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Abstract 

Mental chronometry is a classical paradigm in cognitive psychology that uses 

response time and accuracy data in perceptual-motor tasks to elucidate the architecture 

and mechanisms of the underlying cognitive processes of human decisions. The 

redundant signals paradigm investigates the response behavior in Experimental tasks, 

where an integration of signals is required for a successful performance. The common 

finding is that responses are speeded for the redundant signals condition compared to 

single signals conditions. On a mean level, this redundant signals effect can be accounted 

for by several cognitive architectures, exhibiting considerable model mimicry. 

Jeff Miller formalized the maximum speed-up explainable by separate activations 

or race models in form of a distributional bound – the race model inequality. Whenever 

data violates this bound, it excludes race models as a viable account for the redundant 

signals effect. The common alternative is a coactivation account, where the signals 

integrate at some stage in the processing. 

Coactivation models have mostly been inferred on and rarely explicated though. 

Where coactivation is explicitly modeled, it is assumed to have a decisional locus. 

However, in the literature there are indications that coactivation might have at least a 

partial locus (if not entirely) in the nondecisional or motor stage. There are no studies that 

have tried to compare the fit of these coactivation variants to empirical data to test 

different effect generating loci. 

Ever since its formulation, the race model inequality has been used as a test to 

infer the cognitive architecture for observers’ performance in redundant signals 

Experiments. Subsequent theoretical and empirical analyses of this RMI test revealed 

several challenges. On the one hand, it is considered to be a conservative test, as it 

compares data to the maximum speed-up possible by a race model account. Moreover, 

simulation studies could show that the base time component can further reduce the power 

of the test, as violations are filtered out when this component has a high variance. 

On the other hand, another simulation study revealed that the common practice of 

RMI test can introduce an estimation bias, that effectively facilitates violations and 

increases the type I error of the test. Also, as the RMI bound is usually tested at multiple 

points of the same data, an inflation of type I errors can reach a substantial amount. Due 

to the lack of overlap in scope and the usage of atheoretic, descriptive reaction time 

models, the degree to which these results can be generalized is limited. State-of-the-art 

models of decision making provide a means to overcome these limitations and implement 

both race and coactivation models in order to perform large scale simulation studies. 

By applying a state-of-the-art model of decision making (scilicet the Ratcliff 

diffusion model) to the investigation of the redundant signals effect, the present study 

addresses research questions at different levels. On a conceptual level, it raises the 
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question, at what stage coactivation occurs – at a decisional, a nondecisional or a 

combined decisional and nondecisional processing stage and to what extend? To that 

end, two bimodal detection tasks have been conducted. As the reaction time data exhibits 

violations of the RMI at multiple time points, it provides the basis for a comparative fitting 

analysis of coactivation model variants, representing different loci of the effect. 

On a test theoretic level, the present study integrates and extends the scopes of 

previous studies within a coherent simulation framework. The effect of experimental and 

statistical parameters on the performance of the RMI test (in terms of type I errors, power 

rates and biases) is analyzed via Monte Carlo simulations. Specifically, the simulations 

treated the following questions: (i) what is the power of the RMI test, (ii) is there an 

estimation bias for coactivated data as well and if so, in what direction, (iii) what is the 

effect of a highly varying base time component on the estimation bias, type I errors and 

power rates, (iv) and are the results of previous simulation studies (at least qualitatively) 

replicable, when current models of decision making are used for the reaction time 

generation. 

For this purpose, the Ratcliff diffusion model was used to implement race models 

with controllable amount of correlation and coactivation models with varying integration 

strength, and independently specifying the base time component. 

The results of the fitting suggest that for the two bimodal detection tasks, 

coactivation has a shared decisional and nondecisional locus. For the focused attention 

experiment the decisional part prevails, whereas in the divided attention task the motor 

component is dominating the redundant signals effect. The simulation study could reaffirm 

the conservativeness of the RMI test as latent coactivation is frequently missed. An 

estimation bias was found also for coactivated data however, both biases become 

negligible once more than 10 samples per condition are taken to estimate the respective 

distribution functions. A highly varying base time component reduces both the type I errors 

and the power of the test, while not affecting the estimation biases. 

The outcome of the present study has theoretical and practical implications for the 

investigations of decisions in a multisignal context. Theoretically, it contributes to the locus 

question of coactivation and offers evidence for a combined decisional and nondecisional 

coactivation account. On a practical level, the modular simulation approach developed in 

the present study enables researchers to further investigate the RMI test within a coherent 

and theoretically grounded framework. It effectively provides a means to optimally set up 

the RMI test and thus helps to solidify and substantiate its outcomes. On a conceptual 

level the present study advocates the application of current formal models of decision 

making to the mental chronometry paradigm and develops future research questions in 

the field of the redundant signals paradigm.  
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1 INTRODUCTION 

1.1 Decision Making and Evidence Integration 

The human perceptual system is composed of highly specialized sensory systems 

(e.g., vision, audition, olfaction, tactition, and gustation). In order to adequately respond to 

the demands of a dynamically changing and potentially threatening environment, the 

organism has to perform countless decisions based on the inputs of these systems, weighing 

evidence for and against different alternative behaviors. Although these decisions are 

embedded in specific contexts and employ different sources of evidence, they share 

common elements such as the accumulation of uncertain sensory evidence and the 

commitment to one alternative over another, once an internal deliberation process has 

finished. Investigations of simple decisions studied in the laboratory have revealed general 

principles that apply to the human system across these various domains and tasks. Current 

models of decision making have provided a mathematical formalism that enables the 

exploration and modeling of the human decision making on various levels of analysis (Gold & 

Shadlen, 2007). This approach allows for a broad applicability, as all the components of the 

decision process are directly mappable to experimentally controllable variables. 

Whenever decisions necessitate the inputs of more than one signal or system (which, 

in ecologically valid settings marks the normal case), two central questions arise: the 

question of integration mechanism and the question of cognitive architecture. Signal 

stemming from e.g. different modalities need to be integrated, both temporally and spatially, 

to successfully form a decision that sufficiently represents the state of the environment the 

organism is operating in. In the visual domain for example, the visual search paradigm has 

been heavily employed to illuminate both the integration mechanisms and the potential 

cognitive architecture of categorical decision (detections, identifications, discriminations). A 

large class of models on visual attention assumes that attention itself is guided by a salience 

map. This map integrates inputs from feature maps to compute an overall representation of 

the visual field. It encodes for the local conspicuity in the visual scene, and controls where 

the focus of attention is currently deployed (Itti & Koch, 2000; Koch & Ullman, 1985; Wolfe, 

1994). A core assumption is that maps from different dimensions are summed or integrated. 

That is, one location on the salience map should have higher activation if at the 

corresponding location on orientation and color than only on one of them. The activity of the 

master map at a given location in 2-D space is  

 (   )   ∑   (   )        (1) 
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where M(x,y) is the sum of the strength of feature contrast D in dimension i at location 

(x,y) (Zehetleitner, Krummenacher, & Müller, 2009b). Figure 1.1 illustrates the activity 

salience map representation of a singleton (pop-out) target amongst homogeneous 

distractors. 

 

 

Figure 1.1    Example saliency summation model. The display is first analyzed 

by dimension specific feature analyzers (for color, orientation, and motion 

direction). The activity of each map is topographically organized; black areas 

represent no activity, whereas white areas represent strongest activity. The 

activity at each location is assumed to be summed up across the feature and 

dimension maps consequently. The summation is modulated by dimension-

specific weights wc, wo, wm. (Figure by Zehetleitner, Müller, & Krummenacher, 

2008a , reprinted with permission) 

 

 



Introduction 4 

 

1.2 Tests on Cognitive Architecture 

In spite of the allure of its straight-forward design and operating mode, the neural 

underpinnings, locus and integration mechanisms of salience map models are still much 

debated questions. One paradigm which directly supports the idea of salience summation is 

the redundant signals paradigm (RSP). There, observers have to search for targets under 

distractors, which pop-out due to one or more differing features. Figure 1.2 shows display of 

a redundant target visual pop-out task. Panels A and B represent single target conditions 

(contrast and orientation pop-out), while panel C represents the combination of the single 

targets – a redundant target. The common finding is that redundantly defined targets (panel 

C), which differ in more than one dimension (for example contrast and orientation) on 

average lead to faster response times than singly defined targets (e.g. orientation or contrast 

only, panels A and B).  

 

 

Figure 1.2    Redundant pop-out search displays. Panels A and B show single 

signals trials with only one dimension at variance with the surrounding 

distractors (brightness and orientation for panels A and B respectively). Panel 

C shows a redundant signals trial, where the target shares both dimensions of 

the single signals trials. On average, response times for redundant signals 

trials are faster than any single signals trial, termed the redundant signals 

effect. 

 

The redundant signals paradigm taps into the ubiquitous question of serial versus 

parallel processing (Townsend & Wenger, 2004). It has been investigated with help of mental 

chronometry and several mechanisms and models have been proposed to account for the 

speed-up in reaction times. On a mean level, the redundant signals effect can be accounted 

for by statistical facilitation or a race model (Raab, 1962). This model assumes that features 

of the redundant target are processed independently and in parallel. The processing time of 

each feature channel is conceived as a random variable and as such exhibits varying 
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finishing times from trial to trial. When two channels race against each other, and the winner 

of the race determines the finishing time, this, on average, results in faster response times 

than one feature channel alone (see Figure 1.3). 

 

 

Figure 1.3    Illustration of a race model. Stimuli S1 and S2 are analyzed in 

separate and independent channels. The first channel to reach a critical 

activity determines the response time as it triggers the response behavior. The 

redundant signals effect in this model is a statistical facilitation: the response 

time variances of both channels are expedited by this minimum stopping rule. 

 

Jeff Miller formalized a distributional bound for the entire class of race models – the 

race model inequality (1982): 

     
( )     

( )     
( )               (2) 

where F_ denotes the cumulative distribution function of the single signal conditions 

(S1 and S2) and the redundant signal condition (S1S2). It quantifies the maximum speed-up of 

response times accountable by a race model architecture. Whenever data violates this 

bound for any time point t, the entire class of race models must be eliminated as an 

architectural candidate for the redundant signals effect. 

The alternative to a race model is a coactivation model: here it is assumed that the 

two feature signals integrate or coactivate into a common decision unit before reaching the 

response threshold. As the activity of two signals builds up faster, the threshold is reached 

earlier (see Figure 1.4). 
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Figure 1.4    Illustration of a coactivation model. In a coactivation model, the 

processing of stimuli starts independently and then the activity is pooled 

across channels. This results in a higher activation than for one channel alone 

and shortens the response time. 

 

Whenever the race model inequality is violated, this is seen as direct evidence 

against the class of race models. Coactivation accounts as the alternative are only inferred 

on as there is no direct test for them. In the literature, only few explicit coactivation models 

exist, all of which assume a coactivation at the decisional stage. On a conceptual level, the 

speed-up in the redundant signals paradigm must not be restricted to the decisional stage. 

There are studies that try to establish the RSE as a post-selective (i.e. nondecisional) effect. 

However, no comparison of competing coactivation accounts (with respect to the stage of 

coactivation) has been investigated in the literature so far. The RMI test itself is by design not 

able to discriminate between different coactivation accounts and can only rule out the null 

hypothesis (that is, a race model architecture). 

From a test theoretic standpoint, the RMI test (as every other statistical classifier) can 

produce two types of errors: type I errors occur when race models are falsely rejected and 

type II errors occur when the test fails to reject race models although the data was generated 

by a coactivated mechanism. Because the RMI test is a non-parametric and compound test 

in nature, its properties have been investigated by means of numerical simulations. These 

simulation studies identified and confirmed several shortcomings of the test. First, one of the 

steps in the test’ algorithm can introduce a bias towards violations. Second, because the test 

employs multiple t-tests on the same data, type I error or alpha accumulation can reach 

substantial values for specific experimental settings. Third, in presence of a moderately to 

highly varying base time the power of the RMI test is drastically reduced. But even without 

highly varying base times the test is deemed to be rather conservative as it pits the most 

extreme case of race models against experimental data of interest. 
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However, those studies have not employed the most current models of decision 

making (in particular sequential sampling models) for their response time generation. Instead 

the data was generated by distribution functions that share the general shape of response 

time distributions. They furthermore do not feature coactivated data or a plausible 

mechanism to generate it. And lastly, coactivation model variants (with coactivation occurring 

at different stages of the decision process) have not been tested against each other with 

implementations of formal models of decision making. 

The race model inequality test has been employed in a multitude of experimental 

tasks and settings involving various modalities and response effectors. It is a pivotal 

instrument to infer the cognitive architecture of simple decisions. The validity and reliability of 

this test heavily relies on the fundamental understanding of its statistical properties.  

The present study aims at applying state-of-the-art models of decision making to a 

classical experimental paradigm of mental chronometry – the redundant signals paradigm. It 

aims at improving the understanding of the race model inequality test and elucidating the 

mechanisms of coactivation within a formalized and computationally intensive framework. 

 

1.3 Scope of the present Study 

The present thesis pursues objectives at different levels. On a conceptual level, the 

thesis adds to the debate on the locus and mechanism of evidence integration in the 

redundant signals paradigm. Using a diffusion model analysis, the fitting performance of 

different coactivation model variants (reflecting different loci of integration) to data of two 

bimodal detection experiments is compared. 

On a methodological and statistical level, the RMI test is evaluated by means of large 

scale simulations. At the core of these simulations, well established and state-of-the-art 

models of decision making are implemented as generators of reaction times. By that, an 

integration and extension of the previous numerical investigations of the RMI test is possible. 

Specifically, the interplay of different experimental and statistical variables is illuminated and 

provides a conclusive picture of the tests’ statistical profile. 

Overall the thesis advances the understanding of the RMI test and provides a 

principled way to improve its performance. Furthermore it investigates the locus of 

coactivation for bimodal simple reaction time tasks. 
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1.4 Summary of Findings 

1.4.1 Chapter 2 

Chapter 2 provides a literature review on the fundamental theoretical aspects of this 

thesis. It will cover the paradigm of mental chronometry as a means to investigate the 

cognitive architecture of decisions in the redundant signals paradigm. This is followed by an 

account of explanatory models, concerning architecture and locus of the effect. The race 

model inequality test is then formally derived and research on the tests statistical profile is 

reviewed. After that, current models of decision making are presented and applied to the 

redundant signals paradigms. The chapter is concluded by a motivation and formulation of 

the research questions of the present study. 

 

1.4.2 Chapter 3  

In chapter 3, the fitting performance of different coactivation accounts to empirical 

data is compared. The reaction times and accuracy data of two bimodal detection tasks were 

collected. In Experiment 1, a simple reaction time task with auditory and visual stimuli was 

performed and in Experiment 2, a two-alternative forced choice task with the identical 

bimodal stimuli was conducted. The quantile proportions of the response times for each 

condition (auditory, visual and audiovisual condition) was fit to the quantile proportions of 

coactivation models of different design: (i) a decisional model, where only the parameter for 

the rate of evidence accumulation could vary across conditions, (ii) a nondecisional or motor 

model, where only the parameters of the base time differed across conditions, and (iii) a 

combined model, where both decisional and nondecisional parameters were fit individually 

for the experimental conditions. 

The empirical data displayed a large amount of coactivation as the RMI test was 

violated across nine and ten probability points for experiment 1 and 2 respectively. The 

numerical fitting of the data revealed, that the combined model possessed the best 

goodness-of-fit for both experiments. Based on these results, the conclusion can be made, 

that coactivation is not restricted to the decisional stage of the response times. Interestingly, 

for the data of Experiment 2 to larger proportion of the RSE can be explained by a 

coactivation in the motor regime. An evaluation of the fitting procedure itself revealed a 

differential performance across the models, as there was a high amount of failed fitting 

attempts for the nondecisional and combined model compared to the decisional model. This 

disparity is further treated in the discussion section.  
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1.4.3 Chapter 4 

In chapter 4, a large scale Monte Carlo simulation study is performed to evaluate the 

statistical properties of the RMI test. The performance of the RMI test, in terms of type I 

errors, power rate and estimation bias is analyzed for several experimental and statistical 

manipulations. Experimental data is synthesized for race models and coactivation model 

using Ratcliff diffusion models as generating mechanisms. This marks an integration and 

validation of existing simulation studies in a coherent simulation framework, using state-of-

the-art mechanistic model of decision making (here, the Ratcliff diffusion model). The amount 

of correlation between the racers is controlled by a parameter to investigate the type I error 

proneness in dependence of interchannel correlation. For the coactivation model, a weighted 

drift rate summation mechanism is utilized to produce both latently and manifestly 

coactivated data. By using the Ratcliff diffusion model, the decisional and nondecisional 

components of the decision times could be varied independently.  

The simulation study looked into (i) quantitative estimates on the power of the RMI 

test, (ii) an investigation of the estimation bias both for race and coactivation models, (iii) the 

effect of base time variance on type I errors, power rates and estimation bias, and finally (iv) 

the validation of the previous simulation results by applying an explicit mechanistic model of 

decision making for the synthetization of all response time and accuracy data. 

Overall, the simulation framework showed a strong degree of plausibility as all 

implemented manipulations affected the appropriate measures. The analysis of the power 

rates confirms that the RMI test is rather underpowered: only for high amounts of 

coactivation strength, low base time variance and sufficiently large sample and subject sizes 

an acceptable power rate of approx. 80% can be reached. The type I errors display a severe 

amount accumulation, but only in case of highly negative interchannel correlations. For 

moderately negatively correlated and uncorrelated conditions, type I error accumulation in 

fact does not occur. The estimation bias is negligible, once more than 40 samples are drawn 

per condition. Large base time variance reduces both type I errors and power rates, and thus 

should be taken into account by experimenters when choosing their response effectors and 

behavior. 

The simulation framework and its results improve the understanding and use of the 

RMI test as a tool to infer on the cognitive architecture responsible for integrated decisions. 

The framework can effectively help researchers and experimenters to validate their results by 

providing quantitative estimates of type I errors and power rates for specific experimental and 

statistical parameter choices and is of high practical relevance. 
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1.4.4 General Discussion 

In the last chapter, a critical evaluation of all the results of the present study is given. 

Theoretical and methodological limitations are detailed and discussed. Aspects like the 

underspecification of the RSE as a phenomenon, the critical relation of the context 

independence assumption for the RMI testing and potential adaptations of both the diffusion 

model and the simulation framework are treated.  

Implications of the present study and its results are outlined and future research 

questions are formulated. These cover the expansion of the present scope and approach, 

such as combining this approach with other decision related measures, an application to the 

integration of more than two evidence sources and the modeling of decision chains as a 

logical next step. The impact and significance of the present study are emphasized and 

conclude the thesis.  
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2 TESTING COGNITIVE ARCHITECTURES 

The aim of this chapter is to establish a profound theoretical groundwork for the 

ensuing empirical and computational investigations on the redundant signals effect and the 

race model inequality test. It consists of five parts: In the first part (subchapter 2.1), a concise 

literature review on the application of mental chronometry to the question of cognitive 

architecture is provided. The second part (subchapter 2.2.) introduces the redundant signals 

paradigm and provides a catalogue of explanatory models for the redundant signals effect. 

These are contrasted with respect to the proposed integration mechanism and the locus of 

integration. In the third part (subchapter 2.3), a formal account of race models is given 

together with the derivation of the race model inequality test on a level of means and 

distributions. This is relevant for the identification of the specific issues and shortcomings of 

RMI testing. The fourth part (subchapter 2.4) introduces the most current models of decision 

making, namely sequential sampling models. One prominent and well established 

exemplar - the Ratcliff diffusion model - will be detailed and applied to the redundant signals 

paradigm. This application enables the principled investigation of all the problems brought 

forward in the preceding subchapters. On a broader level it constitutes a theoretical and 

empirical advancement as it combines the logic and rationale of mental chronometry with the 

most recent models of decision making. It is also the core of the empirical (chapter 3) and 

simulation parts (chapter 4) of the present study. In the final part of this chapter (subchapter 

2.5), the research questions of the present study are motivated on the basis of the theoretical 

groundwork and the worked out issues of the RMI test so far. The significance of the present 

study is carved out and concludes the chapter. 

The content of chapter 2 is essential for understanding the ensuing theoretical and 

empirical work of this study. Where necessary, explicit references to parts of this chapter will 

be given in the empirical investigations that follow.  

 

2.1 The Question of Cognitive Architecture 

Over the past several decades, there has been remarkable progress in cognitive 

psychology by linking formal mathematical (rather than solely qualitative) models to 

experimental designs. This approach allowed for discriminating between competing 

theoretical accounts of mental processes with help of elaborated quantitative analyses. 

One of the pivotal and most central questions in the investigation of psychological 

mechanisms is what architectures have afforded them. In which way to humans perceive, 
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remember, or cognize items in their mind - simultaneously (that is, in parallel) or sequentially 

(that is, serially)? The serial-parallel distinction has been treated on different levels of 

empirical and theoretical investigations. 

 

2.1.1 Neurophysiology 

On a neurophysiological level, Livingstone and Hubel could show that visual 

processing works in separate and parallel channels from the retinal level onwards (Hubel & 

Livingstone, 1985, 1987; Livingstone & Hubel, 1984, 1987, 1988). The separation of retinal 

cells specialized for high temporal− and, respectively, high spatial−frequency information is 

maintained in the laminar network of the lateral geniculate nucleus (LGN) and further in 

cortical areas. One pathway specialized for extracting motion information runs through 

distinct layers of the LGN, V1, and V2 on to the medial temporal area (MT), whereas the 

other pathway coding color and form information runs though distinct layers and sections 

(blobs, inter−blobs of V1, and thin−, inter−stripes of V2) on to V4 and higher−level areas in 

infero−temporal cortex. It is now commonly accepted that the neuronal visual processing 

stream operates in functionally separate and parallel pathways or channels. The interplay 

and exact nature of these pathways are still under debate (for a review, see Sincich & 

Horton, 2005). Similar to the visual domain, other modalities have been attested a parallel 

initial processing of external stimuli. 

 

2.1.2 Mental Chronometry 

On a behavioral level, the question of architecture and mode of cognitive processing 

has been investigated with the help of mental chronometry. There, response time and 

accuracy data are used to infer the content, duration and temporal sequencing of cognitive 

processes (Townsend & Ashby, 1983). The use of response times as the main dependent 

variable is old and has its origin more than a century ago (Posner, 2005). One of the earliest 

instances of mental chronometry to uncover the durations required by various mental 

processes was Donders’ method of subtraction (Donders, 1969). It was based on the idea 

that complicated mental activities were compounded in a simple sequential fashion from less 

complex parts, with mean response times being used to estimate the duration of each of the 

component durations. Following that idea, the duration of a complex cognitive task can be 

inferred on by first measuring the duration for each of the supposed components of the task. 

Then the mean response time for the simpler parts will be subtracted from the overall 

response time to obtain an estimate of the complex part of the task. 



Testing Cognitive Architectures 14 

 

2.1.3 Response Time Decomposition 

Even the simplest mental activities - such as e.g. the detection of a stimulus - involves 

a cascade of processing stages. Response times reflect this composite nature, as they are 

canonically modeled as a compound of decision time and nondecision or base time (Luce, 

1991). The decision time, D, is defined as the (latent) time necessary to form a decision. Its 

duration is determined (amongst other factors like stimulus properties) by the complexity of 

the experimental task. The base time component, B, on the other hand is an amalgam of all 

the processes not involved in the decision making. These include stimulus encoding and 

transmission to higher processing centers and the time for response selection, preparation 

and execution. The observable response time, RT, then is modeled as the sum of the 

decision time and the nondecision time: RT = D + B.  

 

2.1.4 Complexity of Decisions 

The complexity of the decision itself depends on the depth of processing necessary to 

form the decision. There are four basic types of decisions in a mental chronometry task. In 

simple reaction times, the observers are required to respond to the onset of any stimulus. For 

example, in a bimodal an observer has to press a button as soon as a visual or auditory 

stimulus appears. In recognition or go/ no-go reaction times, the observer also has to 

respond upon the detection of a specific stimulus type. In contrast to a simple reaction time 

however, the observer has to withdraw its response when another stimulus type appears. For 

example, the observer might be instructed to press a button for words of a prelearned list and 

withhold the button press for words that are not on that list. Choice reaction times share the 

basic protocol of go/no-go tasks, except that the observer does not withhold its response for 

the non-target stimulus set, but actively responds with a different response behavior (here, a 

different button press). Discrimination reaction times represent the most complex decisions in 

mental chronometry. There, observers must compare pairs of simultaneously presented 

stimuli according to predefined categories. For example, observers must discriminate which 

of two visual stimuli appear to be brighter, bigger, or the like. 

Response times are not a constant entity but are conceptualized as the realizations of 

a random variable. Due to momentary attentional lapses and system inherent noise (e.g. 

Laughlin & Sejnowski, 2003), there is a considerable amount of variability in the observer’s 

response time. To control for this, the observers are required to perform the experimental 

task for multiple trials to obtain reliable estimates of the response times. Also the amount of 

variability can be used as a source of information, as variances accumulate for more 

processing stages. 
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Donder’s method of subtraction then rests on the assumption, that the specific mental 

processes act serially and independently of each other. As further research however would 

show, this assumption does not hold in general for mental processes. One striking reason 

why this was only uncovered later, is due an issue that is prevalent for the question of 

parallel and serial processing – the problem of model mimicking. 

 

2.1.5 Model Mimicry 

Model mimicry refers to the ability of one class of models of a psychological process 

to make the same predictions as other classes of models on the basis of strikingly different 

psychological assumptions. Some of the early attempts to settle the question tested certain 

types of parallel and serial models (e.g. Egeth, 1966). As it turned out, the methods used to 

test certain parallel and serial models, failed to test other models that might have explained 

the same data (for example, Atkinson, Holmgren, & Juola, 1969; Murdock, 1971; Townsend, 

1971). Further analysis by means of mathematical modeling showed, that representations of 

diametrically opposed psychological principles could sometimes mimic one another and not 

be distinguished even on a level of their defining probability law (for an example, see 

Townsend & Wenger, 2004).  

 

2.1.6 Levels of Analysis 

Unfortunately, a great amount of information that is provided by response times is 

lost, when the data is compressed to the level of means. This appears all the more 

remarkable, when considering, that response times are almost always right skewed, so a 

compression to the central moment is concealing an informative aspect of the distribution. 

