investigation.

What is an implementation? Let us begin by considering some examples.

INSERT TABLE 1 ABOUT HERE

Table 1 shows pairs of syntactic and semantic domains1 that are clear examples in

which the semantic domain (or model) implements the syntactic domain (or formal

system). (cf. Rapaport 1995 for a more elaborate survey). The first three are

paradigmatic cases: We implement an algorithm when we express it in a computer

programming language; we implement a program when we compile and execute it;

and we implement an abstract data type such as a stack when we write code (in some

programming language) that specifieshow the various stack operations (such aspush

andpop) will work. Cases 4 and 5 are clearly of the same type as these paradigms,

even though we don’t, normally, use the term ‘implementation’ in discussing them.

Case 6, another example that arguably can be thought of in the same way, suggests, in

addition, that all semantic interpretations can be seen as implementations. In general,

a “real”, “concrete” (but see below), “fully detailed” entity is an implementation of a

“theoretical”, “abstract” one.
1I explain my use of these terms in§1.3.

3

We can see that implementation is a relative notion:2 An implementation is always

an implementationof something, which I call an “Abstraction”. But it should be noted

right away that Abstractions are not necessarily “abstract” in any pre-theoretic sense,

nor are implementations necessarily “concrete”.

But implementation is not a binary relation: It has one more term:I is an

implementation of an AbstractionA in some medium M. For the examples in Table 1,

the media might be, respectively, a computer programming language, a computer, a

computer programming language, an orchestra or acting troupe, bricks and mortar, and

set theory. Arguably, there are one or two more terms: Acognitive agent C uses M

to implementA asI , possiblyfor some purpose P(cf. Giere 2004). However, further

exploration of this point is beyond the scope of this essay (but see footnote 32).

1.1 Implementation in computer science

Consider the abstract data typeStack, i.e., a “last-in, first-out” structure specified by

axioms allowing new items to be added to it only by “pushing” them on “top”, and

allowing items to be removed from it only by “popping” them from the top. Here is

one way to implement this abstract data type in a programming language:

1. A Stack,s, can be implemented as a 1-element array,A[0], . . . ,A[n], for somen;

2. top(s) is defined to be a 1-argument function that takes as input the stacks and

returns as outputA[0] (i.e.,A[0] is the implementation of the “top”);

3. push(s, i) is defined to be a 2-parameter procedure that takes as input the stack
2Alternatively, it is a relational category; cf. Gentner (in press).

4

s and an itemi (of the type allowed to be in the array), and yields as output the

stack modified so thatA[0] := i, andA[j] := A[j−1] (i.e., each item on the stack

is “pushed down”);

4. and, almost finally,pop(s) is defined to be a 1-argument function that takes as

input a stacks and returns as output the item on the top ofs (i.e., top(s)) while

moving all the rest of the items “up” (i.e.,A[j] := A[j +1]).

I said “almost finally” because—as should be obvious—some bookkeeping must be

taken care of:

5. We have to specify what happens if the stack “overflows” (as when we try to

push an(n+2)nd item onto a stack implemented as an(n+1)-element array).

6. We have to specify what happens to the “last” item when the top is popped (does

the array cell that contained that item still contain it, or does it become empty?),

etc.

These (as well as the limitations due to the type of object allowed to be in the array)

can be called “implementation details”, since the abstract data type Stack “doesn’t

care” about them (i.e., doesn’t—or doesn’thave to—specify what to do in these cases).

Another way to implement a stack is as a “linked list”: First, a linked list (‘list’,

for short) is itself an abstract data type. It is a sequence of items whose three basic

operations are (1)first(l), which returns the first element on the listl , (2) rest(l), which

returns a list consisting of all the original items except the first, and (3)make-list(i, l)

(or cons(i, l)), which recursively increments (orconstructs) a list by putting itemi at

5

the beginning of listl .3 Lists can be implemented in a programming language that does

not have them “built in” by, e.g., 2-element arrays (here, the first item in each two-cell

unit of the array is the list item itself, and the second item in the two-cell unit is an

index to the location of the next item) or by means of “pointers” (each item on the list

is implemented as a two-element “record”, the first element of which is the list-item

itself and the second element of which is a pointer to the next item). Finally, a stacks

can be implemented as a listl , wheretop(s) := first(l), push(s, i) := make-list(l , i),

andpop(s) returnstop(s) and redefines the list to berest(l).

Thus, a Stack can be implemented in the medium of another abstract data type,List.

That is, abstract data types can implement each other. So, an implementation need not

be “concrete”. John V. Guttag et al. (1978: 74) give an “example of the implementation

of one data type, Queue . . . , in terms of another, CircularLists.” This is done as follows:

“We first give, in a notation very similar to that for the specification, an implementation

of the Queue type consisting of arepresentationdeclaration and aprogram for each

of the Queue operations in terms of the representation” (p. 74). In the example, the

representation “medium” is CircularList, and the “programming language” consists of

the operations of CircularLists.

So, an implementation of an abstract data type consists of a representation

and programs, where the programs implement the abstract data type’s operations,

as follows: Each operation of the abstract data type is . . . defined? explicated?

implemented? . . . in terms of an operation of the implementing medium (the
3Some arbitrary object, e.g., “nil” in Lisp, is used as the base-case list. This is an implementation detail;

cf. §2.

6

implementing abstract data type)after first representing each abstract-data-type entity

(term) by a term of the implementing abstract data type. So, terms get interpreted by,

or mapped into, elements of the interpreting domain, and predicates (operations) are

mapped into predicates of the interpreting domain.

Moreover, a list implementing a stack can be further implemented in the medium

of a particular programming language, say, Lisp (in fact, a particular implementation

of that programming language, say, Allegro Common Lisp); that program will itself

be implemented in the medium of some machine language, and, eventually, in the

medium of some particular computer, say, the Sun sitting on the desk in my office.

Each link in this chain is slightly more concrete than its predecessor. (For another

example, consider items 1 and 2 in Table 1.) The whole sequence of Abstractions and

implementations constitutes what Brian Cantwell Smith has called a “correspondence

continuum” (Smith 1987; cf. Rapaport 1995).

To implement is toconstructsomething, out of the materials at hand, that has

the properties of the Abstraction; it could also be tofind a counterpart that has

those properties. Both tasks are semantic.Thus, each (relatively abstract) link

in this chain semantically interprets its (relatively more concrete) implementation

(Rapaport 1999). Is it better to view the implementation relation as (an instance of)

semantic interpretation, or is it better to view the semantic-interpretation relation as

(an instance of) implementation? Or are they simply two names for the same thing?

Although I am sympathetic to this third option, semantic interpretation seems to be

more general than implementation, because there are correspondence relations that

are semantic interpretations but that are not implementations, at least, not in any

7

obvious way, such as the relation between an optic-nerve signal and a retinal intensity

pattern (see Rapaport 1995 for discussion). Note that Smith would disagree that this

correspondence is a semantic one. However, any correspondence between two domains

in which one is used to understand or interpret the other is a semantic correspondence

(Rapaport 1995). This generality of semantic interpretation over implementation

argues in favor of taking semantic interpretation as basic.4

John P. Hayes, indeed, speaks of semantics in this context (Hayes 1988: 209; my

boldface):

Because of the complexity of the operations, data types, and syntax of

high-level languages, few successful attempts have been made to construct

computers whose machine language directly corresponds to a high-level

language There is thus asemantic gapbetween the high-level problem

specification and the machine instruction set thatimplementsit, a gap that

a compiler must bridge.

What is this gap? Presumably, that (say) the specific operations, data types, etc., of the

high-level language don’t correspond directly to anything in the machine language:
4Albert Goldfain (personal communication) asks, “What corresponds with semantic misinterpretation?

In what ways mightX incorrectly implementY? If S is a musical score andP is a note-for-note performance

of S, andP′ is exactly likeP except for one missed note, then isP′ an implementation ofSwith a side effect,

or a misimplementation ofS? What aboutP′′, which is likeP except for the fact that it is played on different

instruments? Also, if I print out a musical score on my printer, is the printer “performing” the score? Why

not?” These are all good questions that I hope to explore in future work. For now, note that the relation of

P to P′ is similar to the relation between analgorithm for solving a problem and aheuristicfor solving that

same problem, as characterized in Rapaport 1998,§2.

8

Pascal, e.g., has the “record” data type, but my Sun’s machine language probably

doesn’t. So, a compiler is needed to show how to construct or implement records

in the machine language.

Why does Hayes call this asemanticgap? It’s a bit like the fact that one natural

language might not have a single word corresponding to some single word in another

natural language. Consider Russian, which has a term, ‘ruka’, referring to what in

English has to be referred to as the hand+forearm.5 Of course, one can translate

between the languages by defining the word in terms of others (perhaps with a cultural

gloss; cf. Jennings 1985, Rapaport 1988a: 102). But why is thissemanticrather than

syntactic?

A possible interpretation6 of the “semantic gap” specifies four relations:

A. A program in a high-level programming language is semantically interpreted by

real-world objects. Presumably, the semantic interpretation of the program is the

relation between, on the one hand, data structures (say) in a Pascal program (e.g.,

a record representing a student viewed as consisting of a name, a class, a major,

a student-number, and a grade-point average) and, on the other hand, an actual

student in the real world.

B. The program is also compiled into a machine-language implementation. The

compilation relation is, or includes, the relation between that student-record data

structure and a construct of data types in the machine language. Both A and B

are semantic relations.
5John Sowa, personal communication, 29 November 1993.
6Due to my computer-science colleague Bharadwaj Jayaraman (personal communication).

9

C. The machine-language implementation, in turn, is semantically interpreted by

bits in a computer. It may seem odd to semantically interpret the machine-

language program by bits, rather than by the real-world objects. But recall that

all semantic relations are correspondences (and vice versa). Thus, this relation

between the machine-language program and bits is just another correspondence.

After all, we could also have mapped the Pascal program into computer bits—

in fact, via B and C, we have! So, a machine-language program can be

interpreted in terms of bits in the computer. Arguably, in fact, having these two

distinct interpretations of two distinct (albeit input-output-equivalent) programs

is appropriate. Where the machine-language program talks of registers, the

Pascal program talks of “students” (or student-records). So it is appropriate

to understand the Pascal program as a “mathematical model” of such real-

world objects as students, and to understand the machine-language program as a

“mathematical model” of such (also real-world) objects as bits in a computer.

D. The semantic gap concerns the relation between A’s real-world objects (such as

students) and C’s computer bits, sinceboth are semantic interpretations of the

Pascal program.

What, then, is this relation D? It could besimulation: The computer bits simulate the

student. But simulation is, after all, a kind ofimplementation. The computer bits are a

computer implementation of the student, i.e., an implementation of the student in the

medium of the computer.

10

1.2 Implementation outside of computer science.

Although the prototypical examples of implementation come from computer science,

there are examples in other areas, too.

1.2.1 The arts.

Some of the clearest examples outside of computer science of what could be called

‘implementation’ come from music. This ought not to be surprising: After all, a

music score is very much like a computer program or algorithm, and the musician-

plus-instrument (or conductor-plus-orchestra) plays a role very much like that of the

computer. A musical score isnot, of course,mathematicallyan algorithm, since

much is left open to “interpretation” by the musician (e.g, tempo, dynamics, optional

repeats, phrasing, etc.). Nonetheless, itis a set of “instructions” that, when followed or

executed, produce a certain output. The “process” consisting of the musician playing

that music on an instrument can plausibly be said toimplementthe score. The score is

a piece of syntax; the playing of the score is a “semantic interpretation” of it.

An implementation requires an implementing medium. And, as should be evident,

there can be many different media, hence many different implementations (the common

core of which can be captured by the mathematical techniques of J.A. Goguen et

al. 1978). We find the same thing in music: A given score can normally be played

on a variety of instruments, modulo a few changes necessitated by the nature of

the instrument. Such changes, as well as the particular features of the instrument,

constitute “implementation details”. Often, these change the nature of the work, for

good or bad: “a [piano] transcription [of a symphony] can hold a prism up to a familiar

11

work, showing it in a new light” (Pincus 1990). That is, a piano transcription of a

symphony is aninterpretationof it—or, rather,anotherinterpretation of “the work”,

i.e., of an abstract data type (the score) of which both the symphonyand the piano

transcription are (semantic) interpretations or implementations. The implementation is

also, of course, an “interpretation” in the ordinary sense: Charles Rosen (1991) speaks

of “the essential gap between the composer’s conception of a work of music and the

multiple possibilities of realizing it in sound” (p. 50, my italics). The “conception” is

the abstract data type; the “multiple possibilities” are different implementations.

