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Abstract

In this article, network science is discussed from a methodological per-
spective, and two central theses are defended. The first is that network
science exploits the very properties that make a system complex. Rather
than using idealization techniques to strip those properties away, as is
standard practice in other areas of science, network science brings them
to the fore, and uses them to furnish new forms of explanation. The second
thesis is that network representations are particularly helpful in explaining
the properties of non-decomposable systems. Where part-whole decompo-
sition is not possible, network science provides a much-needed alternative
method of compressing information about the behavior of complex sys-
tems, and does so without succumbing to problems associated with com-
binatorial explosion. The article concludes with a comparison between
the uses of network representation analyzed in the main discussion, and
an entirely distinct use of network representation that has recently been
discussed in connection with mechanistic modeling.
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1 Introduction

It is often remarked that network science is transforming our understanding of
complex systems. In a recent opinion paper in Nature Physics, Albert-Laszlo
Barabasi says: “One thing is increasingly clear: no theory of the cell, of social
media, or of the Internet can ignore the profound network effects that their
interconnectedness cause [sic]. Therefore, if we are ever to have a theory of
complexity, it will sit on the shoulders of network theory” (Barabasi, 2012, p.
15)

Although it is reasonable to doubt that any general theory of complexity is
in fact forthcoming, Barabasi is right to think that network science has special
relevance to the study of complex systems. One reason for this is that network
models have been used to shed light on a bewildering variety of complex em-
pirical phenomena, including the frequencies of protein-protein interactions, the
social causes of obesity, the propagation of viruses through the Internet, and
the neural correlates of Alzheimer’s disease.1 Another reason for this is that
that network models offer a powerful way of representing and reasoning about
the manner in which complex systems are interconnected.

In this article, network science is discussed from a methodological perspec-
tive, and two central theses are defended. The first is that network science
exploits the very properties that make a system complex. Rather than using
idealization techniques to strip those properties away, as is standard practice in
other areas of science, network science brings them to the fore, and uses them
to furnish new forms of explanation. This head-on approach to complexity is
quite novel, especially in comparison with explanatory strategies that have been
emphasized in recent philosophical accounts of complex systems science. The
second central claim in this article is that network representations are particu-
larly helpful in explaining the properties of non-decomposable systems. Where
part-whole decomposition is not possible, network science provides an alterna-
tive method of explaining system behavior. Together, these two claims show
that network science is, as Barabasi imagines, a powerful method for under-
standing the interconnectedness of complex systems, and one that breaks free
of certain limitations inherent in other methods.

The discussion is organized as follows. In Section 2, some network science
concepts are introduced and a pioneering model is presented in some detail. In
Section 3, it is argued that this pioneering model, despite being highly abstract
and statistical in nature, satisfies standard tests for explanatory relevance. In
Section 4, an argument is given for the first of the two aforementioned central
claims: that network science exploits complexity rather than avoiding it. In Sec-
tion 5, an argument is given for the second central claim: that network represen-
tations are particularly helpful in explaining the properties of non-decomposable
systems. In Section 6, a comparison is made between the perspective defended
here, and that defended in a recent paper by Levy & Bechtel on the role of
network representation in the study of mechanisms. Levy & Bechtel conceive

1Canonical sources for these developments can be found, respectively, in Rual et al. (2005),
Christakis & Fowler (2007), Pastor-Satorras & Vespignani (2001), and Supekar et al. (2008).
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of network analysis as a continuation of mechanistic analysis. I defend the view
that much of network science should be seen instead as a departure from the
mechanistic approach, and one that offers a completely distinct explanatory
strategy.

2 The Distinctive Strategy of Network Science

2.1 Representing Networks

Network science is a systematic attempt to study properties that are hidden in
the pattern of connections among the elements that compose complex systems.
The principal mathematical tool of network science is graph theory. A graph
consists of a set of points either on a plane, or in n-dimensional space, and a set
of line segments, each of which either joins two points to one another, or joins
one point back to itself (Gross & Yellen, 2006). The canonical form of graph
theoretic representation is known as an adjacency matrix, which is a matrix in
which both rows and columns are labeled by an ordered list of elements. If a
direct connection exists between two elements, their intersection is marked with
a 1; otherwise, it is marked with a 0.

A =


0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0


Figure 1: Adjacency matrix for a 6-node graph.

Adjacency matrix A in Figure 1 represents a graph with six points, or nodes
and seven connections, or edges. The same information can also be represented
in a diagram that is easier to inspect visually, as shown in Figure 2. It is impor-
tant to keep in mind that Figures 1 and 2 are equivalent from a graph theoretic
perspective. In Figure 2, no information is carried by the angles between lines
or the apparent spatial position of the nodes.

Graph-theoretic representations can be used to model empirical systems.
For example, each node might represent a protein type, and each edge might
represent a protein-protein interaction that occurs in one species. Such a graph
summarizes which proteins depend on which others to realize their biological
function. Such a summary can yield predictions about unknown functions by
relying on the fact that proteins with overlapping pathways tend to have a high
degree of functional similarity (Schwikowski, Uetz, & Fields, 2000).
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Figure 2: The same system represented by the adjacency matrix in Figure 1,
here represented diagrammatically.

2.2 Organization Influences Behavior: A Clear Case

There is a straightforward sense in which the behavior of a highly interconnected
system depends on the way its inter-element connections are organized. The star
network depicted in Figure 3 offers a maximally simple example of this kind of
dependence.

Figure 3: A 25-node network configured as a square lattice, and another config-
ured as a star network.

One network property that is often used in the analysis of complex systems
is path length, which is defined as the number of edges on the shortest path
between two vertices. In Figure 3, it is easy to confirm visually that the longest
path length in the star-shaped network is two. Since every node is connected to
the central node, (other than the central node itself) one can trace a line between
any pair of nodes in two steps or less. Compare this to the square lattice on
the left. The path length along just one side of the lattice is four. Some
path lengths in the graph are smaller; others larger. If we imagine that nodes
represent computers, for example, it is easy to see that information originating
at one computer can be distributed to the whole network in fewer steps in the
star network than it can be in the lattice-like network. This is a toy example,
but it shows that the pattern of organization among the elements of a network
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can influence the dynamical processes instantiated on that network. Now we
consider a more scientific example.

