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SYNTACTIC SEMANTICS:
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Language (la langue) is a system all of whose
terms are interdependent and where the value
of one results only from the simultaneous pre-
sence of the others . ... (de Saussure 1915, p.
159)

1. INTRODUCTION

In this essay, I consider how it is possible to understand natural
language and whether a computer could do so. Briefly, my argument
will be that although a certain kind of semantic interpretation is needed
for understanding natural language, it is a kind that only involves
syntactic symbol manipulation of precisely the sort of which computers
are capable, so that it is possible in principle for computers to under-
" stand natural language. Along the way, I shall discuss recent arguments
by John R. Searle and by Fred Dretske to the effect that computers
can not understand natural language, and I shall present a prototype
natural-language-understanding system to illustrate some of my claims.!

2. CAN A COMPUTER UNDERSTAND NATURAL LANGUAGE?

What does it mean to say that a computer can understand natural
language? To even attempt to answer this, a number of preliminary
remarks and terminological decisions need to be made. For instance, by
~ ‘computer’, I do not mean some currently existing one. Nor, for that
matter, do I mean some ultimate future piece of hardware, for com-
puters by themselves can do nothing: They need a program. But neither
do I mean to investigate whether a program, be it currently existing or
some ultimate future software, can understand natural language, for
programs by themselves can do nothing.

Rather, the question is whether a computer that is running (or
executing) a suitable program — a (suitable) program being executed or

81

James H. Fetzer (ed.), Aspects of Artificial Intelligence, 81—131.
© 1988 by Kluwer Academic Publishers.



82 WILLIAM J. RAPAPORT

run — can understand natural language. A program actually being
executed is sometimes said to be a “process” (cf. Tanenbaum 1976, p.
12). Thus, one must distinguish three things: (a) the computer (i.e., the
hardware; in particular, the central processing unit), (b) the program
(i.e., the software), and (c) the process (i.e., the hardware running the
software). A program is like the script of a play; the computer is like
the actors, sets, etc.; and a process is like an actual production of the
play — the play in the process of being performed.? Having made these
distinctions, however, I will often revert to the less exact, but easier,
ways of speaking (“computers understand”, “the program understands”).

‘What kind of program is “suitable” for understanding natural lan-
guage? Clearly, it will be an Al program, both in the sense that it will
be the product of research in artificial intelligence and in the (somewhat
looser) sense that it will be an artificially intelligent program: for
understanding natural language is a mark of intelligence (in the sense of
Al, not in the sense of IQ), and such a program would exhibit this
ability artificially.

But what kind of Al program? Would it be a “weak” one that
understands natural language but that does so by whatever techniques
are successful, be they “psychologically valid” or not? Or would it be a
“strong” one that understands natural language in more or less the way
we humans do?? (“More or less” may depend on such things as
differences in material and organization between humans and these
ultimate computers.) I do not think that it matters or that any of the
considerations I will present depend on the strong/weak dichotomy,
although I do think that it is likely that the only successful techniques
will turn out to be psychologically valid, thus “strengthening” the
“weak” methodology.

Another aspect of the program can be illuminated by taking up the
metaphor of the play. This ultimate AI program for understanding
natural language might be thought of as something like the script for a
one-character play. When this “play” is “performed”, the computer that
plays the role of the sole “character” communicates in, say, English. But
we do not want it to be only a one-way communication; it must not
merely speak to us, the “audience”, yet be otherwise oblivious to our
existence (as in Disney-like audio-animatronic performances). That
would hardly constitute natural-language understanding. More give and
take is needed — more interaction: the play must be an audience-
participation improvisation. So, too, must the program. I'll return to this
theme later (Section 3.2.1).
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I said earlier that understanding natural language is a mark of
intelligence. In what sense is it such a mark? Alan M. Turing (1950)
rejected the question, “Can machines think?”, in favor of the more
behavioristic question, “Can a machine convince a human to believe
that it (the computer) is a human?”’* To be able to do that, the
computer must be able to understand natural language. So, understand-
ing natural language is a necessary condition for passing the Turing
Test, and to that extent, at least, it is a mark of intelligence.

I think, by the way, that it is also a sufficient condition. Suppose that
a computer running our ultimate program understands, say, English.
Therefore, it surely understands such expressions as ‘to convince’, ‘to
imitate a human’, etc. Now, of course, merely understanding what these
mean is not enough. The computer must be able to do these things —
to convince someone, to imitate a human, etc. That is, it must not
merely be a cognitive agent, but also an acting one. In particular, to
imitate a human, it needs to be able to reason about what a(nother)
cognitive agent, such as a human, believes. But that kind of reasoning is
necessary for understanding natural language; in particular, it is neces-
sary for understanding behavior explainable in terms of “nested beliefs”
(such as: Jan took Smith’s course because she believes that her fellow
students believe that Smith is a good teacher; on the importance of such
contexts, ¢f. Dennett 1983 and Rapaport 1984, 1986¢). Finally, the
computer must also, in some sense, wanf to convince someone by
pretending to be a2 human; ie., it must want to play Turing’s Imitation
Game. But this can be done by telling it to do so, and this, of course,
should be told to it in English. So, if it understands natural language,
then it ought to be able to pass the Turing Test. If so, then under-
standing natural language is surely a mark of intelligence.

But even if understanding natural language is only a necessary
condition of intelligence, the question whether computers can under-
stand natural language is something we should care about. For one
thing, it is relevant to Searle’s Chinese-Room Argument, which has
repidly become a rival to the Turing Test as a touchstone for philo-
sophical inquiries into the foundations of Al (Searle 1980). For another,
it is relevant to Dretske’s claims that computers can’t even add (Dretske
1985). One of my main goals in this essay is to show why Searle’s and
Dretske’s arguments fail. Finally, it is a central issue for much research
in Al, computational linguistics, and cognitive science. Many research_ers
in these fields, including my colleagues and myself, are investigating
techniques for writing computer programs that, we claim, will be able to
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understand stories, narratives, discourse — in short, natural language
(Shapiro and Rapaport 1986, 1987; Bruder et al. 1986). It would be
nice to know if we can really do what we claim we are able to do!

3. WHAT DOES IT MEAN TO “UNDERSTAND
NATURAL LANGUAGE”?

3.1. Syntax Suffices

To determine whether a computer (as understood in the light of the
previous section) can understand natural language, we need to determine
how it is possible for anything to understand natural language, and then
to see if computers can satisfy those requirements.

Understanding has to do with meaning, and meaning is the province
of semantics. Several recent attacks on the possibility of a computer’s
understanding natural language have taken the line that computers can
only do syntax, not semantics, and, hence, cannot understand natural
language. Briefly, my thesis in this essay is that syntax suffices. 1 shall
qualify this somewhat by allowing that there will also be a certain causal
link between the computer and the external world, which contributes to
a certain kind of nonsyntactic semantics, but not the kind of semantics
that is of computational interest. What kind of causal link is this? Well,
obviously, if someone built the computer, there’s a causal link between
it and the external world. But the particular causal link that is seman-
tically relevant is one between the external world and what I shall call -
the computer’s “mind” — more precisely, the “mind” of the process
produced by the running of the natural-language-understanding program
on the computer.

Before I go into my reasons for hedging on what might seem to be
the obvious importance of the causal link and what this link might be,
let me say why I think I have a right to talk about a computer’s “mind”.
Consider a system consisting of a computer, an Al program (or, what is
more likely, a set of interacting Al programs), and perhaps a preexisting
data base of information expressed in some “knowledge representation”
language. (When such data bases are part of an Al program, they tend
to be called “knowledge bases”, and the preexisting, background infor-
mation is called “world knowledge” — “innate ideas” would also be
appropriate terminology.) The system will interact with a “user” —
perhaps a human, perhaps another such system. Suppose that the
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system behaves as follows: It indicates to the user that it is ready td
begin. (This need not be indicated by a natural-language sentence.) The
user types (or otherwise interactively inputs) a sentence in, say, English.
Depending on the nature of the input, the system might modify its
knowledge base in accordance with the information contained in this
sentence. (If the input was merely ‘hello’, it might not.) It may then
express to the user, in English, some appropriate proposition in its
knowledge base. And so the dialogue would continue. (An actual
example of such a dialogue is shown in Appendix 1.)

If such a system is going to be a good candidate for one that can
understand natural language, it ought to be able at least to process
virtually all of what the user tells it (or at least as much as a human
would), to answer questions, and, most importantly, to ask .questions.
What's more, it ought to do this in a fashion that at least somewhat
resembles whatever it is that we do when we understand natural
language; that is, it should probably be doing some real, live parsing
and generating, and not mere pattern-matching. Under this requirement,
a “strong” system would parse and generate more or less precisely as
humans do; a “weak” system would parse and generate using some
other grammar.

But even this is not enough. The system must also remember all sorts
of things. It must remember things it “knew” (i.e., had in its knowledge
base) before the conversation began; it must remember things it “learns”
(ie., adds to its knowledge base) during the conversation; and it must
be able 'to draw inferences (deductively, inductively, abductively, prag-
matically, etc.) — thus modifying its knowledge base — and remember
what it inferred as well as that, how, and probably even why it inferred
1t.

In short, it needs a knowledge base. This is why a program such as
~ ELIZA (Weizenbaum 1966, 1974, 1976) — which lacks a knowledge
base — does not understand natural language, though there are many
programs described in the Al literature that have knowledge bases and
do some or all of these things to varying degrees (e.g., SHRDLU
(Winograd 1972) and BORIS (Lehnert et al. 1983), to name but two).
The knowledge base, expressed in a knowledge-representation language
augmented by an inferencing package, is (at least a part of) the “mind”
of the system. I will discuss one such system later (the one responsible
for the dialogue in Appendix 1).

So, my thesis is that (suitable) purely syntactic symbol-manipulation
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of the system’s knowledge base (its “mind”) suffices for it to understand
natural language. Although there is also a causal link between its
“mind” and the external world, I do not think that this link is necessary
for understanding natural language. 1 shall have more to say about this
later; all I shall say now is that my reasons for taking this position are
roughly methodologically solipsistic: the system has no access to these
links, and a second system conversing with the first only has access to
its own internal representations of the first system’s links. Nevertheless,
given that there are in fact such links, what might they be like? I shall
have more to say about this, too, but for now let it suffice to say that
they are perceptual links, primarily visual and auditory.

3.2. The Chinese-Room Argument

Now, Searle has argued that computers cannot understand natural
language (or, hence, be intelligent, artificially or otherwise). In his
Chinese-Room Argument, Searle, who knows neither written nor
spoken Chinese, is imagined to be locked in a room and supplied with
instructions in English that provide an algorithm for processing written
Chinese. Native Chinese speakers are stationed outside the room and
pass pieces of paper with questions written in Chinese characters into
the room. Searle uses these symbols, otherwise meaningless to him, as .
input and — following only the algorithm — produces, as output, other
Chinese characters, which are, in fact, answers to the question. He
passés these back outside to the native speakers, who find his “answers
. . . absolutely indistinguishable from those of native Chinese speakers”
(Searle 1980, p. 418). The argument that this experiment is supposed to
support has been expressed by Searle as follows:

[T} still don’t understand a word of Chinese and neither does any other digital computer
because all the computer has is what I have: a formal program that attaches no
meaning, interpretation, or content to any of the symbols. [Therefore,] ... no formal
program by itself is sufficient for understanding . . . . (Searle 1982, p. 5; italics added —

cf. Section 3.5, below.)