Much the same can be said,mutatis mutandis, for scripts and productions of plays

(or scripts and movies). Where English talks of adirector, French talks of aréalisateur

(a realizer): At least for francophones, plays and movies areimplementations(of

scripts).

1.2.2 Language.

Language provides a variety of non-computer-science examples of implementation.

For one thing, words can be considered as representations—hence, implementations—

of ideas (cf. Harris 1987: xi, Ch. 6). For another, if language can be thought of as an

Abstraction (as, perhaps, Chomsky’s theory of universal grammar would have it), then

it can be implemented in a variety of ways: first, by spoken languages (implemented

in the medium of speech) as well as by signed languages (implemented in the medium

of space; cf. Coughlin 1991), and, second, in many ways in both spoken and signed

languages (e.g., French, English, etc., and American Sign Language, British Sign

Language, etc.): Derek Bickerton (2004: 504) considers “language” to be what I

12

am calling an Abstraction, i.e., “a system of expression . . . that may function by

means of [such “modalities”—or implementations—as] speech, sign, Morse code,

talking drums, smoke signals, naval flags . . . ; or it may keep its productions within

the individual’s brain, not employing any modality at all.”

1.3 Syntactic semantics

This view that implementation and semantic interpretation are intimately related is part

of a more general theory of the nature of the relation between syntax and semantics that

I have dubbed “Syntactic Semantics” (and which I have explored in a series of previous

essays).7 This theory, very briefly, holds that the semantic enterprise is recursive and,

fundamentally, a syntactic—i.e., a symbol-manipulation—enterprise. Syntax is the

study of the relationships among symbols of a formal system; it includes grammar (the

specification of which sequences of symbols are well-formed formulas) and proof-

theory (the specification of which sequences of well-formed formulas are proofs—i.e.,

which well-formed formulas are theorems), and is essentially a computable theory of

symbol manipulation. Semantics is the study of the relationship between a formal

system that is itself syntactically specified (i.e., a syntactic domain) and a semantic

domain that can be specified by an “ontology” (in the knowledge-representation, as

opposed to the philosophical, sense of this overloaded term). The semantic domain is

typically taken to provide meanings or interpretations of the symbols in the syntactic

domain; the syntactic domain is typically taken to provide a language for talking

about the semantic domain. These two domains can be combined. This happens,
7Rapaport 1985, 1986, 1988ab, 1995, 1996, 1999, 2000, 2002, 2003.

13

e.g., in a brain that perceives the external world: Some neuron firings correspond to

external objects—i.e., they are caused by perceiving these objects and thereby represent

them—and other neuron firings are (or represent) concepts. These latter can serve

as meanings of the former. But, crucially, both sets of neurons are part of the same

brain (and are, presumably, distinguishable only by their function, not their physical

structure). In such cases, the semantic interpretation function becomes an internal

relation among a set of symbols (some of which come from the syntactic domain

and the others of which come from the semantic domain) and is itself a computable

syntactic relation. Moreover, there is nothing privileged about one of these domains

with respect to the other: A given syntactic domain for some semantic domain could

itself be considered a semantic domain for some further syntactic domain, as in the

correspondence continuum mentioned earlier.8 In the base case of this recursion, a

domain must be understood in terms of itself, i.e., syntactically. In this way, the

semantic enterprise is seen to be, ultimately, a syntactic endeavor, which I have called

“syntactic semantics”.

Syntactic semantics applies these ideas to provide a computable understanding

of cognition that is both syntactic and methodologically solipsistic (or, perhaps less

controversially, “internal”). The interested (or skeptical) reader can consult the essays

cited in note 7 for details and argumentation. In the present essay, I wish to explore

the implications of viewing implementation as semantic interpretation: the role of
8“It is worth noting that each metalanguage has itself all properties of a sign system. Thus, the syntactic

metalanguage not only has a syntactic dimension insofar as it contains signs of various classes with various

serial relations holding among them, it also has a semantic dimension since its signs are interpreted to

represent meaning and refer to something, namely, to the signs of the object-code” (Posner 1992: 41).

14

“implementation details”, the question of whether an implementation is “the real

thing”, and the problem of whether any old thing can be an implementation of any

other thing.

2 Implementation-dependent details

2.1 In the details lie the differences

Suppose we have two different implementations of an Abstraction. They may be

implementations indifferent media, as, for example, implementations of the Stack

abstract data type in Pascal using records and in Lisp using lists, or implementations of

a computational cognitive agent (such as the SNePS Research Group’s “Cassie”)9 on

a Vax running Franz Lisp (as Cassie was in the 1980s) and on a Sun running Allegro

Common Lisp (as Cassie is in the 2000s). Or they may be implementations in the

samemedium: for example, two implementations of a fully-equipped Toyota Sienna

XLE; here what I have in mind is that the vehicles would be identical except, of course,

that the metal, plastic, fabric, etc., of one of them would perforce be distinct physical

objects from the metal, plastic, fabric, etc., of the other. For another example, consider

two implementations of the Stack abstract data type using Pascal arrays; here, one

implementation might use ann-element arrayA with top = A[n], while the other uses

an(n+1)-element arrayA with top = A[0].

Clearly, the members of each pair of implementations will differ. The operations
9Shapiro & Rapaport 1987, 1991, 1992, 1995; Shapiro 1989, 1998; Rapaport, Shapiro, & Wiebe 1997;

Rapaport 1991a, 1998, 2000, 2002, 2003; Ismail & Shapiro 2000; Shapiro, Ismail, & Santore 2000; Shapiro

& Ismail 2003; Santore & Shapiro 2004.

15

of the Pascal stack will be defined in terms, say, of record operations, while the

operations of the Lisp stack will be defined in terms of list operations. The two

computational cognitive agents’ input-output behaviors ought to be the same, but the

code will differ, so debugging will be a different process on each. One Sienna might

dent more easily than the other, or get better gas mileage. Even identical twins differ.

(For a novelistic treatment of this, see Duhamel 1931.) And clearly there will be

implementation-dependent differences between the array-implemented stacks, some

of which are behaviorally irrelevant and some of which have behavioral consequences.

E.g., “where” top is, i.e., howtop is implemented, is behaviorally irrelevant (i.e.,

irrelevant in terms of input-output behavior). But the size of the array has behavioral

consequences: An abstract stack needs no size, but every actual implementation of it

will have a size, and this size constraint will affect the behavior of the implemented

stack (because finite stacks can overflow, whereas abstract ones can’t).

My philosophy colleague Jorge Gracia has discussed the relation of an artist’s

“general idea of what he [sic] wants to do” and the final product, e.g., a sculpture:

. . . the sculptor’s description is too general and does not identify those

features of the sculpture that set it apart from others [that satisfy the

description]. . . . [t]he particular sculpture that the sculptor produces is

not the result of his idea alone, but involves also the materials with which

he works as well as the creative process itself that produces it. (Gracia

1990: 511–512.)

In general, then, when a given Abstraction is implemented, whether in different media

or in different ways in the same medium, there will be implementation-dependent

16

differences. Nevertheless, there will be some core, some essence, common to all of

them in virtue of which they can be said to be the “same”. (This, I take it, is the

point of Goguen et al.’s (1978) isomorphism construction, as discussed in Rapaport

1999,§3.2.)

Implementations are always more specific or detailed than their Abstractions,

due to the implementing medium. This gives rise toimplementation-dependent side

effects. For instance, ideas can be implemented in different languages (or differently

implemented even in the same language). Clarity of exposition, literary art, and

even cultural variety thrive on the implementation-dependent side effects due to the

implementation-dependent differences.Vivent les diff́erences!

Consider the implementation of a mind. That is, suppose that (at some future

time) we have a collection of algorithms that “account for” cognition—the Mind

abstract data type, as it were. Suppose that we have neurological evidence that

these algorithms are implemented in the human brain, and suppose that “intelligence

artificers” (Dennett’s term) have implemented them on a supercomputer. We should

expect that there will beimplementation-dependentdifferences between human minds

and such computer minds. Does this mean that the computer mind is not a “mind”? I

understand this question in the following way: Is the computer mind an implementation

of the Mind abstract data type? The answer, by hypothesis, would clearly be ‘Yes’.

Are the differences “important”? That, of course, depends on what counts as being

“important”. Perhaps there will be a need to talk ofdegreesof “mindhood” (cf.

Rapaport 1993b). Perhaps, for example, the Mind abstract data type will not be able to

be fully implemented in dogs, or in chimps. Or perhaps we will be able to distinguish

17

between aHuman Mindabstract data type and aDog Mind or Chimp Mindabstract

data type, or, for that matter, aRobot Mindabstract data type.

Perhaps, in the long run, theonly differences that will be of any significance will

be the implementation-dependent ones—the physical differences—and even these will

be of no more (or perhaps no less) significance than the implementation-dependent

differences thatcurrentlyexist due to the fact thatyour mind is implemented inyour

body and mine in mine. Suppose, for example, that androids like Lt. Commander Data

of Star Trek: The Next Generationbecome commonplace. Would we—shouldwe—

behave differently towards them only because of their physical (i.e., implementation-

dependent) differences? Suppose that some cognitive agents are “aware” or have

“subjective experiences” (measured by, e.g., whether they have faces or are human,

or by some primitive “feeling” or “intuition” that they are aware), while others arenot

thus “aware” (e.g., some computers). Suppose further that these two kinds of cognitive

agents are not behaviorally distinguishable (perhaps only physically distinguishable—

i.e., distinguishable on the basis of certain perceptual aspects of their implementation).

Given this behavioral indistinguishability, I would say that we wouldnot behave

differently towards them. (Better: Weshouldnot behave differently towards them;

consider, after all, the ugly varieties of racism.) We would (or should) not behave

differently even towards thenon-“aware” ones (cf. the Turing Test): For even they,

because they were behaviorally indistinguishable, wouldclaim to feel pain, say; so it

would be morally wrong to inflict (what they call) pain on them. What, then, would be

the difference between them? Only a linguistic convention.

18

2.2 Implementation-dependent side effects

Consider an object that is a model of something. Which parts, aspects, or features

of it contribute to its role as a model, and which pertain to its own nature—to its

implementing medium?10 From the fact that a globe is plastic, we do not infer that

the world is plastic (nor do we require that a model of the world be made of the same

stuff—rocks, water, soil, etc.—that the world is). Nor—as in aFamily Circuscartoon

showing a little boy next to a globe, asking “Does the real world have writing all over

it?”—do we infer that the world has writing on it from the presence of place names

and lines of latitude and longitude on globes, even though theseare part of its role as

a model. Where do implementation-dependent side effects come from, and what, if

anything, do they do?

Implementation-dependent side effects are due to implementation-dependent

details. If we think of an Abstraction as a syntactic domain and of an implementation

as a semantic model of the Abstraction, then it appears that the details come from

situations in which the semantic domain is “larger” than the syntactic domain. These

are situations in which everything in the syntactic domain is interpreted in the semantic

domain, yet in which not everything in the semantic domain is an interpretation

of something in the syntactic domain. To adapt some terminology from logic, the

syntactic domain is “sound” but “incomplete” (i.e., it is abstract). In this way,

individuals can have properties that their universal lacks:
10Perhaps this question is related to the medieval question of haecceity—the “thisness” that makes Plato

thisman and Socratesthatman, even while both are instances of (or implementations of?) the universal Man.

Cf. Rapaport 1999,§4.1.

19

. . . written, spoken, and mental texts are all individual insofar as they are

not instantiable themselves. . . . As individual instances, moreover, they

presuppose corresponding universals, but the universal is not the same for

the three types of texts.For the written text, it would be a written type

of universal even though the universal would not be something written

anywhere.(Gracia 1990: 505–506; my italics.)

Such implementation-dependent properties, we see,canbe essential properties of the

individual; we’ll come back to this in§2.3.

Another source of implementation-dependent details is non-isomorphic models (cf.

Rapaport 1995,§2.2.2). For example, consider non-isomorphic models of the group

axioms (i.e., of the Group abstract data type): (1) two groups of different cardinalities

(e.g., the cyclic groups of orders 2 and 3) or (2) an infinite cyclic group such as

(a) the integers under addition and (b) the Cartesian product of that group with itself

(which, unlike the former, has two disjoint subgroups except for the identity).11 In

each case, the implementation—the model—has features that are leftunspecifiedby

the Abstraction (in this case, the group axioms); they are implementation-dependent

details. Indeed, evenisomorphic models give rise to implementation-dependent

differences: “In any isomorphic class there are models which differ onall non-empty

extensions. For example, in any isomorphism class there is one model at least whose

domain consists of odd integers and one whose domain consists of even integers”

(Jardine 1973: 231; Jardine points out that this gives rise to Quinean indeterminacy

of reference).
11I am grateful to my mathematics colleague Nicolas Goodman for this example.