Effects in means however, can be produced by shifts of response time distributions, or 

stretching the slow tails of response time distributions or some combination of the 

aforementioned (Balota & Yap, 2011). The inclusion of the whole response time distribution 

for the analysis and investigation of mental processes marks an important advancement in 

mental chronometry. It can effectively help avoid model mimicry. 

One paradigm that uses a distributional bound to increase the discriminative power 

and avoids model mimicry is the redundant signals paradigm. It investigates the performance 

of observers in perceptual-motor decisions, which necessitates an integration of evidence 

stemming from one or more signal sources. It epitomizes both the theoretical dilemma and 

the methodological advancements in mental chronometry. By use of a distributional bound it 

enables researchers to test the observed performance against an entire class of models – 
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the separate activations or race model accounts. It has been applied in a myriad of 

experimental settings and was subject to a multitude of theoretical and empirical studies. In 

the following, the redundant signals paradigm will be introduced as a means to infer the 

cognitive architecture for decisions based on multi-signal evidence. A formal derivation of the 

race model inequality test will be provided before turning to the explanation models of the 

redundant signals effect. 

 

2.2 The Redundant Signals Paradigm 

The redundant signals paradigm (RSP; Todd, 1912; Kinchla, 1974) forms the core of 

the present study. It is an established and well studied experimental paradigm that applies 

mental chronometry to the question of cognitive architecture of perceptual-motor decisions 

for multisensory and/ or multimodal stimulation. In an RSP task, observers have to respond 

as soon as a critical stimulus – an element from a predefined set of target stimuli – appears. 

The response is identical for each target stimulus and each trial can consist of either a single 

target (single signals trial, SST) or two (or more) targets (redundant signals trial, RST). The 

redundantly defined target is then the simultaneous presentation of either two identical target 

element at one or two locations or two different target elements at one or two locations. For 

the RST at one location, the target can be a combination of two or more features, dimension 

or modalities. The general finding for all redundant signals experiments is that the mean 

response time for the redundant signals trials is faster than the mean response time of either 

single signal condition. This speed-up has been termed redundant signals effect (RSE; 

Hershenson, 1962). 

 

2.2.1 Classification of RSP Experiments 

A general way to classify RSP experiments is (Töllner, Zehetleitner, Krummenacher, 

& Müller, 2011) to discriminate them by the spatial origin of the signals (same versus 

different), the modality of the involved signals (e.g. vision, audition, tactition), the number of 

relevant modalities (one, two or more) and the depth of signal processing (cf. complexity of 

the decision). This classification provides a means to expose vital differences in the 

experimental setup when comparing potentially conflicting results. Two examples for 

redundant signals experiments will be provided and classified according to this system, 

before turning to the catalogue of explanatory models of the RSE. 

As a first example, a bimodal simple response time task is delineated. Here, 

observers are required to press a button with both their index fingers, once they detect the 
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onset of any stimulus. The stimulus can be a Gabor patch, an acoustic beep or the 

combination of the two with a varying interstimulus interval. As on every trial a stimulus will 

appear, observers have to respond on every trial. However, to prevent anticipatory effects, 

the intertrial interval is varied. In the aforementioned classification system, this experiment 

would feature one spatial origin of signals, two modalities (namely vision and audition) and 

require a simple decision performance (i.e. a simple reaction time task). 

 

 

Figure 2.1    Redundant pop-out search displays. Observers are required to 

respond upon the detection of any pop-out target. Single signals trials (panels 

A and B) yield on average slower reaction times than redundant signals trials 

(panels C and B). Redundant signals trials are the combination of single 

signals, either at one location (panel C) or at neighboring locations (panel D). 

 

In the second example, a visual pop-out search task is performed. There observers 

have to search for targets amongst distractors, which pop-out from their surrounding by one 

or more discrepant dimensions within the visual domain (see Figure 2.1). The target set is 

composed of black untilted bars (Panel A), gray tilted bars (Panel B), black tilted bars 

(Panels C) or the combination of a black untilted and a gray tilted bar amongst gray untilted 

distractors (Panel D). Here, the first two targets are exemplar for single signals, whereas the 

latter two are redundant signals. In the classification system, this experiment would be 

characterized by two spatial origins, one modality, namely vision and a moderately complex 

decision task, as stimuli do not appear in solitude but have to be discriminated against other 

stimuli. 

 

2.2.2 Model to explain the RSE 

The redundant signals effect was first reported by Todd (Todd, 1912), and has been 

thoroughly investigated, empirically and theoretically (Colonius, 1988, 1990a; Diederich, 

1995; Giray & Ulrich, 1993; Miller, 1982; Mordkoff & Yantis, 1991; Schwarz, 1989, 1994; 
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Townsend & Colonius, 1997; Townsend & Nozawa, 1997; Townsend & Wenger, 2004) for 

go/no-go tasks (Egeth & Mordkoff, 1991; Heijden, Heij, & Boer, 1983; Gondan, Götze, & 

Greenlee, 2010), search RT tasks (Krummenacher, Müller, & Heller, 2001), for elderly 

subjects (Bucur, Allen, Sanders, Ruthruff, & Murphy, 2005), different modality combinations 

(Schröter, Frei, Ulrich, & Miller, 2009; Veldhuizen, Shepard, Wang, & Marks, 2010), and 

different neurological deficiencies (Pollmann & Zaidel, 1999; Marzi et al., 1996; Reuter-

Lorenz, Nozawa, Gazzaniga, & Hughes, 1995; Miller, 2004). 

 

 

Figure 2.2    Statistical facilitation or race model account. Reaction times can 

be decomposed into decision (DX, DY) and nondecision times (B). Decision 

and nondecision times are modeled as random variables with a channel 

inherent variance. The processing times of the channels are independent of 

each other and the faster channel determines the decision time. On average, 

the minimum of the decision times is lesser than each channel decision time 

alone. 

 

It exemplifies the question of cognitive architecture as competing models postulate 

drastically different psychological assumption to account for it. Historically, the redundant 

signals effect has been initially explained by a separate activations account (Raab, 1962). 

Raab proposed that the processing of a redundant signal can be conceptualized as a horse 

race of the single signals. Sensory components of the redundant stimulus are processed 

independently and in parallel (Miller, 1982) and race against each other. The faster channel 

then decides the “race”, as it reaches a specific decision criterion earlier. Both channels 

process the response-relevant signals in a stochastic way, thus the minimum finishing time 

for two or more channels is on average faster than of one alone (see Figure 2.2). 
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In its first formulation, the redundant signals effect generated by a race model was 

bounded on a mean level:  

 [    (   )]     [ ( )  ( )]    (3) 

where E(  ) denotes the expectation of a random variable, and X and Y the random 

variables for the detection time of each target channel. (This is a special case of Jensen’s 

inequality, see for example Rudin, 2006). What is remarkable about this first account of the 

RSE is that de facto no integration of signals is assumed. It rather states that the RSE is the 

result of a statistical facilitation: As both channels act independently of each other and vary 

from trial to trial, on average one of the channels will be faster than the other. The variability 

in response times is expedited and forms the actual cause for the observed speed-up.  

 

2.2.3 Race Model Inequality 

Miller (1982) formalized a distributional upper limit for the maximum amount of 

facilitation that race architectures can account for – the race model inequality (RMI). It relates 

the distribution function of the redundant signal to the distribution functions of the single 

signals: 

   ( )    ( )    ( )                (4) 

Here, FX(t), FY(t) and FXY(t) are the cumulative distribution functions (CDF) of the 

reaction times for the single signals trials of conditions X and Y and for the redundant signals 

trials XY. Equation 4 marks a critical test for all race models: Any response time data 

violating this inequality (for any time point t) by definition leads to a falsification of the whole 

class of separate activation models. It marks the best possible performance race model 

architecture. When both racers have a perfect negative correlation the variance of the 

channels is expedited in the strongest way (Ulrich & Giray, 1986; Colonius & Diederich, 

2006). This then is not a stochastically independent processing of signals, but implies that 

fast processing times of one signal co-occur with slow processing times of the other signal. 

As further empirical studies would show, the RMI is frequently violated excluding race 

models as a viable architecture for the RSE in many experimental situations (Diederich, 

1992; Egeth & Mordkoff, 1991; Feintuch & Cohen, 2002; Grice, Canham, & Boroughs, 1984; 

Krummenacher et al., 2001; Krummenacher, Müller, & Heller, 2002; Miller, 1982; Mordkoff, 

Miller, & Roch, 1996). The common alternative accounts are coactivation models, proposed 

by Miller (1982; 1986). 
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Coactivation models assume that single signals originating from two (or more) 

afferent channels do interact and integrate at some stage (see Figure 2.3). Thus decision 

related activity builds up faster and to a higher level on redundant signals trials compared to 

single signals trials, resulting in redundancy gains that cannot be accounted for by race 

models. 

 

 

Figure 2.3    Coactivation model. The processing of the stimuli interacts and 

activity across channels is pooled to a higher and faster value. This leads to a 

speed-up in the decision time.  

 

Coactivation models can produce such violations of the RMI and are the commonly 

assumed alternative hypothesis. It is important to remark, that violations of the RMI only 

falsify race models and provide no direct evidence for concrete coactivation mechanisms. 

From a theoretical standpoint however, there are other architectures that can produce RSE 

and violations of the RMI. (Further alternative accounts such as the interactive race model 

(Mordkoff & Yantis, 1991) and serial architectures with an exhaustive stopping rule 

(Townsend & Nozawa, 1997) have been proposed. At least in the visual domain these could 

be excluded empirically as potential models of the RSE and RMI violations, for a review see 

Zehetleitner, Müller, & Krummenacher, 2008b). 

Mostly, researchers have implied coactivation models upon detecting violations of the 

RMI and have not explicated mechanisms that could generate the redundancy gains. Two 

coactivation models that have provided an explicit mechanism are the multichannel diffusion 

model by Diederich (1995) and the diffusion superposition model by Schwarz (1994) (Both 

models will be described in detail in the subchapter 2.4, where explicit mechanisms of the 

RSE are discussed.) For the moment, it suffices to note that both these models assume a 
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decisional stage for the integration of signals. From the stance of mental chronometry 

however, this is only one potential locus of the effect. 

 

2.2.4 Locus of the Redundant Signals Effect 

In cases where the RMI test has robustly attested violations and a race model 

account can be excluded, still the question remains, how exactly this data pattern comes 

about. Thus, orthogonal to the architectural question (independent parallel versus coactive 

parallel), researchers have investigated at what processing stage the RSE can occur – with 

different results. Consistent to the distinction of decision and nondecision times in mental 

chronometry (Luce, 1991), most cognitive models on decision making assume, that to 

perform a perceptual-motor task various distinct subprocesses have to be completed. 

A fictitious audiovisual bimodal redundant signals experiment will be decomposed in 

this sense to illustrate all the involved processing stages. The observers’ task is to detect 

items of a target set amongst distracting items. First, all the stimuli (auditory and visual) have 

to be encoded in parallel by the various modality systems. The activation of these systems is 

then transmitted to higher processing units. There, decision units accumulate the sensory 

evidence upon a threshold. Once this threshold is reached, a response signal is triggered. 

This leads to the next-to-last stage, where the response is prepared (e.g. by selecting and 

preparing a motor plan) and finally to the measurable response execution.  

Owing to the fact that apart from the last stage (where the response is executed) all 

other stages are latent and unobservable, these multiple stages collapse into two reaction 

time components. Canonically the response time is decomposed into a decision time that is 

consumed by the process of research interest (e.g. detection, identification, discrimination) 

and a nondecision or base time, where all the stages not involved in the decision are 

merged. This aggregation of stages is not deemed to be problematic, because basic 

processes such as encoding and executing motor programs are thought to be relatively 

constant over time and display only little amount of variance (Luce, 1991). 

Explicit accounts of coactivation model the RSE as a decisional effect. In theory 

however, any of the stages (or combinations of them) can be responsible for the speed-up in 

the overall response time. In the redundant signals paradigm, this has been addressed for 

the visual modality, as it is generally agreed on, that the visual RSE is a result of coactivation 

rather than parallel race models (Feintuch & Cohen, 2002; Krummenacher et al., 2001; 

Mordkoff & Miller, 1993). There is however an ongoing debate on the specific locus of the 

visual RSEs, which can be viewed as prototypical for other domains. Accounts favoring a 

pre-attentive perceptual locus (Zehetleitner, Krummenacher, & Müller, 2009a; Koene & 
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Zhaoping, 2007; Krummenacher et al., 2001, 2002; for a review Zehetleitner et al., 2008b) 

assume that at least part of the RSE is generated at the level of early stimulus analysis, 

where the relevant target attributes are coded and compared with those of non-target 

elements, without necessarily involving stages following focal-attentional target selection. 

 

2.2.5 Decisional Accounts 

Results supporting a pre-attentive view have been presented by Zehetleitner et al. 

(2009b) and Krummenacher et al. (2001, 2002). They conducted a visual pop-out search 

task where the redundant target was composed of one or two targets. Observers had to 

discriminate the presence (vs. the absence) of any target. Targets could be singly 

(orientation or color) or redundantly (orientation and color) defined in the search display. 

Crucially, on redundant-target trials, the distance between the color and the orientation 

singleton could vary from zero (one bar contains both target features) to three (two target 

bars were separated by two distractor bars). Krummenacher et al. (2002) found violations of 

the RMI, only with small spatial separations (one to two) but not with larger separations. This 

hints at an integration of signals before response selection or response execution, because 

these stages should be unaffected by the distance between targets. 

More recently, Zehetleitner et al. (2009b) examined the size of the RSE and the 

amount of coactivation (using the geometrical measure by Colonius & Diederich, 2006) under 

pop-out search conditions of high- or low-feature contrast of the target relative to the 

distracters. The authors found both the size of the RSE (RSEs of 50 vs. 15 ms) and the 

amount of coactivation to be larger for low-contrast than for high-contrast redundant targets. 

This pattern argues against a post-selective origin of coactivation effects: given that the 

manipulation of feature contrast affects the speed of focal-attentional selection (which is 

determined by pre-attentive coding processes) a post-selective origin of coactivation would 

have predicted the RSE to be statistically comparable in both conditions rather than to be 

dependent on target feature contrast. 

By contrast, other authors have proposed that the RSE arises exclusively at stages 

subsequent to attentional selection (Miller, Beutinger, & Ulrich, 2009; Feintuch & Cohen, 

2002; for a review see Miller & Reynolds, 2003). Results that affirm this post-selective view 

have been reported by Miller et al. (Miller et al., 2009) who presented one or two target 

stimuli either at expected or unexpected locations. They found the RSE to be comparable in 

both conditions, from which they inferred that the redundancy gains arise after target 

elements were selected by focal attention. Using a similar rationale, Feintuch and Cohen 

(Feintuch & Cohen, 2002) presented two bars that had one of three possible colors and one 
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of three possible orientations, with one specific color and one orientation being defined as 

response-relevant target features. Observers had to produce a go-response if they discerned 

either the target color or the target orientation or both the target color and the orientation in 

the display. The target features could belong either to one bar or to two separate bars. 

Feintuch and Cohen found RMI violations only if the target features belonged to the same 

bar rather than to separate bars. However, when focal attention was guided to both bars 

simultaneously by presenting them within an outline ellipse (i.e., within a surrounding object 

cue), there was evidence for coactivation by target features belonging to separate bars. 

Feintuch and Cohen concluded that the coactivation mechanism is located in the processing 

stream after focal-attentional selection, and attentional selection is a prerequisite for the 

coactivation mechanism to come into play. This finding is at variance to Krummenacher et al. 

(2002) who found evidence of coactivation in a similar situation. The authors revisited this 

question and argued that coactivation takes place at a level before attentional selection. In 

their Experiment 3, they pre-cued the spatial location of an upcoming search target 

symbolically and examined the RMI at uncued and cued locations. As they found evidence 

for coactivation for both non-preselected and preselected locations they took this as 

evidence in favor of a pre-attentive rather than a post-selective locus of coactivation in pop-

out search.  

A recent study by Töllner, Zehetleitner, Krummenacher and Müller (2011) combining 

mental chronometry with electrophysiological markers could show that in visual pop-out 

search, redundancy gains originate entirely from processes that operate at the processing 

stages of pre-attentive perceptual encoding. There did not appear to be any (additional) 

contribution from post-selective stages of stimulus analysis and stimulus-response mapping 

and of response execution. This finding however, has to be taken with a grain of salt due to 

the asymmetrical epistemological value of absence of evidence compared to evidence of 

absence. 

 

2.2.6 Motor Accounts 

Proponents of an even later stage of coactivation localize the source of the speed up 

in the motor regime. In fact Miller himself pointed out that although coactivation appears to 

be most plausibly a decisional effect, further research is necessary to rule out the possibility 

that response execution is accelerated (Miller, 1982). Empirical evidence in favor of a motor 

account of coactivation has been reported by several authors. 

Ulrich and Stapf (1984) present evidence for a speeding up of the motor processes, 

but not exclusively at that stage. They applied a double-response paradigm to an auditory 
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and a visual simple reaction time task with varying stimulus intensity. Observers had to 

perform a button press with both hands simultaneously upon detection of any stimulus. They 

analyzed the difference of both manual response times by isolating the motoric component. 

Let S be the time needed to detect the stimulus and prepare the motor command for 

movement execution and ML, MR be the motor time for the left hand and right hand response 

respectively. S is the same for both RTL and RTR as both movements are triggered upon the 

detection of the stimulus. The RT difference D 

          (    )   (    )       ,  (5) 

then depends only on ML and MR, since the common term S is dropped. If stimulus 

intensity affects only the earliest stages of stimulus encoding, then the distribution of the RT 

difference should be invariant to a change of stimulus intensity. This logic is independent of 

the distributions ML and MR might have and whether the mean motor delays are equal for 

both hands. To determine whether stimulus intensity speeds up the motor delay, one has to 

make one additional assumption. As motor delays are not directly observable, one assumes 

that if the variance of the motor delay decreases with stimulus intensity, this gives evidence 

that mean motor delay is decreased too. The authors did find that the motor delay was 

decreased by an increase in stimulus intensity. 

Diederich and Colonius (1987) performed a bimodal detection task with redundant 

stimuli using the double response paradigm by Ulrich and Stapf. They analyzed the RT 

differences between hands to obtain an estimate of the motor delay as a function of stimulus 

onset asynchrony (SOA). The SOA manipulation is assumed to give an insight into the time 

course of the RSE (see Miller, 1986). The authors reported a slight but significant effect on 

the variance of D in redundant-signals trials. Specifically they found a U-shaped functional 

dependence between the variance of D and stimulus onset asynchrony of the visual and 

auditory conditions. The function dependence was parallel to the way in which the RSE 

depended on the SOA. This finding can be seen as (indirect) positive evidence for the motor 

coactivation hypothesis. 

Giray and Ulrich (1993) employed a psychophysical measure that is not commonly 

used in mental chronometry. They recorded response force of manual responses in a 

bimodal divided attention task. Based on the previous literature on motor coactivation, they 

hypothesized that the response forces for bimodal signals trials will be greater and that the 

facilitation mechanism is effective at a motoric level. They could show that observers 

produces more forceful responses under bimodal than unimodal stimulation. However, this 

effect depended on the type of task: a relatively large force effect was found for a divided-

attention task and a weaker effect for the focused-attention task. They interpreted that the 
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motor system is more active in bimodal than unimodal stimulation and that the RSE is at 

least partially located in the motor system. The authors argue in favor of utilizing response 

force as an additional measure for the investigation of coactivation, as a correlation analysis 

between suggests that response force is not inherently redundant to reaction times.  

At least for visual discrimination tasks, the study by Mordkoff, Miller and Roch (1996) 

could disconfirm the motor-coactivation hypothesis. They could show that response force is 

in their experiments was determined by the number of stimuli rather than the number of 

targets in the visual field, when target-distractor discriminations were required. Using three 

motor-related psychophysical measures (i.e. response force, event-related potentials and 

electromyograms), and despite large amounts of RMI violations, the authors could not find 

evidence favoring a motor-coactivation. In fact, all three measures indicated that the motor 

process started earlier in RST than in SST, implying that all of the effect of redundant targets 

lies before the onset of motor processing. 

 

2.2.7 Intermediate Conclusion 

In a nutshell, there are several accounts that try to explain the RSE (and violations of 

the RMI). They can be classified according to their proposed architecture (serial, 

independent parallel or coactive parallel) and in their locus of the effect. Moreover, there are 

several points that become evident from the literature review. First, the RMI test can be a 

valuable tool to infer the architecture of multisignal decision tasks, namely by falsifying one 

class of explanatory models – the race models. If the RMI holds, one must agree with the 

most parsimonious and empirically supported null hypothesis of a race model. If it is violated, 

that whole class (i.e. race models) must be considered as falsified. Second and beyond that, 

the RMI alone can not give insight into the specifics of the generally assumed alternative 

coactivation model. It can neither help to specify the concrete mechanism of the effect nor 

can it elucidate the source (or sources) of the effect with respect to the different processing 

stages of the decision. Lastly, all the explicit models of coactivation assume that it occurs at 

a decisional stage, but have been tested only on a mean level. 

To aggravate matters, research focusing on the statistical properties and performance 

could reveal several intrinsic flaws of the RMI test itself. In theory, these ambiguous results 

might partially be due to a potentially premature elimination of race models as the source of 

the RSE. As every statistical test can be characterized by its false alarm and hit rate, an 

evaluation of the RMI test is of paramount importance for the weight of the conclusions 

drawn from it. In order to assess the statistical side of the RMI test, the next chapter will first 

provide a rigorous formalization of race models, then derive the race mode inequality for 
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decision times only and overt response times (i.e. decision and base times). After a 

description of the standard practices of RMI testing, the chapter will discuss already known 

deficiencies as well as knowledge gaps of the test. These will ultimately lead to the 

motivation and research questions of the present study.  

 

2.3 The Race Model Inequality Test 

The previous elaborations attest that the race model inequality marks a pivotal 

progress within the mental chronometry paradigm. With help of the race model inequality it is 

now possible to distinguish between two radically different processing architectures (parallel 

race and coactivation models), that on a mean level can mimic each other. In the following, a 

rigorous formal description of race models and a concise derivation of the race model 

inequality will be provided. Furthermore the explicit computational algorithm by Ulrich, Miller 

and Schröter (2007) as the standard practice of RMI testing will be detailed. A critical 

assessment of classical and novel issues of RMI testing will conclude the chapter. 

 

2.3.1 Assumptions of Race Models 

In the redundant signals paradigm, reaction times of single signal trials (SST) are 

compared with reaction times of redundant signal trials (RST), where both stimuli are 

presented in combination. Observers are instructed to respond as soon as they detect any 

target (that is, singly or redundantly defined). The redundant signals effect (RSE) is defined 

as the speed-up in mean reaction times between SSTs and RSTs. 

The first model to account for this effect is the separate activations or race model 

account (Raab, 1962). It assumes that the different modalities (or feature dimensions within a 

modality) are processed (a) in separate channels, along which evidence is accumulated 

towards a response eliciting threshold. Let sX and sY be the two single signal channels of 

abstract modalities or dimensions X and Y. Further it assumes (b) that these signals are 

processed in parallel, that is, one channel does not have to wait for the other channel to 

finish before it can begin processing its input. It is also assumed, (c) that the rate of 

processing along each channel is invariant across SS and RS conditions. This assumption is 

known as context independence (Ashby & Townsend, 1986; Luce, 1991). It forms the crucial 

theoretical link to justify the comparison of data gathered in SST and RST. The race property 

(or statistical facilitation) is formalized in the stopping rule of the model. The finishing time in 

RST is determined by the winner of the race, ergo the faster of the two channels. This 

assumption is called (d) minimum-time stopping rule, since the completion of the entire 
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system is the minimum of the completion time of the individual channels. Sometimes it is also 

assumed, (e) that the signals of each channel are processed independently that is the rate of 

evidence accumulation of one channel is not affected by the rate of evidence accumulation of 

the other. A model that satisfies the assumptions (a) to (d) is commonly referred to as a race 

model. A model that additionally suffices (e) is known as an unlimited capacity, independent 

parallel (UCIP) model with a minimum-time stopping rule (cf. the taxonomy of information-

processing models by Townsend & Nozawa, 1995). 

 

2.3.2 Formalization of Race Models 

The decision latencies for each channel are modeled using non-negative random 

variables, say X and Y. These variables are theoretical quantities – the variables governing 

the empirical (measurable) reaction times in each condition are written as RTX and RTY. For 

the moment, the reaction times are assumed to be identical to the decision times for each 

channel respectively. Thus, each measured reaction time is a sample realization of the 

corresponding theoretical quantity: RTX = X, RTY = Y and RTXY = min ( X’, Y’ ), where the 

random variable X’ =d X and Y’ =d Y. The notation A =d B means that A and B have identical 

distribution functions (that is, they are “equal in distribution”). The distinction between X and 

X’ is made to in order to emphasize that although the variables across conditions are equal in 

distribution (usually due to context independence) their realizations are entirely independent. 

For a derivation of the RSE on a mean level, it follows from a special case of 

Jensen’s inequality (e.g. Billingsley, 2008) that 

 [    (   )]     [ ( )  ( )]   (6) 

for any distribution of ( X, Y ). Random variables X and Y are not observable (only 

their minimum is, in the redundant signal condition), but from the equal-in-distribution 

assumptions a testable analogon of Inequality 6 follows: 

 (    )     [ (   )  (   )]   (7) 

This mean level version of the race model inequality has been used to test whether 

data from an RSP experiment can be accounted for by a stochastically independent race 

between the single signal detection times. Whenever the redundant condition generates 

smaller (that is faster) average RTs than this model, all race model can be excluded. Jeff 

Miller developed a more general test on a distributional level that proved to be more sensitive 

than the mean variant (Miller, 1978, 1982). He showed, that the race model inequality  

 (      )   (     )   (     )  (8) 



Testing Cognitive Architectures 28 

 

must hold for all t ≥ 0. This inequality follows directly from 

 [   (   )   ]   (   )   (   )  (9) 

a special case of Boole’s inequality (Billingsley, 2008). Figure 2.4 depicts the race 

model inequality bound together with the single stimulus CDFs for fictitious RSP experiment. 

 

 

Figure 2.4    Race model inequality bound. GX and GY signify the cumulative 

distribution functions of the single signal trials X and Y and GZ of the 

redundant signals trial. The Race model inequality bound is the sum of the 

single signals distribution functions. Whenever GZ is left of GX+GY, this marks 

a speed-up that is not explainable by any model with a race architecture. 