If this Chinese-language-processing system passes the Turing Test,
then — according to the Test — it does understand Chinese. And
indeed it does pass the test, according to the very criteria Searle sets up.
So how can Searle conclude that it doesn’t understand Chinese? One
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reason that he offers is that the program doesn’t understand because it
doesn’t “know” what the words and sentences mean:

The reason that no computer program can ever be a mind is simply that a computer
program is only syntactical, and minds are more than syntactical. Minds are semantical,
in the sense that they have more than a formal structure, they have a content. (Searle
1984,p. 31))

That is, meaning — “semantics” — is something over and above mere
symbol manipulation — “syntax”. Meaning is a relation between symbols
and the things in the world that the symbols are supposed to represent
or be about. This “aboutness”, or intentionality, is supposed to be a
feature that only minds possess. So, if Al programs cannot exhibit
intentionality, they cannot be said to think or understand in any way. -

But there are different ways to provide the links between a pro-
gram’s symbols and things in the world. One way is by means of sensor
and effector organs. Stuart C. Shapiro has suggested that all that is
needed is a camera and a pointing finger (personal communication; cf.
Shapiro and Rapaport 1987). If the computer running the Chinese-
language program (plus image-processing and robotic-manipulation
programs) can “see” and “point” to what it is talking about, then surely
it has all it needs to “attach meaning” to its symbols.

Searle calls this sort of response to his argument “the Robot Reply”.
He objects to it on the grounds that if he, Searle, were to be processing
all of this new information along with the Chinese-language program,
he still would not “know what is going on”, because now he would just
have more symbols to manipulate: he would still have no direct access
to the external world. ,

But there is another way to provide the link between symbols and
things in the world: Even if the system has sensor and effector organs, it
‘must still have internal representations of the external objects, and — I
shall argue — it is the relations between these and its other symbols that
constitute meaning for it. Searle seems to think that semantics must link
the internal symbols with the outside world and that this is something
that cannot be programmed. But if this is what semantics must do, it
must do it for human beings, too, so we might as well wonder how the
~ link could possibly be forged for us. Either the link between internal
representations and the outside world can be made for both humans
and computers, or else semantics is more usefully treated as linking
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one set of internal symbolic representations with another. On this view,
semantics does indeed turn out to be just more symbol manipulation.
Here is Searle’s objection to the Robot Reply:

I see no reason in principle why we couldn’t give a machine the capacity to understand
English or Chinese, since in an important sense our bodies with our brains are precisely
such machines. But ... we could not give such a thing to a machine ... [whose]
operation ... is defined solely in terms of computational processes over formally
defined elements. (Searle 1980, p. 422.)

‘Computational processes over formally defined elements’ is just a more
precise phrase for symbol manipulation. The reason Searle gives for his
claim that a machine that just manipulates symbols cannot understand a
natural language is that “only something having the same causal powers
as brains can have intentionality” (Searle 1980, p. 423). What, then, are
these “causal powers”? All Searle tells us in his essay on the Chinese-
Room Argument is that they are due to the (human) brain’s “biological
(that is, chemical and physical) structure” (Searle 1980, p. 422). But he
does not specify precisely what these causal powers are. (In Rapaport
1985b and 1986b, I argue that they are not even causal.)

Thus, Searle has two main claims: A computer cannot understand
natural language because (1) it is not a biological entity and (2) it is a
purely syntactic entity — it can only manipulate symbols, not meanings.
Elsewhere, I have argued that the biological issue is beside the point —
that any device that “implements” (in the technical sense of the com-
putational theory of abstract data types) an algorithm for successfully
processing natural language can be said to understand language, no
matter how the device is physically constituted (Rapaport 1985b,
1986a, 1986b). My intent here is to argue, along the lines sketched out
above, that being a purely syntactic entity is sufficient for understand-
ing natural language.’

Before doing that, I think it is worth looking at some aspects of
Searle’s argument that have been largely neglected, in order to help
clarify the nature of a natural-language-understanding program.

3.2.1. Natural-language generation

The first aspect can be highlighted by returning to the metaphor of the
natural-language-understanding program as a one-character, audience-
participation, improvisatory play. Because it is improvisatory, the
script® of the play cannot be fixed; it must be able to vary, depending



SYNTACTIC SEMANTICS | 89

on the audience’s input. That is, a natural-language-understanding
system must be able to respond appropriately to arbitrary input (it must
be “robust™). This could, perhaps, be handled by a “conditional script™:
if the audience says "@,", then the character should respond by saying
‘@, etc. But to be truly robust, to script would need to be “produc-
tive”, in roughly Chomsky’s sense: that is, the character in the play must
be able to understand and the produce arbitrary “new” and relevant
lines. In fact, it is fairly easy to have a productive parser for a natural-
language-understanding system. I am not claiming that the problem of
natural-language understanding has been solved, but we seem to be on
the right track with respect to parsers for natural language processing,
and, at any rate, we know the general outlines of what a suitably robust
parser should look like. What’s needed, however, is generative produc-
tivity: the ability to ask new and relevant questions and to initiate
conversation (in a non-“canned” way: ELIZA — which relies purely on
pattern-matching — still doesn’t qualify). To be able to generate appro-
priate utterances, the system must have the capability to plan its speech
acts, and, so, a planning component must be part of a natural-language-
understanding system. Such a planning component is probably also
needed for parsing, in order to be able to understand why the speaker
said what he or she did. (Cf. Cohen and Perrault 1979; Appelt 1982,
1985; and Wiebe and Rapaport 1986.)

To the extent that these are missing from the Chinese-Room Argu-
ment, Searle-in-the-room wouldn’t seem to understand Chinese. So, let
us imagine that Al researchers and computational linguists have solved -
this problem, and that our system is equipped with a suitably productive
generation grammar. Now, these productive capabilities are tantamount
to general intelligence, as I argued in Section 2. The important point,
however, is that this capability is a function of what’s in the system’s
knowledge base: what can be produced by a productive generative
grammar must first be in the knowledge base. To put it somewhat
mundanely, I can only speak about what I'm familiar with. (To put it
more esoterically, whereof I cannot speak, thereof I must be silent.)

3.2.2. Learning and linguistic knowledge

A second aspect of Searle’s argument that I want to look at concerns
the kind of knowledge that Searle-in-the-room is alleged to have — or
lack. One difference that is sometimes pointed out between machine
understanding and human understanding is that everything that the
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machine does is explicitly coded. This is part of what is meant when it
is said that computers can only do what they are programmed to do (by
someone who is “intelligent” or who can understand natural language).
Furthermore, this might be interpreted to mean that the system knows
everything that it is doing. But this is mistaken. It can only be said to
“know” what it is “aware” of, not what is merely coded in. For instance,
the knowledge bases of many Al systems distinguish between proposi-
tions that are explicitly believed by the system and those that are only
implicitly believed (cf. Levesque 1984; Rapaport 1984, 1986¢, 1987).
Furthermore, the parser that transduces the user’s input into the
system’s knowledge base, as well as the generator that transduces a
proposition in the knowledge base into the system’s natural-language
output, need not (and arguably should not) be part of the knowledge
base itself. Such “knowledge” of language would be tacit knowledge,
just as Chomsky said: It is coded in and is part of the overall system,
but it is not “conscious knowledge”. It is no different for humans:
everything we know, including our knowledge of how to understand
our native natural language, must (somehow) be “coded in”. In other
words, human and machine understanding are both fully coded, but
neither the human nor the machine knows everything. In the Chinese-
Room Argument, the human following the Chinese-language program
is in the same position as a human speaking English (only in slow
motion; cf. Hofstadter 1980): neither has conscious knowledge of the
rules of the language.

Could the machine or the human learn the rules, and thus gain-
such conscious knowledge? Or could it learn new rules and thus
expand its natural-language understanding? Surely, yes: see the work by
Jeannette Neal (Neal 1981, 1985; Neal and Shapiro 1984, 1985, and

1987). _
There are other roles for learning in natural-language understanding.

‘Many (perhaps most) conversations involve the learning of new infor-
mation. And it is often the case that new words and phrases, together
with their meanings, are learned both explicitly and implicitly (cf.
Rapaport 1981, and the discussion of ‘swordsman’ in Section 3.5,
below). In all of these cases, the learning consists, at least in part, of
modifications to the system’s knowledge base.

It is not clear from the rather static quality of Searle’s Chinese-
language program whether Searle intended it to have the capability to
learn. Without it, however, the Chinese-Room Argument is weakened.
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3.2.3. The knowledge base

It should be clear by now that a knowledge base plays a central role in
natural-language understanding. Searle’s original argument includes a
Schank-like script as part of the input, but it is not clear whether he
intended this to be a modifiable knowledge base of the sort I described
as the system’s “mind” or whether he intended it as the rather static
structure that a script (in its early incarnation) actually is. In any case,
parts of the knowledge base would probably have to be structured into,
inter alia, such frame-like units as scripts, memory-organization packets,
etc. (Cf. Minsky 1975, Schank 1982.) The two aspects we have just
considered, and part of my argument below, imply that a modifiable
knowledge base is essential to natural-language understanding. (Cf. n.
13.)

3.3. Dretske’s Argument

Having set the stage, let me introduce some of my main ideas by
considering Dretske’s argument in ‘Machines and the Mental’ (1985), to
the effect that an external, non-syntactic semantics is needed for
natural-language understanding.

According to Dretske, machines “lack something that is essential” for
being a rational agent (p. 23). That is, there is something they “can’t do”
(p. 23) that -prevents their “membership in the society of rational
agents” (p. 23). That is surely a very strong claim to make — and a very
important one, if true. After all, theoretical computer science may be
characterized as the study of what is effectively computable. That is,
assuming Church’s Thesis, it may be characterized as the study of what
is expressible as a recursive function — including such theoretically

‘uninteresting though highly practical recursive functions as payroll
programs. It follows that Al can be characterized as the study of the
extent to which mentality is effectively computable. So, if there is
something that computers can’t do, wouldn't it be something that is not
effectively computable — wouldn't it be behavior that is nonrecursive?’
It is reasonable to expect that it is much too early in the history of Al
for such a claim as this to be proved, and, no doubt, I am interpreting
Dretske’s rhetoric too strongly. For a nonrecursive function is in a
sense more complex than a recursive one, and Dretske’s line of
argument seems to be that a computer is simpler than a human (or that
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computer thought is more isolated than human thought): “Why can’t
pure thought, the sort of thing computers purportedly have, stand to
ordinary thought, the sort of thing we have, the way a solitary stroll
stands to a hectic walk down a crowded street?” (p. 23). Even granting
that this talk about computers is to be understood in the more precise
sense of Section 1, above, the ratio

pure thought _ ordinary thought
computers humans

isn’t quite right. If anything, the phrase ‘pure thought’ ought to be
preserved for the abstraction that can be implemented in computers or
humans (or Martians, or chimps, or . . .):

pure thought _ Al program that implements pure thought
implementing medium B computer
__ human mental processes (ordinary thought)
- human |

(Cf. Rapaport 1985b, 1986b.)
What is it, then, that these “simple-minded” computers can’t do?