20

Sometimes, the implementation-dependent details are not important and can—or

evenmust—be ignored. This is because thepurposeof an implementation or model

is often to aid in understanding the Abstraction. There are two sides to this coin: If

theAbstraction—better, the syntactic domain; i.e., the domain to be modeled; i.e., the

domain to be understood in terms of the model—is itself complex, we will want the

modelto be simpler.12 Nonetheless, it will still have features that do not represent any

part of the Abstraction: “It may bericher in properties, but these would then not be ones

relevant to its object [i.e., the Abstraction]; it [i.e., its object] wouldn’t possess them,

and so the model couldn’t be taken to represent them in any way” (Wartofsky 1966: 6–

7). The extra properties are implementation-dependent details, to be ignored. (Goguen

et al. 1978 employs a construction to “divide out” such irrelevancies; cf. Rapaport

1999,§3.2.)

Often, however, the detailsdo contribute something: This is the realm of the

implementation-dependentside effects—phenomena contributed by the implementing

medium, not by the Abstraction. Some are behaviorally relevant, others not. That
12“It is rather paradoxical to realise that when a picture, a drawing, a diagram is called a model for a

physical system, it is for the same reason that a formal set of postulates is called a model for a physical

system. This reason can be indicated in one word: simplification. The mind needs in one act to have an

overview of the essential characteristics of a domain; therefore the domain is represented either by a set of

equations, or by a picture or by a diagram. The mind needs to see the system in opposition and distinction

to all others; therefore the separation of the system from others is made more complete than it is in reality.

The system is viewed from a certain scale; details that are too microscopical or too global are of no interest

to us. Therefore they are left out. The system is known or controlled within certain limits of approximation.

Therefore effects that do not reach this level of approximation are neglected. The system is studied with a

certain purpose in mind; everything that does not affect this purpose is eliminated” (Apostel 1960: 15).

21

a stack’s top is implemented asA[0] rather thanA[n] is not behaviorally relevant. A

high-level program that cares only about stacks and not about their implementation

can—and does—ignore this. Any modern programming language with built-in data-

abstraction mechanismsliterally ignores—does not know—about the implementation

details (cf. Parnas 1972).13

But as side effects become more and more behaviorally relevant, they become more

than meresideeffects and can be of central importance. Let’s consider some examples.

For instance, consider the following case of a chess game played with non-standard

pieces:

In today’s chess, only the familiarly shaped Staunton pieces are used.

. . . [One] reason is the unfamiliarity, to chess players, of other than

Staunton pieces. . . . [In Reykjavik, in 1973, two grandmasters] started

to play [with a non-Staunton set], and the conversation ran something like:

“What are you doing? That’s a pawn.”

“Oh. I thought it was a bishop.”

“Wait! Maybe it is a bishop.”

“No, maybe it really is a pawn.”

Whereupon the two grandmasters decided to play without the board.

They looked at each other and this time the conversation ran:
13Albert Goldfain (personal communication) “imagine[s] a poorly designed operating system (with a bad

memory-management scheme) whereA[n]-top stacks might overwrite some piece of reserved memory while

A[0]-top stacks do not. There is usually a ‘larger’ context in which behaviorally irrelevant ‘implementation

details’ become relevant.” On the importance of suitably large contexts, see Rapaport 2005.

22

“D5”

“C4”

“E6”

“Oh, you’re tryingthat on me, are you? Knight C3.”

And they went along that way until they finished their game.

(Schonberg 1990: 38–39.)14

In this anecdote,15 the implementation of the Abstract chess pieces had confusing

implementation side effects.

Wilfrid Sellars (1955 [1963]) discussed another chess-related example of

implementation:

[A]ttention must be called to the differences between ‘bishop’ and ‘piece

of wood of such and such shape’. . . . [The former] belongs to the rule

language of chess. And clearly the ability to respond to an object of a

certain size and shapeas a bishoppresupposes the ability to respond to it as

an object of that size and shape. But it should not be inferred that ‘bishop’

is ‘shorthand’ for ‘wood of such and such size and shape’ . . .‘̇Bishop’ is

a counter in the rule language game and participates in linguistic moves

in which . . . the . . . longer expression does not (Sellars 1955,§56

[1963: 343].)

“Being a bishop” is a nice example of what I call an Abstraction. Here, a bishop

is implemented as a certain piece of wood. It could also, as Sellars observes, be
14Cf. a similar conversation, in a language of “nerve states”, in Eco 1988.
15Which, I should add, is highly doubted by at least one chess-playing philosopher I’ve mentioned it to!

23

implemented by a Pontiac if the chess game is played in Texas, where everything is

supposed to be bigger:

[T]he term ‘bishop’ as it occurs in the language of both Texas [where it

is “syntactically related . . . to expressions mentioning different kinds of

cars” (§59, p. 344)] and ordinary chess can be correctly said to have a

common meaning—indeed to mean the bishop role, embodied in the one

case by pieces of wood, and in the other by, say, Pontiacs (Sellars

1955,§62 [1963: 348].)

Here, we have an Abstraction (Chess) and two implementations (the ordinary Staunton

pieces and the Texas pieces). We assume that the pieces that play the role of the bishop

are bothcalled ‘bishops’; ‘bishop’ means the same thing in both implementations,

namely, the Bishop Abstraction. That role is “embodied as”—i.e.,is implemented

by—a Pontiac in Texas and a certainB -shaped piece of wood in the Staunton set. The

words ‘bishop’ as they occur in the two different languages refer to different entities

(the language-entry and -departure rules in Sellars’s language games differ). Sellars’s

Texas chess, played with Pontiacs implementing bishops, will have, if notconfusing

side effects, certainlysignificantones—the chess board will have to be pretty large,

and perhaps a speed limit will have to be imposed on the bishops.

Less frivolously, perhaps, problems with an implemented computer system may

be due to details of the implementation that are not part of the original specifications.

That is, the system might mathematically “satisfy” the specifications, yet still fail due

to hardware faults:

. . . hardware does from time to time fail, causing the machine to come

24

to a halt, or yielding errant behaviour (as for example when a faulty chip

in another American early warning system sputtered random digits into a

signal of how many Soviet missiles had been sighted, again causing a false

alert . . .). (Smith 1985: 635.)

This, I take it, is at the heart of James H. Fetzer’s arguments against program

verification (Fetzer 1988, 1991; cf. Nelson 1992, 1994).

To some extent, the notion of an implementation-dependent detail and its attendant

“side” effects is a relative one. Recall Gracia’s example of the individual written text

and its non-written “written type of universal”. There would, however, be a further

universal, of which the “written-type” and “spoken-type” of universals are instances.

For example, a high-level universal might be Lincoln’s Gettysburg Address, of which

the written-universal and the spoken-universal are species; one written individual

falling under the former would be the one Lincoln allegedly wrote on the back of

an envelope, and one spoken individual falling under the latter would be the one

Lincoln uttered on 19 November 1863. Or compare Euclid’s algorithm for computing

greatest common divisors with that algorithm implemented in Pascal, and with that

algorithm implemented in Lisp; each of these can be (further) physically implemented

as processes on a variety of machines.

Each level of Abstraction or implementation ignores or introduces certain details.

One level’s implementation detail is another’s Abstraction. That is, we can (via a kind

of reverse engineering) “abstractify” an implementation’s details, after which they are

no longer “details”relative to the new (more detailed) Abstraction. Consider, for

example, the Stack abstract data type and theN-Element Stack abstract data type.

25

A Pascaln-element array-implementation of a stack (simpliciter) will have as an

implementation detail (yielding behaviorally observable side effects) that it can only

store n elements. Yet the very same code willalso be an implementation of an

N-Element Stack and, as such, willneither have that feature as animplementation-

dependent detailnor as aside-effect—indeed, it will be an essential feature.

Note that we have two senses of ‘abstract’ here: the sense in which abstract data

types, specifications, and blueprints are “abstract” (relative to implementations) and

the sense in which to abstract is to eliminate (or ignore) “inessential” “details”: “every

model deals with its subject matterat some particular level of abstraction, paying

attention to certain details, throwing away others, grouping together similar aspects

into common categories, and so forth” (Smith 1985: 637). Note, too, that the model

need only be “assumedsimpler” (Rosenblueth & Wiener 1945: 317; my italics): The

implementation-dependent details areignored, not eliminated. They are parts of the

model that arenot (intended to be) representations of the system being modeled.

2.3 Qualia: That certain feeling

The view of implementation as semantic interpretation, with its implementation-

dependent details giving rise to implementation side-effects, offers an interesting angle

on the puzzles of qualia. Qualia, roughly, are the subjective, qualitative “feelings”

or “sensations” or “experiences” that accompany various mental states and processes.

Examples are the “look” of blue (as opposed to yellow, and of yellow as opposed to

blue) and the “feel” of pain (or, for that matter, tactile sensationsimpliciter). The

puzzle is that these are “private” or subjective phenomena: Only I can know what

26

my sensation of blue looks like or what my pain feels like (or that I am in pain).

You cannot know what my sensation of blue is like or what my pain feels like, or

know that I have any blue-sensation or that I am in pain. You can, perhaps, feel

a pain that “is like” my pain—though how would you (or anyone, for that matter,

including me) really know that it “is like” mine, since you can only feel your own? (Cf.

Smith’s (1985) “gap” in our knowledge about whether our models match the world; for

discussion, cf. Rapaport 1995,§2.5.1.) In any case, your pain is notmypain. You can,

perhaps, determine that I am in pain—but only on the basis of my publically observable

physical behavior, and that, of course, could be mere show or—more radically—be

“real” pain behavior unaccompanied by any qualitative painful sensation (so-called

“absent” qualia; see§2.3.1). So, qualia are private, hence “mental” (according to a

long-established tradition). Hence, they ought to be explainable functionally or as

part of the Mind Abstraction. Yet functionalism seems incapable of explaining them,

because mental phenomena with different qualia are functionally indistinguishable, or

so the puzzle goes.

A possible way out, I propose, isto view qualia as dependent on implementation

side-effects. This does not resolve the puzzle completely, however, for we still have to

account for the privacy of qualia.

2.3.1 Absent qualia

Let’s begin with the problem of “absent qualia”: the possibility that, for example, I

feel no pain in circumstances in which others do, yet I am not oblivious to the pain

stimulus—I behave appropriately. Thus, an experimenter sticks pins in my right hand

27

and in yours. We both wince, withdraw our hands, perhaps cry out; we both say that

the pin-pricking hurts, perhaps we both bleed, and we complain of residual soreness

over the next several hours. Yet youfeel painand I don’t (or so we suppose for the

sake of argument). The questions are: (1) Is this possible? (2) Am I any “less” of

a cognitive agent because of my lack of feeling? The issue is sharpened when I am

replaced by a computer or, better, an android: Does the androidfeel pain? Many

suppose not. But why? The central issue here is one of subjectivity, the same issue that

is at the heart of the Chinese Room Argument (cf. Rapaport 2000): Does an entity that

passes a Turing-like test—in this case, one for pain or pain-behavior—“really” have

the phenomenon being tested for? And, ifnot, does that mean, despite its behavioral

indistinguishability from a human thatdoeshave the phenomenon, that it is only “going

through the motions” and not “really” feeling, using natural language, or thinking?

I have mixed feelings about this (if you’ll excuse the pun). On the one hand, I

want to say that insofar as having—or lacking—the private sensation hasnobehavioral

consequences (not even to my being able to describe my pain-sensation in exquisite and

poetic detail—whether I have it or not), then it isnot part of the Mind Abstraction. If I

do feel pain, then my sensation must be due to themediumin which it is implemented,

namely, mybody—it is an implementation side-effect. I can, of course, perceive the

pain sensation. Moreover, itis possible that the Mind Abstraction can deal with this

despite the fact (if fact it be) that, despite the privacy, it is not a mental phenomenon:

For the Mind Abstraction will have, let’s say, a variable or data structure of some sort

whose valuewouldbe the sensation if Ihada sensation and whose value is unassigned

otherwise. The assignment of a value to this variable or data structure is input from my

28

body. That is how it is implementation dependent.16

On the other hand, I think it is plausible that there are never any absent qualia.