2.3 An Influential Network Model

In the paper that triggered the contemporary proliferation of network science,
Watts & Strogatz (1998) use network representations to explore the dynamics of
infectious diseases. Throughout most of its history, the mathematics of graphs
had been studied under the guise of combinatorics, and had had little impact
on empirical science.2 For the most part, mathematicians had restricted their
investigations to regular lattices (much like the square lattice in Figure 3), in
which each node is connected to a fixed number of its nearest neighbors, or
random graphs, in which every possible pairwise connection is either drawn in
or left blank at the flip of a coin. What intrigued Watts & Strogatz was the
empirical finding that most of the network-like systems that had been studied
in the real world displayed neither of these topological structures. Instead,
empirical network-like systems display irregular clustering at the local level,
and these local clusters are often connected to one another by means of a long-
range bridge.3 This kind of network structure had recently been discovered in
systems as diverse as the nervous system of a nematode worm, a network of
actors that had appeared in films together, and the power-grid of the Western
United States.

Because this empirical data looked qualitatively different from the kinds of
graphs typically studied in pure mathematics, Watts & Strogatz (among others)
became interested in developing algorithms to construct networks that shared
some of the statistical properties observed in empirical data. This algorithm
subsequently became the model for many similar graph construction algorithms
that have been studied with increasing enthusiasm since the original publication.

The algorithm they devised takes as its input a ring-lattice in which each
node is connected to a fixed number of its closest neighbors on the ring.4 The

2If we interpret “network science” loosely, its history is much longer. Sociologists have
applied small networks to social phenomena since the work of Moreno in the 1930s (Easley &
Kleinberg, 2010), and operations researchers made use of graph theory in WWII (Cunningham,
Freeman, & McCloskey, 1984). The very large-scale work described here, however, requires
computational power that has only been available more recently. It should also be noted that
the more recent history of network science has had a much broader impact than early work
in the field. In 2008, the Thompson Reuters publication “Science Watch” ranked the Watts
& Strogatz paper as the 6th most cited paper in the history of physics. On August 9th, 2014,
the Thomson Reuters Web of Knowledge (apps.webofknowledge.com) shows that the paper
has received 10,308 citations.

3The term “long-range” refers to path-length in graph-theoretic, rather than physical space.
The idea can be expressed intuitively in terms of a social network. In a graph of my social
network, the set of all my friends are represented as being one unit removed from me. The
set of all the friends of my friends (who are not also friends with me directly) are represented
as being two units removed from me, and so on. A long-range connection is one that directly
connects two nodes that would otherwise be separated by a long path, relative to the global
average.

4The ring-format of the lattice was chosen for the computational convenience of periodic
boundary conditions, and is not meant to have any representational significance.
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algorithm then considers each edge in turn, choosing with some fixed probability
to rewire it to a new, randomly selected node. Watts & Strogatz decided to use
this model to study how patterns of connections among people might influence
disease spreading.5 To do this, they adapted a traditional epidemiological model
to fit the network context. That model is known as the SIR model of disease
spreading, and it can be expressed as three differential equations in which a
population is divided into susceptible (S ), infected (I ), and recovered (R) com-
partments. These quantities vary as a function of time, but are conserved, such
that S (t)+I (t)+R(t)=N, where N is the total population size. One infected
person is introduced into a susceptible population, and the disease then spreads
to other people along the edges in the network. After a fixed number of time
steps, each infected person is moved into the recovered compartment, and then
enjoys a fixed period of immunity before becoming susceptible once again. The
three equations that comprise the model are:

dS

dt
= δR− βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI − δR (3)

where parameter β is the rate at which the infection is transmitted, param-
eter γ is the (memory-less) rate of recovery, and parameter δ is a fixed period
of immunity acquired after recovery.6 By varying these biological parameter
values, one can represent a variety of different diseases.

One of the assumptions of the traditional SIR model is that the population
is randomly mixed. This assumption makes it possible to model the transmis-
sion probability β as a uniform random variable, each value of which describes
the proportion of the population that becomes infected at one time-step in a
computer simulation. This idealization, which is known as ‘the homogenous
mixing assumption,’ is nearly equivalent to the hypothesis that the probability
of coming into contact with a friend or neighbor is the same as the probability
of coming into contact with someone randomly selected from the population. I
say “nearly equivalent” because traditional compartmental models do not rep-
resent individual disease transmission events explicitly, so it is false, strictly

5They also studied how the structure of networks influences the interactions of models of
rational agents in a Prisoner’s dilemma scenario. Although the results of this initial work also
led to a huge amount of subsequent study, I focus on the epidemiological aspect of their work
to avoid the special complications associated with models of rational decision-making.

6The form of these equations is slightly more complex than the one actually implemented
by Watts & Strogatz. I have chosen to write this version of the model both because it
is the most widely recognized version of the SIR model, and also because it allows me to
define a biological parameter in Section 3.5, where I argue that the network epidemiology
is reasonably autonomous from certain biological details. It is also worth noting that I am
following epidemiological practice by referring to the model parameters as “rates.” In fact
they are just proportions and do not literally have a temporal component.
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speaking, to say that the model describes probabilities that are attached to in-
dividual transmissions. The value for β can be more accurately thought of as
the average number of infection opportunities experienced by the whole popula-
tion during a given time interval (Bansal, Grenfell, & Meyers, 2007). However,
when we constrain the disease to spread along a pre-drawn graph of the con-
tact structure, β ceases to be a uniform random variable and becomes instead
a vector quantity that summarizes at each point in time precisely which con-
tact opportunities exist.7 To explore this new graph-theoretic version of the
SIR model, computer simulation is required. On each simulation trial, only
some infection opportunities result in successful transmission. This opportu-
nity/success ratio is averaged over simulation trials, and the resulting quantity
represents the transmission probability of the disease in a more fine-grained way
than is possible in the original compartmental model.

It turns out that the dynamical properties of diseases, as represented by the
SIR model, are highly sensitive to network topology. This makes intuitive sense.
One might suspect that the dynamics of a disease spreading process would be
different in an urban area packed full of people than they would be in a rural
area in which large crowds are rare. The beauty of the Watts-Strogatz model is
that it allows us to explore the impact of the contact structure on the disease
dynamics in a quantitative way.

2.4 What the Watts-Strogatz Model Explains

What can be learned about real disease behavior from the Watts-Strogatz
model? I will focus on just one lesson that involves two simple network proper-
ties. The first property is called the characteristic path length. The definition of
path length provided above described a relation between two nodes: the number
of edges found on the shortest path between them. Characteristic path length
is a generalization of this idea. It is defined as the average path length over all
pairwise combinations of nodes in the graph. The second property is called the
clustering coefficient of the graph, and it can be defined as the probability that
two neighbors of a given node are themselves neighbors (where the term “neigh-
bor” indicates a direct link.) Somewhat more precisely, the clustering coefficient
is a measure of the ratio of the number of three-node combinations that form
triangles to the number of all possible three-node combinations. Empirically
speaking, therefore, clustering is a measure of the cliquishness of a population.