Dretske’s admittedly overly strong answer is:

They don’t solve problems, play games, prove theorems, recognize patterns, let alone
think, see, and remember. They don’t even add and subtract. (p. 24.)

Now, one interpretation of this, consistent with holding that intel-
ligence is nonrecursive, is that these tasks are also nonrecursive. But,
clearly, they aren’t (or, at least, not all of them are). A second inter-
pretation can be based on the claim that Church’s Thesis is not a
reduction of the notion of “algorithm” to that of, say, Turing-machine
program on the grounds that an algorithm is an intensional entity that
contains as an essential component a description of the problem that
it is designed for, whereas no such description forms part of the
Turing-machine program (Goodman 1986). So, perhaps, the tasks that
Dretske says computers can’t do are all ones that must be described in
intensional language, which computers are supposed incapable of.

These two interpretations are related. For if tasks that are essentially
intensional are nonrecursive, then Church’s Thesis can be understood
as holding that for each member of a certain class of nonrecursive
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functions (namely, the essentially intensional but effectively computable
tasks), there is a corresponding recursive function that is extensionally
equivalent (i.e., input—output behaviorally equivalent) to it. And
Dretske’s thesis can be taken to be that this equivalence is not an
identity. For instance, although my calculator’s input—output behavior
is identical to my own behavior when I perform addition, i is not

adding.

Here is Dretske’s argument (p. 25):

(1) “..7,5and 12 are numbers.”

(2) “Weadd 7and 5toget 12...".

(3)  Therefore, “Addition is an operation on numbers.”

4 “At best, [the operations computers perform] are operations
on ... physical tokens that stand for. or are interpreted as
standing for, . . . numbers.”

(5) Therefore, “The operations computers perform ... are not
operations on numbers.”

6) “Therefore, computers don’t add.”

@) Therefore, computers cannot add.®

Possibly, if all that computers do is manipulate uninterpreted symbols,
then they do not add. But if the symbols are interpreted, then maybe
computers can add. So, who would have to interpret the symbols? Us?
Them? To make the case parallel, the answer, perhaps surprisingly, is:
them! For who interprets the symbols when we add? Us. But if we can
do it (which is an assumption underlying premise (2)), then why can’t
computers? But perhaps it is not I who interpret “my” symbols when I
" add, or you when you add. Perhaps there is a dialectical component:
the only reason that / think that you can add (or vice versa) is that [
interpret your symbol manipulations (and vice versa). In that case, if /
interpret the computer’s symbol manipulations, then — to maintain the
parallelism — I can say that ir adds (at least as well as you add). And,
take note, in the converse case, the computer can judge that I “add”.
Premise (2) and intermediate conclusion (3) are acceptable. But how
is it that we add numbers? By manipulating physical tokens of them.
That is, the abstract operation of adding is an operation on numbers (as
- (3) says), but our human implementation of this operation is an
operation on (physical) implementations of numbers. (Cf. Shapiro
1977, where it is argued that addition, as humans perform it, is an
operation on numerals, not numbers.) So premise (4) is also acceptable;
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but — as Dretske admits — if it implies (5), then the argument “shows
that we don’t add either” (p. 26), surely an unacceptable result.

What the argument does illuminate is the relation of an abstraction
to its implementations (Rapaport 1985b, 1986b). But, says Dretske,
something is still missing:

the machine is ... restricted to operations on the symbols or representations them-
selves. It has no access ... to the meaning of these symbols, to the things the repre-
sentations represent, to the numbers. (p. 26)

The obvious question to ask is: How do we gain this essential access?
"And a reasonable answer is: In terms of a theory of arithmetic, say,
Peano’s (or that of elementary school, for that matter). But such a
theory is expressed in symbols. So the symbol ‘1’ means the number 1
for us because it is linked to the ‘1’ that represents 1 in the theory. All
of this is what I shall call internal semantics: semantics as an intercon-
nected network of internal symbols — a “semantic network” of symbols
in the “mind” or “knowledge base” of an intelligent system, artificial or
otherwise. The meaning of ‘1’, or of any other symbol or expression, is .
determined by its locus in this network (¢f. Quine 1951; Quillian 1967,
1968) as well as by the way it is used by various processes that reason
using the network. (Cf. the “knowledge-representation hypothesis”,
according to which “there is . . . presumed to be an internal process that
‘runs over’ or ‘computes with’ these representational structures” (Smith
1982, p:. 33).)

There’s more: My notion of 1 might be linked not only to my
internal representation of Peano’s axioms, but also to my representation
of my right index finger and to representations of various experiences I
had as a child (¢f. Schank 1984, p. 68). Of course, the computer’s
notion of 1 won’t be. But it might be linked to its internal representa-
tion of itself in some way® — the computer need not be purely a Peano
mathematician. But perhaps there’s too much — should such “weak”
links really be part of the meaning of ‘1’? In one sense, yes; in another,
no: I'll discuss several different kinds of meaning in Section 3.7.

This notion of an internal semantics determined by a semantic
network and independent of links to the external world — independent,
that is, of an “external” semantics — is perfectly consistent with some of
Dretske’s further observations, though not with his conclusions. For
instance, he points out that “physical activities” such as adding “cannot
acquire the relevant kind of meaning merely by assigning them an
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interpretation, by letting them mean something ‘o or for us” (p. 26).
This kind of assignment is part of what I mean by “external semantics”.
He continues: “Unless the symbols being manipulated mean something
to the system manipulating them,” — this is roughly what I mean by
“internal semantics” — “their meaning, whatever it is, is irrelevant to
evaluating what the system is doing when it manipulated them” (pp.
26-27). After all, when [ undergo the physical processes that con-
stitute adding, it is not only you who says that I add (not only you who
assigns these processes an interpretation for you), but I, too. Of course,
one reason that [ assign them an interpretation is the fact that you do.
So, how do I assign them an interpretation? If this question can be
answered, perhaps we will learn how the computer can assign them an
interpretation — which is what Dretske (and Searle) deny can be done.
One answer is by my observing that you assign my processes an
interpretation. I say to myself, no doubt unconsciously, “I just manipu-
lated some symbols; you called it ‘adding 7 and 5. So that’s what
‘adding’ is!” But once this label is thus internalized, I no longer need the
link to you. My internal semantic network resumes control, and I
happily go on manipulating symbols, though now I have a few extra
ones, such as the label ‘adding’. After all, “How would one think of
associating an idea with a verbal image if one had not first come upon
(surprenait ) this association In an act of speech (parole)?” (de Saussure
1915, p. 37).

Dretske expresses part of this idea as follows: “To understand what
a system is doing when it manipulates symbols, it is necessary to know,
not just what these symbols mean, what interpretation they have been,
or can be, assigned,” — i.e., what label you use — “but what they mean
to the system performing the operations” (p. 27), i.e., how they fit into
the system’s semantic network. Dretske’s way of phrasing this is not
quite right, though. He says, “To understand what a system is doing
.. but who does this understanding? Us, or the system? For me to
understand what the system is doing, I only need to know my assign-
ment function, not the system’s internal network. Unless I'm its pro-
grammer, how could 1 know it? Compare the case of a human: For me
to understand what you are doing. I only need to know my assignment
function. Given the privacy of (human) mental states and processes,
how could I possibly know yours? On the other hand, for the systerm to
understand what i is doing, it only needs to know its own semantic
network. Granted, part of that network consists of nodes (the labels)
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created in response to “outside” stimuli — from you or me. But this just
makes it possible for the system and us to communicate, as well as
making it likely that there will be a good match between the system’s
interpretation and ours. This is another reason why learning is so
important for a natural-language-understanding program, as I suggested
earlier (Section 3.2.2.). Unless the system (such as Searle-in-the-room)
can learn from its interactions with the interlocutors, it won’t pass the
Turing Test.

Dretske’s point is that the computer doesn’t do what we do because
it can’t understand what it’s doing. He tries to support this claim with
an appeal to a by-now common analogy:

Computer simulations of a hurricane do not blow trees down. Why should anyone
suppose that computer simulations of problem solving must themselves solve prob-
lems? (p. 27)

But, as with most of the people who make this analogy, Dretske doesn’t
make it fully. I completely agree that “computer simulations of a
hurricane do not blow trees down.” They do, however, simulatedly .
blow down simulated trees (cf. Gleick 1985; Rapaport 1986b and
forthcoming). And, surely, computer simulations of problem solving do
simulatedly solve simulated problems. The natural questions are: Is
simulated solving real solving? Is a simulated problem a real problem?
The answer, in both cases, is ‘Yes’. The simulated problem is an
implementation of the abstract problem. A problem abstractly speaking
remains one in any implementation: Compare this “real” problem:

What number x is such that x + 2 = 3?

with this “simulated” version of it:

What symbol s is such that the physical process we call
‘adding’ applied to s and to 2’ yields ‘3’?

Both are problems. The simulated solution of the simulated problem
really solves it and can be used to really solve the “real” problem. To
return to hurricanes and minds, the difference between a simulated
hurricane and a simulated mind is that the latter does “blow down
trees”! (Cf. Rapaport, forthcoming.)

Dretske sometimes seems to want too much, even though he asks
almost the right question: |
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how does one build a system that is capable not only of performing operations on (or
with) symbols, but one fo which these symbols mean something, a machine that, in this
sense, understands the meaning of the symbols it manipulates? (p. 27; italics in original,
my boldface.)