Take pain, and consider the following computational implementation of it suggested

by my computer-science colleague Stuart C. Shapiro (in conversation, ca. late 1980s;

all of this ought, by the way, to be able to be done with current technology): Imagine a

computer terminal with a pressure-sensitive device hooked up to the central processing

unit in a certain way that I’ll specify in a moment. Program the computer with avery

user-friendly operating system that allows the following sort of interaction (comments

in parentheses):

(User logs in, as, say “rapaport”)

System: Hi there, Bill! How are you? What can I do for you today?

(Assume that this only occurs at the first login and that the operating system is

capable of some limited, but reasonable, natural-language conversation.)

User: I’d like to finish typing the paper I was working on yesterday—file

“book.30sep92”.

System: No problem; here it is!

(The file is opened. The user edits the file, closes it, and then hits the terminal

sharply on the pressure-sensitive device.17 Assume that this device is wired to

the computer in such a way that any sharp blow sends a signal to the central
16For a recent version of this theory, see McDermott 2001.
17A cartoon by Nick Hobart that appeared inThe Chronicle of Higher Educationa few years ago showed

two people discussing a computer monitor displaying the message, “NOW SLAP MONITOR ON SIDE

AND SWEAR”, while one person says, “Now this one’sreally user-friendly”.

29

processing unit that causes the operating system to switch fromvery-user-

friendly mode to “normal” mode.)

System: File “book.30sep92” modified and closed. Next command:

User: I’d like to read my mail, please.

(System runs mail program without comment. User exits mail program.)

System: Next command:

(User logs off; logging off in the context of having struck the pressure-sensitive

device causes the operating system to switch to yet another mode. The next day,

User logs in . . .)

System: Rapaport. Oh yeah; I remember you. You hit me yesterday. That hurt!

Now, what might be going on here? We have a computer with an artificial-intelligence

operating system that is exhibiting pain behavior. Modulo the differences between

the computer and a human, and the limitations of the natural-language interface,

behaviorally (or, from the intentional stance) it is reasonable to infer (or assume) that

the computer was in pain when I hit it. But did itfeelpain?

Well, how dohumansfeel pain? We feel pain when certain neurons are stimulated

and certain signals are sent to the brain. Now, in our computer, certain wires connecting

the pressure-sensitive device with the central processing unit are “stimulated” and

certain signals are sent to the central processing unit. Where’s the difference between

human and computer? Perhaps the difference is that, for humans, there is a “pain-

sensing” neuron in the brain that is stimulated when a human is hurt. It gets its input

from the pain neurons (C-fibers, or whatever), which also send their input to certain

30

motor neurons that results in typical pain behavior (or perhaps the pain-sensing neuron

sends its output to the motor neurons). Fine; build a similar such device into the central

processing unit and operating system. The cases are parallel: Either there is a quale

in both cases, or there isn’t one in either case. Since, by hypothesis, I feel pain, there

should be a quale in both cases.

What is that quale? It is tempting to say that it is what I feel when the “pain-

sensing neuron” fires, but this raises the specter of a homunculus doing the feeling.

It is, perhaps, better to say that the quale (the feeling) justis the firing of that neuron

(perhapsas experienced fromthe first-person point of view). It is one thing to say that

thereis a feeling, another todescribeit: What does the computer’s painfeel like? I

don’t know. Do you know whatmy pain feels like? We’ll come back to this in the

next section. My point, for now, is that pain qualia canand will arise whenever there is

pain-behavior, and the same holds,mutatis mutandis, for any qualia.

2.3.2 Inverted qualia

Consider, next, the problem of “inverted” or “shifted” qualia: the general problem of

accounting for the particular “feel” of a qualitative experience, assuming thepresence

of qualia: Does your pain feel like mine? Does your sensation of blue look like mine?

In the most perverse case—the inverted spectrum case—your sensation of blue is just

like my sensation of yellow, and vice versa, all across the spectrum.18 In an inverted-

pain case, your feeling of pain might be just like my feeling of pleasure, and vice versa.

In what I am calling “shifted” qualia, red might be shifted down to orange, orange to
18Possibly excepting a fixed point? For various options along these lines—various implementations of the

inverted-spectrum Abstraction, if you will—see Byrne 2005.

31

yellow, etc. Or in a “shifted” pain case, a pain of intensity 10 might be shifted down

to a pain of intensity 9, and so on. (And this might even account for why some people

have different tolerances for pain.)

Can this be? How? Well, first, it seems plausible that something like this, if not

quite so extreme,can be. There are the experiments with inverting lenses (Stratton

1897) in which the subject becomes acclimated to seeing the world upside down—

behavioral indistinguishability with distinct qualia. There appears to be no reason in

principle not to be able to adapt this to inverted spectra (Cole 1990). And many of us

can experience “shifted” qualia by closing one eye: In my own case, at least, colors

appear distinctly different to each of my eyes (colors seem “shifted” to a darker shade

in one eye); by crossing my eyes so as to produce a double image, I can even compare

the differences in color.

Again, I suggest, this is merely an implementation-dependent side effect. Rather

than speculating on how the brain might be wired, let’s again consider a computer

example. Consider two computer programs with the same input-output behavior,

written in Pascal using stacks. Suppose that one of them implements the Stack

abstract data type as ann-element arrayA[0], . . . ,A[n− 1] with top = A[0], while

the other implements it as ann-element arrayA[0], . . . ,A[n−1] with top = A[n−1].

The internal mechanisms—theimplementationsof the stacks—are “inverted” with

respect to each other, yet this is behaviorally undetectable and irrelevant. Granted,

here there is no issue of “qualitative feel”, perhaps. Yet the point is that the

differences—and there clearly are differences, although not input-output ones—are

implementation dependent. The analogue of qualia are implementation-dependent side

32

effects. Similarly for pain: Thesensationor feeling of pain, in humans, might be

something that your body has (or does, or undergoes) when, for instance, you step on

a tack. But that it feels the way it does is an epiphenomenon (so to speak)of the body.

Were the same mind implemented in a different body (as in Justin Leiber’s 1980 novel,

Beyond Rejection), perhaps the feeling would be different (or absent).

2.3.3 The syntactic semantics of qualia

Are qualia “mental” phenomena? They are private, yet (I hold) they are implementation

dependent. Does that mean that functionalism (or strong artificial intelligence) fails to

“model” some mental phenomena? That’s certainly one interpretation, one move that

can be made in the philosophical game. Or does it mean that what it fails to model

(pain, spectra inversion) isn’t mental? That is, of course, another equally plausible

interpretation, another move that’s open,unlessone defines the mental in terms of

what is “private” (i.e., not publicly accessible). Yet another option is thatsomeof what

we call ‘mental’ is body (or implementation) dependent, though this is not available

for those who define bodily phenomena in “public” terms. (On the relation of a

(philosophical) problem to other assumptions that need to be made in order to solve

it, see Rapaport 1982.)

The position I find congenial is to make the “syntax” “complete”. Recall my

suggestion that implementation side-effects were due to situations where the semantic

domain exceeded the syntactic domain. In such cases, we canextendthe syntactic

domain to make it match the semantic domain, in a way reminiscent of David

Hilbert’s (1925) notion of “ideal” elements in mathematics (see§3, below; cf. Rapaport

33

1981, where I show how to do this in a Meinongian fashion to handle non-referring

terms). Although any Mind Abstraction may be incomplete inthis sense of having

implementation side-effects, thefactof having such implementation side-effects can be

made part of the Abstraction, as indicated earlier with my discussion of variables whose

values are assigned externally. In this way, to paraphrase Tolstoy, every cognitive agent

will “feel pain”, but everyone’s pain will “feel” different.

The random digits “sputtered” by a faulty chip that were interpreted as

enemy missiles (Smith 1985) were also implementation side-effects—(physical)

implementation details that yielded or gave rise to “mental” behavior: The computer

interpreted certain physical configurations as meaning something19—it “felt” them in

a certain way, so to speak. A feeling of pain is the mind’sperceptionof a physical

event. Thus, qualia can be thought of as the locus of “interaction” of mind and body,

of Abstraction and Implementation.

It is not, therefore, unreasonable that qualia would be physical, yet “private”. The

actual “feeling” belongs, and only belongs, to the implementation. ConsiderHamlet’s

sadness (at, say, his killing of Polonius) as opposed toOlivier’s sadness (at, say,

learning of the death of a good friend) and as opposed toOlivier-qua-Hamlet’ssadness,

i.e., the sadness manifested by Olivier playing Hamlet (or by Hamlet as played by

Olivier). In the Method School of acting, Olivier-qua-Hamlet’s sadness would be

an implementation of the Abstraction Hamlet’s Sadness in the medium of Olivier’s
19“[I]nformation itself has no meaning. Any meaning can be assigned to a particular bit pattern as long

as it is done consistently. It is the interpretation of a bit pattern that gives it meaning. . . . A method of

interpreting a bit pattern is often called adata type. . . . [A] type is a method for interpreting a portion of

memory” (Tenenbaum & Augenstein 1981: 6, 45).

34

sadness. This is to be distinguished from Olivier merely “acting” sad (perhaps a case

of absent qualia?). (For more discussion of this, see Rapaport 1985, 1988b.)

The privacy of qualia justis its subjectivity. Compare the following three

experiences:

1. Suppose that you and I are both looking in a mirror at my reflection and that we

both see, in the mirror, something on my eyelash: This is an “objective”, public,

and external perception—a perception from the third-person point of view: We

are both perceiving the same thing in the same way, only from difference angles

(literally from different perspectives).

2. Now suppose that you are looking directly at me, seeing the object on my

eyelash, and that I see it out of the corner of my eye directly on my eyelash:

This is also objective, public, and external, since both you and I are looking at

the same thing, but from different perspectives. But my first-person perspective

is somewhat closer to the source, so to speak. Here, it is not only the angle that

I see it from that differs from yours, but, also,only I can perceive it from that

angle. In theory, however—were you small enough—you could also perceive it

from that angle.

3. Finally, suppose that Ifeel it on my eyelash: This is no different from the other

perceptions, except that it is not perceivable by anyone other than me. It is

subjective, private, and from the first-person point of view. Here, it is impossible

for you to perceive what I am perceiving (perhaps notlogically impossible, but

physicallyimpossible).

35

By a continuous sequence of perspective shifts (not unlike those cited in some versions

of the Argument from Illusion; cf. Ayer 1956: 87–95, Rapaport 2000,§6.2), we move

from a public to a private phenomenon.

Is there anymoreor other difference between these? I think not. Pain, etc., are

just the way things are perceived in certain circumstances, some of which cannot

be experienced by anyone other than the subject. “That certain feeling”ought to be

private, because it’s due to theexperiencer’simplementing medium, not anyone else’s.

Privacy is not a mental phenomenon, but merely a perspective accessible only to the

perceiver or cognizer.

3 The real thing

One aspect of the question whether machines can think is this: Is a computer

“simulation” of a mind “really” a mind? Compare this, for the moment, to another

question: Is a computer simulation of a hurricane “really” a hurricane? (Cf. Dennett

1978, Hofstadter 1981, Rapaport 1988a.) What is the relation of a simulation to “the

real thing”?

3.1 Understanding abstraction and implementation

The first observation I would like to make in this regard is that experience with an

implementationof some Abstraction can change our understanding of the nature of the

Abstraction. Can “straight lines” be implemented in a non-Euclidean geometry? The

answer is ‘Yes’, but they aren’t “straight” anymore; they can only be implemented as

36

geodesics: shortest distances between two points. So, on a sphere, the implementation

of the Abstraction Straight Line is a great circle. Similarly, consider the implementation

by airplanes of flying (cf. Rapaport 2000): Airplanes fly, but not the exact way birds

do (e.g., although their wings might have more or less the same shape, planes don’t

flap them). Planes fly only (or at least?) in the sense of moving through the air without

touching the ground. No doubt that needs to be refined, so as to rule out long jumps

(but mightn’t avery long jump be flying?). Yet another refinement might replace

the reference to air with a general term for a fluid medium: It has been suggested

that the knowledge-representation community’s favorite flightless bird—the penguin—

does indeed fly . . . in water! (Ackerman 1989: 45–46; cf. Rapaport 2000.) The point is,

as we saw earlier (§2.1), that when an Abstraction is implemented in different media,

there will be implementation-dependent differences, yet there will be some common

essence to both, in virtue of which they can be said to be the same. Thus, what is “really

important” about straight lines is that they are geodesics; that geodesics are “straight” in

Euclidean space is an implementation-dependent side effect—an “accidental” property,

if you wish.