(reprinted and adapted with permission, from Ulrich et al., 2007) 

 

A common way to depict the amount of RMI violation is to subtract the single signals 

distributions from the redundant signals distribution and plot this as a function R*
XY of t (Miller, 

1986) 

   
 ( )    (      )   (     )   (     )  (10) 
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This function R*

XY  is called the race model test function. By the inequality shown in 

equation 8, positive values of R*
XY(t) indicate violations of the RMI. Given that the left-hand 

side of the inequality shown in equation 10 is always bounded by 1, the inequality can be 

rewritten as 

 [   (   )   ]     [ (   )   (   )  ]  (11) 

resulting in the modified RMI test function 

   ( )    (      )     [ (     )   (     )  ]  (12) 

Violations of the RMI will again result in positive values of RTXY(t), whereas negative 

or zero values of RTXY(t) are compatible with the race model. 

It is important to emphasize, that the inequality holds for any race model, not only for 

the independent case. This is relevant because dependent processing does affect the 

predictions of the race model. Indeed, assuming negative dependence — that is, relatively 

fast detection latencies for signal sX co-occurring with relatively slow detection latencies for 

signal sY and vice versa – it is obvious that the smaller of the two random latencies RTX and 

RTY tends to be small as compared to the smaller of two independent latencies, as long as 

the individual latencies’ means do not vary. Note that if the inequality is violated not only if 

the independent model is falsified but in fact any race model is (as the RMI is invariant to the 

dependence between X and Y). 

 

2.3.3 Base Time Component as a Filter 

In the explication above it was assumed, that the measured reaction times RTX, RTY 

and RTXY were samples of the process variables X, Y, and min(X’,Y’). However, reaction 

times are canonically modeled as a sum of two random variables, the processing time and 

the base time (here, BX, BY). The decision component (X, Y) involves the (latent/ 

unobservable) time necessary to accumulate evidence until the threshold of a channel is 

reached. The base time component is an amalgam of all of all processes not involved in the 

decision making that is the stimulus encoding and transmission to higher processing centers 

and the time for response selection, preparation and execution. It is commonly assumed to 

be uniformly of normally distributed. Following Ulrich and Giray (1986) the race model 

incorporating base time is  

                            (     )         (13) 

where X =d X’, Y =d Y’ and BX=d BY =d BXY. This added base time component requires 

an additional assumption, analogous to the context independence – a motor context 
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independence. It states that the base time is invariant across all experimental conditions, 

SST and RST (Luce, 1991 Ulrich & Giray, 1986). When applying this base time component 

to the RMI, this gives 

 [   (   )       ]   (      )   (      )  (14) 

It is evident, that this inequality (eq. 14) is identical to the RMI (eq. 9); the only 

difference is that the quantities in equation 14 incorporate base time while those in equation 

9 do not. Clearly, then violations of the RMI falsify race models whether or not the race 

models include base time (see Ulrich & Giray, 1986). What is not evident at first sight is that 

the presence of a base time (with a specific variance) does affect the sensitivity of the RMI 

test. 

On a theoretical level the attachment of a random variable to the distribution function 

is equivalent to the convolution of two independent random variables (Townsend & Honey, 

2007). Let FX(t) = P(X ≤ t), the distribution function of the decision time. When a function is 

convolved with another function (especially a unimodal function with smaller support), then it 

is usual to refer to the simpler function as a kernel and to view the result of the convolution 

transformation as a filtered version of the input. In the context of the race model inequality, FX 

the distribution function of the decision time represents the input and the base time is 

conceived as the filtering kernel fB:  

    ( )   ∫   ( )  (   )         ( ) 
 

  
   (15) 

Kernels of this type can be understood to act as local averaging mechanisms: each 

point of the output function FX+B, the measurable response time distribution, is a kernel-

weighted average of corresponding points in the input function. 

Townsend and Honey (2007) applied this reasoning and derived the empirical 

equivalent of the race model test function featuring base times.  

      
 ( )    ( )    ( ),     (16) 

where R*
B is the empirical race model test function and R* is the theoretical/ 

decisional test function. By definition, R*(0) = 0 and asymptotically runs to R*(∞) = -1. Any t* 

where the race model test function is positive R*(t*) > 0 constitutes a violation of the race 

model inequality. A standard result from theory of function convolution (Kecs & Giurgiuţiu, 

1982) gives that the maximum positive value of R*(t) is always greater than the maximum 

positive value R*B. More generally, applying Hölder’s inequality, it can be shown that when 

an input function is filtered with a probability density function, the output (here the distribution 
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function of the decision times) will always have a smaller absolute magnitude at its extrema 

than the input function. 

 

2.3.4 Effects of Base Time Variance on Statistical Power 

The results of Townsend and Honey are of high importance when evaluating the 

statistical performance of the RMI test. In essence, the authors could prove analytically that 

the presence of a base time can filter out areas of positivity of the race model function. 

Furthermore, if the breadth of the filter (here, the variance of the base time) is large enough, 

any positivity of the race model function can be eliminated and thus violations prevented. 

This poses a serious problem for RMI testing: whenever researchers fail to find violations of 

the RMI, this might also be due to the filtering effect of the base time component. 

 

 

Figure 2.5    Filtering effect of base times on the race model test function. The 

race model test function f is convolved with a base time component, g. This 

results in a filtering out of areas of positivity (i.e. violations of the race model 

inequality; reprinted with permission from Townsend & Honey, 2007) 
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As different response effectors have inherently different motor variances, some 

response types might preclude violations and lead to false conclusions, here retaining race 

models as the explanatory model of choice (see Figure 2.5). This caveat in RMI testing is 

one research question of the present study. It will be treated in a novel way using 

mechanistic models of reaction times to investigate the interplay of decisional and 

nondecisional components in the simulation study (chapter 4).  

 

2.3.5 Explicit Algorithm for RMI Testing 

After deriving formal accounts of race models and the race model inequality test, next 

the question of how to explicitly perform the RMI test will be addressed. In spite of the 

ubiquity of its usage, it took more than two decades to formulate a standardized algorithm for 

its conductance. This was important and necessary, as the usage of some commercial 

software (e.g. Excel) provides certain percentile estimators which are inappropriate for the 

race model inequality testing. The following algorithm by Ulrich, Miller and Schröter (2007) 

was used in the present study as the RMI test version of interest. It is based on the 

estimation of cumulative distribution functions and consists of four algorithmic steps. 

Let X, Y, denote the two single signal conditions and Z the redundant signal condition. 

Then F’X is the empirical cumulative distribution function of the response time for condition X. 

The first step in the algorithm is to interpolate the empirical cumulative distribution functions 

for all three conditions of a redundant signals paradigm. Let GX, GY and GZ denote the 

estimates of the empirical CDF’s FX, FY and FZ for the single and redundant signals trials. 

Second, the RMI bound S(t) is computed as the sum of the CDFs GX and GY, 

S(t) = GX(t) + GY(t) for each participant. Third, at certain prespecified probabilities, p, (usually, 

equally spaced probabilities like p = 0.05, 0.10, 0.15, … , 0.95 are chosen) percentile values 

sp and zp for S and for GZ are estimated according to the percentile definition proposed by 

Hazen (1914). (For alternative quantile estimation functions see Hyndman & Fan, 1996). And 

fourth, percentile values sp and zp are aggregated over participants and for each percentile 

value a paired t-test is computed to evaluate whether GZ is larger than S. The race model is 

rejected if GZ is larger than S at any percentile. Figure 2.6 shows the progression of the test: 

in panels A to C the CDFs for each condition are estimated. Panel D depicts the computation 

of the bound S(t), whereas panel E shows how the percentiles to the prespecified 

probabilities are obtained. In the last panel E, the computed bound and the estimated 

redundant CDF are compared via multiple t-tests. 
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Figure 2.6    The four steps of the explicit algorithm by Ulrich, Miller and 

Schröter (2007). First the cumulative distribution functions of the single signals 

(GX, GY) and the redundant signals trials (GZ) are estimated via cumulative 

frequency polygons (Panels A to C). Then, the race model inequality bound is 
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computed by adding the cumulative frequency polygons of the single signals 

trials (GX+GY, Panel D). Panel E shows how to obtain the estimated percentile 

points corresponding to the percentiles .05, .15, … , .95 for the function GY. 

Finally, the estimate of the redundant signals trials distribution function (GZ) is 

t-tested against the estimated race model inequality bound (GX+GY) at the 

prespecified percentiles. Significant deviations are seen as evidence against 

race models (reprinted with permission). 

 

This procedure is thought to be rather conservative (Miller, 1982; Patching & Quinlan, 

2002; Schwarz & Ischebeck, 1994) in the sense that it favors the race model. However, there 

are no reliable quantitative estimates of the power of the test are available. This 

conservativeness stems from the fact, that the data is tested against the most extreme 

exemplar of race models – a maximally negatively correlated race. Nevertheless many 

studies applying the redundant signals paradigms using this procedure have found violations 

and thus rejected the race models. 

 

2.3.6 Issues of RMI Testing 

Contrary to this commonly accepted notion of conservativeness, Kiesel, Miller and 

Ulrich (2007) have presented simulation data which suggests, that the RMI test is prone to 

false alarms, that is the inadequate rejection of race models based on flaws and biases in the 

tests’ procedure. The authors identified two weighty sources for such erroneous test 

outcomes – an estimation bias working against race models and an accumulation of type I 

errors, when testing the RMI at multiple time points. 

In the estimation literature (e.g. Gilchrist, 2000) it is a general finding that quantile 

estimators tend to overestimate the lowest percentiles and underestimate the highest 

percentiles. In the standard RMI test proposed by Ulrich et al. (2007) the estimation of the 

cumulative distribution functions for all experimental conditions plays a central role for 

computing the RMI bound and testing potential violations thereof (see algorithm step 1). 

Kiesel et al. (2007) defined a bias measure that quantifies the amount of deviation from the 

true cumulative distribution functions per probability point. Whenever this bias is negative, 

the RMI test is biased towards violations and thus incorrectly rejecting race models. When it 

is positive, it further pushes the test towards conservatism as violations are hindered. The 

authors used synthesized reaction times (using the ex-Wald distribution, Schwarz, 2001) to 

emulate racers with samples sizes of 10, 20 or 40 per condition. The results show that 

(depending on the sample sizes of the three conditions) substantial systematic bias pattern 
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can emerge. These are mostly negative in value and thus tend to produce violations of the 

RMI. Unfortunately these biases were not restricted to lower sample sizes but would also 

emerge for the largest sample size in their study (i.e. 40 samples per condition). The authors 

advise researchers to remain cautious, when they find violations of the RMI for studies with 

sample sizes lower than 20. 

Another aspect this study addressed was the amount of type I error or α accumulation 

of the test. In the last step of the algorithm the empirical CDF of the redundant condition is 

compared to the estimated RMI bound. This comparison is realized by applying t-tests at 

typically multiple probability points. As the RMI test is generally considered to be 

conservative, this multiple testing should increase the power of the test, as it is given more 

data points to become significant. Each t-test is set up with a significance level α to control 

for the amount of false alarms. Usually α is set to be 0.05, meaning that 1 out of 20 tests is 

prone to falsely find a statistically significant violation of the RMI bound. When conducting 

more than one t-test, this error probability inflates with each additional t-test. A numeric 

example shall illustrate this fact: Let α = P(“rejecting H0” | “H0 is true”) = 0.05, where H0 is “the 

data was generated by a race model”. Then P(“retaining H0” | “H0 is true”) = 1 – α for one 

testing the RMI at one probability point of the quantile function. When doing this k times on 

the same data however, the probability then is P*(k) = P(“retaining H0 for k probabilities” | “H0 

is true”) = P(“retaining H0” | “H0 is true”)k = (1 – α)k, for k = 5 this yields P*(k = 5) = 0.774, and 

the complementary event of P*(k = 5), that is, at least on t-test is committing a false alarm is 

1 - P*(5) = 0.226. This effective α error of 22.6% is then more than four times higher than the 

inner significance level, originally set to control the false alarm rate. Kiesel et al. (2007) 

simulated race models where the number of participants (20 or 40), RMI test points (5 or 10) 

and the inner significance level (α = 0.01 and 0.05) were varied systematically. The 

simulations revealed that type I errors (i.e. false alarms) are accumulated to a remarkable 

degree. And that despite the fact that the t-tests are highly correlated across percentiles). 

The authors provide practical advice how to combat α accumulation, e.g. by applying a 

stricter significance level (cf. Bonferroni correction, see Holm, 1979), restricting the range of 

the t-test to only early (and theoretically more violation prone) percentile points or replication 

via independent experiments. 

The investigations by both Townsend and Honey (2007), and Kiesel et al. (2007) 

have increased the knowledge about the RMI test. However, their results simultaneously also 

increase the uncertainty of what to conclude from applying the RMI test. In cases where 

violations are missing, a potentially high base time variance might have filtered them out of 

the race model test function. And in cases where violations are found, this might be due to an 

estimation artifact of the test algorithm. Furthermore, both simulation studies have several 
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shortcomings that prevent a direct generalization of their results to other experimental 

settings or conditions. The most severe deficiency is the lack of a plausible model for the 

generation of reaction times in their simulations. 

In the next chapter, state-of-the-art models of decision making (and in consequence, 

models of reaction times) will be presented in the form of sequential sampling models. The 

Ratcliff diffusion model will be detailed, as it forms the theoretical and computational basis for 

the implementation of both race and coactivation models in the present studies’ simulations. 

The chapter will be concluded by an application of Ratcliff diffusion models to the redundant 

signals paradigm and the RMI testing. Both known and novel issues of RMI testing will be 

presented that motivate the simulation and empirical work of the present study.  

 

2.4 Sequential Sampling Models 

Experimental psychology has tried to unravel the complex structure of human 

cognition by using relatively simple tasks, e.g. decisions which requires the observers to 

choose between two responses. Mental chronometry, in particular, is one standard method 

to infer the architecture and structure of cognitive processes by analyzing observers’ 

performance. Traditionally, this implied comparing only mean reaction times (e.g. stage 

theory models; Townsend & Ashby, 1983 Sternberg, 1969) or only the proportion of correct 

responses (Green & Swets, 1966), across experimental conditions. An experimental 

manipulation that increases mean reaction times or decreases the accuracy of responses is 

thought to lower the efficiency of stimulus processing. 

This approach, although straight forward and general, suffers from several important 

limitations. First, it neglects the shape of the response time distributions for correct 

responses and discards the response times for incorrect responses altogether. This implies 

ignoring of a large amount of data that can be informative for discerning competing models or 

architectures of processing. Second, the standard method does not factor in the strong 

inverse relationship between response time and response accuracy, i.e. the speed-accuracy 

trade-off, (Pachella, 1973 Schouten & Bekker, 1967 Wickelgren, 1977). It is unable to 

combine the response times and the accuracy in one single index. Third, it is not grounded 

on any explicated theoretical framework. Thus inferences on their results do not speak 

directly to the details of the underlying cognitive processes (cf. model mimicry, chapter 2.1). 

A conceptual framework that overcomes these limitations and has had a remarkable 

success in cognitive psychology is the class of sequential sampling models (SSM). 

Sequential sampling models are mathematical models of decision making for simple 



Testing Cognitive Architectures 37 

 
decisions, e.g. two-alternative forced choice tasks, discrimination tasks or the like. They have 

been successfully applied to many response time paradigms, such as lexical decision, short-

term and long-term recognition memory tasks, same/ different letter-string matching, 

numerosity judgments, visual-scanning tasks, brightness discrimination, letter discrimination, 

and visual search tasks (e.g. Purcell et al., 2010 Ratcliff, 1978, 1981, 2002; Ratcliff, Gomez, 

& McKoon, 2004; Ratcliff & Rouder, 1998, 2000; Ratcliff, Van Zandt, & McKoon, 1999; 

Thornton & Gilden, 2007; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; Ward & 

McClelland, 1989; Zehetleitner, Koch, Goschy, & Müller, 2013; Zehetleitner & Müller, 2010). 

More recently, evidence accumulation models have been applied more widely, for example, 

as general tools to measure cognition in the manner of psychometrics (Schmiedek, 

Oberauer, Wilhelm, Suss, & Wittmann, 2007; Wagenmakers, Van Der Maas, & Grasman, 

2007  Vandekerckhove, Tuerlinckx, & Lee, 2011), and as models for the neurophysiology of 

simple decisions (e.g. Forstmann et al., 2008; Ho, Brown, & Serences, 2009; Smith & 

Ratcliff, 2004). They provide an explicit mechanism for decision formation and rest on 

neurologically plausible assumptions while allowing for direct psychological interpretation of 

the featuring model parameters.  

They can be classified according to four dimensions: their stopping rule (relative 

versus absolute), their time scale (discrete vs. continuous), the granularity of evidence 

(discrete vs. continuous), and in their integration mechanism (leaky versus perfect) (for a 

review see Ratcliff & Smith, 2004). Sequential sampling models that have a relative stopping 

rule assume that evidence in favor of one response is evidence against the other response 

alternative. They are also called random walk models (Laming, 1968; Link & Heath, 1975; 

Ratcliff, 1988; Stone, 1960). Random walk models can be further partitioned into pure 

random walk and diffusion models. Random walk models accrue amounts of evidence in 

discrete time steps, while diffusion models assume a continuous time scale. Finally, diffusion 

models can have a constant drift rate (so called Wiener diffusion model) or a drift that decays 

with time (so called Ornstein Uhlenbeck model). In recruitment or absolute stopping rule 

models, evidence for each response is accumulated independently. Amongst recruitment 

models, the subclass with discrete time steps are the accumulator models (e.g. Smith & 

Vickers, 1988; Vickers, 1970, 1978, 1979; Vickers, Caudrey, & Willson, 1971) and the variant 

with a continuous time scale the Poisson counter models (LaBerge, 1994; Pike, 1966, 1973; 

Townsend & Ashby, 1983). 

In the following, the Ratcliff diffusion model, as a distinguished exemplar of SSM and 

the generating mechanism for the response times in the present study, will be described. 

(Implications of selecting this model above other sequential sampling models will be 

discussed at the end of the present study). Then, the advantages and disadvantages of a 
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diffusion model analysis will be presented, before applications of SSM to the redundant 

signals paradigm will be presented. A motivation of the research question of the present 

study will conclude this chapter.  

 

2.4.1 The Ratcliff Diffusion Model 

Historically, the Wiener diffusion process, which is at the basis of the Ratcliff diffusion 

model, was first studied in physics (e.g. Einstein, 1905). Later, Roger Ratcliff implemented 

and modified it to decision making in simple two-alternatives forced choice (2AFC) tasks 

(Ratcliff, 1978). The RDM provides a detailed account of observers’ performance, that is, 

response time distributions for both correct and incorrect responses. For concreteness sake, 

let an observer perform a simple discrimination task, of discriminating left versus right 

oriented Gabor patches. The RDM assumes the observer initiates a process of noisy 

information accumulation. That is, the observer samples information via its sensors (here, the 

photoreceptors in the retina) to determine the extent to which each new sample of 

information supports one decision versus the alternative decision (here, left versus right 

orientation of the Gabor patch). The process is illustrated in Figure 2.7.  

 

 

                

Figure 2.7    Ratcliff diffusion model with parameters. The decision process is 

modeled as an accumulation of noisy evidence over time. Once an absorbing 

barrier is reached, the respective response behavior is triggered. The overall 

response time is the sum of the decision time and a uniformly distributed 

nondecision or base time. See text for a detailed account of the parameters. 
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An important difference to signal-detection theory (Green & Swets, 1966) is that the 

observer does not base its decision on a single noisy sample, but on an entire sequence of 

noisy samples. In that sense, the RDM (and SSM’s in general) can be viewed as a natural 

extension of signal detection theory over time. The diffusion model assumes that the signal-

to-noise ratio of the evidence accumulation process is higher for stimuli that are easy to 

classify than it is for stimuli that are difficult to classify. The “ease of processing” is quantified 

in diffusion models by a parameter called drift rate. When the drift rate is high, decisions are 

fast and accurate, when it is low processing is determined to a stronger extent by noisy 

fluctuations and as a consequence decisions are slow and inaccurate. In the previous 

example, Gabor patches with a low feature contrast would have a lower drift rate than Gabor 

patches that are visually clear with a high feature contrast. The drift rate reflects an inherent 

property of stimuli and participants, and is generally not believed to be under subjective 

control. The evidence accumulation process is formally described by the following stochastic 

differential equations (e.g. Gardiner, 2004): 

  ( )         ( )     (17) 

where dX(t) is the change in the accumulated evidence X for a small time interval dt, 

v is the drift rate and sdW(t) are zero-mean random increments with infinitesimal variances 

s2dt. The factor W(t) represents the Wiener noise process (i.e. idealized Brownian motion). 

The drift rate then is the deterministic and the Wiener process is the stochastic component of 

the accumulation process. The amplitude of the noise in the process is governed by the 

parameter s: It is a scaling parameter, as a doubling of s causes a doubling of the other 

parameters in the model. Therefore the choice of a specific s is arbitrary; in the literature s is 

usually fixed at 0.1. 

Two parameters of the diffusion models that are under subjective control is the 

boundary separation a and the starting point z of the accumulation. Both of them are 

assumed to be set before the start of each new trial. The boundary separation quantifies the 

response conservatism and modulates the speed-accuracy trade-off: when an observer is 

focused not to make a mistake, the boundaries are set wide apart. As a result noisy 

fluctuations are less likely to provoke an incorrect response. The downside of this decrease 

in error rates is an increase in the response times. When the boundary separation is large, 

the evidence must accumulate to a higher value in order to reach the response-eliciting 

threshold. This results in slower response times and lower error rates.  

The starting point z reflects the a priori bias of an observer favoring one response 

over the other. This parameter is usually manipulated via payoff or proportion manipulations 

(Diederich & Busemeyer, 2006; Edwards, 1965). In the thought Gabor experiment, a high 
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prevalence of left oriented Gabor patches would shift the starting point towards the left 

oriented boundary. In consequence, this would lead to relatively fast and accurate responses 

for left oriented patches, compared to relatively slow and inaccurate responses for right 

patches. The fourth parameter of the diffusion model, Ter, quantifies the nondecision 

component of response times. In line with the canonical decomposition of response times, it 

encompasses all the time taken up by processes not affecting the decision process. 

Therefore, this nondecision time shifts the entire response time distribution by a constant 

amount.  

Three additional parameters were subsequently introduced, as the model so far could 

not capture relevant empirical findings in the response time literature. First, uniformly 

distributed trial-to-trial variability in nondecision time, denoted by st was added to account for 

the relatively gradual rise in the leading edge of the response time distribution (Ratcliff & 

Tuerlinckx, 2002). Second, uniformly distributed trial-to-trial variability in starting point, called 

sz, was introduced to account for error responses that are systematically faster than correct 

responses (Laming, 1968). Third, normally distributed trial-to-trial variability in drift rate, 

called η, was introduced to capture error responses that are systematically slower than 

correct responses (e.g. Ratcliff, 1978; Ratcliff & Rouder, 1998). 

Taken altogether, this yields the following seven parameters of the Ratcliff diffusion 

model: 

1. mean drift rate v, 

2. across-trial variability in drift rate η, 

3. boundary separation a,  

4. mean starting point (or bias) z,  

5. across-trial range in starting point sz, 

6. mean of the nondecision component of processing Ter, 

7. across-trial range in the nondecision component of processing st 

 

2.4.2 Evaluation of the Ratcliff Diffusion Model 

The Ratcliff diffusion model embodies the most recent advancements in mental 

chronometry. It provides a principled and explicit account of how decisions are formed as a 

function of properties of the observer and the environment the observers is exposed to. Its 

advantages can be ascribed across different levels. On a behavioral level, the model can 

account for changes in both accuracy and response time data on a coherent theoretical 

framework (i.e. noisy evidence accumulation) that is compatible to the speed-accuracy trade-

off. Its parameters can be interpreted in a psychologically direct way, as they unambiguously 
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map to psychological and experimental properties (for an empirical validation of the 

parameters, see Voss, Rothermund, & Voss, 2004). Thus it provides a means to estimate the 

unobserved psychological processes (decision and nondecision) that together determine the 

observed performance. This further distinguishes the model from other response time 

models (e.g. ex-Gaussian, ex-Wald, Gamma and Weibull, see Palmer, Horowitz, Torralba, & 

Wolfe, 2011) that merely allow for an atheoretic description and compression of the data. 

While these response time models have their value in statistically describing and 

compressing data, inferences, and psychological interpretations on their parameter changes 

should be avoided (see Matzke & Wagenmakers, 2009). Also on a statistical level, the RDM 

extracts a far greater amount of information provided by the performance of the observers 

than standard methodology. It acknowledges both the response distribution for correct and 

incorrect responses and has displayed excellent fits to the data. 

More importantly, it is a falsifiable model, as there is data it can not account for. 

Ratcliff performed a simulation study for a brightness discrimination experiment and could 

show that all the experimental manipulations were fit plausibly to the model but not fake data 

that only appeared plausible (Ratcliff, 1978). The basic properties of the model are also 

consistent with neurophysiological data on the build-up of evidence (Brown, Steyvers, & 

Wagenmakers, 2009; Usher & McClelland, 2001). 

Arguments against the use of diffusion model analyses are few. From a model fitting 

aspect, a diffusion model is not the most parsimonious model. It features seven parameters 

and - depending on the concrete implementation - at least one parameter per experimental 

condition. This however is not an instance of overfitting, as the amount of data to account for 

is increased compared to the standard approach (two distributions compared to one mean 

RT and accuracy rate, see Matzke & Wagenmakers, 2009). From a computational aspect, 

the model requires a decent amount of data to accurately estimate the parameters (at least 

200 per condition), which can be troublesome for some experimental settings and research 

questions. Moreover, the fitting procedure is both computationally and theoretically 

demanding as it involves numerical optimization in a multidimensional parameter space. By 

now several program tools exist, that enable researcher to quickly and reliably fit their data to 

the model (see Vandekerckhove & Tuerlinckx, 2008; Voss & Voss, 2007; Wagenmakers et 

al., 2007). 