A system to which the symbols mean “something” Can they mean
anything? If so, then an internal semantics suffices. It could be based on
a semantic network (as in SNePS — cf. Shapiro and Rapaport 1986,
1987; cf. Section 3.6, below) or on, say, discourse representation theory
(Kamp 1984 and forthcoming, Asher 1986 and 1987). The symbols’
meanings would be determined solely by their locus in the network or
the discourse representation structure. But does Dretske really want a
machine that understands “the” meaning of its symbols? Is there only
one, preferred, meaning — an “intended interpretation”? How could
there be? Any formal theory admits of an infinite number of inter-
pretations, equivalent up to isomorphism. The “label” nodes that
interface with the external wourld can be changed however one wants,
but the network structure will be untouched. This is the best we can
hope for. ‘

The heart of Dretske’s argument is in the following passages. My
comments on them will bring together several strands of our inquiry so
far. First.

if the meaning of the symbols on which a machine performs its operations is . . . wholly
derived from us, . .. then there is no way the machine can acquire understanding, no
way these symbols can have a meaning to the machine itself. (pp. 27-28)

That is, if the symbols’ meanings are purely external, then they cannot
have internal meanings. But this does not follow. The external-to-the-
machine meanings that we assign to its symbols are independent of its
~own, internal, meanings. It may, indeed, have symbols whose internal
meanings are causally derived from our external ones (these are the
“labels” I discussed earlier; in SNePS, they are the nodes at the heads of
LEX arcs — cf. Section 3.6, below, and: Shapiro 1982; Maida and
Shapiro 1982; Shapiro and Rapaport 1986, 1987). But the machine
begins with an internal semantic network, which may be built into it
(“hardwired” or “preprogrammed”, or “innate”, t0 switch metaphors)
but is, in any case, developed in the course of dialogue. So it either
begins with or develops its own meanings independently of those that
we assign to its symbols.
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Next,

Unless these symbols have . . . an intrinsic meaning . . . indeLendent of our communica-
tive intentions and purposes, then this meaning must be irrelevant to assessing what
the machine is doing when it manipulates them. (p. 28; italics in original, boldface
added.) .

I find this confusing: which meaning is irrelevant? Dretske’s syntax
seems to require it to be the “intrinsic” meaning, but his thesis requires
it to be the previous passage’s “meaning derived from us” (cf. the earlier
citation from pp. 26-27). On this reading, I can agree. But the inter-
esting question to raise is: How independent is the intrinsic meaning?
Natural-language understanding, let us remember, requires conversa-
tion, or dialogue; it is a social interaction. Any natural-language-
understanding system must initially learn @ meaning from its inter-
locutor (cf. de Saussure 1915, p. 37, cited above), but its network will
rarely if ever be identical with its interlocutor’s. And this is as true for
an artificial natural-language-understanding system as it is for us: As I
once put it, we almost always misunderstand each other (Rapaport
1981, p. 17; cf. Schank 1984, Ch. 3, esp. pp. 44-47).
Finally,

The machine is processing meaningful (to us) symbols . . . but the way it processes them
is quite independent of what they mean — hence, nothing the machine does is explic-
able in terms of the meaning of the symbols it manipulates . . .. (p. 28)

This is essentially Nicolas Goodman’s point about Church’s Thesis
(discussed earlier in this section). On this view, for example, a computer
running a program that we say is computing greatest common divisors
does not “know” that that is what (we say that) it is doing; so, that’s not
what it’s doing. Or, to take Dretske’s example (p. 30), a robot that
purportedly recognizes short circuits “really” only recognizes certain
gaps; it is we who interpret a gap as a short circuit. But why not provide
the computer with knowledge about greatest common divisors (so-
named) and the robot with knowledge about short circuits (so-named),
and link the number-crunching or gap-sensing mechanisms to this
knowledge?

Observe that, in the passage just cited, the machine’s symbol-pro-
cessing is independent of what the symbols mean fo us, i.e., independ-
ent of their external meaning. On Dretske’s view, what the machine
does is inexplicable in terms of owr meanings. Thus, he says that
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machines don’t answer questions (p- 28), because, presumably,
“answers questions” is our meaning, not ifs meaning,

But from Dretske’s claim it does not follow that the symbols are
meaningless or even that they differ in meaning from our interpretation.
For one thing, our meaning could also be the machine’s meaning, if its
internal semantic network happens to be sufficiently like ours (Just as
yours ought to be sufficiently like mine). Indeed, for communication to
be successful, this will have to be the case. For another, simulated
question-answering is question-answering, just as with simulated prob-
lem-solving. If the abstract answer to the abstract question, “Who did
the Yankees lose to on July 7?”, is: the Red Sox; and if the simulated
answer (e.g., a certain noun phrase) to the simulated question (e.g., a
certain interrogative sentence), ‘Who did the Yankees lose to on July
7?7, is ‘the Red Sox’ (or even, perhaps, the simulated team, in some
knowledge-representation system); and if both the computer and we
take those symbols in the “same” sense — i.e., if they play, roughly, the
same roles in our respective semantic networks — then the simulated
answer is an answer (the example is from Green 1961).

How are such internal meanings developed? Here, I am happy to
agree with Dretske: “In the same way . . . that nature arranged it in our
case” (p. 28), namely, by correlations between internal representations
(either “innate” or “learned”) and external circumstances (p. 32). And, of
course, such correlations are often established during conversation. But
— contrary to Dretske (p. 32) — this can be the case for all sorts of
systems, Human as well as machine.

So, I agree with many of Dretske’s claims but not his main conclu-
sion. We can give an Al system information about what it’s doing,
although irs internal interpretation of what it’s doing might not be the
same as ours; but, for that matter, yours need not be the same as mine,
cither. Taken literally, computers don’t add if “add” means what I
mean by it — which involves what I do when I add and the locus of
‘add’ in my internal semantic network. But thus understood, you don’t
add, either; only I do. This sort of solipsism is not even methodo-
logically useful. Clearly, we want to be able to maintain that you and I
both add. The reasons we are able to maintain this are that the “label”
nodes of my semantic network match those of yours and that my
semantic network is structurally much like yours. How much alike?
Enough so that when we talk to each other, we have virtually no reason
to believe that we are misunderstanding each other (cf. Russell 1918,
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Quine 1969, Shapiro and Rapaport 1987; note, however, that in the
strict sense in which only I add, and you don’t, we always systematically
misunderstand each other — c¢f. Rapaport 1981). That is, we can
maintain that we both add, because we converse with each other, thus
bringing our internal semantic networks into closer and closer “align-
ment” or “calibration”. But this means that there is no way that we can
prevent a natural-language-understanding system from joining us. In so
doing, we may learn from it — and adjust to it — as much as it does
from (and to) us.'® Rather than talking about my adding, your adding,
and irs adding (and perhaps marveling at how much alike they all are),
we should talk about the abstract process of adding that is imple-
mented in each of us.

3.4. Deixis

My claim, then, is that an internal semantics is sufficient for natural-
language understanding and that an external semantics is only needed
for mutual understanding. I shall offer an explicit argument for the
sufficiency thesis, but first I want to consider a possible objection to the
effect that deictic expressions require an external semantics — that an
internal semantics cannot handle indexicals such as ‘that’.

Consider the following example, adapted from Kamp (forthcoming):
How would our system be able to represent in its “mind” the proposi-
tion expressed by the sentence, “That’s the man who stole my book!”?
Imagine, first, that it is the system itself that utters this, having just
perceived, by means of its computational-vision module, the man in
question disappear around a corner. What is the meaning of ‘that’, if not
its external referent? And, since its external referent could not be inside
the system, ‘that’ cannot have an internal meaning. However, the output
of any perceptual system must include some kind of internal symbol
(perhaps a complex of symbols), which becomes linked to the semantic
network (or, in Kamp’s system, to the discourse representation struc-
ture) — a sort of visual “label”. That symbol (or one linked to it by a
visual analogue of the SNePS LEX arc) is the internal meaning of ‘that’.
(There may, of course, be other kinds of purely internal reference to
the external would. I shall not discuss those here, but ¢f. Rapaport
1976, and Rapaport 1985/1986, Section 4.4.)

Imagine, now, that the sentence is uttered to the system, which looks
up too late to see the man turn the corner. The external meaning of
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‘that’ has not changed, but we no longer even have the visual label.
Here, 1 submit, the system’s interpretation of ‘that’ is as a disguised
definite (or indefinite) description (much like Russell’s theory of proper
names), perhaps “the (or, a) man whom my interlocutor just saw”.
What’s important in this case is that the system must interpret ‘that’,
and whatever its interpretation is is the internal meaning of ‘that’.

3.5. Understanding and Interpretation

This talk of interpretation is essential. I began this section by asking
what “understanding natural language” means. To understand, in the
sense we are discussing,!! is, at least in part, to provide a semantic
interpretation for a syntax. Given two “systems” — human or formal/
artificial — we may ask, What does it mean for one system to under-
stand the other? There are three cases to consider:

Case 1. First, what does it mean for two humans to understand each
other? For me to understand what you say is for me to provide a
semantic interpretation of the utterances you make. I treat those
utterances as if they were fragments of a formal system, and I interpret
them using as the domain of interpretation, let us suppose, the nodes of
my semantic network. (And you do likewise with my utterances and
your semantic network.) That is, I map your words into my concepts.

I may err:-In Robertson Davies’s novel, The Manticore, the protago-
nist, David Staunton, tells of when he was a child and heard his father
referred to as a “swordsman”. He had taken it to mean that his father
was “a gallant, cavalier-like person” (Davies 1972, p. 439), whereas it in
fact meant that his father was a lecher (‘whoremaster’ and ‘amorist’ are
the synonyms (!) used in the book). This leads to several embarrasments
that he is oblivious to, such as when he uses the word ‘swordsman’ to
‘imply gallantry but his hearers interpret him to mean ‘lechery’. Staunton
had correctly recognized that the word was being used metaphorically,
but he had the wrong metaphor. He had mapped a new word (or an old
word newly used) into his concepts in the way that seemed to him to fit
best, though it really belonged elsewhere in his network.

So, my mapping might not match yours. Worse, I might not be able
to map one or more of your words into my concepts in any §tra,1,ght-
forward way at all, since your conceptual system (or “w_orld view ) —
implemented in your semantic network — might be radically different
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from mine, or you may be speaking a foreign language. This problem is
relevant to many issues in translation, radical and otherwise, which I do
not wish to enter into here (but cf. n. 13). But what I can do when I
hear you use such a term is to fit it into my network as best I can, ie,
to devise the best theory I can to account for this fragment of your
linguistic data. One way I can do this, perhaps, is by augmenting my
‘network with a sub-network of concepts that is structurally similar to an
appropriate sub-network of yours and that collectively “interprets” your
term in terms of my concepts. Suppose, for example, that you are a
speaker of Nuer: although your word ‘kwoth’ and its sub-network of
concepts might not be able to be placed in 1—1 correspondence with
my word ‘God’ and its sub-network of concepts (they are not exact
translations of each other), I can develop my own sub-network for
‘kwoth’ that is linked to the rest of my semantic network and that
enables me to gloss your word ‘kwoth’ with an account of its meaning in
terms of its locus in my semantic network (cf. Jennings 1985). I have no
doubt that something exactly like this occurs routinely when one is
conversing in a foreign language.

What is crucial to notice in this case of understanding is that when I
understand you by mapping your utterances into the symbols of my
internal semantic network, and then manipulate these symbols, I am
performing a syntactic process.