Edsgar W. Dijkstra (1984: 2) said that Turing’s “question of whether Machines

Can Think . . . is about as relevant as the question of whether Submarines Can Swim”.

Assertions of equivalence such as this are notoriously ambiguous. Does Dijkstra think

that it’s obvious that submarinescan’t swim (and therefore that computerscan’t think)?

Or that it’s obvious that they can? Or that it’s merely a question of whether we’ll extend

the meaning of ‘swim’ to cover whatever it is that submarines do? Suppose the latter.

What is it that submarines do? They move in the water. But that’s what swimming

37

is,20 though perhaps before the advent of submarines we thought that swimminghad

to be done by animals: Do fish swim? Surely. Do people? Perhaps only by extending

the term. Extending the meaning of a term occurs when we realize or decide that a

property that we thought was essential isn’t. This goes a long way toward explaining

the unease people feel when they’re told that computers can think.

So, is this extension of terms such as ‘fly’ to planes, ‘swim’ to submarines, and

‘think’ to computers “merely” a metaphorical extension? It may be metaphorical, but

it is not “mere”:

Eus[ebius]: . . . I do wish you would stop using terms borrowed from

human behavior [to describe monkey behavior]! You’re being

anthropocentric!

Soc[rates]: Well, monkeys are anthropoids. Besides, do you want me to

make up a new word for a phenomenon for every species that shows

it? Should geneticists stop talking about inheritance because that

term was borrowed from economics?

(Altmann 1989: 260.)

There are two points: First,refrainingfrom such extensions, metaphorical or otherwise,

would force us to miss important generalizations. Second, as Lakoff and Johnson

(1980) have shown us, metaphor is an unavoidable and central feature of our language

and thought.
20Unless, of course, swimming is flying in water!

38

3.2 Segregation of implementation

What we do have to be careful about is mixing our metaphors. That is, an

implementation must be complete unto itself; we must not import or apply

(implementation-dependent) features from one implementation of an Abstraction to

another implementation of the same Abstraction. Thus, to take the classic case, it is of

course not true that computer-simulatedhurricanes getreal people wet. But theydo

get simulatedpeoplesimulatedlywet (Hofstadter 1981; cf. Rapaport 1988a, Shapiro

& Rapaport 1991). “Obviously, a computer simulation of a stomach would only digest

simulated food” (Johnson 1990: 46). And a “simulated engine wouldn’t generate any

‘here in the world outside the computer’ power—but if you put it in a suitably simulated

car, and engage the suitably simulated clutch, it will just fine drive down the simulated

road” (Minsky 1991). In each of these cases, we do seem to have “the real thing”:

A simulation of digestionis a kind of digestion, a simulated hurricaneis a kind of

hurricane. More accurately, I propose, a computer simulation of human digestion is

an implementationof the Digestion Abstraction, as is human digestion itself (in fact,

the scientific study of digestion has recently been aided by a “virtual stomach”; cf.

Eisenberg 2002). The latter may be more familiar, more prototypical (cf. Rosch 1978),

but both, just as Dijkstra may have observed of swimming, are really digestion.

The difference between a “simulation” of flying or of a hurricane and what we

normally think of as “real” flying or a “real” hurricane is that the former “are one step

removed from reality . . . [because they use] symbolic parameter values that represent

physical behavior” (Johan Lammens, personal communication, 17 August 1990). I’m

not sure about the cause, but I agree with the effect: Computer simulations are not

39

part of the “real” world (except, of course, in the sense in whicheverythingis part

of the real world). They exist in their own simulated world, and we must be careful

about “transworld” attributions. Although a simulated hurricane will not getuswet—

because that would require a “transworld” causal relation of a kind that does not exist—

the simulated hurricane must have some of the “same” (or analogous) cause-effect

relationships with denizens ofits computer universe (e.g., getting simulated people

simulatedly wet) in order for it to count as a simulation—in order for both it and 2004’s

Hurricanes Charley, Frances, Ivan, and Jeanne to beimplementationsof the Hurricane

Abstraction.

3.3 Non-segregated implementations

There is, however, an important family of exceptions to this principle of segregation.

Computer simulations of semantic or information-processing systems are not only

implementations of them, but can interact with other such implementations. In other

words, if they were simulated hurricanes, theycouldgetuswet.

A clear example of this is the computer simulation of computation itself. In one

of my introductory computer science courses, I once used a piece of software called

the “P88 Assembly-Language Simulator”. “P88” was (a fragment of) an assembly

language for a hypothetical machine (Biermann 1990). (We can ignore for now whether

it really wasan (incomplete) assembly languageeven if “just” a toy one, since that is

irrelevant to the point I want to make.) The P88 Assembly-Language Simulator was

a Pascal program (actually, a ThinkPascal program). As such, it had to be compiled

into the machine language for the Macintosh computer on which it ran. My students

40

and I could write P88 programs and “assemble” them into (a simulation of) a P88

machine-language program, which, in turn, was interpreted by Pascal as a certain

Pascal program, which, in its own turn, was compiled into a Macintosh machine-

language program, and executed. The levels are shown in the middle column of

Figure 1.

INSERT FIGURE 1 ABOUT HERE

Suppose, now, that I write a programin P88 assembly languagethat takes two

integers as input and returns their sum as output. When I cause this P88 program to be

executed, a prompt appears on the screen, I input an integer, another prompt appears,

another integer is input, and their sum is printed on the screen as output. Question:

Was this a P88 computation? Yes and no.

Yes: It was, because thealgorithm that computationally caused the sum of the two

inputs to be output was a P88 algorithm that used data structures and instructions from

the P88 language. In other words, the two integers that were the input to the P88

program were inputto that program, and their sum was outputby that program(this is

the top row of Figure 1).

No: It was not a P88 computation, because the P88 algorithm was executed by

having aPascalprogram performPascalcomputations that used data structures and

instructions from the Pascal language. So, was it, then, aPascalcomputation? (This is

the third row of Figure 1.) Well, in some sense not really, because the Pascal algorithm

41

was executed by having a Macintosh machine-language program performMacintosh

machine-languagecomputations that used data structures and instructions from the

Macintosh machine language. (Curiously, these are more like the data structures and

instructions from P88 than from Pascal, but they were not executing or simulating P88

instructions or using P88 data directly.) At bottom, then, only a Macintosh machine-

language program was really being executed and really computing the sum of two

integers. (This is the bottom row of Figure 1.) In other words, the two integers that

apparently were the input to the P88 program were actually input to the Macintosh

machine-language program, and their sum was actually output bythat program.

Yet I can, and do, use the P88 Assembly-Language Simulator to compute the sum

of two integers. In other words, a computation by the P88 program was simulated by

a Macintosh machine-language computation, but therewasa computation nonetheless.

The simulated computationwas a computation. Moreover, it was a computation in

two senses (once could say that there were two (simultaneous) computations (with

the same input and output)): Ignoringhow the P88 program was implemented, a P88

computation did yield the sum of the two inputs. And, ignoring the fact that it was

simulating a Pascal simulation of a P88 program, the Macintosh machine-language

computation also yielded the sum of the two inputs. It is important, I think, to note

that the Macintosh machine-language program did so in a roundabout way: It wasnot

the simplest possible Macintosh program to output the sum of two inputs, because

it did that not simply by performing an addition, but by doing a number of other

(“bookkeeping”) operations that simulated a Pascal program simulating a P88 program.

In an early “For Better or For Worse” cartoon, Elizabeth (a child of about 5 or 6) is

42

sitting at her school desk, looking at her fingers, and thinking “Umm . . . two an’ seven

arrrre . . . ”. Her teacher yells, “Fingers!! I see fingers! No, Elizabeth. When we do our

arithmetic, we don’t use our fingers, we do our work in our heads.” In the last panel,

Elizabeth isimaginingher fingers, and thinking, “Two an’ seven arre . . . ”. Her mental

“fingers” are an implementation (a semantic correlate) of actual fingers, and can serve

(some of) the same purposes. Elizabeth is not using her actual fingers, and sheis doing

the work in her head—by using “head-fingers”. Imagination and mental imagery can

serve as a substitute for actual experience—one can solve problems by manipulating

either the actual objects or models of them.21

Let’s consider some other examples of the breakdown of segregation, all in

informational contexts: A photograph of a map (as, e.g., one that appeared in an ad

for New York University, inThe New York Times(20 August 1991: D5)) can be used to

find out where some city is, even though that wasn’t the purpose or intent of the map in

the ad (cf. Rapaport 1995,§2.5.4). Copying information (sic) from a book (by Xerox

or by hand) and then using that copied information (those copied sentences) rather than

the original source is done all the time. We don’t think twice about it or say that it’s

not “really” information.

Why is it information? Because of its syntax and the reader’s interpretation of it.

But it carries the information whether or not a reader interprets it. There is a possible

problem: The information carried could be differently interpreted by another reader.

But what’s invariant is the syntactic structure. In any case, multiple interpretations are
21In a “Hi & Lois” cartoon, Trixie (a baby) sits in a chair and thinks, “I never knew I could do this! I just

imagined that I was skiing like crazy and came to a cliff and sailed over and parachuted down to a jungle full

of elephants! Wow! What fun! As life goes on my imagination is going to save me a lot of wear and tear.”

43

all equally good interpretations. Ah, butis the syntactic structure invariant? Examples

such as the string ‘NOWHERE’ (which could be analyzed as ‘NOW HERE’ or as ‘NO

WHERE’) or weakly equivalent grammars (i.e., ones that parse the same sentences but

assign them different structures) suggest that, the larger the context, the more aid there

is in determining the syntactic structure.

What about computer simulations of minds? “The difference between a symbolic

airplane simulator and a symbolic intelligence simulator is that the former models a

physical system through the intermediary representation of parameter values, while the

latter models behavior by behaving” (Johan Lammens, personal communication, 17

August 1990). Here’s the insight:Wedon’t interact with simulated hurricanes,22 so

they don’t getuswet. (As we’ve seen, theydoget simulated people simulatedly wet—

that’s where the “internal representations” come in.) But wedo interact with simulated

minds. Now, how is that possible?Is it possible?

3.4 Interacting with implementations

Do we thus interact, or do we only seem to? Having a conversation on some topic

with a Turing-Tested simulated mindis having a conversation on that topic andnot

merely simulating having the conversation. For the latter is what you would do in a

play.23 “When you get out of a TT session, something has changed: you have talked to
22As Debra Burhans (personal communication) noted, sometimes, however, wedo, as when we learn

information about the behavior of a hurricane from a computer simulation of it. But his is consistent with

my point about being able to interact with informational simulations.
23Except, perhaps, if the play is a quasi-improvisational “virtual drama”; see Anstey et al. 2003, Shapiro

et al. 2005.

44

a system about something, and most likely that has affected some of your own thoughts

and beliefs” (Johan Lammens, personal communication, 17 August 1990). Of course,

being in a play can do that, too, just asreadingthe play could. But in the Turing Test

case, it’s a dynamic, changing conversation.

So, how is the interaction possible? Because both systems deal with information,

albeit implemented differently. But the implementations are “transparent” (as in the

game of chess played with Staunton pieces; cf.§2.2). Neal Jahren (1990: 315) claims

“that ‘mentality’ equals human mentality”. He asserts that I “objected that . . . [this]

would be like saying that flying is only real when it is implemented on [sic] birds”

(Jahren 1990: 326n1). Jahren replied that I “rel[y] on a metaphysical equivalence

between natural phenomena and computational simulations that . . . [is] rather bizarre”

(Jahren 1990: 326n1). By ‘metaphysical equivalence’, Jahren apparently means

the ability of a “computational simulation . . . [to] produce the physical effects that

natural phenomena do”, but he is “unwilling to grant that elevated metaphysical status

to what is . . . only a numerical computation in a machine” (Jahren 1990: 326n1).

I concede that computer simulations (i.e., implementations) of hurricanes are not

thus “metaphysically equivalent” to real ones (I would prefer to say that they are

“causally independent”). But I am claiming that there is an exception in cases of

information (or intentional phenomena, more generally): Informationcanflow across

implementations. A mere “numerical computation” cannot get me wet, but it can

give me information (and so can a “mere” neural computation—you can give me

information, too).

One must, of course, be careful to distinguish—if possible—between information

45

that only concerns one world (either the simulated world or else the real world) and

information that can transcend the boundary. Smith (1985) cites an example of a

training tape that was interpreted to be a real Soviet attack. Another example would

be a historical novel that is thought to be a historical text. The very fact that this

can happen shows that some “simulations” are indistinguishable from the “real thing”.