 

2.4.3 Applications of Sequential Sampling Models to the paradigm 

Sequential sampling models have been already applied to the redundant signals 

effect. Initially Schwarz (1989) proposed a superposition model based on Poisson counters. 
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There, for each stimulus channel an ordinary renewal process (with a Poisson distribution; 

Smith & Vickers, 1988) accumulates counts until a response triggering critical value of counts 

has been registered. The main assumption of the model is, that for the redundant conditions 

the two single renewal processes simply superposed – that is, the counts of both channels 

are summed up. This leads to a shorter time to reach the critical amount of counts. Further 

analysis revealed that this model imposed severe restrictions on the resulting response time 

distributions (the mean and the standard deviation of the intercount intervals must 

necessarily be equal). Also, the stochastic independence between channel latencies may 

often prove to be too restrictive. Subsequently, Schwarz presented a modified superposition 

model which allows for a more flexible type of evidence accumulation than simple Poisson 

counting (Schwarz, 1994), which also permits arbitrary amounts of channel correlation. The 

modification included that the channel activity is modeled by a Wiener diffusion process. The 

critical assumption was that the drift rates of both stimulus diffusors sum up for the redundant 

diffusor. Schwarz illustrated the performance of this model using data from Miller (1986)  

Diederich on the other hand, proposed a multichannel diffusion model based on the 

Ornstein-Uhlenbeck process for the RSE. The author compared the fit of this model to the fit 

of Schwarz’ linear superposition model for a trimodal intersensory facilitation experiment 

(Diederich, 1995). She came to the conclusion that the fit (with respect to the means) was 

good for the linear superposition model and even better for the multichannel diffusion model. 

Also both models agreed on the ordering of the experimental conditions. However, both 

models failed to capture the standard deviations of both the double and triple stimulus 

conditions. Her conclusion was that the reason for the poor fit of the standard deviation might 

be due to the fact that the base time is not independent of the decision time. It is important to 

point out that neither model featured variability in base times. 

While these studies did apply current models of decision making to the RSE, both 

assumed a decisional stage for the locus of the effect (although Diederich briefly discusses 

the possibility of a partial base time locus). To justify this assumption, it is necessary to 

demonstrate that this locus model is the best fitting model variant. Moreover, the fit has to be 

assessed beyond the level of means. 

In the final part of this chapter, an integration of all the open questions is provided 

before presenting the research questions of the present study. 
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2. 5 What is missing? 

The previous parts of this chapter highlighted several shortcomings and open 

questions concerning the analysis of cognitive architecture for decisions based on multiple 

signals via mental chronometry. Next, a recapitulatory catalogue of question is compiled that 

motivated the research questions of the present study. 

 

2.5.1 Catalogue of Knowledge Gaps 

First, both simulation studies available use descriptive and atheoretic distribution 

functions to synthesize reaction time data. This prevents researchers from inferring on the 

model parameters in a psychologically valid manner. Also, the functional form of the 

synthesized data is not validated and thus reduces the generalizability and confidence in the 

acquired results. Current models of decision making (such as sequential sampling models) 

offer a potent alternative for simulations, as the present study will demonstrate. 

Second, no study has implemented non-extremal cases of either coactivation or race 

models. This would require controlling for the strength of coactivation and the amount of 

correlation between the racers respectively. This in turn requires the implementation of 

channel correlation and an explicit model of coactivation, with help of parameters controlling 

these properties of the data. While the extreme cases of race models and full integration 

models can be informative for the border area of the RMI test, it is quite probable, that 

empirical data is not of that sort (see Ulrich & Giray, 1986 for the challenges of estimating 

channel correlation). All the more, it is important to ask how the RMI test performs (in terms 

of type I error or α accumulation, and power rates), when the data is only moderately 

correlated or coactivated. 

Third, due to lack of a coactivation account in the Kiesel, Miller and Ulrich (2007) 

study, and the missing analysis of estimation bias in the Townsend and Honey (2007) study, 

it is unknown whether there is an analogous estimation bias for coactivation models, and in 

what direction it might work. In case there is no estimation bias for the coactivated case or 

there is one working systematically against violations, the recommendations by Kiesel et al. 

would render the test even more conservative. 

Fourth, it is unclear what effect a highly varying base time component will have on the 

estimation bias, the type I errors and the power rates for an empirically plausible reaction 

time model (here, the Ratcliff diffusion model). While this has been addressed theoretically 

and computationally for implausible reaction time models (Townsend & Honey, 2007), it is 

still unexplored for mechanistic models of decision making (i.e. sequential sampling models). 



Testing Cognitive Architectures 44 

 
Fifth, there have been attempts to compare different sequential sampling models in 

the redundant signals context. Those were however restricted to decisional accounts only 

and assessed the goodness-of-fit just at the level of means (Diederich, 1995; Schwarz, 

1994). In order to justify this locus assumption of the RSE, a fitting study is necessary that 

compares goodness-of-fit of all the coactivation model variants in. This implies testing explicit 

coactivation accounts, where the effect is generated either by decisional, nondecisional or a 

combination of both components of the reaction times. Again, sequential sampling models 

are the model of choice, as all of these variants can be naturally adopted within their 

framework, as will be shown in the present study. 

Finally, to guarantee the explanation of the data to a full(er) extend, the fitting must be 

expanded to the whole spread of the reaction time data and not the mean level only. This 

way the pervasive issue of model mimicry in mental chronometry can be alleviated. 

Specifically, this comprise implementing fitting procedures that quantify the difference 

between the cumulative distributions functions (Ratcliff, Thapar, & McKoon, 2003). 

 

2.5.2 Research Questions 

Motivated by these shortcomings, the present study pursues theoretical and 

methodological goals. On the theoretical side, the locus of coactivation is assessed. For this 

purpose, a comparative fitting of highly coactivated empirical RSP data to the different 

coactivation model type (decisional, nondecisional or a combination of both) is performed 

and analyzed. This diffusion model analysis will provide an answer to the question of which 

coactivation account is in best agreement with experimental data. Apart from using 

sequential sampling models to test the fit of different loci models of the RSE (and violations 

of the RMI), they can also help in evaluating the RMI test itself. Due to their formal nature 

and explicit formulation, sequential sampling models allow for a numerical implementation 

and enable researchers to conduct large scale simulation studies to scrutinize the already 

presented shortcomings of the RMI test. Methodologically, the present study validates and 

generalizes the findings by Kiesel et al. (2007) and Townsend and Honey (2007), using the 

Ratcliff diffusion model to synthesize both race and coactivation data. Being able to control 

crucial aspects of both these models (in form of the correlation and strength of integration 

between the channels respectively) as well as the base time component will help to assess 

their impact on the performance of the RMI test. This approach also signifies an integration 

of the previous disjunct scopes into a common framework that will help researchers to 

optimally set up the RMI test for different experimental conditions. 
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Specifically, the present study aims to answer the following explicit research 

questions: (i) what is the locus of coactivation for two bimodal detection tasks (chapter 3), (ii) 

what is the power of the RMI test, (iii) is there an estimation bias in the coactivated case and 

if so, in what direction is it working, (iv) what is the effect of a high base time variance on type 

I errors, power rates, and estimation bias, (v) and particularly when using a sequential 

sampling model for the reaction times (both chapter 4). 

 

2.5.3 Significance of the present Study 

The present study marks a natural and necessary next step in probing and 

understanding the structure of cognitive processes. It combines the logic and rationale of 

mental chronometry with the most recent and auspicious models of decision making to the 

questions of architecture for multisignal integration and test quality. Answers to the questions 

will directly improve the theoretical understanding of both coactivation and the RMI test. In 

addition, the practical value and efficiency of the RMI test will be improved, by solidifying 

results that have already been or will be obtained in the future.  
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3 MODELING COACTIVATION IN BIMODAL 

DETECTION TASKS 

The redundant signals effect is a shortening in mean reaction times (RT), when 

observers process a redundantly defined stimulus compared to processing a target, defined 

in only one quality (i.e. feature, dimension or modality; see chapter 2.2 for a detailed 

description of the redundant signals paradigm). The race model inequality test allows 

inferring the cognitive architecture by putting a distributional constraint on this speed-up. 

Whenever this RMI bound is violated, this is taken as evidence against the whole class of 

race models and in favor of integrative or coactivation models (see chapter 2.3 for a formal 

derivation of the RMI test and its statistical profile).  

Even when researchers find violations of the RMI, it is still unclear at what stage(s) of 

the decision process an integration occurred. Decisional accounts assume that the RSE is at 

least to some degree due to a speed-up at the level of early visual stimulus analysis. This is 

the stage, where target attributes are coded and compared with those of non-target 

elements, without necessarily involving stages following attentional selection (Koene & 

Zhaoping, 2007; Krummenacher et al., 2001, 2002; Töllner et al., 2011; Zehetleitner et al., 

2009b; for a review see Zehetleitner et al., 2008b). There already exist two explicit models of 

a decisional account of the RSE (Diederich, 1995; Schwarz, 1994), however both only show 

a good fit on the level of means, while being unable to account for the spread of the data. 

Contrary decisional accounts, there are researchers who believe that the RSE is a 

nondecisional effect and post-selective in nature (Corballis, 1998; Feintuch & Cohen, 2002; 

Iacoboni & Zaidel, 2003; Miller, 2007; Miller et al., 2009; for a review see Miller & Reynolds, 

2003 ). From mean level only, those coactivation accounts cannot be discriminated as only 

the overall reaction time is measurable and not its latent subcomponents (see however, 

motor related measures in Ulrich & Giray, 1986; Ulrich & Stapf, 1984). Part of the reason is 

that the used reaction time models were of a descriptive and atheoretic nature.  

Sequential sampling models in contrast, by design allow for an implementation of 

both decisional and nondecisional accounts to the RSE (see chapter 2.4 for an elaborate 

description of this model class). However, so far only decisional accounts of the RSE have 

been empirically tested, as both Diederich’s (1995) and Schwarz’s (1994) models assume a 

summation in the rate of evidence accumulation for redundant signals over single signals. 

There are no studies which have tried to fit nondecisional or combined coactivation accounts 

(where both decision and nondecision parameters may vary) in a comparative fashion.  
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Apart from this conceptual lack, all of the models so far only look at fits to the means. 

As reaction times are usually positively skewed, there are distinct patterns, which can be 

missed, when focusing only on the central moment. Balota and Yap (2011) showed that 

effects in means can be produced by either shifts of RT distributions, or stretching of slow 

tails of RT distributions, or a combination of the two. In the context of sequential sampling 

models, Ratcliff, Thapar, Gomez and McKoon (2004) have argued, that a complete 

explanation of processing, requires accounting for all aspects of the experimental data. This 

encompasses the distributions for correct and incorrect responses as well as the proportion 

of correct and incorrect responses. 

As the redundant reaction times are not only mean shifted but also differ in their 

skewness (mean-variance relation, Wagenmakers, Grasman, & Molenaar, 2005) an analysis 

on the mean level is in principle not able to distinguish subtle parameter shifts, which do not 

exclusively manifest in a change in means (for the problem of model mimicry, see chapter 

2.1). Also, response times are known to show a positive correlation between mean and 

variance: higher mean response times are afflicted with a higher variance and vice versa. 

Diffusion accounts intrinsically produce this relation of means and variances for response 

times. Due to this correlation, a nondecisional model alone is unlikely to fit the data 

adequately, as there a change in the base time parameter is only capable to shift the whole 

distributions horizontally. It is unclear whether a combined (decision and nondecision) model 

can outperform a decision-alone measured in its goodness-of-fit. 

This study contributes to the debate on the source of RMI violations and coactivation 

both conceptually and methodically. A diffusion model analysis was performed to fit quantile 

proportions of the response times in two bimodal audiovisual RSP experiments to three 

model variants reflecting different sources of coactivation: (a) a decisional model (drift rate 

may vary), (b) a nondecisional model (base time may vary), and (c) a combined model (both 

drift rates and base times may vary). This way, the question of the source(s) of RMI 

violations (and the RSE in consequence) can be addressed: Does coactivation occur at a 

decisional stage, a nondecisional or at both stages and to what degree? 

On a methodical level, the present study promotes the application of sequential 

sampling models (the Ratcliff diffusion model in particular) to the redundant signals 

paradigm, as it enables researchers to utilize all of their empirical data (RT distributions for 

both correct and incorrect response, and error rates) to plausibly map it to latent 

psychological variables and generate theory-driven hypothesis to further shed light on the 

redundant signals paradigm.  
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To answer this question satisfactorily however, diffusion model analyses of a large 

class of redundant signals experiments with varying tasks and stimuli have to be performed. 

In this study, the endeavor is commenced by analyzing to bimodal RSP tasks: Experiment 1 

utilizes a simple reaction time task and Experiment 2 a two-alternatives forced choice task. 

 

3.1 Experiment 1 (audiovisual SRT) 

In Experiment 1, a simple RT task was performed, where participants had to respond 

to the central onset of either visual, auditory or audio-visual stimuli by pressing both mouse 

button simultaneously. A variable intertrial interval was used to prevent anticipatory 

responses and contaminate response times.  

 

3.1.1 Method 

Subjects 

In Experiment 1, 15 subjects (11 of them female) participated in a single 45-minutes 

session in return for 6€ or a course participation. Their average age was 25.7 years (range, 

20 – 34) and they were all right-handed and had normal or corrected-to-normal vision. 

 

Apparatus 

The Experiment was conducted in a sound-insulated booth, and was controlled by a 

program using MATLAB (R2009bSP1, Natick, Massachusetts: The MathWorks Inc., 2010) 

and the PsychToolbox (Brainard, 1997; Pelli, 1997) running on an Apple Mac mini 

(Cupertino, California: Apple Inc.) machine (with Mac OS X). The stimuli were presented on a 

20” Mitsubishi Diamond Pro 2070SB monitor at a resolution of 1,280 × 1,024 pixels and a 

refresh rate of 100 Hz with a viewing distance of approximately 73 cm.  

 

Stimuli 

Visual stimuli were grey discs (CIE Yxy 10.9, .286, .333; 1° in diameter), auditory 

stimuli were 400 Hz beeps (with a duration of 150 ms) delivered by headphones, and 

redundant stimuli were both visual and auditory stimuli presented simultaneously (stimulus 

onset asynchrony of zero). The participants responded to the onset of the stimuli by 

simultaneously pressing both mouse buttons with both their index fingers. 
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Figure 3.1    Display progression of the SRT Experiment. First, a fixation cross 

is presented centrally for 800 ms. After a variable intertrial interval the target 

(single or redundant) appears and remains until the observer responds 

bimanually. A blank screen follows for 750 ms before the next trial begins. 

 

Procedure 

Every trial was structured in the following way: First, a white fixation cross (0.5° x 0.5° 

of visual angle) was presented centrally on a black screen for 800 ms. Then, after an 

intertrial interval (uniformly varying between 500 and 1500 ms), the stimulus or stimuli 

appeared and remained on the screen until a response was elicited. After the observers’ 

response, a 750 ms waiting period followed, before the next trial started again with the 

fixation cross (see Figure 3.1 for the display progression).  

The whole experiment was divided into 17 blocks à 45 trials, where unimodal and 

bimodal trials were interchanging randomly. Overall, this amounted to 765 trials (255 trials 

per condition). Participants could make a break in between blocks and feedback on their 

mean RT and error rate was given. They were instructed to respond as fast as possible while 

remaining below 5% error rate.  
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3.1.2 Data Analysis 

All analyses and the numerical parameter fitting were done with GNU R (version 

2.14.0). For the fitting procedures the R-package “optim” was used. 

 

Implementation of the Models 

The diffusion model variants were implemented in the following way. The free model 

allowed all of the RDM parameters (that is, drift rate, criterion, base time and base time 

variance) to vary across the three conditions (auditory, visual and redundant trials). It was 

implemented to assess the performance of a completely unconstrained RDM. The free model 

is not a viable candidate, as it is theoretically implausible: it allows a conditions-specific 

adaptation of the criterion. This would imply an instantaneous detection of the target 

condition, which in itself necessitates a successful target detection and identification. 

Theoretically plausible candidates are the decisional model, the nondecisional and 

the combined model. In contrast to the free model, some parameters are fixed and cannot 

vary. For the decisional model, all the parameters except the drift rates νc are held fixed for 

the three target conditions c = auditory, visual and redundant (i.e. audiovisual). The 

nondecisional model on the other hand, allowed only the base time parameters (Terc and stc) 

to vary across the conditions, whereas the combined model allowed both drift rates νc and 

base time Terc to be fit individually for each condition c. 

The parameter s, controlling the starting point of the evidence accumulation process 

was set to a/2, resulting in an unbiased decision process. The parameters η and sz of the 

RDM were both set to zero (for example, the EZ-diffusion model Wagenmakers et al., 2007 

makes the same simplifying assumptions). As these represent only auxiliary parameters to 

increase certain aspects of the fit, these were eliminated here to improve the fitting 

performance (see chapter 2.4.1 for an account of all RDM model parameters). Table 3.1 

gives an overview of the free and constrained parameters for each coactivation model 

variant.  
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Table 3.1 

Coactivation Models with fixed and shared Parameters, and Degrees of Freedom. 

Model Free Parameters Constrained 

Parameters 

Degrees of 

Freedom 

Decisional  νa, νv, νav, a, Ter, st 3 + 3 = 6 

Nondecisional  Tera, Terv, Terav ν, a, st 6 + 2 = 8 

Combined  νa, νv, νav, 

Tera, Terv, Terav 

a, st 9 + 1 = 10 

Free  νa, aa, Tera, sta, 

νv, av, Terv, stv, 

νav, aav, Terav, stav 

(none) 3 x 4 = 12 

Notes.    In the decisional model, only the drift rates v could vary across the 

Experimental conditions (auditory targets a, visual targets v and redundant 

targets av). In the nondecisional model only the motor parameter Ter was 

allowed to vary. In the combined model both the drift rates and the motor 

parameters could be fit individually for each condition. The free model allowed 

every parameter to be fit for each condition and is used to obtain a base line of 

how good diffusion models can fit the data.  

 

Quantile Distribution Functions 

In order to find the model (and the corresponding parameters) that can best explain 

the data of Experiment 1, a fitting of quantile proportions was performed. These were 

computed by use of quantile probability functions. Quantile probability functions plot 

response probabilities against quantile response times. The probability of a response for a 

particular stimulus type determines the position of a point on the X-axis, and the quantile RTs 

for that stimulus type determine position on the Y-axis (Ratcliff, Thapar, et al., 2004). Figure 

3.2 displays the empirical quantile proportions of Experiment 1. Consistent to the mean-

variance relation, the fastest condition (here, the bimodal redundant targets) also displays 

the narrowest response time range. 
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Figure 3.2    Quantile function plot of the response times for the three 

Experimental conditions in Experiment 1. Quantile functions give a fuller 

description of the reaction time data than mean and standard deviation values 

only, as the proportion in each quantile bin is visible as well as the spread of 

the entire distribution. 

 

Cost Function 

In order to quantify the goodness-of-fit of the Experimental data to a model, a cost 

function is necessary. In this study, the BIC statistic (Raftery, 1986) summated with a 

weighted error rate term was implemented. The original BIC statistic is defined as follows: 

         [∑       (  )]     ( )   (18) 

where pi and πi are the proportion of observations in the i-th bin for the empirical data 

and the prediction of the model, respectively, and Mln(N) is the penalizing term related to 

the number of free parameters M and the sample size (N; the number of observations) 

(Gomez, Ratcliff, & Perea, 2007). As all of the models under consideration have different 

numbers of free parameters, this term is necessary to penalize overfitting as a result of 

added parameters to the model. Because of the low error rates, the quantile proportions of 

the incorrect responses were not used for the fit. Instead, the error rates of the empirical data 
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and the model data were subtracted and then added to the BIC score as the weighted 

absolute value of this subtraction. This third summand was added to equation 18. The overall 

cost function then was, 

      [∑      (  )]     ( )     ∑|    
       

 |  (19) 

 where, errc
e denotes the empirical error for target type c = auditory, visual, audiovisual 

and errc
m the model error for target type. The weight w, was chosen to be 600 for each 

condition. This amounts to roughly one sixth of the minimal BIC score (that is, when all model 

and empirical proportions are equal) for sample size 1000. 

 

Fitting Procedure 

The generic fitting procedure for each model variant consisted of four computation 

steps. First, a starting parameter vector was randomly sampled. By design, it consisted of the 

RDM parameters for every of the three target types (that is, auditory, visual, and 

audiovisual). The exact composition of this vector varied depending on the model that was 

being tested. For example, the decisional model only allowed the drift rates to vary; all other 

RDM parameters were fixed across the target types. 

Second, a sufficiently large number of reaction times was synthesized, instantiated 

with this initial parameter vector. Here 10῾000 response times were generated, in order to get 

an unbiased estimate of the (empirical) cumulative distribution function of each condition. 

The CDF was used to extract the seven quantiles, 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. 

Third, the quantile response times of experiment and diffusion model were used to 

generate the predicted cumulative probability of a response by that quantile response time. 

Subtracting the cumulative probabilities for each successive quantile from the next higher 

quantile gives the proportion of responses between each quantile (ideally this yields 0.1, 0.2, 

0.2, 0.2, 0.2, 0.1). The observed and expected proportions were multiplied by the number of 

observations to produce expected frequencies.  

Fourth, the cost for this parameter value was computed (equation 19) and minimized, 

using a general SIMPLEX minimization routine (Nelder & Mead, 1965; implemented in the 

“optim” package for R), that adjusts the parameters to find the parameters that give the 

minimum score for each model. The model with the lowest BIC can be considered the model 

that jointly maximizes descriptive accuracy (goodness of fit) and parsimony (small number of 

free parameters).  
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Model Selection 

The fitting procedure was performed in a Monte Carlo fashion (using 1000 iteration 

runs) with the four computation steps outline before. The minimum cost value for every 

condition was used to assess which model was in best agreement to the data and with what 

specific parameter vector. In addition, the raw BIC values were transformed to a probability 

scale, enabling a more intuitive comparison of the probabilities of each model being the best 

model (Wagenmakers & Farrell, 2004). 

The transformation of BIC values to probability values consists of three steps: First, 

for each model i, the difference in BIC with respect to the model with the lowest BIC value is 

computed, i.e.   (   ). Second, the relative likelihood L of each model i is estimated by 

means of the following transformation: 

 (  |    )     [       (   )],    (20) 

where   stands for “is proportional to”. Last, the model probabilities are computed by 

normalizing the relative model likelihoods, which is done by dividing each model likelihood by 

the sum of the likelihoods of all models.  

 

3.1.3 Results 

Errors 

Errors were defined as anticipatory responses (RT ≤ 150 ms) or misses 

(RT > 1600 ms). Observer errors were 3.10%. One observer produced more than 10% 

errors; this data was discarded. 

 

Mean reaction times 

The mean RTs for the unimodal and bimodal conditions are listed in Table 3.2. The 

participants were generally faster in the auditory condition than in the visual condition 

(360 ms compared to 390 ms). There was a pronounced RSE of 55 ms, as the bimodal 

condition produced a mean RT of 305 ms. Table 3.2 summarizes the mean reaction times 

and standard deviations aggregated across all participants. 
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Table 3.2 

Mean Response Times for Experiment 1 (SRT) 

Condition Mean RT [ms] Std. Dev. 

Auditory 345 84 

Visual 379 73 

Audiovisual 290 57 

   

RSE 55 30 

 

Notes.    Mean response times (in ms) of the unimodal, single signals trials 

(auditory, visual) and the bimodal, redundant signals trials (audiovisual) with 

corresponding standard deviations of Experiment 1. The data exhibits a 

pronounced redundant signals effect of 55 ms across all observers. 

 

 

Figure 3.3    Race model test function aggregated across individual observers 

(blue full line) and for each individual observer (grey dotted line). Violations of 

the Race model inequality were found for probability points 0.05 to 0.50 using 

multiple t-tests with a Bonferroni-corrected significance level of 0.0026. 

* 
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RMI Violations 

The violations of the RMI were tested according to the explicit algorithm by Ulrich, 

Miller and Schröter (2007). At the probabilities p = 0.05, 0.10, …, 0.95 (two-sided) t-tests 

were performed with a Bonferroni-corrected (see Holm, 1979) α of 0.0026 (= 0.05 / 19 

probability points). Significant violations (p < 0.0026) were found across the ten probabilities 

0.05 to 0.50. Figure 3.3 shows the individual and mean RMI test function curves for 

Experiment 1. 

 

Fitting Results 

The outcome of the fitting procedure for Experiment 1 were cost values of 10626, 

10631, 10551, and 10578 for the decisional, nondecisional, combined and free model 

respectively. Thus, the best fitting model was the combined model. Even though it had 

comparably many free parameters, it outperformed the second best fitting model (here, the 

free model) by 27 units in a logarithmic scale. The probability transformation further 

emphasizes the clear advantage of the combined model over the others, as its probability is 

at over 99.99% (see Table 3.3 for an overview of the cost values and probability estimates). 

The fitting performance of the decisional and nondecisional model is numerically close, 

however on a logarithmic scale, their difference in BIC score amounts to a clear advantage 

for the decision model. 

 

Table 3.3 

Minimum BIC values for each model in the SRT Experiment. 

Model Degrees of 

Freedom 

BIC Probability 

Decisional 6 10626 5.18 x 10-17 

Nondecisional 8 10631 4.25 x 10-18 

Combined  10 10551 9.99x10-01 

Free  12 10578 1.37 x 10-06 

Notes.    The combined model exhibited the lowest BIC score and had the 

best fit to the data. (For the computation of the model probability, see equation 

20 in 3.1.2.) 
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Table 3.4 

Mean RTs (in ms) and Standard Deviations of empirical and model Data for Experiment 1 

Condition Empirical Decisional Nondecisional Combined Free 

Auditory 345 (84) 345 (90) 339 (89) 346 (106) 345 (105) 

Visual 379 (73) 385 (119) 368 (89) 379 (101) 375 (102) 

Audiovisual 290 (57) 293 (56) 311 (89) 290 (66) 291 (64) 

      

RSE 55 (30) 52 28 56 54 

Notes.    The mean reaction times of the models are in good agreement to the 

empirical data. The standard deviations (in braces) are at variance with the 

data. Except for the nondecisional model, all models capture the redundant 

signals effect of the empirical data. 

 

On the level of means, the goodness-of-fit of the models was in good agreement to 

empirical data. Only the nondecisional model did not succeed in appropriately reproducing 

the mean reaction times and RSE (see Table 3.4). 