Real human populations are known to be highly clustered. Theoretically,
high degrees of clustering should prevent a disease from reaching a large pro-
portion of the total population quickly. High levels of clustering imply that the
possible routes of disease transmission are highly overlapping, so that a given

7Some texts use the term “population structure” to describe the disease topology of biolog-
ical population. I prefer the term “contact structure” because the set of relevant connections
– instances of physical proximity between two organisms that make transmission biologically
possible – will be different for each population/disease pairing. “Contact structure” does a
better job of avoiding the misleading implication that there is a single structure associated
with each population.
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chain of transmission is likely to follow a closed loop back to one of the already-
infected individuals, rather than follow an open path toward a new susceptible
individual.

Watts & Strogatz found empirically, however, that many networks had very
short characteristic path lengths despite the fact that clustering coefficients re-
mained high. This means that the number of transmission events required to
traverse from any one node in the graph to any other was quite small. This
was unexpected because in both the random graphs and the lattice-like graphs
that were known to mathematicians, large clustering coefficients are always as-
sociated with large characteristic path lengths, and small clustering coefficients
are always associated with small characteristic path lengths. By contrast, in
the empirical data sets Watts & Strogatz inspected, they observed that cluster-
ing coefficient and path length were very often anti-correlated. Their algorithm
was designed to construct graphs that matched the empirical data in precisely
this respect: it provides a way of exploring the mathematical space in which
clustering coefficient and characteristic path length diverge.

Watts & Strogatz found that these two properties diverge much more readily
than expected. As the random, potentially long-range connections are intro-
duced via the re-wiring algorithm, the path length of the resulting graph drops
off precipitously while the clustering coefficient hovers near its maximal value.

Figure 4: Log-normal plot of clustering coefficient (C (p)/C (0)) and path length
(L(p)/L(0)) as functions of rewiring probability. Both properties in the vertical
axis are expressed as ratios because they are normalized to values taken from
a randomized graph. Rewiring probability determines the proportion of long-
range connections. From Watts & Strogatz (1998).

Notice that the x-axis in Figure 4 is plotted logarithmically so that the
extremely steep descent into the low path length/high clustering regime is made
visible. This shows that the introduction of only a very small fraction of long-
range connections has a radical impact on the path-length, but very little impact
on the clustering coefficient. Since path length can be thought of as a kind of
distance, and since most of the graphs described by Figure 4 have low path
length, Watts & Strogatz named the phenomenon the small-world property, a
term that has since gained prominence both in scientific and popular circles.
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How does this relate to the dynamics of infectious disease? In a randomly
connected contact structure, diseases can spread very quickly because charac-
teristic path length is low.8 Since it only takes a small number of long-range
connections to turn a highly clustered graph with high path length into a small
world graph with low path length, one might expect that very small perturba-
tions to the contact structure might have an enormous impact on the dynamics
of a disease. Indeed, Watts & Strogatz observed that the very fast rate at which
path length drops off results in surprising sensitivity of disease dynamics to in-
creased rewiring probability. In particular, the value of required for the disease
to reach half the total population, (a quantity they call rhalf)drops off steeply
with increasing rewiring probability.

Figure 5: Log-normal plot of the SIR rhalf rate against rewiring probability,
which determines the proportion of long-range connections. From Watts &
Strogatz (1998).

The x-axis in Figure 5 is again plotted logarithmically so that the steep drop
of the rhalf rate is visible. The figure shows that a very small percent change
in the number of long-range disease transmission events makes diseases with
low critical infectiousness rates, which are otherwise easily contained, capable
of generating massive epidemics. Moreover, these results carry implications
for intervention strategies such as vaccination. Watts & Strogatz themselves
interpret their results as evidence that if a disease can escape the quarantine-
like effects of clustering early on in the spreading process, it will be able to
spread just as easily as if there were no clustering at all.

3 Explaining Generic Properties

The Watts-Strogatz algorithm is intended to produce a class of graphs that
share just two statistical properties found in a wide variety of empirical data
sets. In most other respects, the model is highly idealized, and by itself not
sufficient to predict the dynamics of a specific historical epidemic. Nevertheless,

8Specifically, it is about ln(n)/ln(k), where n is the number of nodes in the graph, and k
is the number of initially connected neighbors.
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the model has considerable explanatory value. To see this, let us first be explicit
about the explanatory reasoning to which the model gives rise. It runs as
follows: measured populations have the small-world property. Instantiations
of the small-world property in empirical systems lead to fast disease spreading,
despite the presence of high clustering coefficients. Therefore, many real diseases
can spread rapidly despite the presence of high clustering coefficients.

This line of reasoning ought to be counted as explanatory because it passes
both probabilistic and counterfactual tests for explanatory relevance. The prob-
abilistic test, originally formulated by Hans Reichenbach and developed to par-
ticular effect by Wesley Salmon, involves two necessary conditions. For two
variables A and B, if B is explanatorily relevant to A, then (i) the probability of
A conditional on B is greater than the unconditional probability of A, and (ii)
no third factor screens off A from B. In our case, the relevant inequality says:
the probability that variable rhalf takes on a certain value x, given information
about the fraction of disease transmissions that are long-range, is greater than
the unconditional probability that variable rhalf takes on value x. Although the
rhalf rate of a given disease cannot be observed directly, it is clear that the in-
fluence of the contact structure on the rhalf rate is a matter of the frequency
with which people come into close physical contact with one another. This
suggests that information about the particular causal factors relevant to the
determination of the rhalf rate are already subsumed by the information about
the contact structure, and therefore do not screen off its influence. Moreover,
model-fitting studies show that information about the contact structure does,
under many conditions, improve the accuracy of models when they are used
to retrodict epidemiological data (Bansal et al., 2007). So we have reason to
believe that information about the structure of real populations carries explana-
tory information about the rhalf rate of real diseases, whatever the actual value
may be.