Note that novelistic languagecanbe distinguished from reportorial language (Galbraith

1995: 33–35).24 The point, however, is that it doesn’t have to be. They need to be

indistinguishable by whatever system needs to deal with both of them. And they need

to be indistinguishable at the representational level, or at the level of FregeanSinneor

Meinongian objects, not at the level of FregeanBedeutungenor of actual objects: In the

one case, there is a real-world referent (or “Sein-correlate”, Rapaport 1978), but not in

the other. At the level ofSinnor Meinongian object or mental representation, all things

are on a par. If we can’t determine that they differ referentially, the default assumption

should be that they don’t. And even if wecan determine it, it might not matter. I.e.,

“ideal” elements (in Hilbert’s sense; see§2.3.3, above) are treated no differently from

“normal” elements. (For more discussion of this, see Rapaport 1991a, Rapaport &

Shapiro 1995.)

So there is a difference between the digestion and hurricane cases on the one

hand and the natural-language and mind-brain cases on the other: “. . . brains, unlike

stomachs, are information-processors. And if one information processor were made

to simulate another information processor, it is hard to see how one and not the other
24At least sometimes. Debra Burhans (personal communication) notes that recent unfortunate

developments in journalism have tried to blur the distinction!

46

could be said to think” (Johnson 1990: 46). That is, the difference is that itis the same

stuff involved in the brain and computer cases: “Simulated thoughts and real thoughts

are made of the same stuff: information” (Johnson 1990: 46). Well—not quite:

Information is abstract; “simulated” and “real” thoughts are differentimplementations

of the sameAbstraction. (One might, however, want to say that they deal with the

Abstractiondirectly, via “transparent” media.)

My claim, then, is that simulated cognition (or mentality, or intelligence)is

cognition (or mentality, or intelligence). Recall the mental imagery debate, in which

Stephen M. Kosslyn (1981; Kosslyn et al. 1981) argues that one really scans a mental

(i.e., simulated) image, whereas Zenon Pylyshyn (1981) argues that onepretends

to scan (simulatesscanning) a real image. Or compare John Searle’s claim (1979)

that in fictional language, onepretendsto assert (onesimulatesasserting) rather

thanreally asserting a pretended (or simulated) utterance—an utterance in a pretend-

world.25 In both of these cases, I side with the “really” people: Rather than saying

that a computersimulatesunderstanding something real, I would say that itreally

understands something simulated—and that in many cases, the simulated thing that

it really understands is itself the real thing (internally represented).26

25Note the deictic shift; cf. Segal 1995, Galbraith 1995.
26B.H. Webb (1991: 247) argues “that it is possible for a simulation to be a replication if the device used

can not only represent but also instantiate the same capacities as the system.” This seems congenial to my

claims.

47

4 From multiple realizability to panpsychism

Given the Principle of Multiple Realizability—the apparently obvious claim that there

can be more than one implementation of an Abstraction, more than one model of a

theory—an argument can be constructed for a variety of panpsychism (the view that

everything is a mind). The argument, in its bare outlines, is this:

1. There is multiple realizability (of computational processes).

2. ∴ There is universal realizability (of computational processes) (either by an

argument of Searle’s or by an argument of Smith’s).

3. ∴ Anything can be a model of anything (else) (from (2)).

4. ∴ Anything can be a model of a mind (from (3) by universal instantiation, or by

an argument of Randall R. Dipert’s).

5. ∴ Anything can be a mind (by the argument of§3 that modelsof minds are

minds).

Let’s begin with Searle’s argument from (1) to (2).

4.1 Multiple realizability implies universal realizability

In “Is the Brain a Digital Computer?” (1990), Searle is concerned with the multiple

realizability of computational processes. Hence, on the assumption that mental

processes are computational, he is concerned with the multiple realizability of mental

processes. According to Searle, a “disastrous” consequence of multiple realizability is

that it

48

would seem to imply universal realizability. If computation is defined

in terms of the assignment of syntax, then everything would be a digital

computer, because any object whatever could have syntactical ascriptions

made to it. You could describe anything in terms of 0’s and 1’s. (Searle

1990: 26.)

What evidence does Searle have for this claim that any (physical) object can be

described computationally? And why is it disastrous? The latter question is easier

to answer: According to Searle, universal realizability doesn’t tell us what’sspecial

about the brain as opposed to other, less interesting, computational systems, such as

the “stomach, liver, heart, solar system, and the state of Kansas” (p. 26). but if the

ultimate panpsychic conclusion holds, then this merely begs the question; we’ll come

back to this (§4.3).

Searle claims that “For any object there is some description of that object such

that under that description the object is a digital computer” (p. 26). This seems

too strong. For one thing, there are certainly things that are non-computational in

the strong sense of the Church-Turing Thesis. For another, merely assigning 0s and

1s to give an encoding (of, say, the atomic structure) of a physical object doesn’t

make it computational. To be computational, analogues are needed of Turing-machine

instructions, control structures, states, the input-output tape, etc. At the very least,

to be computational, an item must compute some function. So, if my pen, say, is a

digital computer, what function does it compute? Well, I suppose it could be argued

that it computes the constant function (or perhaps the identity function, or perhaps it

loops forever—i.e., is undefined on all input). But that is trivial. On the other hand,

49

consider the string of 0s and 1s that, according to Searle, encodes my pen. That’s the

Gödel number of some program (no doubt a trivial one, but who knows?). Does that

make my pen animplementation(a model) of that program? No; it is an interesting

correspondence, but not an implementation, because the interpretations of the 0s and

1s for the description of the pen are not those required for the program. So, Searle’s

argument does not support universal realization.

Smith (1982), however, has made similar observations. He describes a “computer

[that] . . . calculates oriental [sic] trajectories”, which is, in fact, a car that drives west,27

and he asks why thisisn’t a computer (p. 2). He notes that it does share at least one

important feature with computers, which is close to Searle’s claim: The “oriental”-

trajectory calculatoris equivalent to a Turing machine, but that that’s not sufficient to

make it a computer. Butwhy is it equivalent to a Turing machine? Perhaps because it

is input-output equivalent to a Turing machine that calculates “oriental” trajectories?

But mere input-output equivalence is not sufficient: As I once argued in this journal

(Rapaport 1998), to say that afunction is computable is merely to say that there is a

Turing machine that computes it (i.e., that has the same input-output behavior), but this

does not require that a device with that input-output behavior isitself a computer (i.e.,

that it computesits output from its input)—it could be a mysterious oracle. Now, the

case of the car is not quite the case of such an oracle. The car, after all, has parts whose

function and behavior contribute to the car’s overall behavior (its output, if you will).
27Shouldn’t that beeast? Perhaps ‘oriental’ is a typographical error for ‘orbital’ or ‘orientational’

(‘oriental’ as in “pertaining to orienting oneself”?).

50

So why does Smith say it’s not a computer? Because there are nosymbolsthat “act

as causal ingredients in producing an overall behavior” (p. 2)—symbols in the sense of

markers of a formal syntactic system:

In describing how a car works, . . . the story is not computational, because

the salient explanations are given in terms of mechanics—forces and

torques . . . and so forth. These are notinterpretednotions; we don’t posit

a semantical interpretation function in order to make sense of the car’s

suspension. (Smith 1982: 3.)

I dispute that. First, there is a mapping between the physical parts and actions of the

car and terms from physics (i.e., physical theory). Second, there is a mapping between

(at least) terms from physics and my concepts. So wedo interpret the car’s parts and

actions.

Here is Smith’s response to the claim

. . . that we ‘interpret’ steering wheels as mechanisms for getting cars to go

around corners—. . . this is a broader notion of ‘interpret’ than I intend. I

mean to refer to something like the relationship that holds between pieces

of language, and situations in the world that those pieces of language are

about. (Smith 1982: 4.)

But that distinction is one that can’t be drawn—both are interpretations (Rapaport

1995).

The threat of universal (or near-universal) realizability is expressed by Smith thus:

. . . the ‘received’ theory of computation—the theory of effective

51

computability that traffics in recursive functions, Turing machines,

Church’s Thesis, and the rest . . . does not intrinsically identify the class

of artefacts that computer science studies. . . . [I]t is too broad, in that it

includes far more devices within its scope (like chairs and Rubik cubes)

than present experts would call computers. The problem stems from the

fact that Turing equivalence (i.e., computing the same function) is aweak,

behavioralmetric, and we are interested in a theory that enables us to

definestrong, constitutionalconcepts. (Smith 1982: 5.)

I’m willing to accept Rubik’s cube, however. The difficulty is that “the class of

artefacts that computer science studies” is anintended interpretationthat the theory

of computation just won’t let us get our hands on, any more (but, equally, no less) than

Peano’s axioms let us get our hands on the natural numbers. If chairs are included

(as Dipert argues; see below), so be it. Even if we strengthen the theory to talk

aboutalgorithmic equivalence, and not mere input-output equivalence, we’ll still get

multiple, hence unwanted—or, better,unexpected—realizations.

4.2 Everything models anything

If there is universal realizability, then everything can be an implementation (or

realization) of an arbitrary Abstraction. It follows by universal generalization that

everything can be an implementation (or realization, or model) of anything (else).28

28Alternatively, step (3) of the argument for panpsychism follows from the assumption that everything

shares at least one property (and perhaps infinitely many) with everything (else). Cf. the discussion of

Wartofsky 1979 in Rapaport 1995,§2.5.3.

52

4.3 Everything models mentality

Clearly, if anything can be a model of anything (else), then anything can be a model of

a mind. An argument explicitly for this consequent was offered by Randall R. Dipert

(1990).29

Dipert begins by reminding us that David Hilbert’s philosophy of formalism took

numbers in “purely structural, formal terms . . . [C]hairs, beer mugs, or whatever

could just as well represent/exemplify numbers (under the right interpretation) as do

numerals or our thoughts of numbers” (p. 6).30 Similarly, “programs, together with

their hardware implementation . . . may not look much like more usual [i.e., biological]

embodiments of minds” (p. 6), but they could be, in the same way that chairs can be

embodiments of numbers. However—or so Dipert observes—not even adherents of so-

called “strong AI” would takechairsas embodying minds, because “brains are much

more complex than chairs, and so chairs and tables lack some of the structural features

of mental properties” (p. 6). However, I am an adherent of “strong AI” and am as

willing to accept the claim about chairs as I am about the standard water-pipes-and-

valves model, which I am quite willing to do. Dipert (along with Searle and Smith,

evidently) thinks this is problematic. Here’s the argument that shows why:

(P1) Ordinary, middle-sized objects at room temperature (let’s call them OMSORTs,

for short)—e.g., chairs, coffee mugs, baseballs (and, presumably, brains)—are

highly complex, dynamic entities (pp. 7–8).
29Dipert himself is sympathetic to the conclusion, even though he is playing devil’s advocate in criticizing

it; cf. Dipert 1990: 20n16. Page references in the rest of this subsection are to the manuscript of Dipert 1990,

unless otherwise specified.
30Cf. Hilbert’s Gesammelte Abhandlungen, vol. 3, p. 403, as cited in Coffa 1991: 135.

53

(P2) Suppose there is a good cognitive science theoryT of the sufficient conditions

for “cognition and other mental processes” (p. 8).

(P3) Suppose there is an AI systemC that implementsT (p. 9).

(C1) ∴SinceT spells out the sufficient conditions for cognition,C has cognition (p. 9).

(P4) For every OMSORTO, there is an interpretation such thatO exemplifiesT

(although we might not be able to exhibit the interpretation that does the job)

(pp. 9, 11).

(C2) ∴ SinceT spells out the sufficient conditions for cognition,O has cognition

(pp. 9–10).

These reflections should also make us resist our initial temptation to

say that exemplifying some humanly-graspable . . . set of properties [is]

sufficientfor having mental properties—unless we are willing to say, with

Leibniz, that everything is a mind. (p. 11.)

Thus,

(P5) Conclusion (C2) is absurd or uninteresting.

(C3) ∴ Conclusion (C1) is absurd or uninteresting.

Now, one difference between the arbitrary OMSORTO and the AI systemC is that for

C we do know what the interpretation function is: We canunderstandhow and whyC

behaves as it does; we can interpretC’s behavior as a mind. We accept it as such (this

is what we do in our everyday solution of the problem of other minds).

54

Note, too, that some OMSORTs that wemight very well be willing to accept

as implementations of minds—e.g., connectionist implementations that haven’t been

“properly treated” (Smolensky 1988)—are such that we might very wellnotunderstand

them (what, e.g., do the connection weights “mean”?).