 

Error Rates 

Looking at the error rates that the models produced, reveals that only the free model 

could approximately mimic the empirical errors; the decisional model generated virtually no 

errors, while the nondecisional model (due to its design) could only generate identical error 

rates across the conditions. The combined model can qualitatively reproduce the empirical 

errors, except for the redundant condition, where it only generates around 0.48% compared 

to the empirical 2.79% (see Table 3.5). 
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Table 3.5 

Error Rates of Experiment 1 and the Coactivation Models. 

Condition Empirical Decisional Nondecisional Combined Free 

Auditory 2.81% 0.00% 1.92% 2.59% 2.62% 

Visual 1.67% 0.00 1.96% 2.21% 1.51% 

Audiovisual 2.79% 0.00 1.96% 0.48% 2.52% 

Notes.    The free model was the only model to reproduce the empirical error 

pattern. The decisional model produced no errors, the nondecisional model 

(due to its parameter constriction) only identical errors across conditions. The 

combined model produced plausible error rates for the single signals trials 

(auditory and visual). 

 

Goodness-Of-fit 

The quantile function plots of the respective model reveal a picture coherent to the 

BIC scores and mean results (see Figure 3.4). Apart from the lowest quantile, both the 

combined and free model display an exceptionally good fit to the distribution of the empirical 

data. The decisional model generally underestimates the lower quantiles (0.0, 0.1) for all 

conditions, and overestimates the highest quantiles (0.7, 0.8) for the visual condition. The 

nondecisional model fails to reproduce the spread of all the conditions, most pronounced for 

the redundant condition. 
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Figure 3.4    Quantile function plots for all the models. Full triangles denote 

empirical data points, while unfilled triangles show the data points of the 

respective models. The BIC score of each model is given in the title of each 

graph. 

 

Parameter Analysis 

The parameters, producing the best fit for each model are depicted in Figure 3.5. 

From a qualitative view, the free, motor and combined model agree in the range of the drift 

rates, criteria and base times for the three conditions arguably well. All models exhibit the 

highest drift rate for the redundant condition, while only the drift rates of the decisional model 

reflect the rank of the conditions, that is, the redundant condition having the highest drift rate 

and the visual condition having the lowest drift rate. The base times are lowest for the 

decisional model. In the other three models (where this parameter is allowed to vary across 
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the conditions), there is a systematic pattern for the base times: the redundant condition 

displays the lowest base time and the visual condition the highest base time. The base time 

variances were fixed for all models (except for the free model) and were different for all the 

models. For all the numerical values, see Table 3.6. 

 

 

Figure 3.5    Parameter values for all coactivation models. The upper left panel 

shows the drift rates across conditions (a for auditory, v for visual and av for 

audiovisual) for each coactivation model (drift for decisional, motor for 

nondecisional model).    
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Table 3.6 

Parameters for Best Fitting Exemplar per Model 

Model Mean Parameter Value  

 Auditory Visual Audiovisual 

Decisional     

v 0.489 0.405 0.668 

a* 0.188 0.188 0.188 

Ter* 0.152 0.152 0.152 

st* 0.253 0.253 0.253 

Nondecisional     

v* 0.370 0.370 0.370 

a* 0.102 0.102 0.102 

Ter 0.206 0.236 0.179 

st* 0.603 0.603 0.603 

Combined     

v 0.329 0.343 0.483 

a* 0.107 0.107 0.107 

Ter 0.194 0.231 0181 

st* 0.389 0.389 0.389 

Free     

v 0.329 0.357 0.421 

a 0.106 0.114 0.083 

Ter 0.195 0.221 0.198 

st 0.500 0.351 0.460 

Notes.    Values of the coactivation models across experimental conditions. 

Parameters marked with an asterisk were fixed across conditions for the 

respective model. 

 

 

 

Parameter Estimation 
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The analysis of BIC scores revealed that 12.0%, 91.5%, 92.3%, and 21.1% of the 

11000 fitting attempts per model failed for the decisional, nondecisional, combined and free 

model respectively. This was due to either the fit being too poor (for at least one condition) or 

the parameters leaving the allowed range. But even for the successful fits, the BIC scores 

and parameter values varied considerably. In order to assess, whether the best fitting 

parameters are representative for the fitting capability of each model (and not statistical 

outliers), the parameters of the 1% best fits were used to compute the mean and standard 

deviations of the parameters for each model as well as the distribution of the BIC scores. 

This resulted in a subset of 110 data points per model (1% from the overall 11000 attempts 

to fit the data). Table 3.7 gives the mean, standard deviation, minimal and maximal BIC 

scores for the 1% best fits of each model. 

 

Table 3.7 

Mean BIC Score of the 1% Best Fitting Parameters. 

Model Mean BIC (Std. Dev.) Min BIC Max BIC 

Decisional 10643 (3.96) 10626 10647 

Nondecisional 10647 (4.17) 10630 10652 

Combined 10575 (15.57) 10551 10603 

Free 10587 (3.27) 10578 10591 

Notes.    Mean, minimum and maximum BIC scores for the 1% best fitting 

parameters per model. Standard deviation in braces, minimum values in bold 

face. 

 

Figure 3.6 shows the mean and standard deviations of the parameter values together 

with the best fitting values (as red diamonds). All parameter values (apart from the base time 

variance) stay well inside the two standard deviations of the mean value and can be 

considered as representative for the capability of each model to fit the data. Table 3.8 

provides the numerical values of the means and standard deviations for all parameters and 

each model. 
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Figure 3.6    Means and standard deviations of parameter values are plotted 

for the fitted models. Only parameters of the 1% best fits are plotted, red 

diamonds denote the best fitting parameters for each model. Except for the 

base time variances, these values remain well within two standard deviations 

of the mean 1% best fits. 
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Table 3.8 

Parameter Estimates for the 1% Best Fits for each Model 

Model Mean Parameter Values (Std. Dev.) 

 Auditory Visual Audiovisual 

Decisional     

v 0.492 (0.051) 0.425 (0.051) 0.698 (0.041) 

a* 0.195 (0.035) 0.195 (0.035) 0.195 (0.035) 

Ter* 0.151 (0.019) 0.151 (0.019) 0.151 (0.019) 

st* 0.360 (0.160) 0.360 (0.160) 0.360 (0.160) 

Nondecisional    

v* 0.370 (0.016) 0.370 (0.016) 0.370 (0.016) 

a* 0.104 (0.005) 0.104 (0.005) 0.104 (0.005) 

Ter 0.202 (0.004) 0.233 (0.004) 0.176 (0.004) 

st* 0.383 (0.149) 0.383 (0.149) 0.383 (0.149) 

Combined     

v 0.353 (0.056) 0.363 (0.055) 0.531 (0.082) 

v* 0.120 (0.028) 0.120 (0.028) 0.120 (0.028) 

Ter 0.188 (0.017) 0.219 (0.017) 0180 (0.014) 

st* 0.455 (0.170) 0.455 (0.170) 0.455 (0.170) 

Free     

v 0.336 (0.017) 0.357 (0.018) 0.424 (0.022) 

a 0.109 (0.007) 0.114 (0.008) 0.083 (0.005) 

Ter 0.194 (0.005) 0.222 (0.006) 0.198 (0.004) 

st 0.421 (0.157) 0.364 (0.170) 0.501 (0.135) 

Notes.    Parameter values of the 1% best fitting coactivation models across 

Experimental conditions. Parameters marked with an asterisk were fixed 

across conditions for the respective model. Standard deviations in braces.   
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3.2 Experiment 2 

In this experiment observers had to respond to the onset of the stimuli from 

Experiment 1, which could now appear to the left or right of the fixation cross (a two-

alternatives forced choice task). Apart from that, all aspects were identical to Experiment 1. 

 

3.2.1 Method 

Subjects 

In Experiment 2, 21 new subjects (14 of them female) participated in a single 60-

minutes session in return for 8€ or a course participation. Their average age was 27.2 years 

(range, 18 – 46) and they had normal or corrected-to-normal vision. One subject was left-

handed. 

 

Apparatus 

The Experiment was conducted in a sound-insulated booth, and was controlled by a 

program using MATLAB (R2009bSP1, Natick, Massachusetts: The MathWorks Inc., 2010) 

and the PsychToolbox (Brainard, 1997; Pelli, 1997) running on an Apple Mac mini 

(Cupertino, California: Apple Inc.) machine (with Mac OS X). The stimuli were presented on a 

20” Mitsubishi Diamond Pro 2070SB monitor at a resolution of 1,280 × 1,024 pixels and a 

refresh rate of 100 Hz with a viewing distance of approximately 73 cm.  

 

Stimuli 

Visual stimuli were grey discs (CIE Yxy = 10.9, .286, .333; 1° in diameter), auditory 

stimuli were 400 Hz beeps (of duration 150 ms) delivered by headphones, and redundant 

stimuli were both visual and auditory stimuli presented simultaneously (stimulus onset 

asynchrony of zero). On each trial the stimuli appeared either on the left or right side of the 

screen and/ or headphone respectively (no spatial conflicts, as only left or only right stimuli 

were presented). The participants responded to the onset of the stimuli by pressing the left 

mouse buttons with their left index finger for a left target and vice versa for a right target. 

 

Procedure 

Every trial was structured in the following way: First, a white fixation cross (0.5° x 0.5° 

of visual angle) was presented centrally on a black screen for 800 ms. Then, after an 

intertrial interval (uniformly varying between 500 and 1500 ms) the stimulus or stimuli 



Modeling Coactivation in Bimodal Detection Tasks 67 

 
appeared on either the left or right side (1° of visual angle to the left or right) and remained 

on the screen until a response was elicited. After the observers’ response (left or right mouse 

button), a 750 ms waiting period followed, before the next trial started again with the fixation 

cross (see Figure 3.7 for the display progression). 

The whole experiment was divided into 20 blocks à 45 trials, where target positions 

(left and right), unimodal and bimodal trials were interchanging randomly. Overall, this 

amounted to 900 trials (150 trials per condition). Participants could make a break in between 

blocks and feedback on their mean RT and error rate was given, as they were instructed to 

respond as fast as possible while remaining below 5% error rate. 

 

 

Figure 3.7    Display progression of the 2AFC Experiment. First, a fixation 

cross is presented centrally for 800 ms. After a variable intertrial interval the 

target appears left or right of the fixation cross and remains until the observer 

responds bimanually. A blank screen follows for 750 ms before the next trial 

begins.    
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3.2.2 Data Analysis 

For the data analysis, calculation of the quantile proportions and the fitting procedures, 

please see the data analysis section of Experiment 1. Data for the left and right target 

positions were aggregated for the unimodal and bimodal conditions. Again, only correct 

responses and error rates were used for the fitting. 

 

3.2.3 Results 

Errors 

Errors were defined as anticipatory responses (RT <= 150 ms), misses (RT > 1600 

ms) or false responses (for example, pressing left when right target appeared). Observers’ 

errors were on average at 3.35%. One subject produced more than 20% errors, this data 

was discarded. 

 

Mean Reaction Times 

The mean RTs for the unimodal and bimodal conditions are listed in Table 3.9. The 

participants were equally fast in the auditory condition and in the visual condition (403 ms). 

Reaction times did not differ for left or right targets. There was a pronounced RSE of 51 ms, 

as the bimodal condition produced a mean RT of 341 ms. 

 

Table 3.9 

Mean Response Times for Experiment 2 (2AFC) 

Condition Mean RT [ms] Std. Dev. 

Auditory 403 65 

Visual 403 59 

Audiovisual 341 53 

   

RSE 50 16 

Notes.    Mean response times (in ms) of the unimodal, single signals trials 

(auditory, visual) and the bimodal, redundant signals trials (audiovisual) with 

corresponding standard deviations of Experiment 2. The data exhibits a 

pronounced redundant signals effect of 50 ms across all observers. 
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RMI Violations 

The violations of the RMI were tested according to the explicit algorithm by Ulrich, 

Miller and Schröter (2007). At the probabilities p = 0.05, 0.10, …, 0.95 (two-sided) t-tests 

were performed with a Bonferroni-corrected (see Holm, 1979) α of 0.0026 (= 0.05 / 19 

probability points). Significant violations (p < 0.0026) were found across the ten probabilities 

0.05 to 0.45. Figure 3.8 shows the individual and mean RMI test function curves of 

Experiment 2. Significant positive values across subjects produce violations (Miller, 1982). 

 

 

Figure 3.8    Race model test function aggregated across individual observers 

(blue full line) and for each individual observer (grey dotted line). Violations of 

the Race model inequality were found for probability points 0.05 to 0.45 using 

multiple t-tests with a Bonferroni-corrected significance level of 0.0026. 

 

Fitting Results 

The outcome of the fitting procedure for Experiment 2 was cost values of 10596, 

10571, 10538, and 10578for the decisional, nondecisional, combined and free model 

respectively. Thus, the best fitting model was the combined model. It outperformed the 

second best model (the free model) by 40 units in a logarithmic scale. The probability 

* 
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transformation yields a strong advantage of the combined model over the other models, as 

its probability is at over 99.99% (see Table 3.10 for an overview of the BIC values and 

probability estimates). 

 

Table 3.10 

Minimum BIC Values for each Model in the Experiment 2 (2AFC). 

Model Degrees of 

Freedom 

BIC Probability 

Decisional 6 10596 2.54 x 10-13 

Nondecisional 8 10571 6.83 x 10-08 

Combined  10 10538 9.99x10-01 

Free  12 10578 2.06 x 10-09 

Notes.    The combined model exhibited the lowest BIC score and had the 

best fit to the data. (For the computation of the model probability, see equation 

20 in 3.1.2.) 

 

On the level of means, the goodness-of-fit of the models was in good agreement to 

empirical data. The standard deviations of all models were considerably higher than in the 

empirical data. Only the nondecisional model did not succeed in reproducing the mean 

reaction times and RSE (see Table 3.11). 

 

Error Rates 

A look at the error rates the models produced, reveals that only the combined model 

could quantitatively reproduce the empirical errors; the decisional model generated virtually 

no errors for the redundant condition, while the nondecisional model (due to its design) could 

only generate identical error rates across the conditions. The free model produced to high 

error rates for all conditions (see Table 3.12). 
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Table 3.11 

Mean RTs (in ms) and Standard Deviations of Empirical and Model Data for Experiment 2. 

Condition Empirical  Decisional  Nondecisional  Combined  Free  

Auditory 403 (65) 393 (131) 395 (115) 393 (116) 398 (120) 

Visual 403 (59) 394 (132) 384 (115) 392 (130) 391 (134) 

Audiovisual 341 (53) 334 (78) 348 (115) 337 (103) 337 (103) 

      

RSE 50 (16) 59 36 55 54 

Notes.    The mean reaction times of the models are in good agreement to the 

empirical data. The standard deviations (in braces) are at variance with the 

data. Except for the nondecisional model, all models capture the redundant 

signals effect of the empirical data. 

 

Table 3.12 

Error Rates of Experiment 2 and the Coactivation Models. 

Condition Empirical  Decisional  Nondecisional  Combined  Free  

Auditory 3.12% 2.89% 3.17% 3.03% 3.96% 

Visual 4.37% 2.95% 3.17% 4.29% 6.73% 

Audiovisual 2.69% 0.45% 3.17% 1.98% 3.91% 

Notes.    The combined and the free model were the only models to 

approximately reproduce the empirical error pattern. The decisional model 

produces no errors in the audiovisual condition, the nondecisional model (due 

to its parameter constriction) identical errors across conditions. 

 

Goodness-of-Fit 

The quantile function plots of the respective models, revealed that all models (apart 

from the decisional model) overestimate the lowest quantile for the unimodal conditions. 

Apart from the lowest quantile, both the free and the combined model display an 

exceptionally good fit to the quantile proportions of the empirical data. The decisional model 
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generally underestimates the lower quantiles (0.0, 0.1) for all conditions, and overestimates 

the highest quantiles (0.7, 0.8) for the visual condition. The nondecisional model fails to 

reproduce the spread of all the conditions, most pronounced for the redundant and visual 

condition. 

 

Parameter Analysis 

The parameters, producing the best fitting for each model are depicted in Figure 3.10. 

From a qualitative view, the free, motor and combined model agree in the range of all 

parameters. The decisional model features the highest drift rate overall in the redundant 

condition and the highest base time variance  

 

 

Figure 3.9    Quantile function plots for all the models. Full triangles denote 

empirical data points, while unfilled triangles show the data points of the 

respective models. The BIC score of each model is given in the title of each 

graph. 
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All models exhibit the highest drift rate for the redundant condition and reflect the rank 

of the conditions, that is the redundant condition having the highest drift rate and the visual 

condition having the lowest drift rate (the nondecisional model has the drift parameter fixed, 

so it cannot reproduce this pattern by design reasons). The base times are lowest for the 

redundant channel across all models (where this parameter can vary). In contrast to 

Experiment 1, the base time variances agree in their value for the free, nondecisional and 

combined model. For the numerical values, see Table 3.13. 

 

 

Figure 3.10   Parameter values for all coactivation models. The upper left 

panel shows the drift rates across conditions (a for auditory, v for visual and av 

for audiovisual) for each coactivation model (drift for decisional, motor for 

nondecisional model). 
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Table 3.13 

Parameters for Best Fitting Exemplar per Model 

Model Mean Parameter Value 

 Auditory Visual Audiovisual 

Decisional    

v 0.291 0.290 0.449 

a* 0.117 0.117 0.117 

Ter* 0.204 0.204 0.204 

st* 0.848 0.848 0.848 

Nondecisional    

v* 0.307 0.307 0.307 

a* 0.108 0.108 0.108 

Ter 0.231 0.220 0.184 

st* 0.324 0.324 0.324 

Combined    

v 0.307 0.275 0.345 

a* 0.109 0.109 0.109 

Ter 0.227 0.211 0.185 

st* 0.308 0.308 0.308 

Free    

v 0.289 0.245 0.313 

a 0.106 0.104 0.099 

Ter 0.230 0.210 0.192 

st 0.244 0.251 0.313 

Notes.    Values of the coactivation models across experimental conditions. 

Parameters marked with an asterisk were fixed across conditions for the 

respective model. 
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Parameter Estimation 

The analysis of BIC scores revealed that 22.7%, 93.1%, 92.5%, and 26.9% of the 

11000 fitting attempts failed for the decisional, nondecisional, combined and free model 

respectively. Analogously to the analyses for Experiment 1, the range of BIC scores was 

computed. For that, the parameters of the 1% best fits were used to compute the mean and 

standard deviations of the parameters for each model as well as the distribution of the BIC 

scores. This resulted in a subset of 110 data points per model (1% from the overall 11000 

attempts to fit the data). Table 3.14 gives the mean, standard deviation, minimal and 

maximal BIC scores for the 1% best fits of each model. 

 

Table 3.14 

Mean BIC Score of the 1% Best Fitting Parameters. 

Model Mean BIC (Std. Dev.) Min BIC Max BIC 

Decisional 10613 (4.90) 10596 10619 

Nondecisional 10589 (6.32) 10571 10601 

Combined 10559 (10.41) 10538 10577 

Free 10590 (3.00) 10578 10593 

Notes.    Mean, minimum and maximum BIC scores for the 1% best fitting 

parameters per model. Standard deviation in braces, minimum values in bold 

face. 

 

Figure 3.11 shows the mean and standard deviations of the parameter values 

together with the best fitting values (as red diamonds). In contrast to the results of 

Experiment 1, not all parameter values stay well inside the two standard deviations of the 

mean value. Most notably the best fitting parameters of the free model leave the confidence 

range for both the drift rates and the criterion. The other models stay well within their 

respective ranges. Table 3.15 provides the numerical values of the means and standard 

deviations for all parameters and each model. 
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Figure 3.11    Means and standard deviations of parameter values are plotted 

for the fitted models. Only parameters of the 1% best fits are plotted, red 

diamonds denote the best fitting parameters for each model. Except for the 

drift rate and the criterion of the free model, all values remain well within two 

standard deviations of the mean 1% best fits. The standard deviation of the 

base time variance is relatively high. 
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Table 3.15 

Parameter Estimates for the 1% Best Fits for each Model 

Model Mean Parameter Value (Std. Dev.) 

 Auditory Visual Audiovisual 

Decisional    

v 0.289 (0.012) 0.285 (0.013) 0.443 (0.019) 

a* 0.116 (0.005) 0.116 (0.005) 0.116 (0.005) 

Ter* 0.208 (0.006) 0.208 (0.006) 0.208 (0.006) 

st* 0.867 (0.160) 0.867 (0.160) 0.867 (0.160) 

Nondecisional    

v* 0.316 (0.016) 0.316 (0.016) 0.316 (0.016) 

a* 0.114 (0.007) 0.114 (0.007) 0.114 (0.007) 

Ter 0.227 (0.008) 0.213 (0.008) 0.180 (0.007) 

st* 0.364 (0.269) 0.364 (0.269) 0.364 (0.269) 

Combined     

v 0.320 (0.020) 0.283 (0.017) 0.373 (0.026) 

a* 0.115 (0.007) 0.115 (0.007) 0.115 (0.007) 

Ter 0.227 (0.005) 0.208 (0.005) 0.186 (0.005) 

st* 0.472 (0.263) 0.472 (0.263) 0.472 (0.263) 

Free    

v 0.315 (0.014) 0.277 (0.010) 0.357 (0.023) 

a 0.113 (0.006) 0.115 (0.005) 0.109 (0.009) 

Ter 0.228 (0.005) 0.207 (0.005) 0.190 (0.007) 

st 0.387 (0.204) 0.350 (0.178) 0.433 (0.203) 

Notes.    Parameter values of the 1% best fitting coactivation models across 

Experimental conditions. Parameters marked with an asterisk were fixed 

across conditions for the respective model. Standard deviations in braces.    
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3.3 Discussion and Conclusion 

This study marks the first of a kind, as it employs a diffusion model analysis to the 

redundant signals paradigm to uncover the source of coactivation. The results suggest that 

there is coactivation both in the decision and nondecision component of the reaction times. 

This confirms previous conjectures on a hybrid source of RMI violations (see e.g. Diederich, 

Colonius). Surprisingly, the contribution of nondecision processes to the effect varied with the 

task. For the focal attention task (Experiment 1), the decision component was dominant, 

whereas in the divided attention task (Experiment 2), the nondecision component outweighs 

the decision component clearly. This interpretation has to be further validated by follow-up 

studies. 

Methodologically, this study marks an important improvement in the use of mental 

chronometry. The pitfall of model mimicry is evaded as the whole distribution of each 

experimental condition is expedited for the fitting procedure. Using only the mean reaction 

time and Occam’s razor, would have attested choosing the decisional model to be in best 

agreement with both the data of Experiment 1 and 2. And this even though in the second 

experiment the decisional model fared worst, when looking at the quantile proportion fits. 

Also, the detailed analysis of the fitting procedure is an important step to justify results from 

such model analyses, as it can give estimates on the reliability of each fit. 

In this section, the experimental and fitting results will be discussed and embedded 

into the existing literature. Concrete future experimental ideas and improvements of the 

diffusion model analysis and fitting procedure are discussed together with a concluding 

summary of this study. 

 

3.3.1 Observers Performance 

The low error rates across the two experiments indicate the general simplicity of the 

task and the observers’ ability to follow the experimental instructions. On a mean level 

analysis, the experiment showed very pronounced RSE’s of 55 and 50 ms, which are not 

uncommon for simple detection tasks. Comparing the two single target conditions in 

Experiment 1, the auditory trials were processed faster than the visual trials. However not 

statistically significant, this is in good accordance to basic findings (Todd, 1912), where 

response times of auditory stimuli are faster than of visual stimuli (for medium intensity 

levels). In Experiment 2, both unimodal conditions do not differ numerically. 

The large amount of violations (ten in Experiment 1, nine in Experiment 2) very 

strongly falsifies the class of race models as an explanatory model for these experiments. 



Modeling Coactivation in Bimodal Detection Tasks 79 

 
This result is further reinforced, as both a conservative alpha-correction was used and 

response contingencies were avoided (Mordkoff & Miller, 1993). Moreover, the violations 

happen in the lower range of probability points, which is plausible by the makeup of the race 

model inequality. These results serve as justification that the empirical data indeed is of a 

coactivated manner and thus the subsequent fitting results can be linked to coactivation 

mechanisms in the redundant signals paradigm. 

 

3.3.2 Decisional and Non-Decisional Processes contribute to Coactivation 

The fitting results, that is, the BIC scores and model parameters, were in a 

comparable range for both experiments. Due to the high amount of similarity in Experiment 1 

and 2, this can be taken as sanity check for the fitting. The results suggest that the best 

fitting model for both the SRT and 2AFC experiments is the combined account, where drift 

rates and base times are allowed to vary across all conditions. In Experiment 1, the free 

model had the second best fit, while in Experiment 2, the nondecisional model performed 

second best. The separation from the combined model to the other models is even more 

distinct, as the cost function is defined in a logarithmic scale (see equation 18). 

Looking at the parameters (for the best fitting exemplars per model) revealed similar 

patterns across the two experiments. There was a ranking of drift rates, as the bimodal drift 

rate was higher than both the unimodal drift rates for all models. Together with the BIC 

scores, this can be seen as evidence for a drift rate coactivation in these bimodal RSP 

experiments. Interestingly, where they could vary, the base times also follow this ranking, as 

the bimodal base time is lowest (and thus response times are fastest) across all models. 

Under the assumption that the fitting results reveal the true mechanism for the data in 

these two experiments, the decisional and nondecisional components seem to be 

differentially responsible for the observed RSE. In Experiment 1, out of the RSE of 56 ms, 

13 ms can be accounted to the base time difference between the faster unimodal condition 

and the bimodal condition alone. In contrast to that, half the RSE (26 of 51 ms) in 

Experiment 2 can be attributed to the base time difference between the faster unimodal and 

the bimodal condition. 

Studies that have tried to fit data to explicit coactivation are rare. One of the explicit 

models, that assumes a coactivation at the decisional stage is Schwarz’ superposition model 

(1994). The basic assumption of the model is that on redundant-target trials the separate 

activation of the two stimulated channels superpose to form the overall-diffusion process Xr(t) 

= Xa(t) + Xb(t). Activity in both channels can be adequately described by independent 

diffusion processes of the Wiener type and can have variable channel dependency. It has 
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been applied to data from Miller (1986) and predicted the data well on a level of mean 

reaction times. As in the present study, a large proportion of the response time in Schwarz’ 

data is consumed by the nondecisional stage.  