The other well-known criterion of explanatory relevance is counterfactual:
if variable A had not taken value a, then variable B would not have taken
value b (Woodward, 2003). One of the counterfactuals prompted by the line
of reasoning above is this: if human contact structures did not typically have
the small-world property, then epidemics would not spread as quickly as they
typically do during their early stages. This counterfactual is almost certainly
true. If we could somehow intervene on the population in such a way as to
increase the path-length of the contact structure, an epidemic would have fewer
opportunities to spread. Alone, such an intervention does not necessitate that
every disease would spread more slowly. We can imagine, for example, a situ-
ation in which some bacteria are willingly introduced into the country’s water
supply en masse. In this case, person to person contact of the relevant biological
kind would no longer be the primary means by which the disease is transmit-
ted, so contact structure would make little difference to the speed with which
the disease spreads. However, if the intervention on the contact structure were
“surgical” and all biological factors were held fixed, it would be mathematically
impossible for the epidemic to spread as quickly as it would have done without
the intervention.
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One potential source of doubt about the explanatory status of the reason-
ing above is that it is highly abstract and idealized. It is therefore unclear
whether this reasoning is sufficiently well grounded in the empirical target phe-
nomenon. In particular, the reasoning above is not firmly entrenched in the
causal-mechanical factors that underlie real instances of disease transmission.9

I offer a two-fold response to this concern.
The first part of the response is that the target of the explanation under

consideration is a generic feature of disease-like processes, rather than a feature
of any particular epidemic. What we would like to understand is why disease-like
processes in general tend to display faster spreading behavior when the structure
through which they spread has the small world property than when it does not.
If a model is to explain this very general fact, it should be able to reproduce
the faster spreading behavior using only generic system properties. The model
must not, in other words, rely on the contribution of system-specific parameters
that pertain to only some peculiar instances of the target phenomenon.

Recently, many philosophical accounts of scientific explanation have incor-
porated similar arguments. I’ll mention two. Weslake (2010) argues that when
the targets of scientific explanation are generic facts, rather than events bound
to a specific spatio-temporal location, explanations will be deeper to the extent
that they do not limit their range of application by making essential reference
to system-specific spatio-temporal parameters. On Weslake’s view, as long as
the statements in the explanans are true, abstraction of the kind present in the
network model actually improves the quality of the explanation.

Huneman (2010) develops a theory of explanation in which abstract mathe-
matical structures are shown to describe topological properties of an empirical
phenomenon in a way that entails the explanandum behavior. In order to rep-
resent an empirical system with a topological structure such as a graph, one
needs empirical justification. Naturally, justification depends on causal detail.
However, justification and explanation are two distinct ends. Huneman argues
that, conditional on the correct representation of topological properties, causal-
mechanical details contribute little or nothing to the derivation of the target
phenomenon. (Huneman, 2010, p. 218).10

Huneman’s informal definition of a topological explanation runs as follows.
“When among the consequences of some topological properties, stands the be-
havior, property, or outcome we want to explain, then I say that we have given a
topological explanation of our explanandum” (Huneman, 2010, p. 215). Hune-
man also understands whole-graph properties as topological in his broad sense
of that term.11 “From now on, I call ‘topological properties,’ those properties

9I do not mean to presume that all causal explanations are mechanistic. I discuss causal
explanation in this section, and take up a comparison with mechanistic explanation in Section
6.

10Jones (2014) presents a similar view. However, the focus of that article is on the way that
diagrammatic representations facilitate inferences about counterfactual structure. In large
networks, very few interesting properties are detectable by means of visual inspection. What
makes the representations useful is rather the fact that they can be studied algorithmically.

11It should be noted that Huneman is sensitive to the fact that topology and graph theory
are distinct mathematical disciplines, but chooses to use the term “topological” in a broad
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that are either proper to subsets in a topological space or to some graphs and
networks” (Huneman, 2010, p. 217). The explanation of generic disease behav-
ior in terms of the rhalf rate appears to count as a topological explanation on
Huneman’s view. However, not everything Huneman says about topological ex-
planation applies to the view of network explanation presented here. Huneman
strives to show that topological explanations are non-causal. For two reasons,
I prefer to remain neutral on that score. First, the truth conditions for the
claim that an explanation is non-causal are intimately bound up with questions
about the metaphysics of causation, which is a topic far too broad to be taken
up here. Second, and more importantly, the central concern in this article is to
show that networks are particularly appropriate for representing and reasoning
about complex distributed systems. The argument for that claim does not re-
quire us to take a stand on the philosophical question of whether all scientific
explanations are causal. To preserve the broad appeal of this project, I therefore
prefer not to take a side on that issue.

The second part of my response to the worry about abstraction highlights
the fact that the small-world property in the model has a clear and measur-
able analogue in empirical data. While it is true that raw epidemiological data
are noisy, and that it is necessary to extrapolate from them by means of data
models, the data are gathered using standard means of demographic measure-
ment. We already have mechanistic knowledge of the spatial limitations of
disease transmission that indicates which kind of demographic measurements
are relevant. Clearly, epidemic dynamics would not depend so directly on con-
tact structure if an airborne virus could travel hundreds of miles through the
air between infections. But we know that even in the case of airborne viruses,
disease transmission depends on physical proximity. Moreover, we have mecha-
nistic knowledge of the transmission process that tells us whether sharing a bus
ride is more likely to result in transmission than sharing an office, for example.
Given this knowledge, we can construct a model of contact structure based on
surveys about personal relationships, and physical and demographic data on
schools, workplaces, and transportation systems. For details about how these
data are collected, see Rothman, Greenland, & Lash (2008). This background
knowledge about the causal processes underlying disease transmission is an es-
sential part of the justification for applying the mathematical, graph-theoretic
model to the empirical phenomena. Given that justification, the applied model
should be counted as what Craver (2006) calls a “how-actually” model.12

A second source of doubt about the explanatory status of network models
is the fact that when philosophers of science describe novel kinds of scientific
explanation, the kinds they have in mind tend to line up with an established sci-
entific discipline such as astrophysics or molecular biology. Since graph-theory
is not itself a scientific discipline with unique empirical content, the set of sci-
entific explanations it can be used to construct will not be sufficiently unified

sense that covers both disciplines.
12Although I am borrowing the terminology from Carl Craver’s well-known article “When

mechanistic models explain,” I do not mean to imply that the small-world model should be
counted as a mechanistic. Reasons for resistance are discussed in Section 6.
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to deserve methodological commentary. The response to this worry is that in
some cases, new mathematical techniques give rise to a distinctive kind of ex-
planation that fails to line up with traditional disciplinary boundaries. This
domain-general, representation-centric approach to explanation has been em-
phasized in a growing body of philosophical work.

An excellent example can be found in a recent (2014) article by Paul
Humphreys, in which he articulates an explanatory paradigm called “explana-
tion as condition satisfaction.” Condition-satisfaction explanations proceed by
showing that the mathematical generating conditions for a given mathematical
object (such as a probability distribution) are satisfied by the empirical
generating conditions for an empirical phenomenon. It is then demonstrated
that facts about the mathematical object account for non-trivial facts about the
empirical phenomenon. According to Humphreys, one of the most important
features of such explanations is that they “do not require the use of detailed
models of system-specific processes [. . . ]” (Humphreys, 2014, p. 1103). A
number of other recent articles have also promoted that idea that certain kinds
of mathematical representation generate epistemologically distinctive kinds of
explanation that are not constrained to a particular empirical discipline. These
include Batterman & Rice (2014) on minimal model explanation, Lange (2009)
on dimensional explanation, and Ladyman & Ross (2007) on renormalization
group explanation. On the view defended here, network explanation deserves
to be added to the list.