Case 2. Second, what does it mean for a human to understand a
formal language (or formal system)? Although a philosopher’s instinc-
tive response to this might be to say that it is done by providing a
semantic interpretation for the formal language, I think this is only half
of the story. There are, in fact, two ways for me to understand a formal
language. In ‘Searle’s Experiments with Thought’ (Rapaport 1986a), 1
called these “semantic understanding” and “syntactic understanding”. In
the example I used there, a syntactic understanding of algebra might
allow me to solve equations by manipulating the symbols (“move the x
from the right-hand side to the left-hand side and put a minus sign in
front of it”), whereas a semantic understanding of algebra might allow
me to describe those manipulations in terms of a balancing-scale (“if
you remove the unknown weight from the right-hand pan, you must
also remove the same amount from the left-hand pan in order to keep
it balanced”). Semantic understanding is, indeed, understanding via
semantic interpretation. Syntactic understanding, on the other hand, is
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the kind of understanding that comes from directly manipulating the
symbols of the formal language according to its syntactic rules. Semantic
understanding is what allows one to prove soundness and completeness
theorems about the formal language; syntactic understanding is what
allows one to prove theorems in the formal system. )

There are two important points to notice about semantic under-
standing. The first is that there is no unique way -0 understand
semantically: there are an infinite number of equally good interpreta-
tions of any formal system. Only one of these may be the “intended”
intepretation, but it is not possible to uniquely identify which one. What
‘adding’ means to me, therefore, may be radically different from what it
means to you, even if we manipulate the same symbols in the same
ways (cf. Quine 1969, Section I, especially pp. 44-45). The second
point is that an interpretation of a formal system is essentially a
simulation of it in some other formal system (or, to return to talk of
languages, my interpretation of a formal language is a mapping of its
terms into my concepts), and, thus, it is just more symbol manipulation.

Syntactic understanding is also, obviously, an ability to manipulate
symbols, to understand what is invariant under all the semantic inter-
pretations. In fact, my syntactic understanding of a formal system is the
closest I can get to its internal semantics, to what Dretske calls the
system’s “intrinsic meanings”.

Case 3. Finally, what would it mean for a formal system to understand
me? This may seem like a very strange question. After all, most formal -
systems just sort of sit there on paper, waiting for me to do something
with them (syntactic manipulation) or to say something about them
(semantic interpretation). I don’t normally expect them to interpret me.
(This is, perhaps, what underlies the humor in Woody Allen’s image of
Kugelmass, magically transferred into the world of a textbook of
Spanish, “running for his life . . . as the word tener (‘to have’) —a large
and hairy irregular verb — raced after him on its spindly legs” (Allen
1980, p. 55).)

But there are some formal systems, namely, certain computer pro-
grams, that at least have the facility to understand (one must be careful
not to beg the question here) because they are “dynamic” — they are
capable of being run. Taking up a distinction made earlier, perhaps it is
the process — the natural-language—understanding program being run
on (or, implemented by) a computer — that understands. So, what
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would it mean for such a formal system to understand me? In keeping
with our earlier answers to this sort of question, it would be for it to
give a semantic interpretation to its input consisting of my syntax (my
utterances considered as more or less a formal system) in terms of
its concepts. (And, of course, we would semantically understand its
natural-language output in a similar manner, as noted in Case 2.) But its
concepts would be, say, the nodes of its semantic network — symbols
that it manipulates, in a “purely syntactic” manner. That is, it would in
fact be “a formal program that attaches . . . meaning, interpretation, or
content to . .. the symbols” — precisely what Searle (1982, p. 5; cited
earlier) said did not exist!

So the general answer to the general question — What does it mean
for one system to understand another? — is this:

A natural-language-understanding system S, understands the
natural-language output of a natural-language-understanding
system S, by building and manipulating the symbols of an
internal model (an interpretation) of S,’s output considered
as a formal system.

S,’s internal model would be a knowledge-representation and rea-
soning system that manipulates symbols. It is in this sense that syntax
suffices for understanding.

The role of external semantics needs clarification. Internal and
externdl semantics are two sides of the same coin. The internal
semantics of S,’s linguistic expressions constitutes S,’s understanding of
S,. The external semantics of S,’s linguistic expressions constitutes S,’s
understanding of S,. It follows that the external semantics of S’s
linguistic expressions is the internal semantics of $,’s linguistic expres-
sions! S,’s internal semantics links S;’s words with §;’s own concepts,
but S,’s external semantics links S,’s words with the concepts of S,.

What about “referential” semantics — the link between word and
object-in-the-world? I do not see how this is relevant to S’s or S,’s
understanding, except in one of the following two ways. In the first of
these ways, semantics is concerned with language-in-general, not a
particular individual’s idiolect: it is concerned with English — with the
“socially determined” extensions of words (Putnam 1975) — not with
what I say. This concern is legitimate, since people tend to agree pretty
- well on the referential meanings of their words, else communication
would cease; recall the Tower of Babel. So, on this view, what does
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‘pen’ mean? Let us say that it means the kind of object I wrote the
manuscript of this essay with ('m old-fashioned). But what does this
mean — what does it mean to say that ‘pen’ means a certain kind of
physical object? It means that virtually all (native) speakers of English
use it in that way. That is, this view of semantics is at best parasitic on
individual external semantics.

But only “at best”; things are not even that good. The second way
that “referential” semantics is relevant is, in fact, at the individual level.
You say ‘pen’; I interpret that as “pen” in my internal semantic network.
Now, what does “pen” mean for me? Internally, its meaning is given by
its location in my semantic network. Referentially, I might point to a
real pen. But, as we saw in our discussion of deixis, there is an internal
representation of my pointing to a pen, and it is that representation that
is linked to my semantic network, not the real pen. And now here is
why the first view of referential semantics won’t do: How does the
semanticist assert that ‘pen’-in-English refers to the class of pens?
Ultimately, by pointing. So, at best, the semanticist can link the pen-
node of some very general semantic network of English to other
(visual) representations, and these are either the semanticist’s own
visual representations or else they are representations in some other
formal language that goes proxy for the world. The semantic link
between word and object is never direct, but always mediated by a
representation (cf. Rapaport 1976, 1985a, 1985/1986). The link be-
tween that representation and the object itself (which object, since I am
only a methodological solipsist, I shall assume exists) is a causal one. It
may, as Sayre (1986) suggests, even be the ultimate source of semantic
information. But it is noumenally inaccessible to an individual mind. As
Jackendoff (1985, p. 24) puts it, “the semantics of natural language is
more revealing of the internal representation of the world than of the
. external world per se”.

Finally, some comments are in order about the different kinds of
meaning that we have identified. I shall postpone this, however, till
we have had’'a chance to look at a prototype natural-language-under-
standing system in operation.

3.6. SNePS/CASSIE: A Prototype Al Natural-Language-Understanding
System

How might all this be managed in an Al natural-language-understanding
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system? Here, I shall doff my philosopher’s hat and don my computer
scientist’s hat. Rather than try to say how this can be managed by any
natural-language-understanding system, I shall show how one such
system manages it. The system I shall describe — and to which I have
alluded earlier — is SNePS/CASSIE: an experiment in “building” (a
model of) a mind (called ‘CASSIE’) using the SNePS knowledge-
representation and reasoning system. SNePS, the' Semantic Network .
Processing System (Shapiro 1979; Maida and Shapiro 1982; Shapiro
and Rapaport 1986, 1987; Rapaport 1986¢), is a semantic-network
language with facilities for building semantic networks to represent
information, for retrieving information from them, and for performing
inference with them. There are at least two sorts of semantic networks
in the Al literature (see Findler 1979 for a survey): The most common
is what is known as an “inheritance hierarchy”, of which the most
well-known is probably KL-ONE (cf. Brachman and Schmolze 1985).
In an inheritance semantic network, nodes represent concepts, and arcs
represent relations between them. For instance, a typical inheritance
semantic network might represent the propositions that Socrates is
human and that humans are mortal as in Figure 1a. The interpreters for
such systems allow properties to be “inherited”, so that the fact that
Socrates is mortal does not also have to be stored at the Socrates-node.
What is essential, however, is that the representation of a proposition
(e.g., that Socrates is human) consists only of separate representations
_ of the individuals (Socrates and the property of being human) linked by
a telation arc (the “ISA” arc). That is, propositions are not themselves
objects. By contrast, '

SNePS is a propositional semantic network. By this is meant that all information,
including propositions, “facts”, etc., is represented by nodes. The benefit of representing
propositions by nodes is that propositions about propositions can be represented with
no limit. ... Arcs merely form the underlying syntactic structure of SNePS. This is
embodied in the restriction that one cannot add an arc between two existing nodes.
That would be trantamount to telling SNePS a proposition that is not represented as a
node. ... Another restriction is the Uniqueness Principle: There is a one-to-one
correspondence between nodes and represented concepts. This principle guarantees
that nodes will be shared whenever possible and that nodes represent intensional
objects. (Shapiro and Rapaport 1987.)

Thus, for example, the information represented in the inheritance
network of Figure 1a could (though it need not) be represented in
SNePS as in Figure 1b; the crucial difference is that the SNePS proposi-
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Fig. 1b. A SNePS propositional semantic network (m3 and m$ represent the proposi-
tions that Socrates is human and that humans are mortal, respectively)

tional network contains nodes (m3, m5) representing the propositions
that Socrates is human and that humans are mortal, thus enabling
representations of beliefs and rules about those propositions. (In fact,
the network of Figure la could not be built in SNePS, by the first
restriction cited; cf. Shapiro 1979, Section 2.3.1.) My colleagues and I
in the SNePS Research Group and the Graduate Group in Cognitive
Science at SUNY Buffalo are using SNePS to build a natural-language-
understanding system, which we call ‘CASSIE’, the Cognitive Agent of
the SNePS System — an Intelligent Entity (Shapiro and Rapaport
1986, 1987; Bruder et al. 1986). The nodes of CASSIE’s knowledge
base implemented in SNePS are her beliefs and other objects of
thought, in the Meinongian sense. (Needless to say, I hope, nothing



108 WILLIAM J. RAPAPORT

about CASSIE’s actual state of “intelligence” should be inferred from

her name!)
A brief conversation with CASSIE is presented in Appendix 1.

Here, I shall sketch a small part of her natural-language-processing
algorithm. Suppose that the user tells CASSIE,

Young Lucy petted a yellow dog.

CASSIE’s tacit linguistic knowledge, embodied in an augmented transi-
tion network (ATN) parsing-and-generating grammar (Shapiro 1982),
“hears” the words and builds the semantic network shown in Figure 2
in CASSIE’s “mind” in the following way:

now
,

BEFORE BEFORE

ETIME

OBJECT

PROPER-

PROPERTY

Fig. 2. CASSIE's belief that young Lucy petted a yellow dog

(1) CASSIE builds a node (bl) representing the current time

(the “now”-point; ¢f. Almeida and Shapiro 1983, Almeida

1987).

(2) ® CASSIE “hears” the word ‘young’.