Diederich (1995) performed a trimodal SRT with visual, auditory and tactile stimuli 

with varying interstimulus intervals. The author performed a mean level fit to a race model 

and two coactivation models. As both coactivation models outperformed the separate 

activations model and resulted in excellent fits of the mean reaction time, the author states 

that the spread of the response times was not captured adequately well. The author 

suggested that this inability to account for the standard deviation in the data is possibly due 

toe dependencies of motor times. The present study is in good accordance to that 

assumption, as the combined model features a condition-dependent motor coactivation. 

In accordance to the finding of the diffusion model analysis, that there is coactivation 

occurring at the motor stage, the study by Diederich & Colonius (1987) found positive 

evidence for this claim. An analysis of the distributions of RT differences between left- and 

right-handed responses showed, that there is a U-shaped functional dependence of the 

amount of facilitation in the motor component on the interstimulus interval. The method of 

analysis based on RT differences rests upon the disputable assumption that the motor delay 

constitutes and additive component of the entire observable RT (see, e.g. McClelland, 1979). 

A comparison to the literature above is problematic for at least two reasons. Both 

have analysed the goodness-of-fit only to decisional models and only at the level of means. 

Relying only on the fit to the means alone in this study, would not help distinguish between 

the decisional and combined model in Experiment 1. In Experiment 2, such a limited analysis 

would not be able to rule out any of the models. As the decisional model features the lowest 

amount of parameters (that is 6) compared to the other models, the principle of parsimony 

would prefer decisional models, although in Experiment 2 the decisional model exhibited the 

weakest fit. On a methodical level, these differential outcomes prove a strong argument for 

the of diffusion model and against classical mean level analyses. 

 

3.3.3 Methodical Caveats 

The experimental data was highly coactivated and yielded a large redundant signals 

effect. This was due to easy detection task and the highly salient target stimuli. Anticipation 

was minimized by introducing temporal uncertainty (varying intertrial intervals), however 

there were no no-go trials and very little uncertainty about location of the targets (either 

centrally in Experiment 1 or at the same left/ right positions in Experiment 2).  
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Not unexpectedly, due to the high saliency of the targets and the simplicity of the 

experimental tasks, the error rates were rather low. This prevented the inclusion of the error 

response time distributions in the quantile fitting algorithm, however the error rates where 

accounted for by the modified cost function (see equation 19). In other Experimental contexts 

(with different tasks and/ or stimuli) the proportion on errors might be higher and thus make it 

possible to take into account the RT distribution of incorrect responses and not only the error 

rates. Increasing the difficulty of the task, by reducing the feature contrast and/ or adding 

noise to the stimuli, will increase the proportion of erroneous responses and thus allow 

incorporating that data to the fitting procedure. From a diffusion model aspect, such an 

intervention should only affect the drift rates of the respective models. This would additionally 

validate the results of both experiments, as such interventions have been performed (for 

example by Voss et al., 2004) to validate the RDM empirically. Additional fitting inquiries of 

more difficult SRT and 2AFC tasks and other visual search tasks featuring redundantly 

defined targets, mark the next logical step to broaden the results obtained in this study. 

Another way to improve the fitting performance, is to constrain the all the models by 

an estimate of the empirical motor variance. Ulrich and Stapf (1984) used the trial-to-trial 

variation of left and right-handed RT’s to approximate the motor variance. If for each trial, the 

difference of left and right reaction times, D = RTL – RTR = (S + ML) – (S + MR) = ML – MR, 

depends only on ML and MR, since the common term S is dropped. This means, that D 

depends only on those stages that follow the central motor command. Therefore, if stimulus 

intensity affects only the earliest stages of stimulus encoding, then the distribution of reaction 

time difference should be unaffected by a change in stimulus intensity. As both the 

experiments featured only one level of stimulus intensity, this proxy was not used to 

constrain the model to be fit. Also, this requires that the paradigm of interest features a 

double-hand response (which is not possible for a left – right discrimination in Experiment 2). 

 

3.3.4 Evaluating the Fitting Procedure 

One non-experimental measure to improve the validity and performance of the fitting 

procedure is the parametric bootstrap approach of Wagenmakers et al. (Wagenmakers, 

Ratcliff, Gomez, & Iverson, 2004) to assess the model mimicry. In this study, a more 

pragmatic approach to evaluate the fitting procedure itself was chosen and revealed notable 

results. The fitting performance as measured by the rates of failed and successful fitting 

attempts, showed a stark disparity between models. Only the free and the decisional model 

were constantly able to fit the empirical data (approximately 80 and 88% of the time) while 

the nondecisional and combined model only managed to fit seldom (approximately 8% for 

both). As the details of fitting procedure are not explicated in the literature, it remains unclear 
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what and if anything to conclude from these performance differences. Is the (relative) inability 

to successfully fit the data for a large proportion of attempts in itself an indication of the 

“unfittingness” of the model? Or is this an artefact of the optimization process and not 

intrinsically related to the goodness of the respective model and the data? For example, 

some models might feature more than one parameter range can mimic the data, while for 

other models only one parameter combination is able to fit the data. There are no papers 

reporting or discussing these aspects of fitting. (Vandekerckhove & Tuerlinckx, 2007 give 

four rules-of-thumb for the optimization part of the fitting procedure, which are not analytically 

derived.) Further theoretical and simulation investigations are necessary to solve this 

question. 

To solidify the fitting results, the parameter values of the (1%) best fitting exemplars, 

were subject to closer scrutiny. They show a good amount of stability, as almost all of the 

parameters are constrained by one standard deviation around the mean for every model. An 

exception to this fact, are the base time variances which could vary rather drastically. This, 

however is of no practical consequence, as this noise fluctuations were present for all 

models and do not constitute the decisive reason for the respective models fit. Moreover, the 

amount of standard deviation added to the response time by the st parameter is marginal 

(Gomez et al., 2007). Another way to ensure the robustness and validity of the fits is to use 

the best fitting parameters for each model and compute confidence intervals of their BICs in 

a Monte Carlo fashion. This way the possibility of the best fit being an outlier is minimized. 

 

3.3.5 Conclusion 

Overall, the present fitting analyses pose a strong challenge to the view, that 

coactivation in the redundant signals paradigm is a purely decisional effect. This pattern is 

even more pronounced in the data of Experiment 2 where the decisional model even fared 

worst and the purely nondecisional was the second best model in terms of goodness-of-fit. 

Although two experiments are not sufficient to decisively rule out a decisional only model, 

they make a point to emphasize the role of the (late) motor stage for the coactivation. The 

results furthermore encourage a diffusion model analysis and avoid the implicit null 

hypothesis of a decisional coactivation in case of violations of the RMI. 

In order to gain a converging picture of the question, what the sources of the RSE 

are, further experiments and fittings are necessary to look at the influence of different stimuli, 

modalities, response effectors and experimental tasks in the RSP on coactivation and its 

generating (diffusion model) parameters.  
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4 STATISTICAL EVALUATION OF THE RMI TEST 

The race model inequality test has been a central instrument to discriminate between 

separate activations and coactivation architectures in the redundant signals paradigm. Since 

its conception by Miller (1982), it has been applied in a myriad of experimental settings (see 

chapter 2.3 for a rigorous derivation and evaluation of the test). Violations of the RMI bound 

exclude race models as a viable architecture for the RSE (Diederich, 1992; Egeth & 

Mordkoff, 1991; Feintuch & Cohen, 2002; Grice et al., 1984; Krummenacher et al., 2001, 

2002; Miller, 1982; Mordkoff et al., 1996, see chapter 2.2 for models of the RSE). 

The RMI bound itself formalizes the maximum amount of speed-up possible by race 

models. It enables researchers to test this bound as the null hypothesis for the class of race 

models at different percentiles. The RMI test and some of its variations and generalizations 

have been the subject of numerous theoretical and methodological studies (Ashby & 

Townsend, 1986; Colonius, 1986, 1990b, 1999; Colonius & Ellermeier, 1997; Colonius & 

Vorberg, 1994; Diederich, 1992; Miller, 1986, 2004; Miller & Lopes, 1991; Miller & Ulrich, 

2003; Mordkoff & Yantis, 1991; Townsend & Colonius, 1997; Townsend & Nozawa, 1997; 

Townsend & Wenger, 2004; Ulrich & Giray, 1986; Ulrich & Miller, 1997). 

As simulation studies on the RMI would show the test itself is affected by several 

issues challenging its outcome and value for researcher investigating the redundant signals 

effect. In order to deepen the knowledge and consequently avoid these caveats, it is 

essential to investigate the statistical properties of the RMI test in an exhaustive framework: 

In this simulation study, the RMI test is investigated in a Monte Carlo fashion using the 

Ratcliff diffusion model to synthesize reaction time data. 

First, this investigation is motivated by detailing the known statistical properties of the 

test. Then the simulation framework and its modules, that will help integrate previous study 

scopes and increase the utility of the RMI test, are described. 

 

4.1 Statistical Properties of the RMI Test 

Generally, the RMI test (like every statistical classifier) can produce two types of 

errors. Type I errors (α-errors or “false alarms”) occur, when the null hypothesis is incorrectly 

rejected. In the case of the RMI test, this implies a scenario where the data was de facto 

produced by a race model, but the RMI test wrongly suggests a rejection of race models. The 

false alarm rate is controlled by the significance level (“α level”) of the t-test. Common 
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practice is to set α = 5%, as researchers want to avoid rejecting the null too promptly. This 

means that on average one out of 20 experiments will produce a false alarm. 

Failing to reject the null hypothesis (here: race models), when the data was in fact 

generated by a non-race model mechanism, is termed a type II error (β error or “miss”). The 

power of the RMI test (1 – β) is generally believed to be considerably below the desired 80%, 

as the data is compared to the maximum amount of facilitation possible by race models. Yet 

this conservativeness (see Patching & Quinlan, 2002; Schwarz & Ischebeck, 1994) has been 

rarely quantitatively estimated. (There are experimental circumstances which can produce 

violations of the RMI apart from integration or coactivation models (see Mordkoff & Miller, 

1993). These can be avoided by a balanced sampling of single and redundant trials.) 

 

4.1.1 Alpha Accumulation 

Despite its pivotal role for inferring on cognitive architectures, the RMI test has only 

lightly been investigated with help of simulation studies. Standard practices in RMI testing 

require researchers to t-test the RMI bound at several probability points (see Ulrich et al., 

2007 for an explicit algorithm), where any probability point alone can attest a violation. With 

this multiple testing on the same set of data, the chances of falsely rejecting race models 

accumulate. Although, t-tests are highly correlated across percentiles (as neighboring points 

of distribution functions are close to each other), the effective overall type I error can be 

much higher than the inner significance level. Kiesel, Miller and Ulrich (2007) could show, 

that the amount of amount of type I error accumulation can be rather large - reaching up to 

13% (Table 4, Kiesel et al., 2007). They recommend different strategies to control for type I 

error accumulation: restricting the range of percentiles to evaluate the race model, 

independent replication of experiments and/or lowering the inner significance level. This 

however, is bought dearly, as each of the measures goes along with a reduction of power. 

 

4.1.2 Estimation Bias 

Apart from type I error accumulation, Kiesel et al. (2007) present an unexpected 

caveat of RMI testing. The first step of the RMI algorithm, which is the estimation of the 

cumulative distribution functions (see the algorithm by Ulrich, Miller and Schröter, 2007 in 

chapter 2.3.5) can itself be biased favoring violations – and thus coactivation accounts. It is 

known that quantile estimators are in general problematic, as they tend to overestimate lower 

percentiles and underestimate higher percentiles (Gilchrist, 2000). Kiesel et al. simulated 

races, while manipulating the similarity of the two single target channel distributions and the 

sample sizes of each channel. Independent of the distribution relations, a sparse and 
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unbalanced sampling across channels (rather different distributions, see Figure 4.1), 

systematically biases the RMI test to work against race models (and thus promoting type I 

errors). 

Contrary to classical power considerations (Cohen, 1988), an increase in sample size 

in that case still could not eliminate the bias, as it remained between 1 and 3 ms per 

probability point for the highest trials-per-condition case (40 samples for each target type). 

 

 

Figure 4.1    Estimation bias for race models with different sample sizes per 

condition. The first two numbers refer to the sample sizes of the single signals 

trials, the last number to the redundant signals trials. Values less than zero 

line favor violations, values greater than zero hinder the detection of violations. 

(middle panel of Figure 4 from Kiesel et al., 2007; reprinted with permission) 

 

4.1.3 Effects of high Base Time Variance 

In contrast to these findings, Townsend and Honey could demonstrate that the RMI 

test might still be prone to conservatism, when the response time is afflicted with a highly 

varying base time component (Townsend & Honey, 2007). Classically, reaction times RT can 

be split into a decision and a nondecision or base time component (Luce, 1991): RT = D + B. 

Here, B is the base time or residual latency reflecting all the processes involved in encoding, 
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response selection and response execution, whereas D, the decision latency, is the 

psychological process of interest (e.g. the detection or discrimination process). Townsend 

and Honey could show (analytically and via simulations), that the RMI test is rather 

underpowered, that is, in a range between 20 to 80% for reasonable RSE’s, when the base 

time variance is high (200 ms). And this holds even though the reaction time data was in fact 

generated by a non-race data. They derived the effect of highly varying base times and 

likened them to a filter, smoothing away potential violations of the RMI. Here again, an 

increase in sample size (from 100 to 250 and to 500) was not recommended, as it reduced 

the power to detect actual coactivation even further (Figure 7, for low base time variance and 

Figure 8, for high base time variance in Townsend & Honey, 2007). 

 

4.1.4 Limitations of previous Studies 

Overall, the picture these two studies provide is inconclusive, as disjunct aspects of 

the RMI were probed. The Kiesel et al. (2007) study for example has no coactivation 

implementation and thus cannot investigate power or a potential estimation bias of the RMI 

test in the coactivated case. Furthermore, as it employs a descriptive (instead of a 

mechanistic) model of response times, it cannot illuminate the effects of base time on type I 

errors, power and the estimation bias. To generate their reaction time data, Kiesel et al. used 

the ex-Wald distribution, which is the convolution of an inverse Gaussian distribution with an 

exponential distribution. It is commonly used in experimental psychology to model reaction 

time data, and its parameters were believed to reflect the reaction time decomposition (with 

the inverse Gaussian or Wald-part being a model for the decision time and the exponential 

part signifying the base time component). The use of the ex-Wald and other distribution 

functions beyond the level of data description is problematic, as Matzke and Wagenmakers 

(2009) could show that the parameters of these models do not uniquely correspond to 

parameter changes of the theoretical and explicit model of reaction times. Townsend and 

Honey (2007) also used simplified, atheoretic response time models with empirically 

implausible distributions. Townsend and Honey use normally distributed data for their 

processing times data, which in contrast to right-skewed empirical reaction times is 

symmetrical around its modus. This data is convolved with a normally distributed base time. 

Apart from these numerical issues, the studies are improvable in several other 

respects. Neither Townsend nor Kiesel implemented differentially correlated race models, but 

instead only use the extremal case of race models (i.e. maximally negatively correlated 

racers). Neither study investigated both low and high sample sizes, different significance 

levels of the inner t-test, subject sizes or correlation and coactivation strengths (respectively). 

This is necessary, as the knowledge of these parameters can effectively help setting up the 
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RMI test in an optimal sense (e.g. minimizing type I errors or maximizing power rates or a 

combination of the two). Most importantly, the Townsend and Honey study did not look into 

type I error accumulation or the estimation bias, while the Kiesel et al. study neglects power 

and base time manipulations altogether. 

 

4.1.5 Research Questions 

Both these studies make valid and important points, every researcher applying the 

RMI tests should incorporate in their design and analysis. Nevertheless, the validity of these 

results relies on their replication and extension within an integrated and fully crossed study. 

This simulation study aims at integrating and extending the work and scope of the preceding 

studies in a coherent and adaptive framework. Specifically, this study addresses the 

following open research questions: (a) What is the power of the RMI test, (b) is there an 

estimation bias in the RMI test when the data is actually coactivated (and if so, in what 

direction)? (c) what is the effect of base time variance on estimation bias, type I error 

accumulation, and power, and (d) are the results by Kiesel et al. (2007) and Townsend & 

Honey (2007) quantitatively or at least qualitatively replicable, when using mechanistic 

models instead of descriptive models of decision making? Table 4.1 gives an overview of the 

properties of previous simulation studies in comparison to the present study.  

The RMI test has been introduced as a tool to elucidate the architecture question of 

multisensory integration. The results and inferences of RMI studies then are only as credible 

and solid as is the understanding of the tool that brings them about. In case of the RMI test, 

there are several known shortcomings, as were outlined so far. This simulation study aims at 

overcoming these issues and providing a means to assess the properties and performance 

of the RMI test in a principled way. It features the latest and most established models of 

decision making and will effectively improve both the knowledge on the RMI test and its 

application in an experimental context. 
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Table 4.1 

Comparison of Scopes and Properties of Simulation Studies on the RMI Test. 

Properties Study 

 Kiesel et al. (2007) 
Townsend & 

Honey (2007) 
The present Study 

Scope 

Estimation Bias for 

Race; Type I Error 

Accumulation 

Effects of Base 

Time Variance on 

Type I Errors and 

Power 

Estimation Bias for Race 

and Coactivation; Type I 

Errors for correlated 

Racers; Power of latent 

and manifest Coactivation 

Alpha error/ 

accumulation 
X / X X / -- X / X 

Race model ex-Wald distributed 

normally, 

exponentially 

distributed 

Ratcliff Diffusion Models 

Interchannel 

Correlation 
-1 (not specified) 0, -0.5, and -1a 

Power -- X X 

Coactivation Model -- 

normally 

distributed (mean 

shifted) 

decisional model (drift rate 

summation) 

Estimation Bias 

Race/ Coactivation  
X / -- -- / -- X / X 

Range of  

Sample Size 
10, 20, and 40 100, 250, and 500 

10, 20, 40, 

100, 200, and 400 

Subject Size 20, 40 1 8, 20, and 40 

Notes.    X denotes a present and -- denotes missing aspects in the respective 

study. a nominal values of interchannel correlation only, the effective 

correlation lower due to the skewness of reaction time distributions. The 

present study integrated the scopes and parameters of interest into a coherent 

simulation framework. 
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4.2 Method 

4.2.1 Hardware 

The simulation framework and all analyses are programmed with GNU R (R: A 

language and environment for statistical computing, Vienna, Austria). The simulation was run 

on an Apple (Cupertino, California: Apple Inc.) Power Mac machine (12 cores, 24 GB of 

RAM, 64-bit, operated by Mac OS X). Apart from the Ratcliff diffusion model implementation, 

which is a C++ library (Berkeley, New Jersey; Bell Labs) all code is written in R. The whole 

simulation job is executed in a distributed fashion, using the foreach-package. There the 

conditions are processed in parallel on 24 virtual cores (via hyper threading). 

 

Table 4.2 

Simulation Modules and their respective Data Output 

Module Output 

1) Synthesizing RT Data 

Raw Reaction Times for Single Target  

Channels X, Y, Race and Coactivated  

Channel XYR, XYC 

2) Testing the RMI 

Number of Violations 

Percentile Point of Violations 

p Values and Estimates of Statistic 

3) Aggregating and 

Analyzing 

Mean and Std. Dev. of Reaction Times 

Mean Error Rate 

Mean Correlation between X, Y 

Mean and Standard Dev. of RSE 

Overall Type I Error and Power 

Estimation Bias 

Notes.    X and Y denote the synthesized single signals data, XYR the race 

and XYC the coactivated redundant signals data. For the different measures 

and analyses, see the 4.3. 
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4.2.2 Modules of the Simulation Framework 

The simulation framework can be conceptually divided into three modules. In the first 

module (the experiment simulation), reaction times for both the race and coactivation model 

are synthesized based on Ratcliff diffusors. In the second module, the RMI is tested 

according to the explicit algorithm by Ulrich (Ulrich et al., 2007). In the final module, both the 

statistical and RMI results are aggregated and analyzed to give the resulting overall type I 

errors, estimation bias and power. This modular approach allows to adapt and extend the 

analysis of the RMI test to, for example, different response time generating models, 

alternative RMI tests (for example, the non-parametric test by Maris & Maris, 2003 or the 

geometric measure by Colonius & Diederich, 2006), different violation rules and more than 

two racers.  

Next, the three simulation modules, the simulation parameters and the analyses will 

be described, before turning to the simulation results. Table 4.2 gives an overview of the 

simulation modules and their respective outcomes. 

 

4.2.3 Generating Reaction Times (Module 1) 

For both the race and coactivation models, the Ratcliff diffusion model (Ratcliff, 1988) 

was implemented - a well-established and widely applied sequential sampling model for 

decision times (Ratcliff & Smith, 2004; see chapter 2.4 for a detailed description of the 

Ratcliff diffusion model). It quantitatively describes the decision process as a noisy 

accumulation of evidence towards a response-eliciting threshold. It is characterized by seven 

parameters. The rate of evidence accumulation (or drift rate) varies across trials according to 

N(ν,η) and reflects the clarity of the signal (for example, how easy or hard the target is 

perceivable). The parameter s governs the within-trial variability in drift rate and can be used 

as a scaling factor for the whole model (Donkin, Brown, & Heathcote, 2009). The distance 

between the response boundaries a quantifies the observers caution and controls the speed-

accuracy tradeoff: when a is small, decisions are reached faster at the risk of terminating at 

the wrong threshold; when a is high, the decision making is more conservative at the cost of 

reaction times. The starting point z is used to model response bias, which can also vary 

between trials (controlled via the parameter sz). 

The last two parameters of the model concern the nondecision time component, 

which is usually conceived as a uniformly distributed variable. Ter is the mean base time 

added to the decision time and st is the across-trial variability of Ter. The overall response 

time then is the sum of the decision process and the nondecision time. Similar to the EZ-

diffusion model (Wagenmakers et al., 2007), in the present study the simplifying assumptions 
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are made, that the starting point is unbiased (that is z = a/2) and the across-trial variabilities η 

are all zero. The base time variance parameter st was not set to zero, as it marks a vital 

aspect the research questions.  

The Ratcliff diffusion model is characterized by a close fit to the response accuracy 

and the response time distributions for both correct and error responses. Furthermore, in 

contrast to descriptive models of decision making, its parameters do have direct 

psychological interpretations (Matzke & Wagenmakers, 2009). Its ecological validity was 

shown both on a neurological (Smith & Ratcliff, 2004; Ratcliff, Cherian, & Segraves, 2003), 

empirical (Voss et al., 2004) and statistical level (as it is unable to fit fake but plausible data, 

see Ratcliff, 2002). In addition to inherently producing the ubiquitous speed-accuracy trade-

off in response time literature it also reproduces the mean-variance relation typical for 

response times (Wagenmakers et al., 2005). For a detailed description of the Ratcliff 

diffusion model, please see chapter 2.4. 

By using the RDM (and unlike Townsend & Honey, 2007, or Kiesel et al. 2007), it is 

possible to manipulate the base time component independently of the architecture (race 

versus coactivation) and test its influence on the measures. The base time variance for all 

channels was set to 50, 100 or 200 (added to the standard deviation of the decision process 

alone). 

Similar to Kiesel (Kiesel et al., 2007), different cumulative distribution function 

relations are simulated to reflect unequally fast sensory channels, X and Y. In the equal 

distributions condition, X and Y share the same RDM parameters, chosen in a way to reflects 

typical values for a simple detection task, e.g. a visual pop-out search. The targeted means 

are around 290 ms and the standard deviations were 65 ms. In the different distributions 

condition, X is identical to the equal distributions condition and Y has RDM parameters that 

yielded a mean of 330 ms and standard deviation were of 85 ms. As the RMI bound is 

calculated as the sum of the single target channel CDFs (or estimates thereof), the equal 

distributions condition (equal distribution) will have a different RMI bound, than the different 

distributions condition. 

 

4.2.4 Race Model Implementation 

For the race model, the two channels, X and Y were synthesized and the minimum 

response time of both (for each trial) was used to determine the redundant race channel, 

XYR. The RMI formalizes the most extreme case of race models- where both racers are 

maximally negatively correlated. As the correlation determines the possible values of the 

RSE and violations of the RMI, it is controlled as a parameter of the race model in the 
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simulation. A perfect positive correlation of 1 would result in an extinction of the statistical 

facilitation (it would produce an RSE of zero, for equally distributed channels X and Y), while 

a perfect negative correlation of -1 would produce the maximum RSE possible for race 

architectures. To induce negative correlations in the data, a variant of the method of 

antithetic variates is used (Thompson, 2009). After randomly sampling reaction times for both 

single target channels X and Y, a proportion corr of all these reaction times each is randomly 

picked and reverse rank ordered. The correlation parameter corr is set to be either 0 

(uncorrelated racers), -0.5 (moderately correlated racers) and -1 (strongly correlated racers). 

(Positive correlations are not implemented, as they do not constitute a critical test for the 

RMI). As reaction times distributions are generally right-skewed, the effective amount of 

correlation cannot reach the nominal values of -0.5 and -1, but is generally lower. 

 

4.2.5 Coactivation Model Implementation 

Coactivation is no intrinsic property of the RDM. In this study, the working hypothesis 

is that the RSE is a decisional effect (Zehetleitner et al., 2009a; Koene & Zhaoping, 2007; for 

a review see, Zehetleitner et al., 2008b). Its implementation burrows from theoretical 

considerations by Schwarz (Schwarz, 1989). In his account, Schwarz proposes a 

superposition of neural renewal counting processes. A theoretical equivalent in the RDM 

would be a full summation of drift rates of the single target channels. As this setting leads to 

potentially high and empirically implausible RSEs, a gauge or weighting factor   is introduced 

to control for subadditive (latent) coactivation: 

       (     )    (     )   (21) 

The first term on the right hand side of equation 21 is equivalent to the fastest single 

target channel (in this case always X), whereas the second term introduces an increase in 

drift rate, based on a weighted sum of the two single drift rates. If the values of   are 

restricted to the interval [0, 1[, plausible values of RSE (generated by comparable race 

models) can be found. Values for   here are set to 0.1 to 0.8 in the equal distribution 

condition and to 0.1 to 0.6 in the different distributions condition (in steps of 0.1 each). This 

way, an exhaustive range of weakly (latently) to strongly (manifestly) coactivated models is 

guaranteed. The other parameters of the RDM (a, s, z, Ter, η, sz) are set to be equal to the 

faster of the single target channels (here, always X).  
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4.2.6 Testing the RMI (Module 2) 

In module two, an implementation of Ulrich’s explicit algorithm is used to detect 

violations of the RMI (Ulrich et al., 2007; see chapter 2.3 for detailed description of the 

algorithm). This study’s framework however, in principle allows the implementation of various 

and multiple RMI tests (Maris & Maris, 2003; Colonius & Diederich, 2006). If race models 

hold true, then the observed cumulative distribution function (CDF) of the RTs X, Y and XY 

should satisfy the equation for all time points t. 