We have seen that network explanations are abstract, and that the explana-
tory inferences they make possible are not confined to a particular discipline.
As recent philosophical literature has emphasized, neither of these two features
should be viewed as a credible threat to the explanatory status of network mod-
els. In any case, despite their salience, neither of these two features is unique to
network models. In the following two sections, I describe what I take to be the
most distinctive features of network explanation. Taken together, these features
illustrate a relatively new and relatively cohesive strategy for reasoning about
a variety of complex distributed systems.

4 Network Models Embrace Complexity

4.1 Embracing Complexity

In this section, it is argued that network models embrace complexity, rather than
shy away from it. In order to establish this claim, I first say what it means to
embrace complexity, and show how network models do so. Then, I describe why
this orientation toward complexity should be counted as an epistemologically
significant development.

In order to understand the claim that network models embrace complexity,
we begin with a characterization of complexity itself, as it relates to the phenom-
ena of interest in network science. In this context, complex systems are those in
which many discrete elements display a non-trivial pattern of interaction. If you
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want to understand the collective behavior of a complex system, you need to
take that pattern of interaction into account. In other many-element systems,
the pattern of inter-element interaction plays a less important role in determin-
ing system behavior, and can therefore be ignored or simplified. In ideal gases
at equilibrium, for example, intermolecular interactions are stochastically inde-
pendent. This fact provides justification for ignoring the precise features of the
pattern, and allows us to represent the set of interactions with a single distri-
bution function. This is a case in which randomness justifies the suppression of
information about the pattern of interaction. In other cases, a highly ordered
configuration of interactions provides the needed justification. For example, the
melting point of many crystals is determined by the ratio of the displacement
of an atom from its lattice position to the distance to its nearest neighbor. Al-
though crystals are almost never organized into perfect lattices, and distance to
nearest neighbor varies from site to site, it can nevertheless be represented by
a fixed parameter for many computational purposes. In both cases, successful
models suppress information about the pattern of interaction by replacing it
with an all-purpose fixed parameter.

When dealing with complex systems, such idealizations are not satisfactory.
The particular pattern of inter-element interaction plays an ineliminable role in
producing the collective behavior of interest. In such cases, it becomes necessary
to include at least one variable that carries information about the precise pattern
of inter-element interaction. Let us call such a variable a “pattern variable.”
To say that a network model embraces complexity is to say that it reproduces
the collective behavior of interest by representing that behavior as a function
of a pattern variable. Figure 5 depicts a canonical example of such a functional
relationship: the pattern variable p captures the proportion of interactions that
are long-range. The rhalf rate is the collective behavior that epidemiologists
would like to explain.

We now have an account of the sense in which network models embrace
complexity. That account relies directly on the notion of a pattern variable,
which has not been clearly defined. Naturally then, our next task is to construct
such a definition.

4.2 The Fixation Criterion

Notice that the graph construction algorithm in the Watts & Strogatz model
is designed such that the graph retains the same number of nodes and edges
on each simulation trial. Moreover, the only biological parameter in the model
is transmission versus lack of transmission. Even though these properties are
held fixed on each trial, our explanatory variable—the proportion of long-range
connections—remains free to vary.

This observation can be generalized to yield an account of what it is for a
variable to represent a pattern of interaction. A variable will count as a pattern
variable in the sense intended here if and only if holding fixed (i) the number of
nodes (ii) the number of dyadic interactions per node and (iii) the dynamics of
each interaction, is not sufficient to fix the value of the variable.
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Conditions (i) and (ii) reflect the fact that information about the pattern of
inter-element interaction cannot be captured by facts about the mere magnitude
of the system. Condition (iii) shows that information about the pattern of
interaction cannot be captured by facts about the composition and dynamics
of local dyadic relations. Patterns of interaction provide information that is
instead about the unique manner in which interactions are distributed across the
entire collection of elements. Variables that satisfy the fixation criterion provide
some direct insight into the properties that make the system complex. If those
variables can be recruited to explain system behavior, then the explanation is
one that exploits complexity for explanatory ends.

4.3 The Epistemological Significance of Network Models

At the outset of Section 4, it was suggested that the orientation toward com-
plexity implicit in the use of network models is epistemologically significant. In
this section, I give two reasons for this view.

The first reason has to do with the ability of network models to abstract
away from the underlying theory of the individual system components. To
see this, let us compare network and non-network approaches to answering the
question “why do diseases sometimes move quickly through a population?” Be-
fore the Watts & Strogatz result, all known attempts to answer this question
incorporated information about the biological properties of infectious diseases
(information about the values of the parameters in the compartmental model
above.) A standard answer would cite the fact that the degree of infectiousness
of the disease in question has surpassed a critical threshold. Specifically, the
standard answer would cite the fact that a quantity known as the basic reproduc-
tive number is substantially greater than one. The basic reproductive number
is a measure of the average number of new infections at each time step, and can
be calculated approximately as the ratio of two biological parameters, β/γ. The
Watts-Strogatz results provide an entirely different answer that is based on the
organization of the contact structure, rather than its biological underpinnings.
The network approach provides an avenue of understanding that is at least par-
tially uncoupled from biological theory, and is therefore resistant to traditional
accounts of inter-theoretic reduction.

The second reason that the network orientation toward complexity is epis-
temologically significant is that network models are far more abundant than
traditional forms of scientific representation. Every element in the system
is represented explicitly in the graph, as is every pairwise interaction. This
abundance necessitates massive representations and considerable computational
power. Since the number of elements in an adjacency matrix grows as the square
of the number of system elements, network representations are subject to combi-
natorial explosion. For example, in one of the first large-scale, network-oriented
studies of protein-protein interactions in humans, Rual et al studied the inter-
actions between 8,100 protein types, creating a space of over 65 million possible
interactions. It is this capacity of graphs to explicitly represent every possible
pairwise interaction between elements that sets it apart from other forms of

15



representing complex systems.
In traditional approaches to many-element systems, the goal is to construct

a model that is itself no longer complex and therefore (hopefully) tractable.
Weisberg (2007) calls this model-building strategy “Galilean idealization,” and
argues that it is one of the three most prominent forms of idealization in the
history of science. Although network models always involve idealization away
from the empirical character of individual nodes, their head-on approach to
complexity breaks free of the need to engage in Galilean idealizations concerning
the number of discrete elements in a system, and thereby allows scientists to
overcome what was previously a significant epistemic constraint.13

5 Explaining Non-decomposable Systems

5.1 Defining Near-decomposability

In Section 4, it was argued that network science confronts complexity in a head-
on manner. In this section, it is argued that the head-on approach is especially
valuable when applied to the study of non-decomposable systems.