@ If she has not heard this word before, she builds a
“sensory” node (labeled ‘young’) representing the word
that she hears and a node (m1) representing the internal
concept produced by her having heard it — this concept
node is linked to the sensory node by an arc labeled
‘LEX. (See Figure 3; the formal semantic interpretation
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LEX

Qoung>

Fig. 3. SNePS network for the concept expressed in English as ‘young’

of this small network is: m1 is the Meinongian object of
thought corresponding to the utterance of ‘young’; cf.
Rapaport 1985a; Shapiro and Rapaport 1986, 1987.)

® If she has heard it before, she finds the already-existing
concept node. (Actually, she attempts to “find” before
she “builds™; henceforth, this process of “finding-or-build-
ing” will be referred to simply as “building”, since it is in
conformity with the Uniqueness Principle.)

® CASSIE hears the word ‘Lucy’.
She builds a sensory node (labeled ‘Lucy’) for the word
‘Lucy’, a concept node (m2; linked to the sensory node

" by a LEX arc) for the name ‘Lucy’, a concept node (m4)

representing an individual, and a proposition node (m3)
representing that the individual is named ‘Lucy’ (using an
OBJECT—PROPER-NAME case frame)."?

® She (unconsciously) determines, by means of the ATN,
that Lucy is young, and she builds a proposition node
(m5) representing this (using an OBJECT-PROPERTY
case frame).

She hears the word ‘petted’, and (skipping a few details, for

clarity) she builds a sensory node (labeled ‘pet,’) for the

verb ‘pet’, a concept node (m6; linked to the sensory node

by a LEX arc) for the act of petting, and a temporal network

(m7 and m8, linked by BEFORE arcs to bl) indicating that

this act occurred before “now” (= the time of utterance).

She hears ‘yellow’ and processes it as she did ‘young’

(building m9).
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(6) She hears ‘dog’ and builds:

@ a sensory node for it.

® a concept node (m10) representing the class whose label
is ‘dog’,

® a concept node (m12) representing the individual yellow
dog whom young Lucy petted, -

® a proposition node (m11) representing that this individual
concept node is a MEMBER of the CLASS whose label
is ‘dog’,

® a proposition node (m13) representing that that individual
concept node (the dog) is yellow, and, finally,

® a proposition node (m14) representing that the dog is the
OBJECT of an AGENT-ACT-OBJECT case frame
whose agent is Lucy, whose act is petting, whose starting
time is m8, and whose ending time is m7.

(7) She generates a sentence expressing her new understanding.
I shall not go into the details of the generation algorithm,
except to point out that she uses the sensory nodes to
generate the words to express her new belief (¢f. Shapiro
1982 for details).

(8) As the conversation shown in Appendix 1 continues,
CASSIE’s semantic network is continually updated with new
nodes, as well as with new links to old nodes (f. Fig. 4).

The crucial thing to see is that the semantic network (Fig. 2) that
represents CASSIE’s belief (the belief produced by her understanding
of the user’s sentence) is her interpretation of that sentence and that it
has three parts: One part consists of the sensory nodes: the nodes at the
heads of LEX arcs; a second part consists of the entire network except
for that set of sensory nodes and the LEX arcs; and the third part
consists of the LEX arcs themselves, which link the other two, major,
parts of the network.

Notice that the sensory-node set by itself has (or seems to have) no
structure. This is consistent with viewing these as CASSIE’s internal
representations, causally produced, of external entities (in this case,
utterances) to which she has no other kind of access and, hence, no
knowledge of their relationships. As I suggested earlier when discussing
- deixis, if we had a visual-input module, there might be a set of sensory
nodes linked by, say, “PIX” arcs. At present, I see no need for any
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direct links between visual and linguistic sensory nodes, even between
" those that, in some extensional sense, represent the same entity; any
such links would be forged by means of links among the concept nodes
at the fails of LEX and PIX arcs (but this is a matter for future
investigation, as is the entire issue of the structure and behavior of
sensory nodes).

The concept-node set, on the other hand, has a great .deal of
structure. It is this fragment of the entire network that represents
CASSIE’s internal understanding. If CASSIE were not intended to
converse in natural language, there would not be any need for LEX arcs
or sensory nodes. If CASSIE’s sensory nodes were replaced by others,
she would converse in a notational variant of English (cf. Quine 1969,
Section II, p. 48). If her generation grammar were replaced with one for
French and her sensory nodes replaced with “French” ones, she would
understand English but speak in French (though here, no doubt, other
modifications would be required in order for her knowledge repre-
sentation system to be used in this way as an “interlingua”, as machine-
translation researchers call it).!*> In each of these cases, the structure of
her mind and, thus, her understanding — which would be in terms of
purely syntactic symbol manipulation — would remain the same. Only
the external semantic interpretation function, so to speak, would differ.
“Meaning,” in the sense of internal semantics, “is determined by
structures, truth by facts” (Garver 1986, p. 75).14

A nice metaphor for this is Carnap’s example of the railroad map
whose station names (but not rail-line names) have been removed; the
stations can still be uniquely identified by the rail lines that meet at
them. The “meaning” of a node in such a network is merely its locus in
the entire network. In Appendix 2, I sketch how this might be done in a
SNePS-like semantic network. (See Carnap 1928, Section 14, pp. 25-
27; ¢f: Quillian 1967, p. 101; Quillian 1968, Section 4.2.1, especially p.
238; and Quine 1951, Section 6, especially pp. 42f. Quine’s “fabric
which impinges on experience only along the edges” nicely captures the
notion of a semantic network with sensory nodes along the edges.)

3.7. Varieties of Meaning

At this point, we can make the promised comments on the different
kinds of meaning. Recall the three-part nature of the semantic networl-(:
the sensory nodes, the LEX arcs, and the main body of the semantic
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network. The meaning of a node, in one sense of ‘meaning’, is its locus
in the network; this is, I have been urging, the central meaning of the
node. This locus provides the internal semantics of the node and,
hence, of the words that label sensory nodes. Considered as an object
of thought, a node can be taken as being constituted by a collection of
properties, hence as an intensional, Meinongian object. The locus in the
network of a node at the tail of a LEX arc can be taken as.a collection
of propositional functions corresponding to the open sentences that are
satisfied by the word that labels the sensory node. In particular, at any
time ¢, the collection will consist of those open sentences satisfied by
the word that were heard by the system prior to ¢ (For details, see
Rapaport 1981.) But this means that the internal meaning of the word
will change each time the word is heard in a new sentence. So, the
internal meaning is extensional. This curious duality of intension and
extension is due, I think, to the fine grain of this sort of meaning: it is
intensional because of its fine grain and the fact that it is an object
of thought; but it is extensional in that it is determined by a set-in-
extension.

But there is a meaning determined by a set-in-intension, too. This
may be called the “definitional” meaning of the word. It is a subset of
the internal meaning, whose characterizing feature is that it contains
those propositions in the semantic network that are the meaning
postulates of the word. That is, these propositions are the ones from
which all other facts containing the word can be inferred (together with
miscellaneous other facts; again, c¢f. Rapaport 1981). Thus, this kind of
meaning is an internal, intensional meaning; it is a sort of idiosyncratic
or idiolectal Sinn.

Both of these kinds of meaning are or consist of internal symbols to
be manipulated. To fill out the picture, there may also be the (physical)
objects in the world, which are the external, extensional, referential
meanings of the words. But these are not symbols to be manipulated
and are irrelevant for natural-language understanding. 4

3.8. Discourse

Another aspect of my interpretation of natural-language understanding
is the importance of discourse (sequences of sentences), rather than
isolated sentences, for the construction of the system’s knowledge base.
Discourse is important for its cumulative nature:
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[Putting one sentence after another can be used to express time sequence, deductive
necessity, cause, exemplification or other relationships, without any words being used to
express the relation. (Mann et al. 1981, Part 1,p. 6.)

This aspect of discourse illuminates the role of internal semantics in a
way hinted at earlier. To provide a semantic interpretation for a
language by means of an internal semantic network (or a discourse
representation structure) is to provide a more or less formal theory
about the linguistic data (much as Chomsky 1965 said, though this is a
semantic theory). But, in discourse as in science, the data underdeter-
mine the theory: it is internal semantic network — the mind of the
understander — that provides explicit counterparts to the unexpressed
relations.

Isolated sentences (so beloved by philosophers and linguists ) simply
would not serve for enabling a system such as CASSIE to understand
natural language: they would, for all practical purposes, be random,
unsystematic, and unrelated data. The order in which CASSIE pro-
cesses (or “understands”) sentences is important: Given a mini-discourse
of even as few as two sentences,

DROS

her interpretation of s, will be partially determined by her interpreta-
tion of s,. Considered as part of a discourse, sentence s, is syntactically
within the “scope” of s,; hence, the interpretation of s, will be within the
scope of the interpretation of s,. (This aspect of discourse is explored in
Maida and Shapiro 1982, Mann and Thompson 1983, Kamp 1984 and
forthcoming, Fauconnier 1985, Asher 1986, 1987, and Wiebe and
Rapaport 1986.) Thus, discourse and, hence, conversation are essential,
the latter for important feedback in order to bring the conversers’
semantic networks into alignment.

4. WOULD A COMPUTER “REALLY” UNDERSTAND? |

I have considered what it would be for a computer to understand
natural language, and I have argued for an interpretation of “under-
standing natural language” on which it makes sense o Say that a
computer can understand natural language. But there might still be
some lingering doubts about whether a computer that understands
natural language in this sense “really” understands it.
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4.1. The Korean-Room Argument

Let us start with a variation of Searle’s Chinese-Room Argument, which
may be called the “Korean Room Argument” (though we shall do away
with the room):!?

Imagine a Korean professor of English literature at the
University of Seoul who does not understand spoken or
written English but who is, nevertheless, a world authority
on Shakespeare. He has established and maintains his repu-
tation as follows: He has only read Shakespeare in excellent
Korean translations. Based on his readings and, of course,
his intellectual acumen, he has written, in Korean, several
articles on Shakespeare’s play. These articles have been
translated for him into English and published in numerous,
well-regarded, English-language, scholarly journals, where
they have met with great success.

The Korean-Room-Argument question is this: Does the Korean scholar
“understand” Shakespeare? Note that, unlike the Chinese-Room Argu-
ment, the issue is not whether he understands English; he does not. Nor
does he mechanically (“unthinkingly”) follow a translation algorithm;
others do his translating for him. Clearly, though, he does understand
Shakespeare — the literary scholarly community attests to that — and,
so, he understands something.

Similarly, Searle in the Chinese room can be said to understand
something, even if it isn’t Chinese. More precisely (because, as I urged
in Section 3.2, I don’t think that Searle’s Chinese-Room Argument is as
precisely spelled out as it could be), an Al natural-language-under-
standing system can be said to understand somethmg (or even to
understand simpliciter), insofar as what it is doing is semantic inter-
pretation.’® (Of course, it does this syntactically by manipulating the
symbols of its semantic interpretation.) We can actually say a bit more:
it understands natural language, since it is a natural language that it is
semantically interpreting. It is a separate question whether that which it
understands is Chinese.'” Now, I think there are two ways in which this
question can be understood. In one way, it is quite obvious that if the
system is understanding a natural language, then, since the natural
language that it is understanding is Chinese, the system must be
understanding Chinese. But in other ways, it is not so obvious. After all,
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the system shares very little, if any, of Chinese culture with its inter-
locutors, so in what sense can it be said to “really” understand Chinese?
Or in what sense can it be said to understand Chinese, as opposed to,
say, code of the computer-programming language that the Chinese
“squiggles” are transduced into? This Chinese-vs.-code issue can be
resolved in favor of Chinese by the Korean-Room Argument: just as it
is Shakespeare, not merely a Korean translation of Shakespeare, that
the professor understands, so it is Chinese, and not the programming-
language code, that Searle-in-the-room understands.