What’s wrong with Leibniz’s position? Mainly that if everything is a mind, then we

can’t explain the difference between ahumanmind and a coffee mug. In this regard, we

might be no more worse off than a topologist who, as the joke has it, can’t distinguish

a doughnut from a coffee mug, since both are toruses. But to say that there is a way

to view doughnuts and coffee mugs such that they are alike isnot to say that there is

no way in which they differ. Similarly, if computational cognitive science tells us that,

from a certain perspective, brains and mugs are alike, that’s not to say that, from some

other perspective, they’re not. Wecan explain the difference between a mind and a

mug: The mug mind can’t communicate with us and therefore is irrelevant. That is, the

mugquamind can’t communicate; the mugquacoffee-holder is a perfectly functional

device. Brainscan communicate, but they can’t hold coffee—so we don’t use them

for that purpose. Not to be too macabre, wecould use a brain as a paperweight, I

suppose; a Martian (or a Black Cloud; Hoyle 1957; cf. Rapaport 2003) might do so,

and might never realize that its paperweight implemented a mind, any more than we

realize that a coffee mug might. As a further analogy, compare a high-level program

(e.g., a program to compute greatest common divisors, or even an AI program) with a

machine-language version in the same way we have been comparing brains with mugs.

The latter might notlook like the former, but under the right circumstances it might

very well behave like the former.

55

What, then, is the import of Dipert’s argument? Is it merely that, for any theory,

there are infinitely many models, many of which are non-isomorphic31 and many of

which are not the intended model(s) and are such that we did not antecedently take

them to be models? If so, so what? Sure, therehaveto be unintended models, and

there is no way to pick out or mark or identify the intended ones; that’s one of the

main lessons of the theory-model relationship. What we learn from the existence of

unintended models (assuming that we are completely satisfied with thetheoryof which

they are models) is that some things have properties and features that we didn’t expect

them to have.

Of course, Dipert’s transcendental argument merely shows that it’shighly likelythat

OMSORTs can be taken as (models of) minds, not that theyare. Two highly complex

things, just because of their high complexity, need not be models of each other. (Two

highly complex patterns need not be matchable.)

On the other hand, Dipert’s claim might be the weaker one that (it is highly likely

that) there aresomeOMSORTs that model the cognitive theoryT but that we would

not antecedently have taken as an intended model. I think we can only bite the bullet

on this. But perhaps it can be made palatable: Suppose the OMSORT is a (particular)

baseball. Imagine complex dynamicprocesses“within” the baseball, presumably at the

subatomic level, that model the mental processes. What, for instance, might correspond

to perception? (Does the baseball “see”?) Perhaps nothing so corresponds in the sense
31“[M]athematics involves a considerable variety of models. the same experience can be modeled

mathematically in more than one way. . . . [M]athematical models are determined ‘up to a canonical

isomorphism.’ Indeed, that is all that matters. . . . For many mathematical purposes though, mathematicians

use axiomatic systems which have many nonisomorphic models” (Mac Lane 1981: 467).

56

of external causes of internal processes, but there might be internal processes that, in a

methodologically solipsistic fashion, correspond to (or model) perception. Or perhaps

thereare such external causes, but they need not be actual events aswe characterize

(or see) them. The world that the baseball-mind “perceives” might (indeed, probably

would) have different categories than the human mind or the AI mind (as Kant told

us long ago; for a discussion of Kant from an AI perspective, see Kirsh 1991: 12; cf.

Rapaport 2003,§10).32

5 Summary

In Rapaport 1999, I proposed that implementation is best understood as semantic

interpretation (rather than as individuation, instantiation, reduction, or supervenience).

It is a relationship between an Abstraction (a generalization of the notion of an abstract

data type) and an implementing medium. This relationship can be found in the arts

and language, as well as in the theory of abstract data types. In general, something is

an implementation of an Abstraction in an implementing medium (perhaps as created

by some cognitive agent for some purpose). In the present essay, I have investigated

the mind-brain relationship as a case of implementation. Mind is an Abstraction that

can be implemented in brains as well as in computers. Implementations, however,

have implementation-dependent details that give rise to qualia—implementation side-

effects. Finally, an argument for a benign form of panpsychism can be developed from
32If implementation is a 5-place relation as suggested in footnote P2, then perhaps an OMSORT such as

a baseball doesn’t implement a computer or a mind unless someone uses or interacts with it in that way. Cf.

Giere 2004,§4.1, pp. 747–748.

57

this viewpoint.

If Mind can be implemented in a computer, could a computer that implemented

a natural-language-understanding program really understand language? I would say

‘Yes’; Searle, famously, says ‘No’. In a forthcoming essay, I re-examine his Chinese

Room in light of the present conclusions.

Acknowledgments

This essay is adapted from an unpublished manuscript, Rapaport 1996. I am grateful

especially to Debra Burhans and Albert Goldfain and to Carl Alphonse, Josephine

Anstey, Frances L. Johnson, Erwin Segal, and other members of the SNePS Research

Group for comments on earlier drafts.

References

Ackerman, D. (1989), “Penguins”,The New Yorker(10 July): 38–67.

Altmann, S.A. (1989), “The monkey and the fig: A Socratic dialogue on evolutionary themes”,

American Scientist77: 256–263.

Anstey, J.; Pape, D.; Shapiro, S.C.; & Rao, V. (2003), “Virtual drama with intelligent

agents”, in H. Thwaites (ed.),Hybrid reality: Art, technology and the human fACTOR,

pRoceedings of the 9th International Conference on Virtual Systems and MultiMedia

(VSMM)(International Society on Virtual Systems and MultiMedia): 521–528.

Apostel, L. (1961), “Towards the formal study of models in the non-formal sciences”, in

H. Freudenthal (ed.),The concept and the role of the model in mathematics and natural

and social sciences(Dordrecht, Holland: D. Reidel): 1–37.

58

Ayer, A.J. (1956),The problem of knowledge(Baltimore: Penguin).

Bickerton, D. (2004), “Mothering plus vocalization doesn’t equal language”,Behavioral and

Brain Sciences27: 504–505.

Biermann, A. (1990),Great ideas in computer science: A gentle introduction(Cambridge, MA:

MIT Press).

Byrne, A. (2005), “Inverted qualia”, in E.N. Zalta (ed.),

The Stanford Encyclopedia of Philosophy (Summer 2005 Edition), forthcoming URL =

[http://plato.stanford.edu/archives/sum2005/entries/qualia-inverted/];

current URL = [http://plato.stanford.edu/entries/qualia-inverted/].

Coffa, J.A. (1991),The Semantic tradition from Kant to Carnap: To the Vienna station

(Cambridge, UK: Cambridge University Press).

Cole, D. (1990), “Functionalism and inverted spectra”,Synthese82: 207–222.

Dennett, D.C. (1978), “Why you can’t make a computer that feels pain”, reprinted in

D.C. Dennett,Brainstorms(Montgomery, VT: Bradford Books): 190–229.

Dijkstra, E.W. (1984), “The threats to computer science”,ACM 1984 South Central Regional

Conference (Austin, TX; November 16–18), EWD898,

[http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD898.PDF].

Dipert, R.R. (1990), “Complexity and models of minds: A simple, Hilbertian argument that

strong AI is doomed”, paper presented at the 5th Annual Computers and Philosophy

Conference (Stanford University, August 9); page references are to an unpublished

preprint.

Duhamel, G. (1931),Les jumeaux de Vallangoujard[The twins of Vallangoujard], M.E. Storer

(ed.) (Boston: D.C. Heath, 1940).

Eco, U. (1988), “On truth. A fiction”, in U. Eco, M. Santambrogio, & P. Violi (eds.),Meaning

and mental representations(Bloomington: Indiana University Press): 41–59.

59

Eisenberg, A. (2002), “The virtual stomach (no, it’s not a diet aid)”,The New York Times(31

October): G4.

Fetzer, J.H. (1988), “Program verification: The very idea”,Communications of the ACM31:

1048–1063.

Fetzer, J.H. (1991), “Philosophical aspects of program verification”,Minds and Machines1:

197–216.

Galbraith, M. (1995), “Deictic shift theory and the poetics of involvement in narrative”, in

J.F. Duchan, G.A. Bruder, & L.E. Hewitt (eds.),Deixis in narrative: A cognitive science

perspective(Hillsdale, NJ: Lawrence Erlbaum Associates): 19–59.

Gentner, D. (2005), “The development of relational category knowledge”, in L. Gershkoff-Stowe

& D.H. Rakison (eds.),Building object categories in developmental time(Mahwah, NJ:

Lawrence Erlbaum Associates).

Giere, R.N. (2004), “How models are used to represent rEALITy”,Philosophy of Science71:

742–752.

Goguen, J.A.; Thatcher, J.W.; & Wagner, E.G. (1978), “An initial algebra approach to the

specification, correctness, and implementation of abstract data types”, in R.T. Yeh (ed.),

Current trends in programming methodology, Vol. IV: Data structuring(Englewood Cliffs,

NJ: Prentice-Hall): 80–149.

Gracia, J.J.E. (1990), “Texts and their interpretation”,Review of Metaphysics43: 495–542.

Guttag, J.V.; Horowitz, E; & Musser, D.R. (1978), “The design of data type specifications”,

in R.T. Yeh (ed.),Current trends in programming methodology, Vol. IV: Data structuring

(Englewood Cliffs, NJ: Prentice-Hall): 60–79.

Hayes, J.P. (1988),Computer architecture and organization, 2nd edition(New York: McGraw-

Hill).

Hilbert, D. (1925), “On the infinite”, trans. by E. Putnam & G.J. Massey, reprinted in

60

P. Benacerraf & H. Putnam (eds.),Philosophy of mathematics: Selected readings

(Englewood Cliffs, NJ: Prentice-Hall, 1964): 134–151.

Hofstadter, D.R. (1981), “A coffeehouse conversation on the Turing test”,Scientific American

(May): 15–36; reprinted with Reflections (by D.C. Dennett) in D.R. Hofstadter &

D.C. Dennett (eds.),The mind’s I: Fantasies and reflections on self and soul(New

York: Basic Books, 1981): 68–95; and reprinted with Post Scriptum in D.R. Hofstadter,

Metamagical themas: Questing for the essence of mind and pattern(New York: Basic

Books, 1985): 492–525.

Hoyle, F. (1957),The black cloud(New York: Harper & Row).

Ismail, H.O.; & Shapiro, S.C. (2000), “Two problems with reasoning and acting in time”, in

A.G. Cohn, F. Giunchiglia, & B. Selman (eds.),Principles of Knowledge Representation

and Reasoning: Proceedings of the 7th International Conference (KR 2000)(San

Francisco: Morgan Kaufmann): 355–365.

Jahren, N. (1990), “Can semantics be syntactic?”,Synthese82: 309–328.

Jardine, N. (1973), “Model-theoretic semantics and natural language”, in E.L. Keenan (ed.),

Formal semantics of natural language(Cambridge, UK: Cambridge University Press,

1975): 219–240.

Jennings, R.C. (1985), “Translation, interpretation and understanding”, paper read at the

American Philosophical Association Eastern Division (Washington, DC); abstract,

Proceedings and Addresses of the American Philosophical Association59: 345–346.

Johnson, G. (1990), “New mind, no cLOTHes,”The Sciences(July/August): 45–49.

Kirsh, D. (1991), “Foundations of AI: The big issues”,Artificial Intelligence47: 3–30.

Kosslyn, S.M. (1981), “The medium and the message in mental imagery: A theory”, in N. Block

(ed.),Imagery(Cambridge, MA: MIT Press): 207–244.

Kosslyn, S.M.; Pinker, S.; Smith, G.E.; & Schwartz, S.P. (1981), “On the demystification of

61

mental imagery”, in N. Block (ed.),Imagery(Cambridge, MA: MIT Press): 121–150.

Lakoff, G., & Johnson, M. (1980),Metaphors we live by(Chicago: University of Chicago Press).

Leiber, J. (1980),Beyond rejection(New York: Ballantine Books).

Mac Lane, S. (1981), “Mathematical models: A sketch for the philosophy of mathematics”,

American Mathematical Monthly88: 462–472.

McDermott, D. (2001),Mind and mechanism(Cambridge, MA: MIT Press).

Minsky, M. (1991), posting tocomp.ai.philosophy bulletin board, 21 December 1991;

[http://groups-beta.google.com/group/comp.ai.philosophy/msg/bf1b1554b22e1a48].