A natural starting point for the argument is with a definition of nearly-
decomposable systems. Strevens (2005) defined nearly-decomposable systems
as ones in which “the short-term behavior of a system’s components can be
understood largely independently of the behavior of other components.” In
his landmark paper on complex systems, Herbert Simon gave a similar, but
somewhat more subtle definition. “In a nearly-decomposable system, the short-
run behavior of each of the component sub-systems is nearly independent of the
short-run behavior of the other components, and in the long-run, the behavior
of any one of the components depends only in an aggregate way on the behavior
of other components” (Simon, 1962, p. 474).

Where systems are nearly-decomposable, it is not necessary to represent
every component in the system explicitly. In virtue of the independence of com-
ponent subsystems, scientists are free to develop a theory of each subsystem,
and then compose the predictions of those theories in order to yield predic-
tions about the behavior of the whole. According to both Simon and Strevens,
the benefit of decomposition operations is that they relieve us of the burden
of representing every element explicitly, and thereby save us from the trou-
bles associated with combinatorial explosion. In short, therefore, when dealing
with nearly-decomposable systems, some compact form of representation will be
available.

With this conception of near-decomposability in mind, we can now define
non-decomposability. Roughly, a non-decomposable system is one that is not
even close to being nearly-decomposable. More precisely, a system is non-
decomposable just in case the behavior of any given component part, even

13This freedom from Galilean idealization is one reason why network representations can be
viewed as epistemologically distinctive. The computational methods used to study them pro-
vide a kind of understanding that at least partially breaks free from the processing limitations
intrinsic to human cognition.
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over a short time period, depends on the behavior of many other individual
components.

This definition is to be interpreted in such a way that the term “component”
can refer either to the basic elements in a system or to any collection of basic
elements other than the entire set. Interpreted this way, the definition entails
that within a non-decomposable system, no component subsystems exist that
are either independent or nearly independent of one another. This consequence
yields an appropriate contrast with the property of near-decomposability. Near-
decomposability is an empirical property that provides justification for using
compact representations. Non-decomposability, as defined here, is the corre-
sponding empirical property that guarantees that compact representations will
be empirically inadequate.

5.2 Epidemiological Populations Are Non-decomposable

As we saw in the epidemiological case above, network models typically do require
the representation of every element in the system, and since many representa-
tions involve thousands of elements, I called network science representations
abundant. Now we can see that this abundant character is by no means acci-
dental. The alternative to using an abundant form of representation is to rely on
part-whole decomposition, with the hope of securing a more compact and there-
fore more manageable representation. But no part-whole explanatory strategy
could have answered the question of why disease-like phenomena spread faster
in small-world structures than otherwise, precisely because the epidemiological
case is an example of a non-decomposable system.

To see this, we must ask what units of decomposition would serve as compo-
nent subsystems if the epidemiological system were decomposable. What about
individual organisms? Might they serve as units of decomposition? While there
is no general difficulty in individuating organisms, the possibility of individua-
tion at this fundamental level is only a degenerate case of decomposability. As
both Simon and Strevens have stressed, the goal of decomposition is precisely
to find a level of description at which basic elements need not be represented
individually, so that our representations do not grow to unwieldy proportions.
In our epidemiological example, the only higher-level units available are the
groups of organisms that correspond to the compartments in the SIR model.
These groups cannot serve as units of decomposition, however, because they do
not satisfy the criterion of short-term independence. The size of the whole pop-
ulation is conserved, and therefore any change to one compartment necessitates
a corresponding change in another compartment that is, moreover, realized in
the very next time-step. The short-term behavior of these groups will there-
fore be highly interdependent. As a result, they satisfy the crucial short-term
dependence condition in the definition of non-decomposability.

Neither individuals nor compartmental groups are legitimate units of decom-
position. Might there be a third way? Could we impose some ad hoc taxonomy
that is not reflected in the model as it stands? For example, could we divide
the population into clusters as defined above, and then predict the behavior of
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each cluster on a purely local basis? We cannot. The interconnected nature of
graphs precludes such a strategy. Clusters can be connected to the rest of the
graph in many ways, and the manner in which they are connected will have an
immediate effect on the short-term behavior of the cluster itself.

Consider a case in which the cluster in question is composed of three nodes
in the susceptible compartment, each of which has some non-zero disposition
to acquire the disease upon contact with an infected individual. The cluster is
either connected to the rest of the graph or it is not. If not, then the transmis-
sion probability drops to zero. If purely local considerations predict a positive
probability of infection, but considerations of connectivity tell us that the true
probability is zero, then the unit in question is not sufficiently independent from
the rest of the population to serve as unit of decomposition. If the cluster is
connected (which is the more realistic case for most biological populations) the
susceptibility of each node depends on whether the external node to which it
is connected is itself infected. Since we are assuming that all edges represent
short-term interactions, this dependence obtains at a very short time interval.
As a result, ad hoc taxonomies give us no reason to think that epidemiological
populations might be decomposable after all. If we want to reason effectively
about system behavior, therefore, it is necessary to tackle the interconnectedness
of the population more directly.14

From this discussion, it is already evident that there is a comparative sense in
which the epistemic benefits of network representation are particularly helpful in
the domain of non-decomposable systems. Other approaches to complex systems
rely on part-whole decomposition, but such approaches fail when applied to non-
decomposable systems. Network science therefore offers unique benefits in this
area. But there is a more important and more interesting sense in which network
representations have special applicability in the domain of non-decomposable
systems. To articulate the idea, it will be helpful to introduce another model.