As for the cultural issue, here, I think, the answer has to be that the
system understands Chinese as well as any nonnative-Chinese human
speaker does (and perhaps even better than some). The only qualm one
might have is that, in some vague sense, what it means or understands
by some expression might not be what the native Chinese speaker
means or understands by it. But as Quine and, later, Schank have
pointed out, the same qualm can beset a conversation in our native
tongue between you and me (Quine 1969, p. 46; Schank 1984, Ch. 3).
As I said earlier, we systematically misunderstand each other: we can
never mean exactly what another means; but that does not mean that
we cannot understand each other. We might not “really” understand
each other in some deep psychological or empathic sense (if, indeed,
sense can be made of that notion; cf. Schank 1984, pp. 44-47), but we
do “really” understand each other — and the AI natural-language-
understanding system can “really” understand natural language — in the
only sense that matters. Two successful conversers’ understandings of
the expressions of their common language will (indeed, they must)
eventually come into alignment, even if one of the conversers is a
computer (cf. Shapiro and Rapaport 1987).

4.2. Simon and Dreyfus vs. Winograd and SHRDLU

The considerations thus far can help us to see what is wrong with
Herbert Simon’s and Hubert Dreyfus’s complaints that Terry Winograd’s
SHRDLU program does not understand the meaning of ‘own’ (Winograd
1972; Simon 1977, cited in Dreyfus 1979). Simon claims that
“SHRDLU’s test of whether something is owned is simply whether it is
tagged ‘owned’. These is no intensional test of ownership ...” (Simon
1977, .p. 1064/Dreyfus 1979, p. 13). But this is simply not correct:
When Winograd tells SHRDLU, “I own blocks which are not red, but I
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don’t own anything which supports a pyramid,” he comments that these
are “two new theorems . .. created for proving things about ‘owning’”
(Winograd 1972, p. 11, cf. pp. 143f; cited also in Dreyfus 1979, p. 7).
SHRDLU doesn’t merely tag blocks (although it can also do that); rather,
there are procedures for determining whether something is “owned” —
SHRDLU can figure out new cases of ownership.!® So there is an
intensional test, although it may bear little or no resemblance, except
for the label ‘own’, to our intensional test of ownership. But even this
claim about lack of resemblance would only hold at an early stage in a
conversation; if SHRDLU were a perfect natural-language-understanding
program that could understand English (and no one claims that it is),
eventually its intensional test of ownership would come to resemble
ours sufficiently for us to say that it understands ‘own’.
But Dreyfus takes this one step further:

[SHRDLU]J still wouldn’t understand, unless it also understood that it (SHRDLU)
couldn’t own anything, since it isn’t a part of the community in which owning makes
sense. Given our cultural practices which constitute owning, a computer cannot own
something any more than a table can. (Dreyfus 1979, p. 13.)

The “community”, of course, is the human one (which is biological; cf.
Searle). There are several responses one can make. First of all, taken
literally, Dreyfus’s objection comes to nothing: it should be fairly simple
to give the computer the information that, because it is not part of the
right community, it cannot own anything. But that, of course, is not
Dreyfus’s point. His point is that it cannot understand ‘own’ because it
cannot own. To this, there are two responses. For one thing, cultural
practices can change, and, in the case at hand, they are already
changing (for better or worse): computers could legally own things just
as corporations, those other nonhuman persons, can (cf Willick
1985)."” But even if they can't, or even if there is some other relation-
ship that computers are forever barred from participating in (even by
means of a simulation), that should not prevent them from having an
understanding of the concept. After all, women understood what voting
was before they were enfranchised, men can understand what pregnancy
is, and humans can understand what (unaided) flying is.?®* A computer
could learn and understand such expressions to precisely the same
extent, and that is all that is needed for it to really understand natural

.language.



SYNTACTIC SEMANTICS 117

5. DOES THE COMPUTER UNDERSTAND THAT
IT UNDERSTANDS?

There are two final questions to consider. The first is this: Suppose that
we have our ultimate Al natural-language-understanding program that
passes the Turing Test; does it understand that it understands natural
language? The second, perhaps prior, question is: Can it understand
that it understands?

Consider a variation on the Korean-Room Argument. Suppose that
the Korean professor of English literature has been systematically
misled, perhaps by his translator, into thinking that the author of the
plays that he is an expert on was a Korean playwright named, say,
Jaegwon. The translator has systematically replaced ‘Shakespeare’ by
‘Jaegwon’, and vice versa, throughout all of the texts that were trans-
lated. Now, does the Korean professor understand Shakespeare? Does
he understand that he understands Shakespeare? I think the answer to
the latter question is pretty clearly ‘No’. The answer to the former
question is not so clear, but I shall venture an answer: Yes.

Before explaining this answer, let’s consider another example (adapted
from Goodman 1986). Suppose that a student in my Theory of Com-
putation course is executing the steps of a Turing-machine program, as
an exercise in understanding how Turing machines work. From time to
time, she writes down certain numerals, representing the output of the
program. Let us even suppose that they are Arabic numerals (ie., let us
suppose that she decodes the actual Turing-machine output of, say, Os
and 1s, into Arabic numerals, according to some other algorithm).
Further, let us suppose that, as a matter of fact, each number that she
writes down is the greatest common divisor of a pair of numbers that is
the input to the program. Now, does she know that that is what the
output is? Not necessarily; since she might not be a math major (or
even a computer science major), and since the Turing-machine program
need not be labeled ‘Program to Compute Greatest Common Divisors’,
she might not know what she is doing under that description. Presum-
ably, she does know what she is doing under some other description,
say, “executing a Turing-machine program”; but even this is not neces-
sary. Since, as a matter of fact, she is computing greatest ‘common
divisors, if I needed to know what the greatest common divisor of two
numbers was, I could ask her to execute that program for me. She
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would not have to understand what she is doing, under that description,
in order to do it.

Similarly, the Korean professor does not have to understand that he
understands Shakespeare in order to, in fact, understand Shakespeare.
And, it should be clear, Searle-in-the-Chinese-room does not have to
understand that he understands Chinese in order to, in fact, understand
Chinese. So, a natural-language-understanding program does not have
to understand that it understands natural language in order to under-
stand natural language. That is, this use of ‘understand’ is referentially
transparent! If a cognitive agent A understands X, and X is equivalent
to Y (in some relevant sense of equivalence), then A understands Y.

But this is only the case for “first-order” understanding: understand-
ing that one understands is referentially opaque. I don’t think that this is
inconsistent with the transparency of first-order understanding, since
this “second-order” sense of 'understand’ is more akin to ‘know that’ or
‘be aware’, and the “first-order” sense of ‘understand’ is more akin to
‘know how’.

Now, can the Korean professor understand that he understands
Shakespeare? Of course; he simply needs to be told that it is Shake-
speare (or merely someone named ‘Shakespeare’; c¢f. Hofstadter et al.
1982), not someone named ‘Jaegwon’, that he has been studying all
these years. Can my student understand that what she is computing are
greatest common divisors? Of course; she simply needs to be told that.
Moreover, if the program that she is executing is suitably modularized,
the names of its procedures might give the game away to her. Indeed,
an “automatic programming” system would have to have access to such
labels in order to be able to construct a program to compute greatest
common divisors (so-named or so-described); and if those labels were
linked to a semantic network of mathematical concepts, it could be
said to understand what that program would compute. And the program
itself could understand what it was computing if it had a “self-concept”
and could be made “aware” of what each of its procedures did.

This is even clearer to see in the case of a natural-language-under-
standing program. A natural-language-understanding program can be
made to understand what it is doing — can be made to understand
that it understands natural language — by, first, telling it (in natural
language, of course) that that is what it is doing. Merely telling it,
however, is not sufficient by itself; that would merely add some
network structure to its knowledge base. To gain the requisite “aware-
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ness”, the system would have to have LEX-like arcs linked, if only
indirectly, to its actual natural-language-processing module — the ATN
parser-generator, for instance. But surely that can be done; it is, in any
event, an empirical issue as to precisely how it would be done. The
point is that it would be able to associate expressions like ‘under-
standing natural language’ with certain of its activities. It would then
understand what those expressions meant in terms of what those
activities were. It would not matter in the least if it understood those
activities in terms of bit-patterns or in terms of concepts such as
“parsing” and “generating”; what would count is this: that it understood
the expressions in terms of its actions; that its actions were, in fact,
actions for understanding natural language; and, perhaps, that ‘under-
standing natural language’ was the label that its interlocutors used for
that activity.

6. CONCLUSION

By way of conclusion, consider (a) the language L that the system
understands, (b) the external world, W, about which L expresses
information, and (c) the language (or model of W), L,, that provides
the interpretation of L. As William A. Woods (among many others) has
made quite clear, such a “meaning representation language” as L, is
involved in two quite separate sorts of semantic analyses (Woods 1978,
cf. Woods 1975 and, especially, Kamp 1981). :

There must be, first, a semantic interpretation function, P (for
‘parser’), from utterances of L (the input to the system) to the system’s
internal knowledge base, L,. L,, is the system’s model of W, as filtered
through L. There will also need to be a function, G (for ‘generator’),
from L, to L, so that the system can express itself. P and G need not,
and probably should not, be inverses (they are not in SNePS/CASSIE);
“they” might also be a single function (as in SNePS/CASSIE; cf.
Shapiro 1982). Together, P, G, and L,, constitute the central part of the
system’s understanding of L.

But, second, there must also be a semantic interpretation of L, in
terms of W (or in terms of our idiosyncratic L,s) — ie., a semantic
interpretation of the domain of semantic interpretation. Since L, is
itself a formal language, specified by a formal syntax, it needs a
semantics (c¢f. Woods 1975, McDermott 1981). But this semantic
interpretation is merely our understanding of L. It is independent of
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and external to the relevant semantic issue of how the system under-
stands L. (This semantic interpretation of the knowledge base is
provided for SNePS/CASSIE by interpreting L, as a Meinongian
theory of the objects of thought; cf: Rapaport 1985a; Shapiro and
Rapaport 1986, 1987.) |

There may be another relationship between L, and W, although this
may also be provided by the semantic interpretation of L. This
relationship is the causal one from W to L., and there is no reason to
hold that it is limited to humans (or other biological entities). It
produces the sensory nodes, but — other than that — it is also
independent of and external to the system’s understanding of L.