   ( )    ( )     ( )           (22) 

Ulrich’s algorithm is composed of four computational steps: First, the CDFs for FX, FY 

and FXY are estimated as cumulative frequency polygons (CFP; see for example, Gilchrist, 

2000) from the observed (correct) RTs for the three conditions. These estimated CFPs are 

denoted as GX, GY, and GXY. Second, the sum S of the GX and GY is computed (the 

estimated RMI bound):  ( )    ( )     ( ) for each participant. Third, at prespecified 

probabilities p = 0.05, 0.10, 0.15, …, 0.95, the percentile values sp and zp for S and GXY are 

estimated according to the percentile definition by Hazen (Hazen, 1914). Finally, the 

percentile values sp and zp are aggregated over participants and for each percentile value a 

paired t-test (one-sided with the alternative “greater”) is performed to assess, whether GXY is 

larger than S. Race models are rejected, if GXY is larger than S at any percentile. 

As the RMI is typically tested at more than one probability, a percentile range criterion 

is used, although other criteria could be implemented easily. Common violation criteria are 

the “any violation” criterion, where one probability point violating the RMI suffices to falsify 

the race models. Another possibility is the “max” criterion, where only the largest difference 

between sp and zp need to be significantly non-zero. 

From test theory, an increase of the significance level can help to increase the power 

of a test, but it also makes it prone to more false alarms (that is, rejecting race models 

wrongfully). An increase in the sample size of the different channels generally also has a 

beneficial effect on the power. In this study, the following sample sizes (that is, trials-per-

condition) are looked into: 10, 40, 100, 200, and 400. 

In case of low sample sizes, the method of vincentising allows for averaging of RT 

distributions across subjects (Ratcliff, 1979). This is useful when small sample sizes prevent 

accurate estimates of RT distributions for individual subjects) but it is unknown, how subject 

size exactly influences the RMI test in general. To average RT distributions across subjects, 

the vincentiles are computed for each subject’s data and then averaged. Because each 

vincentile corresponds to a particular percentile rank, the resulting averages can be used to 
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construct empirical CDF. Here, subject sizes of 8, 20, and 40 are used for each channel, as 

those parameters can be frequently found in the literature. 

 

4.2.7 Aggregation of Data and Analyses (Module 3) 

In module three, the results of module two are aggregated and analyzed with respect 

to the overall type I error, the power and the estimation bias. The data from every processing 

stage is written to the hard drive, so that for each analysis, multiple questions can be 

addressed (for example, use of different violation criteria) and re-analysis is facilitated. 

 

4.3 Data Analysis 

4.3.1 The Bias Measure 

The bias measure applied here, is defined in accordance to Kiesel et al. (2007) as 

         (  )      (  ),    (23) 

where the first term quantifies the difference between the estimated and the true 

distribution, 

    (  )         ,     (24) 

at specific probabilities p. The second term quantifies the difference between the 

estimated and the true RMI bound, 

    (  )  (     )  (     ),   (25) 

at the same probabilities p. Thus, a positive Bias(zp) and a negative Bias(sp) work in 

favor of the race model, that is rendering it harder to violate the RMI. In contrast, a negative 

Bias(zp) and a positive Bias(sp) make it easier to obtain violations. Overall, Bias values less 

than zero indicate a negative discrimination of race models, and Bias values greater than 

zero a positive discrimination. Since there is no closed form for the distribution of Ratcliff 

diffusors, the “true” distribution of X, Y and XY in this study is obtained by sampling 100 000 

reaction times for each and using the empirical cumulative distribution function. 

 

4.3.2 Overall Type I Errors and Power 

To obtain estimates of the overall type I errors and the power, the data is aggregated 

with respect to the percentile point and the simulation condition. The overall type I errors and 
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the power then are the relative frequencies of “false alarms” and “hits” respectively, averaged 

by the amount of iterations. 

 

4.3.3 Simulation Design and Parameters 

In all, 3600 conditions are synthesized and analyzed in a Monte Carlo fashion for 

1000 iterations each. Increasing the number of iterations had no noticeable effect on the 

confidence intervals of the results (overall type I, power, RSE, bias, and so on), as a pilot 

simulation with a subset of the conditions could show. The correlation parameter is only 

manipulated for race models, whereas the λ parameter is only manipulated for coactivation 

models. The maximum coactivation value is set higher in the equal distribution conditions to 

reach ceiling power, so lambda 0.7 and 0.8 are only used in the equal distribution conditions. 

This resulted in 1080 race conditions and 2520 coactivation conditions (1440 for equal 

distribution and 1080 for different distributions). Overall 540’000 raw reaction times were 

generated and analyzed. Table 4.3 gives an account of the (fully crossed) factors that are 

manipulated in this simulation study: 

 

Table 4.3 

Overview of all Parameters and Manipulations of the Simulation Study 

Factor Levels # of Levels 

Distribution Relation equal and different distributions 2 

Coactivation Strengths   
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7*, 

and 0.8* 
6 (8) 

Interchannel Correlation corr(X,Y) 0, -0.5, and -1 3 

Base Time Variance st 50, 100, and 200 3 

Significance Level for t-Tests 0.01, 0.03, 0.05, and 0.10 4 

Sample Sizes for all Conditions 10, 40, 100, 200, and 400 5 

Number of Subjects 8, 20, and 40 3 

 overall conditions 3600 

Notes.    Table of all manipulated parameters in the simulation. See text for a 

detailed account. 
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4.4 Results 

Due to the full-factorial design of the simulation (seven factors with two to eight 

levels), an exhaustive analysis would go beyond the scope of the study. Focus is put on 

plausible and often used parameter combinations, for example α = 0.05 or sample size 100. 

Researchers who want to further analyze and explore the whole dataset can acquire it by the 

author. First, data affirming the validity of the simulations and the efficacy of the 

manipulations is presented (see Table 4.3 in methods section). Then, the results for the 

aspects overall type I errors and power, estimation bias for race and coactivation models and 

base time variance effects on the RMI test are shown. 

 

Table 4.4 

Mean RTs of Single and Redundant Target D for Race and Coactivation Models 

Channel Equal Distrib. Diff. Distrib. 

 X 296 ms 296 ms 

 Y 296 ms 335 ms 

corr = 0 

XYR 

263 ms 275 ms 

corr = -0.5 258 ms 268 ms 

corr = -1 251 ms 262 ms 

λ = 0.2 

XYC 

271 ms 

λ = 0.3 262 ms 

λ = 0.4 256 ms 

λ = 0.5 250 ms 

Notes.    X, Y denote the single target channels, XYR the redundant race 

channel with varying correlation between X and Y, and XYC the redundant 

coactivation channel with varying integration strength λ. In the equal 

distributions condition X and Y were equally distributed, in the different 

distributions conditions, Y was slower than X (see. 4.4.1). (Only plausible λ’s 

are listed, i.e. λ’s that produced comparable mean RT as the race models; see 

results on the redundant signals effect in 4.4.2). 
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4.4.1 Mean Reaction Times and Standard Deviations 

The simulation has two conditions controlling the similarity of the single target 

channels. In the equal distributions condition, both X and Y had means of 296 ms; in the 

different distributions condition, X was also 296 ms, while Y had a mean of 335 ms. The 

mean reaction times of the redundant race and coactivation channels successfully varied 

with the amount of correlation and the coactivation weight λ respectively. The mean RT for 

the correlated racers is 263, 258 and 251 ms (equal distributions condition) and 275, 268 and 

262 ms (different distributions condition). With increasing lambda, the means of the 

coactivated channels go down from 281 to 239 ms in the equal distribution condition and 

from a very similar 282 to 246 ms in the different distributions condition. Table 4.4 gives an 

overview of the mean reaction times for the single target (X, Y), race (XYR) and coactivation 

channel (XYC) across correlations and coactivation strengths. 

The standard deviation of each channel is determined by the decision and the 

nondecision component of the RDM. While the nondecision or base time variance can be 

directly controlled in the st parameter, the decision component of the standard deviation also 

depends on the other RDM parameters (ν, a, s, z, and η). The proportion of the standard 

deviation generated by the nondecision component for the overall standard deviation is 

marginal (Gomez et al., 2007). The standard deviations for the single target channels are in a 

range of 64 to 85 ms for the faster channel (X) and 74 to 93 ms for the slower channel (Y, 

only in the different distributions condition). It is a common finding, that standard deviations 

increase, as mean RTs increase (Wagenmakers & Brown, 2007). 

For the race models, the standard deviations are in a range of 39 to 68, 34 to 65 and 

24 to 60 ms for the uncorrelated, mildly and strongly correlated racers respectively. In the 

coactivated case, the standard deviations monotonically drop with increasing coactivation 

strength λ from 53 to 22 (st = 50), 59 to 33 (st = 100) and 77 to 60 ms (st = 200) for different 

base time variance conditions respectively. Table 4.5 gives an overview of the standard 

deviations for the single target, redundant race and redundant coactivation target channels. 

The correlation manipulation was successful, as it resulted in effective correlations of 

0, -0.35 and -0.75 for the correlation coefficients corr = 0, -0.5 and -1. (For a better 

readability, these conditions will still be referred to as correlation 0, -0.5 and -1.) Error rates 

are generally low across all channels and conditions. They vary between 0.5 and 2 per cent, 

which is common, e.g. for a simple visual search tasks. 
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Table 4.5 

Standard Deviations of Single and Redundant Data for Race and Coactivation Models. 

Channel Base Time Variance 

  50 100 200 

  
equal 

distr. 

diff. 

distr. 

equal 

distr. 

diff. 

distr. 

equal 

distr. 

diff. 

distr. 

 X 65 70 86 

 Y 65 83 70 86 86 100 

corr = 0 

XYR 

37 42 45 49 67 70 

corr = -0.5 31 36 40 43 64 66 

corr = -1 22 25 33 36 60 61 

λ = 0.2 

XYC 

44 51 71 

λ = 0.3 37 45 67 

λ = 0.4 33 41 65 

λ = 0.5 26 38 63 

Notes.    X, Y denote the single target channels, XYR the redundant race 

channel with varying correlation between X and Y, and XYC the redundant 

coactivation channel with varying coactivation strength λ. In the equal 

distributions condition X and Y were equally distributed, in the different 

distributions conditions, Y was slower than X (see. 4.4.1). (Only plausible λ’s 

are listed, i.e. λ’s that produced comparable mean RT as the race models; see 

results on the redundant signals effect in 4.4.2). 

 

4.4.2 Redundant Signals Effect 

Increasing the correlation coefficient, corr, or the strength of integration, λ, should 

result in higher redundancy gains. The simulation behaves accordingly, as the mean 

redundant signals effect are in a range of 31 to 43, and 21 to 34 ms for (increasingly) 

correlated race models in the equal and different distributions condition. Analogously, an 

increase of λ for the coactivated models results in an increase of RSE’s: in the equal 

distributions conditions, it is in a range of 13 to 56 ms and in the different distributions 

conditions in the range of 14 to 50 ms. Thus comparable RSE’s can be found for λ = 0.3, 0.4 
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and 0.5 (in the equal distribution condition) and λ = 0.2 and 0.3 (in the different distributions 

condition). Table 4.6 gives an overview of the mean RSE for race models with varying 

correlation and coactivation models with varying coactivation strength. 

Overall, the simulation framework (with the chosen parameters) produces empirically 

plausible reaction times and RSE’s, while effectively manipulating the desired features of the 

data (be it channel correlation, amount of coactivation or base time variance). 

 

Table 4.6 

Mean Redundant Signals Effect (in ms) for Race and Coactivation Models. 

Model Redundant Signals Effect 

 equal distrib. different distrib. 

Race   

corr =     0 31 21 

corr = -0.5 37 27 

corr =    -1 43 34 

Coactivation   

λ = 0.2 24 25 

λ = 0.3 32 36 

λ = 0.4 39 40 

λ = 0.5 44 46 

Notes.    Mean RSE’s for race models with varying correlation and coactivation 

with varying integration strength (for plausible ranges only, see text for a 

detailed description). 

 

4.4.3 Estimation Bias for Race Models 

Kiesel et al.’s study (2007) devised a bias indicator to measure the amount of 

systematic disadvantage (or preference) of acquiring violations of the RMI, when estimating 

the respective cumulative distribution functions (see chapter 4.3.1). Positive values indicate 

that the RMI test will find a violation at the respective percentile point (in ms) harder, while 

negative values indicate a pull towards violations. For the most part, the race bias in this 
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simulation is confined to a range of -0.5 and 0.5 ms. Only for the lowest sample size-

condition (10) at the probability p = 0.10, there is a robust bias of around -1.5 ms favoring 

violations (see Figure 4.2).  

 

 

Figure 4.2    Estimation bias for race models with varying correlation for 

sample size 10 only. Bias values below zero indicate probability points, where 

violations are facilitated, and values above zero probability points, where 

violations are hindered. 

 

For higher probabilities (p = 0.25, …, 0.55), both correlated racers (-0.5 and -1) have 

positive biases of around 1 ms (hindering violations), while the uncorrelated racer remains at 

negative values between -0.5 to -1.5 ms (favoring violations). A bias of this magnitude is of 

little to none consequence for the RMI test. Violations in this range are almost never 

observed and are unlikely to occur, as the RMI bound has an asymptote of 2 while a CDF, by 

definition, has an asymptote of 1. 

The estimation bias for race models is also affected by the factor base time variance 

only in the lowest sample size condition (see Figure 4.3).  
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Figure 4.3    Estimation bias for race models with varying base time variance 

(50, 100, and 200) for sample size 10 only. Bias values below zero indicate 

probability points, where violations are facilitated, and values above zero 

probability points, where violations are hindered. 

 

In addition to the already attested negative value at p = 0.1 of around -2 ms, there are 

positive biases of about +1 ms at p = 0.05 and around p = 0.25, but only for the race models 

with a high base time variance (st = 200). Also, only for the race models with highest base 

time variance, the bias curve falls into the negative range (p = 0.5 to 0.75 between -1 ms to -

3 ms), while for the other base time variances it mostly remains positive and in a range 

between 0 and +1 ms. Again, those biases favoring violations should not be relevant 

because of the asymptotic behavior of the RMI. 

 

4.4.4 Estimation Bias for Coactivation Models 

As the Kiesel et al. (2007) study did not feature a coactivation model - it remains 

unclear whether the results hold for this class of models as well. Like in the race conditions, 

for sample sizes greater than 10, the bias in the simulation is generally low and confined to a 
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range of -0.5 and 0.5 ms. For the sample size-condition 10, there is a robust pattern favoring 

violations across plausible coactivation strengths. It amounts to -2 ms for equally distributed 

conditions and -1.5 ms for differently distributed conditions at p = 0.1 (see Figure 4.4). In the 

range of p = 0.50, …, 0.75 there again is a negative bias (favoring violations) of around -1.5 

to -2 ms. There is also one positive bias value (hindering violations) for weakly coactivated 

models at p = 0.05 of around +0.7 ms. Subject sizes had no noticeable effect on the patterns 

of the bias curves. 

 

 

Figure 4.4    Estimation bias for coactivation models (for sample size 10) with 

different coactivation strengths. Full lines represent equal distributions 

conditions, and gray dotted lines represent different distributions conditions 

both for plausible λ values. Bias values below zero indicate probability points, 

where violations are facilitated, and values above zero probability points, 

where violations are hindered. 
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The coactivation bias responds in a similar way to different base time variances as 

the race bias. Figure 4.5 shows the aggregated data for plausible λ ranges in the equal 

distribution (λ = 0.3, 0.4, and 0.5) and different distributions (that is λ = 0.2, and 0.3) 

condition. Only for the lowest sample size condition 10 there are notable bias values (that is, 

beyond the range of -0.5 and 0.5 ms). There is a bias favoring violations at probability p = 0.1 

for all base time variances, of around -2 ms to -1.5 ms for the equal and different distributions 

condition. Between the percentiles 0.45 and 0.75, the bias again drops into the negative 

range, but only for the highest base time variance conditions (st = 200). The other conditions 

are bounded by -1 and 1 ms. 

 

 

Figure 4.5    Estimation bias for coactivation models (for sample size 10) with 

base time variances. Full lines represent equal distributions conditions, and 

gray dotted lines represent different distributions conditions both for plausible 

λ values. Bias values below zero indicate probability points, where violations 

are facilitated, and values above zero probability points, where violations are 

hindered. 
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4.4.5 Overall Type I Errors 

When turning to the performance of the RMI test with respect to “false alarms” or type 

I errors, it is plausible to expect them to increase as more percentiles are tested. The ranges 

of 5 - 10% (two percentiles), 5 - 20% (four percentiles), …, and 5 - 50% (ten percentiles) 

were looked into. Theoretically, the maximum amount of overall type I errors is then 

determined by the number of percentiles tested, multiplied by the significance level of the 

(inner or single) t-test. For example, testing in the range of 5 - 30% with a significance level 

α = 0.05 can maximally render overall type I errors of 6 ∙ 5% = 30%. 

 

 

Figure 4.6    Overall type I errors for differently correlated race models across 

sample sizes tested at percentile ranges 5 – 10% (gray lines) and 5 - 50% 

(black lines). Correlation between channels X and Y is denoted by 0 for 

uncorrelated, 5 for moderately negatively correlated and 1 for maximally 

negatively correlated. (Significance level at 0.05). 
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From power theoretic reasons (Cohen, 1988), the (overall) type I error should 

decrease with increasing sample sizes. This is the case for uncorrelated and weakly 

correlated conditions (see Figure 4.6 for the ranges 5 – 10% and 5 – 50%). There, an 

increase in sample size can effectively push the overall type I error even below the inner 

t-test significance level, α = 0.05. The highly negatively correlated racers constitute an 

exception: an increase in sample size results in even higher and more pronounced overall 

type I errors. The amount of overall type I error is similar to Kiesel et al.’s reported α-

accumulation and results in a triplication of the (inner) significance level for the largest test 

range (when testing at 5 - 50%). 

 

 

Figure 4.7    Overall type I errors for differently correlated race models across 

significance levels tested at percentile ranges 5 - 10% (gray lines) and 5 - 50% 

(black lines). Correlation between channels X and Y is denoted by 0 for 

uncorrelated, 5 for moderately negatively correlated and 1 for maximally 

negatively correlated. 
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By definition, an increase of the significance level α should lead to more frequent 

false alarms (for any test). The simulations provide consistent results, as the overall type I 

errors are directly proportional to the significance level α (see Figure 4.7). The rate of 

increase however, is moderated by the amount of negative correlation between the single 

target channels. For highly negatively correlated racers, an increase in the significance level 

is more than two-times higher than the inner significance level, when testing at six or more 

percentile points (see Figure 4.7, black line denoted by “1”). 

 

 

Figure 4.8    Overall type I errors for differently correlated race models across 

subject sizes tested at percentile ranges 5 - 10% (gray lines) and 5 - 50% 

(black lines). Correlation between channels X and Y is denoted by 0 for 

uncorrelated, 5 for moderately negatively correlated and 1 for maximally 

negatively correlated. 

 

Specifically, for the RMI test applied in this simulation, there is another way to reduce 

type I errors, namely by vincentizing across subjects. Vincentizing is a method to average the 

percentile points of all subjects, to decrease the variance of the estimates of all cumulative 
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distribution functions (Ratcliff, 1979). Since this RMI test uses vincentizing, an increase of 

subjects should reduce overall type I errors. Indeed a beneficial effect of subject size on 

overall type I errors was found, as they can be halved, when using 40 instead of 8 

participants (see Figure 4.8) 

The different distributions condition in general produce slightly larger overall type I 

errors than the equal distributions condition (see Figure 4.9). This phenomenon will be 

treated in the discussion part. 

 

 

Figure 4.9    Overall type I errors for race models across correlations at 

percentile ranges 5 - 10% (gray lines) and 5 - 50% (black lines). Equal 

distributions condition is denoted by e, different distributions condition is 

denoted by d. 

 

4.4.6 Effects of Base Time Variance 

Specifically addressing the question of how the presence (of a potentially high) base 

time variance moderates the results, thus far the simulations integrate and extend the results 



Statistical Evaluation of the RMI Test 109 

 
by previous simulation studies. The simulation by Townsend and Honey (2007) suggests, 

that the presence of a base time variance acts as a filter that can smear away violations (if 

the variance is high enough). As a consequence, an increase of base time variance should 

go along with a decrease in overall type I errors. The simulations, replicate this relation (see 

Figure 4.10).  

 

Figure 4.10    Overall type I errors for race models with different base time 

variances across sample sizes tested at percentile ranges 5 - 10% (gray lines) 

and 5 - 50% (black lines). Base time variances st of 50, 100, and 200 are 

denoted by 5, 1, and 2 respectively. (Significance level at 0.05). 

 

A novel finding is that the amount of correlation mediates the effect of base time 

variance, as highly negatively correlated race models benefit more strongly from high base 

time variance (st = 200) with respect to the overall type I errors (see Figure 4.11). 

Overall, the amount of negative correlation has the highest impact on overall type I 

errors, as these conditions alone show a substantial accumulation detriment. The 

uncorrelated or slightly correlated racers (corr = 0 or -0.5) produce overall type I errors well 
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within the inner significance level (provided, that the sample size is high enough, i.e. 40 or 

more). Table 4.7 summarizes the results for the overall type I errors in the simulation. 

 

 

Figure 4.11    Overall type I errors for race models with different base time 

variances across correlations for equal (gray lines) and different distributions 

(black lines). Base time variances st of 50, 100, and 200 are denoted by 5, 1, 

and 2 respectively.  

  



Statistical Evaluation of the RMI Test 111 

 
Table 4.7 

Summary of Simulation Results for Overall Type I Errors 

Factor Effect on Overall Type I Errors 

 corr = 0 or -0.5 corr = -1 

Sample Size Increase of Sample Size can help 

to retain Inner Significance Level 

Alpha Accumulation occurs 

(up to 2- or 3-fold) 

Alpha Level Sublinear Increase Almost linear increase 

Subject Size Higher Subjects Sizes (linearly) lower Type I Errors 

Distribution Relation Different Distrib. has higher Type I Errors than equal Distrib.  

Base Time Variance Higher Base Time Variance results in lower Type I Errors 

Notes.    See the respective elaborations in the text for more details. 
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4.4.7 Power Analysis 

Avoiding false alarms is important to conduct reliable scientific results. Measures to 

ensure a low false alarms rate should however, not diminish the power of a test, in a way that 

actually existing effects are rendered undetectable. In the simulations, the power of the RMI 

test is generally poor (considerably below 80%) for most conditions. Only in the different 

distributions conditions and for (potentially) implausibly high amounts of coactivation and for 

high sample sizes, acceptable power rates can be achieved. 

 

 

Figure 4.12    Power rates for increasingly coactivated models across sample 

sizes tested at percentile range 5 - 50%. Black full lines represent equal 

distributions conditions, and gray dotted represent different distributions 

conditions, both with plausible strength of coactivation λ values. (Significance 

level at 0.05). 

 

As for the overall type I errors, sample size have a beneficial effect on the test 

performance: an increase in sample size generally results in a raise of power. This is even 

more accented for larger rates of coactivation. For coactivation models with RSE’s 
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comparable to the race models, power is in a range of 10 to 40% for sample size 10 but well 

above 80% for sample size 400, when testing in the range of 5 – 50% (see Figure 4.12). An 

exception of this is the coactivation model with the lowest (plausible) coactivation strength 

(λ = 0.3 in the equal distributions condition). There, power never reaches beyond 10%. 

Interestingly, an increase in the significance level is not very effective: even for the 

maximally coactivated model, a relaxing of the inner α from 0.01 to 0.10 increased the power 

at the most by 10% (see Figure 4.13). Keeping in mind, that an increase of the significance 

level affects overall type I errors disproportionally, this strongly advises against such a 

procedure to increase the power. 

 

 

Figure 4.13    Power rates for increasingly coactivated models across 

significance levels tested at percentile range 5 - 50%. Black full lines represent 

equal distributions conditions, and grey dotted lines represent different 

distributions conditions, both with plausible λ values. (Significance level at 

0.05). 
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The effect of subject size is also not as prominent as for the overall type I errors. In 

the equal distributions condition an increase of subjects from 8 to 40 results in a 3 to 8% rise 

in power (see Figure 4.14). As this procedure concurrently reduces overall type I errors, it 

should however be taken into account more seriously, than an increase of the significance 

level. 

 

 

Figure 4.14    Power rates for increasingly coactivated models across 

significance levels tested at percentile range 5 – 50%. Black full lines 

represent equal distributions conditions, and grey dotted lines represent 

different distributions conditions, both with plausible λ values. (Sample size 

100). 
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Unlike for the overall type I errors, a strong distribution relation effect on power is 

found. On average the equal distributions condition displays worse power rates, than the 

different distributions condition (see Figure 4.15, aggregated over coactivation strength). In 

the different distributions condition, power rates of around 80% can be reached, even for 

testing only 8 subjects (sample size 200 and 400). For the equally distributed conditions, 

power rates remains below the desirable 80% mark, even for the highest sample and subject 

size conditions. Theoretical explanations of this distribution relation effect are elaborated in 

the discussion. 

 

 

Figure 4.15    Power rates for increasingly coactivated models across sample 

sizes at percentile range 5 - 50%. Black full lines represent equal distributions 

conditions, and grey dotted lines represent different distributions conditions, 

both with plausible λ values. Subject sizes of 8, 20, and 40 are denoted by 8, 

2, and 4. (Significance level at 0.05.) 

 

Concerning the effect of base time variance on the power of the test, the simulations 

can confirm the theoretical considerations by Townsend & Honey (2007). An increase of the 
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base time variance can push the RMI test from a healthy detection rate to near 

undetectability (see Figure 4.16). Looking at plausible λ ranges reveals interesting results. In 

the equal distributions conditions (see Fig 4.16, full lines) an increase of base time variance 

from 50 to 200 means a drop in power rate of 10%, 45% and 35% for λ = 0.3, 0.4 and 0.5. 