5.3 A Model of Urban Traffic Density

Consider the question of why some particular road in a city has the highest
occurrence of traffic jams. One way of answering this question is to examine
the kinds of institution to which the road provides access. The more traffic
attracted by those institutions, the more traffic will appear on the roads that
lead to it. This is known as the inherent travel demand on a road. There is
another, network-oriented approach to answering this question that has recently
become popular. The network approach determines probability that a road will
become congested by examining its location relative to all other roads, regardless
of the kinds of institution to which it provides access. In a recent paper, Wang
et al (2012) show that by incorporating information about how centrally a road

14It is important that many epidemiological models assume constancy of infection time. If
the target population had, for example, a bi-modal distribution of infection times in which
one cluster of organisms is disposed to become infected quickly and another is disposed to
become infected slowly, it is likely that some of the collective dynamical behavior could be
explained on the basis of a decompositional strategy.
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is situated in graph-theoretic space, they can better predict traffic patterns in
San Francisco and Boston.15

The extent to which a road segment occupies a central place in the city grid
is measured in terms of a mathematical property of networks known as between-
ness. Betweenness is a property of a single edge in a graph. To compute the
betweenness of an edge, a search algorithm examines every pairwise combina-
tion of nodes in the graph, and finds the shortest path length between each pair.
It then searches the resulting data structure to determine what proportion of
those paths incorporate the road segment in question. That proportion is the
betweenness of the edge. It is not difficult to see how this mathematical measure
can be converted into an empirical one. Edges represent road segements, which
are defined as stretches of road between legal intersections, and nodes represent
the intersections themselves. The movement of automobiles is represented with
a dynamical system not entirely unlike the one discussed in the epidemiological
case above. At each time step in the simulation, a number is assigned to a road
segment that represents the number of automobiles occupying that segment.
Wang et al show that the traffic density on a road segment can be predicted
better by modeling both the road’s centrality and inherent travel demand than
it can by modeling inherent travel demand alone.

5.4 Betweenness and Complete Non-decomposability

A closer look at the betweenness relation reveals quite a lot about the distinctive
nature of network science. On the one hand, it is a purely local property that
applies only to a single edge, and on the other hand, its value is only visible
once a complete search of the graph has been conducted.

It is impossible for a single edge between two otherwise disconnected nodes
to instantiate the property of betweenness because it is undefined where no other
edges exist (on pain of division by zero.) Logically speaking, the betweenness of
an edge is a “collapsed” relational property between that edge and every other
edge in the graph. As such, where betweenness is employed in an empirical
setting, it carries information about the complete pattern of interaction in the
system to which it is applied. This fact is epistemologically significant, and
can help to illustrate the sense in which network representations have special
applicability in the domain of non-decomposable systems.

Recall the definition of non-decomposable systems: a system is non-
decomposable just in case the behavior of any given component part, even
over a short time period, depends on the behavior of many other individual
components. Above, I argued that the study of non-decomposable systems
forces scientists to use abundant representations. Some representations
are more abundant than others, and among the class of non-decomposable
systems, we can define a subclass for which appropriate representations must
be maximally abundant. Call these systems completely non-decomposable.

15The mathematical measure is sometimes called betweenness and sometimes called be-
tweenness centrality. I use the term “betweenness” to refer to the mathematical property and
the term “road centrality” to refer to an empirical property of a road.
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To define this subclass, simply replace the term “many” in the definition of
non-decomposable systems with the term “every.” Where the behavior of
every other component in the system must be consulted in order to predict the
behavior of a single component, the task of predicting general system behavior
is unusually daunting since, in order to carry out the task, one must face the
problem of combinatorial explosion in its most radical form.

Now we are in position to see why properties such as betweenness make net-
work representations particularly valuable in the domain of non-decomposable
systems: even in the most extreme case of complete non-decomposability, where
combinatorial explosion is maximal, properties such as betweenness offer us per-
fectly serviceable explanantia. In virtue of the fact that betweenness “collapses”
information about the entire graph, it makes even completely non-decomposable
systems epistemically accessible. Once we know that the centrality of a road
segment in a city is predictive of local traffic density, the fact that the task
of measuring centrality requires a computationally demanding global search of
the city grid makes little difference to our ability to understand why the most
central road is likely to have one of the highest values of traffic density. This
shows that network measures such as betweenness are especially well-suited to
modeling non-decomposable systems. They compress what appear at first to be
hopelessly complex patterns of interaction into meaningful variables, and those
variables often have considerable explanatory power.

I have been arguing that network representations are particularly well suited
to modeling non-decomposable systems. The argument presented thus far can
be strengthened a bit by noting one additional point about the nature of be-
tweenness. To make the point, it is necessary to introduce another strategy for
dealing with non-decomposable systems that is nicely articulated in Strevens
(2005). Strevens describes a method he calls enion probability analysis, or
EPA. Roughly, EPA is a strategy for aggregating probabilities at the level of
individual elements in a non-decomposable system in order to make predictions
about macrolevel dynamics. The case described above of computing internal
energy in a physical particle system is an example of EPA. Given that kind of
approach to aggregation, information about individual behaviors is lost. EPA
does not, therefore, support inferences from the aggregated behaviors of indi-
vidual elements to the behavior of any particular element within the aggregate.
However, this kind of many-to-one influence is one of the hallmarks of a highly
interconnected system, and it is complex patterns of influence like this that
demand a novel approach. Thankfully, network representations do allow pre-
dictions of this kind. In Wang’s model, the centrality of a road segment can,
for example, be recruited to explain why a particular location in Boston has as
much traffic as it does.

In highly non-decomposable systems, this kind of influence between the pat-
tern of interaction, one the one hand, and some particular local behavior, on
the other, makes a real difference. Aggregative approaches that fail to explicitly
model inter-element interaction cannot capture that difference. Network rep-
resentations can, and this gives us yet another reason to believe that they are
particularly well suited to explaining non-decomposable systems.
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6 Networks and Mechanistic Explanation

In conclusion, I would like to briefly compare the strategy suggested here with
the strategy suggested in a recent paper by Arnon Levy & William Bechtel
(2013). Levy & Bechtel show how network representations can be used to model
the organization of mechanisms. Their discussion focuses on gene expression in
small-scale networks, where patterns of interaction appear to make a genuine
explanatory difference. The philosophical aspect of their discussion emphasizes
a contrast between two views about the role of system organization in mech-
anistic explanation. On the view they criticize, abstract principles of system
organization can at best serve as templates for mechanistic explanation. The
real explanatory work is done only when details regarding the material proper-
ties of the component parts (size, shape, chemical reactivity, etc) are filled in.
Their own view, by contrast, is that some mechanistic explanations are actually
driven by considerations of system organization. Sometimes, mechanistic ex-
planations operate almost exclusively at a high level of abstraction, where very
little in the way of detail regarding the material properties of system components
is included.

The description of network science provided in this article has much in com-
mon with the view that Levy & Bechtel defend. But there is a difference of
emphasis that might be misinterpreted as disagreement. Where Levy & Bechtel
describe the use of network representations as an extension of the mechanistic
project, the models described here have very little to do with the discovery of
mechanisms. Nevertheless, I see our views as more or less compatible. Levy
& Bechtel have described one scientific application of network thinking, and I
have described another.16 Because the phenomena Levy & Bechtel focus on
have only five or six components, the modeling efforts they describe do not face
the problem of combinatorial explosion. The epistemological problem they are
trying to solve is therefore quite different from the one articulated here. Where
combinatorial explosion is not a problem, it is natural to envision the application
of network representations as an extension of a mechanistic strategy.