Once the sensory and concept nodes (or their analogues in some
other knowledge-representation system) are produced, the actual causal
links cease to be relevant to the system’s understanding (except — and I
am willing to admit that this is an important exception — for purposes
of the system’s communication with others), thus highlighting the
representationalism of the system.

Searle holds, however, that the links — the access to W — are
necessary for understanding, that humans have (or that only biological
entities can have) such access, that computers lack it, and, hence, that
computers cannot understand. By contrast, I hold that if such access
were needed, then- computers could have it, too, so that Searle’s
pessimism with respect to computer understanding is unsupported. I
also hold that such access is not needed, that, therefore, humans don’t
need it either (here is where methodological solipsism appears), so that,
again, there’s no support for Searle’s conclusion. I agree with Searle that
semantics is necessary for understanding natural language, but that the
kind of semantics that’s needed is the semantics provided by an
internal semantic interpretation, which is, in fact, syntactic in nature
and, hence, computable. Syntax suffices. :

APPENDIX 1: A “CONVERSATION” WITH CASSIE

Following is the transcript of a “conversation” with CASSIE. A com-
mented version of part of it appears in Shapiro and Rapaport 1986,
1987. User input is on lines with the :-prompt; CASSIE’s output is on
the lines that follow. A fragment of the full network showing CASSIE’s
state of mind at the end of the conversation is shown in Figure 4.
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: Young Lucy petted a yellow dog
Iunderstand that young Lucy petted a yellow dog

: Whatis yellow
a dog is yellow

: Dogs are animals
I'understand that dogs are animals

: Who petted an animal
young Lucy petted a yellow dog

: Lucy s clever
I'understand that young Lucy is clever

: Lucyisagirl
I understand that clever young Lucy is a girl

: Girls are people
T'understand that girls are people

: What was petted by a person
a yellow dog was petted by clever young Lucy

: The dog is named Rover
I'understand that Rover is a yellow dog

: What was petted by a person »
* yellow Rover was petted by clever young Lucy

: For every d if d is a dog then there is a b such that b is a
boy and b owns d
I'understand that for every d, if d is a dog
then there exists a b such that b is a boy
and
bownsd

: The boy is named John
I'understand that John is a boy

: Who owns Rover
John owns yellow Rover

: John believes that Lucy is rich
I'understand that John believes that Lucy is rich
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- Who s rich
[ don’t know.

: Who s clever
young Lucy is clever

: John believes that Lucy is old
I understand that John believes that rich Lucy is old

: Boys are people |
I understand that boys are people

: Dogs are pets
I understand that dogs are pets

. For every p and d if p is a person and d is a pet then p
loves d
I understand that for every d and p, if p is a person
and
dis a pet
then p loves d

: Who loves a pet

clever young Lucy loves yellow Rover
and :

John loves yellow Rover

APPENDIX 2: DESCRIBING A NODE VIA ITS NETWORK LOCUS

How can a node be identified if there are no LEX arcs or sensory
nodes? That is, how can they be identified if they have no names? The
answer is, by descriptions. It is important to see that the identifiers of
the nodes (“ml”, etc) are not names (or labels); they convey no
information to the system. (They are like the nodes of a tree each of
which contains no data but only pointers to its left and right children.
The sensory nodes are like leaf nodes that do contain data; their labels
do convey information.) The nodes can be described solely in terms of
their locus in the network, ie., in terms of the structure of the arcs
(which are labeled) that meet at them. If a node has a unique “arc
structure”, then it can be uniquely described by a definite description; if
two or more nodes share an arc-structure, they can only be given
indefinite descriptions and, hence, cannot be uniquely identified. That
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is, they are indistinguishable to the system, unless each has a LEX arc
emanating from it. (Cf,, again, Carnap 1928, Section 14.) Thus, for
example, in the network in Figure 5, m1 is the node with precisely two
ARG arcs emanating from it, and b1 is a node with precisely one ARG
arc entering it (and similarly for b2). In keeping with the notion that the
internal meaning of a node is its locus in the entire network, the full
descriptions of m1 and b1 (or b2) are:

(ml)  the node with one ARG arc to a base node and with
another ARG arc to a basée node.

(bl)  a base node with an ARG arc from the node with one ARG
arc to it and with another ARG arc to a base node.

(A base node is a node with no arcs leaving it; no SNePS node can have
an arc pointing to itself.) The pronominal ‘i’ has widest scope; i.e., its
anaphoric antecedent is always the node being described. Note that
each node’s description is a monad-like description of the entire

network from its own “point of view”.

Fig. 5. A small SNePS network.

NOTES

! This material is based upon work supported by the National Science Foundation
under Grant Nos. IST-8504713, IRI-8610517, and by SUNY Buffalo Research
Development Fund Award No. 150-8537-G. I am grateful to Randall R. Dipert,
Michael Leyton, Ernesto Morgado, Jane Pease, Sandra Peters, Stuart C. Shapiro, Marie
Meteer Vaughan, Janyce M. Wiebe, Albert Hanyong Yuhan, and other colleagues in the
SNePS Research Group and the SUNY Buffalo Graduate Group in Cognitive Science
for discussions on these topics and comments on earlier versions of this essay.

2 Cf. my earlier critiques of Searle, in which I distinguish between an abstraction, an
implementing medium, and the implemented abstraction (Rapaport 1985b, 1986b, and
forthcoming).

3 The “weak/strong” terminology is from Searle 1980.
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4 Or: that it is a woman. More precisely. Turing describes the Imitation Game, in which
“a man (A), a woman (B), and an interrogator (C)” have as their object “for the
interrogator to determine which of the other two is the man and which is the woman”.
Turing then modifies this:

We now ask the question, “What will happen when a machine takes the
part of A in this game?” Will the interrogator decide wrongly as often
when the game is played like this as he does when the game is played
between a man and a woman? These questions replace our original, “Can
machines think?” (Turing 1950,p.5)

5 Randall R. Dipert has suggested to me that Searle’s Chinese-Room Argument does
show that what executes the program (viz., the central processing unit) does not
understand, leaving open the question whether the process might understand.

6 Not to be confused with scripts in the sense of Schank’s Al data structures.

7 Similarly, part of my argument in this essay may be roughly paraphrased as follows: I
want to understand what it means to understand natural language; I believe that it is
capable of being understood (that it is not a mystery) and that, for a system to under-
stand natural language, certain formal techniques are necessary and sufficient; these
techniques are computational; hence, understanding natural language is a recursive
function.

8 I take (7) to be the conclusion, since (1)—(6) are in response to the question, “Can
computers add?” (p. 25; italics added). If I am taking Dretske too literally here, then
simply end the argument at step (6)-

9 Note that, for independent reasons, the computer will need an internal representation
or model of itself. Maybe this won’t be a complete self-model, on pain of infinite
regress, but then neither is ours. If needed, it, and we, can use an external model that is
complete, via self-reflection; cf. Case 1986, esp. p. 91. For more on self-models, cf:
Minsky 1965; Rapaport 1984, 1986¢; Smith 1986.

19 | venture to say that the mutual learning and adjusting process has’ already begun:
studying such computers and primitive Al systems as we have now has led many
philosophers and Al researchers to this kind of opinion.

11 It should be obvious by now that by ‘understand’ I do not mean some sort of “deep”
psychological understanding, merely that sort of understanding required for under-
standing natural language. Cf. Schank 1984, Ch. 3.

12 Cf. Shapiro and Rapaport 1986 and 1987 for the formal syntax and semantics of
this and the other case frames. The node identifiers (‘m1”, etc.) are generated by the
underlying program in an implementation-dependent order; the order and the identi-
fiers are inessential to the semantic network.

13 The importance of the knowledge base, whether it is a semantic network, a discourse
representation structure, or some other data type, for understanding natural language
has some interesting implications for machine translation. There are several paradigms
for machine translation; two are relevant for us: the “transfer” approach and the
“interlingua” approach (cf. Slocum 1985). Transfer approaches typically do not use a
knowledge base, but manipulate syntactic structures of the source language until they
turn into syntactic structures of the target language. Such a system, I would argue,
cannot be said to understand the natural languages it deals with. Interlingua approaches,
on the other hand, do have a sort of knowledge base. They are “mere” symbol
manipulation systems, but the symbols that get manipulated include those of the



126 WILLIAM J. RAPAPORT

system’s internal knowledge-representation system: hence, interlingua machine-transla-
tion systems have at least the potential for understanding. (Searle’s Chinese-language
program appears to be more like a transfer system (for, say, translating Chinese into
Chinese) than an interlingua system, despite the use of Schank-like scripts.)

Note, too, that this suggests that the “machine-translation problem” is coextensive
with the “natural-language-understanding problem” and, thus {cf. Section 1, above),
with the general “Al problem™ solve one and you will have solved them all. (This
underlies Martin Kay’s pessimism about the success of machine translation; cf. Kay
1986). :
14 Garver’s “challenge of metaphor”, it must be noted, is also a challenge for the theory
presented here, which I hope to investigate in the future.

15" The Korean-Room Argument was suggested to me by Albert Hanyong Yuhan.
16 And to the extent that it does nor do semantic interpretation, it does not under-
stand. My former teacher, Spencer Brown, recently made the following observation:

As for Searle, I myself have been a corpus vile for his “experiment”: once
I conveyed a message from one mathematician to another, with complete
understanding on the part of the second and with total, nay, virginal,
ignorance on my part of the meaning of the message. Similarly I have
conveyed a message from my doctor to my dentist without knowing what I
was telling. Q.E.D.: I can’t think. This is something I have always sus-
pected. (Personal communication, 1986; cf. Rapaport 1981, p. 7.)

But the conclusions (both of them!) are too hasty: all that follows is that he did not
understand certain isolated statements of mathematics and medicine. And this was, no
doubt, because he lacked the tools for interpreting them and an appropriate knowledge
base within which to fit them.

17 1 owe this way of looking at my argument to Michael Leyton.

18 T am indebted to Stuart C. Shapiro for pointing this out to me.

19 T am indebted to Shapiro for this reference. :
20 The examples are due to Shapiro. My original example was that, as a U.S. citizen, I
am probably forever enjoined from some custom unique to and open only to French
citizens; yet surely I can learn and understand the meaning of the French expression for
such a custom. But finding an example of such a custom is not as easy as it seems.
Voting in a French election, e.g., isn’t quite right, since I can vote in U.S. elections, and
similarly for other legal rights or proscriptions. Religious practices “unique” to one
religion usually have counterparts in others. Another kind of case has to do with
performatives: I cannot marry two people merely by reciting the appropriate ritual,
since I do not have the right to do so. The case of owning that Simon and Dreyfus focus
on is somewhat special, since it is both in the legal realm as well as the cultural one:
there are (allegedly or at least conceivably) cultures in which the institutions of owner-
ship and possession are unknown. I maintain, however, that the case of humans and
computers are parallel: we share the same abilities and inabilities to understand or act.
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