Similarly, in the different distributions conditions (Fig 4.16., dotted lines) this base time 

variance increase results in a drop of 45% and 30% for λ = 0.2 and 0.3. Table 4.8 

summarizes the results of the power analysis with respect to all manipulated factors. 

 

 

Figure 4.16   Power rates for coactivated models with increasing base time 

variance across coactivation strength at percentile range 5 - 50%. Black full 

lines represent equal distributions conditions, and grey dotted lines represent 

different distributions conditions, both with plausible λ values. Base time 

variances st of 50, 100, and 200 denoted by 5, 1, and 2. (Significance level at 

0.05). 
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Table 4.8 

Summary of Simulation Results for Power Rates 

Factor Power analysis 

Sample Size Power can exceed 80% with highest Sample Size (400) 

(except for λ = 0.3 equal distributions, this remains below 10%) 

Alpha Level Increase from 0.01 to 0.1 leads to a Power Raise of 15% maximally 

Subject Size Increase from 8 to 40 leads to a Power Raise of maximally 10% 

Distribution Relation Different distributions generally higher than equal Distributions 

Base Time Variance st increase from 50 to 200 leads to a Power Drop of 10 to 45% 

Notes.    See the respective elaborations in the text for more details. 
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4.5 Discussion and Conclusion 

Although the RMI test is ubiquitous in multimodal and intersensory research, it has 

not yet been exhaustively examined. With this simulation study, RMI testing was investigated 

by addressing the following specific questions: (a) what is the power of the RMI test, (b) what 

is the estimation bias for coactivated data, (c) what are the effects of (high) base time 

variance on overall type I errors, power and bias, and (d) are the previous findings (at least 

qualitatively) replicable with a mechanistic reaction time model, the RDM. The conceptual 

scope of the studies by Kiesel et al. (2007) and Townsend and Honey (2007) were integrated 

and extended, as (differently correlated) race models and coactivated models (based on a 

weighted drift rate summation) were incorporated. The performance of the RMI test was 

analyzed under different statistical, experimental and reaction time parameters to ensure 

generalizability. 

The results confirm the efficacy of the implemented manipulations (seven fully 

crossed factors), reflected in the means and standard deviations of the synthesized data. Not 

only do the race and coactivation models behave in an empirically plausible way, the entire 

simulation framework represents a potent and reliable tool for researchers of the RMI. It 

enables them to probe the performance of the RMI test for specific experimental and 

statistical setups and/ or parameter sets a priori or a posteriori. This can help optimize the 

RMI test and thus solidify inferences drawn from its outcome - be it pro or contra race 

models. Apart from addressing the research questions, it can be viewed as a proof of 

concept, independent of the specific parameter choices of the simulations. Naturally, the 

findings are conditioned on the parameter choices (for both the RDM parameters and 

statistical/ experimental parameters) and on the chosen coactivation architecture. Due to the 

modular design of the simulation framework, specific components and steps are 

exchangeable and lend themselves to further investigations and validations. 

After a compact summary of the results, the distribution relation effect, potential 

reasons for differential results will be addressed and concrete implications for the empirical 

research will be sketched out. 

 

4.5.1 Power Analysis of Latent Coactivation 

What was missing in Kiesel et al.’s study (2007) was a look at the power of the RMI 

test. The simulation framework of the present study features a coactivation model based on a 

weighted drift rate summation between the channels X and Y. It can thus produce 

controllably coactivated channels. The boundary condition to pick “realistic” coactivation 
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strengths was to choose the ones, that produce RSE’s comparable to the race models. The 

power analysis of the RMI in the simulations revealed both known and novel findings. For 

“realistic” coactivation strengths (λ = 0.3, 0.4, and 0.5 for equal and λ = 0.2 and 0.3 for 

different distributions condition), the power is rather low. For those λ’s a healthy 80% power 

is achievable only for high sample sizes and low base time variance, while testing at multiple 

points. Higher λ’s were able to reach that threshold with a lower sample size and for higher 

base time variances, but produce too large RSE’s, to be considered empirically plausible and 

were not reported (for the full data set visit the authors homepage). This marks the first 

simulation study to report quantitative estimates of the power rates of RMI testing. 

 

4.5.2 Alpha-Accumulation only for negatively correlated Race Models 

The analysis of overall type I-errors attested only critical α-accumulation for the highly 

negatively correlated race models (corr = -1). For uncorrelated and moderately correlated 

racers (corr = -0.5, and 0), the inner significance level could be successfully retained, if 

passably high sample and subject sizes are chosen (greater than 40 samples per condition 

and 40 subjects). This is in contrast to the results by Kiesel et al. (2007), but may well be due 

to the differences in simulation parameters and/ or models used to generate the reaction 

times.  

An important practical implication of this correlation effect is to find ways to estimate 

the channel correlation. If one were to exclude high negative correlations between the single 

target channels, the RMI test could more clearly separate race from coactivation 

architectures, as it would be turned less conservative. Also, problems with estimation bias 

and α-accumulation are drastically reduced. Estimating correlation between channels though, 

is in itself not unproblematic. Ulrich and Giray (1986) have shown analytically and via 

simulations that the estimation of cross-channel correlation is biased, in the presence of 

(high) base time variance. Further modeling and simulation studies are necessary to address 

this issue. 

 

4.5.3 Estimation Bias is neglectable 

Concerning the estimation bias, the simulation in general could not confirm the 

patterns in Kiesel’s study. The race bias curves in Kiesel et al. (2007) have a stretched 

inverted U-shape curve, while the ones of the present study show this pattern only for the 

lowest sample size condition 10. Apart from that condition, all the others follow no systematic 

shape and are nearly flat. Furthermore, the biases (both for race and coactivation models) 

are bounded by 0.5 ms for both sides, once more than 10 samples per condition are taken. 
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For plausible λ choices in both the equal and different distributions conditions, there are 

biases favoring violations, albeit in a probability range where (due to the construction of the 

RMI) no violations can be found. 

There is an interaction of correlation and base time variance for the estimation base 

in race models, which produces biases against violations for lower probability points 

(p = 0.2, …, 0.4) and pro violations for higher probability points (p = 0.5, …, 0.9) in the 

smallest sample size conditions (10). The latter part is also true for the coactivation models 

(again, only sample size 10). 

At least for these RDM parameter choices, the estimation biases both for race and 

coactivation models become negligible, once reasonably high sample sizes are chosen 

(again more than 10 samples per condition). As low and unequal sample sizes for the single 

and redundant channels or other RT distribution functions and coactivation models were not 

investigated, systemic biases cannot be excluded for those combinations. It might also be 

the case that for other parameters sets and reaction time models, systematic patterns may 

still emerge. This is now empirically addressable, as follow-up simulations can investigate 

these variants with help of the simulation framework. 

 

4.5.4 High Base Time Variance reduces both Type I Errors and Power 

Referring to Townsend and Honey’s (2007) results, the simulation can basically 

replicate the base time variance effect on type I errors and power - namely a reduction of 

both. The only exception being, that an increase of sample size always helps the power, 

while the authors found the opposite phenomenon for the high base time variance condition. 

There an increase in sample sizes worsens the power of the test. 

Another new finding of the simulation study is the interaction of high negative 

correlations and base time variance for overall type I errors. Low base time variances (st = 50 

and 100) and the maximal negative correlation (corr = -1) produce the highest overall type I 

errors, well above the inner significance level of the t-test. If the correlation is less negative 

(corr = 0 or -0.5) or the base time variance is highest (st = 200), then the inner significance 

level can almost be retained. 

 

4.5.5 Distribution Relation Effect 

An interesting, although theoretically deducible result is the distribution relation effect: 

power is considerably higher (up to 20%) in the different distributions conditions, than in the 

equal distributions conditions. As the RMI bound is calculated as a sum of the single target 



Statistical Evaluation of the RMI Test 121 

 
channel CDFs (or estimates thereof, see equation 8 or chapter 2.3.5), the slower channel 

CDF drags the curve to the left and thus facilitates violations. Similar to Kiesel et al.’s results 

(2007), the effect on the overall type I error is less pronounced, so that in this case, the 

power is not bought at the expense of higher type I errors. This also provides a concrete 

empirical recommendation to increase the power: use stimuli with different feature contrasts 

to induce “rather different” single target channel CDFs. However, there should be follow-up 

studies/ simulations to fit empirical RSE data to this and other coactivation model candidates 

(for example, a nondecisional or combined model) to validate and further strengthen the 

results. 

 

4.5.6 Alternative Architectures producing Violations 

Whenever researchers fail to find violations of the Race model inequality in a 

redundant signals paradigm, doubts remain, whether this is due to data actually stemming 

from a race model architecture or the test being vastly underpowered. Mordkoff & Miller 

(1993) showed that robust violations can be observed when interstimulus contingencies, 

favoring redundant-target trials are present although the data was generated by a race 

architecture. Also, when measures are taken to exclude fast guesses, the RMI test is biased 

to favor race models (Miller & Lopes, 1991). Apart from these experimental and methodical 

issues, there are also alternative architecture that are capable to produce violations of the 

RMI: serial exhaustive (Townsend & Nozawa, 1997) or interactive race models (Mordkoff & 

Yantis, 1991). Zehetleitner, Krummenacher and Müller (2009a) tested these accounts 

experimentally and could eliminate them as potential architectures for the visual RSE (see 

chapter 2.2 for a review of the literature). 

The findings of this study cannot without a doubt exclude an unfavorable choice of 

experimental parameters and (as a consequence) low power of the test, when researchers 

fail to find violations of the RMI. There are paradigms and specific experimental settings that 

for theoretic reasons should not induce a coactivated processing of the stimuli (see Feintuch 

& Cohen, 2002, Schröter, Ulrich, & Miller, 2007, Experiment 1). The simulation study 

contributes to the debate by uncovering nontrivial properties of the RMI test and providing a 

flexible framework that can improve RMI testing in a well-grounded manner. 

 

4.5.7 How should RMI Testing look from now on? 

A general recommendation to be inferred from the simulation is to perform an a priori 

simulation of the RMI test before “jumping to conclusions”. By that, parameters like the 

subject and sample size, probability test points and violation criterion can be set, so that 
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overall type I errors and (potential) estimation biases are minimized while power is 

maximized. An increase of the significance level is strongly disadvised, as it has a 

disproportional effect on power and overall type I errors in the simulation. The most satisfying 

results are achieved for high sample and subject sizes, when high base time variance and 

negative correlation can be excluded. 

Furthermore a power analysis provides the community (and the respective journal) 

with quantitative estimates of the overall type I errors and power rates and thus helps to 

solidify results (or null results). This is also in line with the new statistical guidelines 

(concerning the problem area of publication bias and reporting power analyses) publishers 

and journals are currently implementing (for example, Open Science Collaboration, 2012). 

Another more diagnostic use of the simulation framework can be to re-analyze “failed 

attempts” to detect violations and check, whether this was due to an underpowered design or 

potential estimation biases.  

On a practical level, the question arises how to find the right coactivation strength for 

specific data sets. One pragmatic approach is to use programs that allow for estimation of 

the RDM parameters. One, the EZ diffusion model (Wagenmakers et al., 2007) uses a 

simplified version of diffusion models and provides an interactive homepage, where 

researchers can do a fast parameter fitting (http://www.ejwagenmakers.com/EZ.html). An 

alternative is the fastdiffusion model analysis program (Voss & Voss, 2007). With both, one 

can estimate the RDM parameters of the single channels and then simulate different λ’s to 

see which can produce the observed empirical RSE. More computationally intensive 

methods involve numerical fitting of the CDFs X, Y and XYC to a drift rate constrained 

coactivation model and find the parameters rendering the best goodness-of-fit (for concrete 

fitting steps see chapter 3.2 or Ratcliff, 2002 or Gomez et al., 2007). 

 

4.5.8 Conclusion 

Summing up, the simulation study gives the following answers to the explicated 

research questions. The RMI test indeed is a very conservative test, as it misses out on 

(latent) coactivation in most empirically plausible cases. When coactivation models are used 

that produce a comparable RSE, violations can only be achieved for high sample and subject 

sizes and under the assumption that the base time variance is low. When the data is afflicted 

with a high base time variance, the chances of detecting violations of the RMI are yet worse. 

The amount of estimation bias is negligible for both race and coactivation models as it 

is confined to a narrow -0.5 to 0.5 ms band for plausible probability ranges and experimental 

conditions (i.e. high enough sample sizes per experimental condition). 

http://www.ejwagenmakers.com/EZ.html
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Concerning the effect of a highly varying base time component on the power, the 

simulations reaffirmed the results by Townsend and Honey (2007). A high base time 

variance decreases both the power and the type I errors of the RMI test. An extension of 

their results is the phenomenon that low base time variances produce large type I errors if 

the channel correlation is maximally negative. Thus, empirically it is important to find a 

means to estimate the channel correlation and at best, exclude the maximum negative case. 

A novel finding is that the distribution relation affects the detectability of RMI 

violations: the more pronounced the difference in distributions, the higher the chances to 

detect coactivation, if it is the source of the RSE. 

Overall, this study integrates and extends the studies of Towsend and Honey (2007) 

and Kiesel et al. (2007) in form of the simulation framework. Using state-of-the art models of 

decision making, it enables researchers now to further investigate and assess the RMI test 

for various experimental tasks, conditions and test related parameters. Also it provides a tool 

to optimally set up the RMI test, depending on the intention of the researcher (be it minimize 

α accumulation or maximize power of the test). Albeit, the RMI test alone is not able to settle 

the question of cognitive architecture in the redundant signals paradigm, it is the critical first 

step to rule out a large class of otherwise self-evident models. 
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5 GENERAL DISCUSSION 

The application of formal mathematical models to empirical cognitive and 

Experimental psychology has paved the way for numerous revelations on the inner workings 

of the mind (e.g. the serial-parallel dilemma Townsend & Wenger, 2004). One prevalent 

enigma is the question about cognitive architecture in contexts where an integration of 

signals is necessary to carry out perceptual-motor tasks (e.g. the redundant signals 

paradigm). A prime example of how mental chronometry can help answer this question is the 

distributional bound on reaction times for the redundant signals effect, presented by Miller 

(1982). It established a pivotal non-parametrical test to exclude one class of explanatory 

model – race models. Furthermore it minimizes the risk of model mimicry as it is formulated 

on a distributional level and thus accounts for a larger proportion of the data. 

The present study makes a vital contribution to this endeavor as it combines state-of-

the-art models of decision making to the rigor of distributional testing. This combination 

enables researchers to analyze and evaluate the performance of the RMI test by means of 

computer intensive methods, such as Monte Carlo simulations and numerical fittings. The 

present study pursued objectives on a theoretical and methodological level. On a theoretical 

level it investigated the locus of coactivation for two bimodal detection tasks (with focused 

and divided attention). There, the quantile proportion fitting revealed that a combined 

decisional and nondecisional coactivation model was in best agreement to the data of 

Experiment 1 and 2. Interestingly, for the divided attention detection task in Experiment 2, the 

motor coactivation contributed more strongly to the redundant signals effect, than the 

decisional component. 

On a methodological level, the study improved the understanding and value of the 

RMI test as a statistical tool, as the interplay of various psychological and experimental 

parameters on type I errors and power rates was explicated. Novel findings are the strong 

vulnerability of the test in terms of type I error accumulation when the data is maximally 

negatively correlated, and the pronounced distribution relation effect, which can impact the 

power of the test substantially. The present study is also the first to implement and test a 

mechanistic model of coactivation that allows for controlling the strength of integration. The 

study could show that such coactivation models frequently fail to produce RMI violations and 

healthy power rates are only attainable, if high base time variance can be excluded and both 

sample and subject sizes are maximized. The here developed simulation framework 

furthermore provides a well-grounded diagnostic tool for the RMI test, as it enables 

researchers to optimally set up the parameters of the test to their specific requirements. Due 
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to its modular design, it can be adapted to different RMI tests, decision models and 

experimental and statistical parameters. 

In this last chapter, limitations and theoretical and methodological implications of the 

present study are discussed. 

 

5.1 Limitations of the present Study 

5.1.1 Theoretical 

From a theoretical stance, it is important to clarify, that the RSE can be conceived as 

an umbrella term, enveloping different mechanisms, depending on the specific experimental 

situation at hand (that is, task, modalities and stimuli involved). This notion was already 

brought forward by Miller and Reynolds (2003). Although applying different experimental 

tasks and setups to the question of signal integration is necessary to come to a conclusive 

and robust answer concerning the structure and integration mechanism, it entails the risk of 

invalidly and unconsciously pooling across inherently different phenomena and mechanisms. 

In order to thoroughly understand the mechanisms and architecture necessary for the 

cognitive system to produce the data patterns for each experimental paradigm, a systematic 

and exhaustive inquiry is inevitable. A classification system for both the paradigms and 

explanatory models of the RSE is an important conceptual step (see Töllner et al., 2011). 

The diffusion model analysis (as adopted in the present study) will further help disentangle 

different accounts of coactivation models and thus shed light on the source(s) of the RSE. By 

applying this modeling approach to further experimental tasks and modality combinations, it 

can be determined whether the RSE has to be divided into subphenomena and according to 

what categories (e.g. locus of coactivation and contribution of loci). The present study 

provides a first step, examining simple detection tasks in the audiovisual domain. 

On a critical note, it is theoretically possible that this program might fail because of an 

untestable presupposition. The formulation of the RMI bound and its application to empirical 

data rests heavily on the assumption of context independence. Context independence 

assumes that the processing rate of each channel is invariant, across the single and 

redundant signals conditions. It is crucial for the RMI test, as it justifies the comparison 

between data gathered in the single and redundant conditions. It is however untestable, at 

least with respect to mental chronometry. Similar to this barrier, is the equivalent in the motor 

regime. It assumes that the base times are equal across conditions (and thus independent of 

the decision stage). If any of these assumptions do not hold, the whole RMI test is 

theoretically unhinged and invalid. (Solutions to this caveat will be discussed in 5.3). 
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5.1.2 Methodological  

The present study used an implementation of the Ratcliff diffusion model to generate 

and fit the data for race and coactivation models. Ratcliff diffusion models, as an instance of 

sequential sampling models, allow for a direct mapping of psychological variables to the 

model parameters and have shown to exhibit excellent fits to empirical data on behavioral 

and neuronal level. In contrast to descriptive (and atheoretic) models of reaction times, 

sequential sampling models give a full account of the observers performance, as it provides 

accuracy and reaction time distribution for both correct and incorrect responses. 

It is conceivable, that these models will be refined and modified over time as further 

research will necessitate this. Certainly, the results of the simulations in the present study 

depend on the reaction time generating model. The use of alternative models of decision 

making (and thus, reaction times) can come to differential results. Due to the modular design 

and flexibility, the generality and transferability of results can be explicitly investigated. If for 

example, researchers want to test the RMI bound using other models for decision making or 

different distribution functions, only one module in the simulation framework needs to be 

adapted. Also the application of different violation criteria or alternative RMI tests is facilitated 

by the modular design of the framework. Alternative tests of the RMI have been proposed 

(see Colonius & Diederich, 2006; Maris & Maris, 2003), however the current study has 

focused on investigating and implementing only the most widespread version of RMI testing. 

It is imaginable that one of these alternative test will feature more favorable statistical 

properties (in terms of type I errors and power rates) for specific boundary conditions 

compared to the standard RMI test. This now is testable as the simulation framework allows 

for implementing different tests and test criteria. 

With regards to the performance of the fitting procedure in chapter 3, further 

theoretical and analytical investigations are necessary. One question is whether, one can 

draw conclusions from the general fitting performance (in terms of failed fits) to the aptitude 

of a specific model for the data. The fitting results of Experiment 1 and 2 exhibit this 

remarkable pattern, as the model with the best overall fit was at the same time the model 

with the highest rate of failed fits.  

Another aspect of the fitting procedure that must be looked into to further strengthen 

the results of the locus analysis is a series of validation simulations. Data generated by 

known parameters have to be fit by the used procedure to see, whether it is able to recover 

the instantiated parameters. This would serve as a proof for the validity of the fitting results. 

One way to assess this parameter recovery – a parametric bootstrap method  - has been 

presented by Wagenmakers, Ratcliff, Gomez and Iverson (2004).  
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Concerning the goodness-of-fit measure, a comparative analysis of in the fitting 

procedure could help optimize the computational effort and fitting precision for different cost 

functions. Also, procedures to deal with contaminant reaction times could provide a clearer 

distinction between models (see Ratcliff & Tuerlinckx, 2002). 

A combination of methods would also prove beneficial for the fitting procedure 

(improving the rate of successful fits), as different measures (e.g. physiological or response 

related measures) might exclude or further constrain parameters of the models. Especially in 

Experiment 1, an estimate of the base time variance would be obtainable, using the dual 

response paradigm by Ulrich and Stapf (1984; see chapter 2.2.6). Adapting this experiment 

by introducing another contrast level for the auditory and visual stimulus would allow the 

application of equation 5 to estimate st for the fitting. 

 

5.2 Implications for Theory and Methodology 

On a meta-level, the present study strongly promotes and advocates the extended 

use of sequential sampling models for accounting empirical data of decisions across a wide 

band. These current models combine an explicit formulation with a theoretical foundation. 

The formalization invites researchers to effortlessly implement these models and make use 

of them in large scale simulations. The theoretical foundation guarantees that parameters 

shifts can be interpreted in a psychologically sound way and reveal changes in the way the 

cognitive system processes the information. The use of sequential sampling models also 

concurrently acknowledges the accuracy and the reaction time distribution determined by the 

same set of model parameters. 

Applied to the redundant signals paradigm, the following natural follow-up questions 

come to mind. For the redundant signals paradigm the modeling approach of the present 

study, provides a means to systematize the RSE with respect to its generating mechanism 

and locus. Using the coactivation model variants in the present study to analyze the fit data 

of previous RSP studies (in form of a re- or meta-analysis) might indicate at task or modality 

combinations that rather induce a decisional or nondecisional integration of signals or even 

retain race models. This can effectively help disentangle the umbrella term of the RSE. 

Another application would be the modeling of the RSE for more than two racers. As 

there is no direct analogon to the RMI test for the multivariate case (see Colonius & 

Diederich, 2006), a fitting procedure could help specify the mechanisms for the tri-racers in 

more detail. 
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The simulation framework enables researchers of the RSE to perform elaborate 

a priori or a posteriori analyses of the RMI test. These may include power or type I error 

accumulation analyses. Based on these diagnostic tests, the outcomes of the RMI test in 

specific contexts can be solidified and statistically ensured. 

The simulation study itself revealed the detrimental effect of a high negative 

correlation between the signal channels on type I errors. For practitioners it would be vital to 

exclude this extreme race model in their empirical data. The fitting procedure of the present 

study might offer a test for that. Researchers could first fit the individual single signals trials 

to a diffusion model and then perform a fitting of the redundant data, where the correlation 

coefficient is fitted. This fitting can be constrained by the best fitting parameters of the single 

signals conditions. Previous simulations with atheoretic reaction time models suggest that 

the interchannel estimation might be affected by the base time variance (see Ulrich & Giray, 

1986). Within the simulation framework of the present study however, this research question 

is directly addressable. 

On a macroscopic time scale, a diffusion model analysis might further help illuminate 

the development of the RSE. Fitting empirical data of observers of different age groups 

(while accounting for standard findings from developmental psychology) might further 

localize and test the generating mechanisms of the effect. On more fine grained time scales, 

the learning or practice effect of the RSE could by analyzed, employing a diffusion model 

analysis. Experiments featuring many blocks over an extended period of time could form the 

basis to analyze changes of the mechanisms (or the locus) generating the effect. Both the 

aging and practice effect have already been successfully investigated with help of the Ratcliff 

diffusion model (see Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Ratcliff, 

Thapar, et al., 2004). 

Beyond the paradigm of mental chronometry, diffusion model analyses can be 

naturally combined with other physiological or imaging measures. To illustrate the generality 

and potency of this modeling approach, the study by Jepma, Wagenmakers and 

Nieuwenhuis (2009) combined electrophysiological measures with a diffusion model analysis 

in the accessory stimuli paradigm to pinpoint the source of the accessory stimuli effect. The 

diffusion model analysis suggested that the parameters of the decision process were not 

affected by the presence of an accessory stimulus. The EEG component analysis revealed a 

stimulus-dependent modulation and point to a speed-up at the level of stimulus encoding. 

This signifies a conclusion that would not have been possible, when the analysis were limited 

to either method alone and illustrates the synergies possible for combining diffusion model 

analyses to prevalent methods and measures in experimental psychology like EEG, fMRI, 

PET, etc. 
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When turning to more complex perceptual decisions, it will be inevitable to model 

multi-stage decision models or decision chains with help of sequential sampling models. 

Again, burrowing from the history of mental chronometry will prove fruitful for this endeavor. 

Using the logic of Donders and Sternberg together with diffusion model analyses, will help 

model complex behavior. Concretely this entails the partition of complex decisions to 

simple(r) decisions. First a fitting analysis of these initial simple decisions (like the detection 

stage) is performed. With help of the “first link model” a restricted fitting for the subsequent 

decision stages is rendered possible. This approach is invariant to the specific paradigm and 

context of the decision. 

Overall, the theoretical and formal framework provided by current models of decision 

making allow for new ways of probing the architecture and organization of cognitive 

processes. Due to the psychological plausibility and interpretability of sequential sampling 

models, an interface to other investigation methods and research paradigms is provides (for 

a neural application, see the review by Gold & Shadlen, 2007). 

 

5.3 Overall Conclusion 

The present study combined a classical paradigm of mental chronometry to state-of-

the-art models of decision making. The study improved the understanding of coactivation as 

it could identify a combined decisional and nondecisional locus for the redundant signals 

effect by a diffusion model analysis. A large scale simulation was performed to investigate 

the statistical performance of the most important distributional test to infer on the cognitive 

architecture involved in decisions based on evidence integration. The simulation revealed 

that coactivation is frequently missed for standard experimental and statistical parameters. 

Highly negative race models are prone to produce large amounts of type I error accumulation 

and base times hinder the detection of violations for both race and coactivation models. 

On a methodological level, the presented simulation framework and the fitting 

procedures will directly help researchers conducting their experiments and adapting their 

analyses in the redundant signals paradigm. A critical assessment of the results as well as 

theoretical and empirical implications of the present study were provided. Building on these 

elaborations, an outline of future research ideas was presented and concludes the present 

study.  
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