Nelson, D.A. (1992), “Deductive program verification (a practitioner’s commentary)”,Minds

and Machines2: 283–307.

Nelson, D.A. (1994), Review of R.S. Boyer & J S. Moore,A computational logic handbook, and

J S. Moore, “Special issue on system verification”,Minds and Machines4: 93–101.

Parnas, D. (1972), “A technique for software module specification with examples”,

Communications of the ACM15: 330–336.

Pincus, A.L. (1990), “The art of transcription sheds new light on old work”,The New York Times,

Arts and Leisure (Sect. 2) (23 September 1990).

Posner, R. (1992), “Origins and development of contemporary syntactics”,Languages of Design

1: 37–50.

Pylyshyn, Z. (1981), “The imagery debate: Analog media versus tacit knowledge”, in N. Block

(ed.),Imagery(Cambridge, MA: MIT Press): 151–206.

Rapaport, W.J. (1978), “Meinongian theories and a Russellian paradox”,Noûs 12: 153–180;

errata,Noûs13 (1979) 125.

Rapaport, W.J. (1981), “How to make the world fit our language: An essay in Meinongian

semantics”,Grazer Philosophische Studien14: 1–21.

Rapaport, W.J. (1982), “Unsolvable problems and philosophical progress”,American

62

Philosophical Quarterly19: 289–298.

Rapaport, W.J. (1985), “Machine understanding and data abstraction in Searle’s Chinese room”,

Proceedings of the 7th Annual Conference of the Cognitive Science Society (University of

California at Irvine)(Hillsdale, NJ: Lawrence Erlbaum Associates): 341–345.

Rapaport, W.J. (1986), “Searle’s experiments with thought”,Philosophy of Science53: 271–279.

Rapaport, W.J. (1988a), “Syntactic semantics: Foundations of computational natural-language

understanding”, in J.H. Fetzer (ed.),Aspects of artificial intelligence(Dordrecht, Holland:

Kluwer Academic Publishers): 81–131; reprinted in E. Dietrich (ed.),Thinking computers

and virtual persons: Essays on the intentionality of machines(San Diego: Academic Press,

1994): 225–273.

Rapaport, W.J. (1988b), “To think or not to think”,Noûs22: 585–609.

Rapaport, W.J. (1991a), “Predication, fiction, and artificial intelligence”,Topoi10: 79–111.

Rapaport, W.J. (1993b), “Because mere calculating isn’t thinking: Comments on Hauser’s ‘Why

isn’t my pocket calculator a thinking thing?’,”Minds and Machines3: 11–20.

Rapaport, W.J. (1995), “Understanding understanding: Syntactic semantics and computational

cognition”, in J.E. Tomberlin (ed.),Philosophical perspectives, Vol. 9: AI, connectionism,

and philosophical psychology(Atascadero, CA: Ridgeview): 49–88; reprinted in Toribio,

J., & Clark, A. (eds.) (1998),Language and meaning in cognitive science: Cognitive issues

and semantic theory, Vol. 4: Artificial intelligence and cognitive science: Conceptual

issues(New York: Garland): 73–88.

Rapaport, W.J. (1998), “How minds can be computational systems”,Journal of Experimental

and Theoretical Artificial Intelligence10: 403–419.

Rapaport, W.J. (1999), “Implementation is semantic interpretation”,The Monist82: 109–130.

Rapaport, W.J. (2000), “How to pass a Turing test: Syntactic semantics, natural-language

understanding, and first-person cognition”,Journal of Logic, Language, and Information,

63

9(4): 467–490; reprinted in J.H. Moor (ed.),The Turing test: The elusive standard of

artificial intelligence(Dordrecht: Kluwer, 2003): 161–184.

Rapaport, W.J. (2002), “Holism, conceptual-role semantics, and syntactic semantics”,Minds and

Machines12(1): 3–59.

Rapaport, W.J. (2003), “What did you mean by that? Misunderstanding, negotiation, and

syntactic semantics”,Minds and Machines13(3): 397–427.

Rapaport, W.J. (2005), “In defense of contextual vocabulary acquisition: How to do things

with words in context”, in A. Dey et al. (eds.),Proceedings of the 5th International

and Interdisciplinary Conference on Modeling and Using Context (Context-05)(Berlin:

Springer-Verlag Lecture Notes in Artificial Intelligence 3554): 396–409.

Rapaport, W.J., & Shapiro, S.C. (1995), “Cognition and fiction”, in J.F. Duchan, G.A. Bruder,

& L.E. Hewitt (eds.), Deixis in narrative: A cognitive science perspective(Hillsdale,

NJ: Lawrence Erlbaum Associates): 107–128; abridged and slightly edited as Rapaport,

W.J., & Shapiro, S.C. (1999), “Cognition and fiction: An introduction”, in A. Ram &

K. Moorman (eds.),Understanding language understanding: Computational models of

reading(Cambridge, MA: MIT Press): 11–25.

Rapaport, W.J.; Shapiro, S.C.; & Wiebe, J.M. (1997), “Quasi-indexicals and knowledge reports”,

Cognitive Science21: 63–107; reprinted in F. Orilia & W.J. Rapaport (eds.),Thought,

language, and ontology: Essays in memory of Hector-Neri Castañeda(Dordrecht: Kluwer

Academic Publishers, 1998): 235–294.

Rosch, E. (1978), “Principles of categorization”, in E. Rosch & B.B. Lloyd (eds.),Cognition and

categorization(Hillsdale, NJ: Lawrence Erlbaum): 27–48.

Rosen, C. (1991), Reply to letter,New York Review of Books(14 February 1991): 50.

Rosenblueth, A., & Wiener, N. (1945), “The role of models in science”,Philosophy of Science

12: 316–321.

64

Santore, J.F.; & Shapiro, S.C. (2004), “Identifying perceptually indistinguishable objects”, in

S. Coradeschi & A. Saffiotti (eds.),Anchoring symbols to sensor data, Papers from the

AAAI Workshop, Technical Report WS-04-03(Menlo Park, CA: AAAI Press): 1–9.

Schonberg, H.C. (1990), “Some chessmen don’t make a move”,New York Times(15 April),

Sect. 2, pp. 38–39.

Searle, J.R. (1979), “The logical status of fictional discourse”, in J.R. Searle,Expression and

meaning(Cambridge, UK: Cambridge University Press): 58–75.

Searle, J.R. (1990), “Is the brain a digital computer?”,Proceedings and Addresses of the

American Philosophical Association, Vol. 64, No. 3: 21–37.

Segal, E.M. (1995), “Narrative comprehension and the role of deictic shift theory”, in

J.F. Duchan, G.A. Bruder, & L.E. Hewitt (eds.),Deixis in narrative: A cognitive science

perspective(Hillsdale, NJ: Lawrence Erlbaum Associates): 3–17.

Sellars, W. (1955/1963), “Some reflections on language games”, inScience, perception and

reality (London: Routledge & Kegan Paul, 1963): 321–358.

Shapiro, S.C. (1989), “The CASSIE projects: An approach to natural language competence”, in

J.P. Martins & E.M. Morgado (eds.),EPIA 89: 4th Portuguese Conference on Artificial

Intelligence, Proceedings (Lisbon)(Berlin: Springer-Verlag Lecture Notes in Artificial

Intelligence 390): 362–380.

Shapiro, S.C. (1998), “Embodied Cassie”,Cognitive robotics: Papers from the 1998 AAAI Fall

Symposium, Technical Report FS-98-02Menlo Park, CA: AAAI Press): 136–143.

Shapiro, S.C.; Anstey, J.; Pape, D.E.; Devdas Nayak, T.; Kandefer, M.; & Telhan, O. (2005),

“The trial the trail, Act 3: A virtual reality drama using intelligent agents”,Proceedings

of the 1st Annual Artificial Intelligence for Interactive Digital Entertainment Conference

(AIIDE-05) (Menlo Park, CA: AAAI Press).

Shapiro, S.C., & Ismail, H.O. (2003), “Anchoring in a grounded layered architecture with

65

integrated reasoning”,Robotics and Autonomous Systems43: 97–108.

Shapiro, S.C., & Rapaport, W.J. (1987), “SNePS considered as a fully intensional propositional

semantic network,” in N. Cercone & G. McCalla (eds.),The knowledge frontier: Essays

in the representation of knowledge(New York: Springer-Verlag): 262–315; earlier version

preprinted asTechnical Report 85-15(Buffalo: SUNY Buffalo Department of Computer

Science, 1985); shorter version appeared inProceedings of the 5th National Conference on

Artificial Intelligence (AAAI-86, Philadelphia)(Los Altos, CA: Morgan Kaufmann): 278–

283; revised version of the shorter version appears as “A fully intensional propositional

semantic network,” in L. Burkholder (ed.),Philosophy and the computer(Boulder, CO:

Westview Press, 1992): 75–91.

Shapiro, S.C., & Rapaport, W.J. (1991), “Models and minds: Knowledge representation for

natural-language competence”, in R. Cummins & J. Pollock (eds.),Philosophy and AI:

Essays at the interface(Cambridge, MA: MIT Press): 215–259.

Shapiro, S.C., & Rapaport, W.J. (1992), “The SNePS family”,Computers and Mathematics with

Applications23: 243–275; reprinted in F. Lehmann (ed.),Semantic networks in artificial

intelligence(Oxford: Pergamon Press, 1992): 243–275.

Shapiro, S.C., & Rapaport, W.J. (1995), “An introduction to a computational reader of

narratives”, in J.F. Duchan, G.A. Bruder, & L.E. Hewitt (eds.),Deixis in narrative: A

cognitive science perspective(Hillsdale, NJ: Lawrence Erlbaum Associates): 79–105.

Shapiro, S.C.; Ismail, H.O.; & Santore, J.F. (2000), “Our dinner with Cassie”,Working Notes for

the AAAI 2000 Spring Symposium on Natural Dialogues with Practical Robotic Devices

(Menlo Park, CA: AAAI Press): 57–61.

Smith, B.C. (1982), “Semantic attribution and the formality condition”, paper presented at the

8th Annual Meeting of the Society for Philosophy and Psychology (University of Western

Ontario, May 15); page references are to the “Second Draft” preprint.

66

Smith, B.C. (1985), “Limits of correctness in computers”,Technical Report CSLI-85-36

(Stanford, CA: Center for the Study of Language and Information); first published in

C. Dunlop & R. Kling (eds.),Computerization and controversy(San Diego: Academic

Press, 1991): 632–646; reprinted in T.R. Colburn, J.H. Fetzer, & T.L. Rankin (eds.),

Program verification: Fundamental issues in computer science(Dordrecht, Holland:

Kluwer Academic Publishers, 1993): 275–293.

Smolensky, P. (1988), “The proper treatment of connectionism”,Behavioral and Brain Sciences

11: 1–74.

Stratton, G.M. (1897), “Vision without the inversion of the retinal image”,Psychological Review

4: 341–360, 463–481.

Tenenbaum, A.M., & Augenstein, M.J. (1981),Data structures using Pascal(Englewood Cliffs,

NJ: Prentice-Hall).

Wartofsky, M.W. (1966), “The model muddle: Proposals for an immodest realism”, in

M.W. Wartofsky, Models: Representation and the scientific understanding(Dordrecht,

Holland: D. Reidel, 1979): 1–11.

Wartofsky, M.W. (1979), “Introduction”, in M.W. Wartofsky,Models: Representation and the

scientific understanding(Dordrecht, Holland: D. Reidel, 1979): xiii–xxvi.

Webb, B.H. (1991), “Do computer simulations really cognize?”,Journal of Experimental and

Theoretical Artificial Intelligence3: 247–254.

67

semantic domain syntactic domain

1. a computer program is an implementation of an algorithm

2. a computational process is an implementation of a computer program

3. a data structure is an implementation of an abstract data type

4. a performance is an implementation of a musical score or play-script

5. a house is an implementation of a blueprint

6. a set-theoretic model is an implementation of a formal theory

Table 1: Semantic domains that are implementations of syntactic domains.

68

(apparent?) input ⇒ P88 program (apparent?) output

(e.g., 2 integersa,b) ↓ (e.g.,a+b)

P88 machine-language program

↓

(apparent?) input ⇒ Pascal program (apparent?) output

(a,b) ↓

(actual?) input ⇒ Macintosh machine-language program (actual?) output

(a,b) (a+b)

Figure 1: Hierarchy of virtual-machine levels.

(A→ B means:A is implemented inB; A⇒ B means:A is input toB;

A B means:A outputsB.)

69