Although I am therefore largely in agreement with Levy & Bechtel, I do
not want to advocate some kind of mushy pluralism. There is a hard line to
be drawn: the strategy presented in this article cannot be subsumed within
the mechanistic framework because it applies principally to systems that are
highly non-decomposable. As Bechtel & Richardson explain in their wonderful
book on complexity, the mechanistic strategy for explanation assumes that near-
decomposability obtains. The assumption is necessary because the mechanistic
strategy depends on localizing particular activities to particular substructures.
In order for the localization strategy to work, each substructure must contribute
in a relatively consistent fashion to the behavior of the whole. If there are no
mechanically distinct substructures that realize some particular “activity,” then

16As a matter of fact, Levy & Bechtel mention the Watts & Strogatz model as well as the
concept of a small-world, apparently because the concept has played such a major role in
helping to popularize network science. But they quickly set aside such “large-scale statistical
models” and explicitly restrict their discussion to much smaller and non-statistical models.
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mechanistic models cannot explain (Bechtel & Richardson, 1993, p. 203).
Further support for the claim that localization and decomposition are essen-

tial to the mechanistic program can be found by examining the criteria proposed
in a 2010 paper by Bechtel & Abrahamsen. The goal of the paper is to incor-
porate dynamical and organizational features into the mechanistic account of
explanation. Even in that context, their explicit characterization of mecha-
nism reads, “A mechanism is a structure performing a function in virtue of
its component parts, component operations, and their organization” (Bechtel
& Abrahamsen, 2010, p. 323). In order to generate a mechanistic explana-
tion, therefore, one must be in position to individuate the relevant components
and provide evidence that associates components with specific operations. That
both of these goals must be achieved is supported by the observation that they
are necessarily interdependent. Part of the evidence that a particular compo-
nent is mechanistically relevant is the fact that it is responsible for carrying out
a particular operation. Of course, one could simply stipulate that mechanistic
explanation is possible without any commitment to identifying parts and opera-
tions, but that kind of bare stipulation threatens to take the normative bite out
of the mechanistic program. Chemero & Silberstein make a similar point. They
emphasize that if components cannot be identified, or if no stable role can be
assigned to components, the mechanistic approach to explanation breaks down
(Silberstein & Chemero, 2013, p. 961).17

This hard line suggests something like a division of labor. Recall the quote
from Barabasi given at the outset. Barabasi claims that network science will
become the foundation of a general theory of complex systems. Insofar as there
are many mechanistic explanations of complex systems that do not involve the
kind of network thinking that Levy & Bechtel discuss, Barabasi’s claim is too
strong. It would be wrong to call a modeling framework the foundation of a
theory if many of the systems to which the theory applies cannot be captured

17Thanks to an anonymous referee for alerting me to this article, which has a lot in common
with the discussion in this section. Given the overlap in emphasis, it is worth noting three
points of contrast. First, the Silberstein & Chemero article is aimed exclusively at explana-
tions in biology and neuroscience. My aims are much broader. Second, it is my view that
network models have the best chance at explaining in cases in which the individuation of
nodes is unproblematic and can be relocated to the background (this point is discussed be-
low). In systems neuroscience – which receives the bulk of the attention in the Silberstein &
Chemero article - the task of individuation is often quite controversial. This is not to say that
examples in the literature are inadequate, but to suggest that there are explanatory hurdles in
neuroscience over and above those typically present in the social and epidemiological sciences.
Third, Silberstein & Chemero are interested in showing that the style of explanation they
see in systems neuroscience is something “more lawlike” than what the mechanists propose
(p. 970). In my view, the relation between law-like and mechanistic forms of explanation is
not mutually exclusive. The explanatory status of the cases I have described depends neither
on a commitment to predictivism nor on the role of nomological necessity. Rather, they are
cases in which we have empirical justification that a mathematical model accurately repre-
sents a particular empirical phenomenon. The accuracy of the representation justifies certain
explanatory inferences. The question of how mathematics matches up with reality is both
more general and more difficult than the question of how network representations explain.
Good discussions of this topic that conform to the perspective defended here can be found in
Pincock (2012) and Humphreys (2014).
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within that modeling framework. We can weaken Barabasi’s claim a bit by
thinking about the principles of network science in terms of heuristics rather
than fundamental theory. The mechanistic tradition in the philosophy of science
has often construed the norms of mechanistic explanation in this way, and it
may be useful to take a similar attitude toward network science.

The division of labor I envision is this. When we are dealing with large,
robustly non-decomposable complex systems in which combinatorial explosion
cannot be avoided, the network strategy described here can be seen as a defeasi-
ble heuristic for conducting research. For decomposable or nearly-decomposable
complex systems, mechanistic research is an appropriate heuristic, despite the
fact that in many cases it must be supplemented by network-like representa-
tions.18

A committed mechanist might object to this proposal on the grounds that
the individual elements that compose a complex system must themselves be
subject to mechanistic analysis before the kind of reasoning described here can
be carried out. As Alan Baker has stressed in a recent paper, it is difficult
to know how to apply network concepts without some theoretical framework
that offers individuation principles for the phenomena that correspond to the
nodes and edges in a graph (Baker, 2012). A committed mechanist might build
upon Baker’s observation by claiming that it is necessary to have a mechanistic
model of the individual components and relations in a system before any network
representations can legitimately be applied. If this is right, then mechanistic
explanation is a necessary condition on the successful application of network
representation. It follows, the objection goes, that network explanations are
always extensions of mechanistic explanations.19

For the sake of argument, let us grant the premise that it is always necessary
to have a mechanistic model of the individual components of a complex system
before its organizational properties can be modeled. From this premise, however,
the conclusion that network explanations are always extensions of mechanistic
explanations does not follow. The modeling strategy described here has noth-
ing to do with the kinds of decompositional analysis that are central to the
mechanistic project. To see this, we must first remember that explanations are
not generally transitive. So the fact that we have a mechanistic explanation of

18In fact, a position like this was anticipated by Bechtel & Richardson two decades ago.
Describing a continuum of cases in which the pattern of interaction among elements plays an
increasingly greater role in understanding system behavior, they conclude: “If organization
becomes even more dominant in explaining the behavior of the system, and we appeal less
to different and distinctive functions performed by the components, we reach a point where
decomposition and localization have to be surrendered” (Bechtel & Richardson, 1993, p. 199).

19Baker also argues that one of the dangers associated with network science is the unwar-
ranted reification of networks. The fact that network representations are explanatorily useful
does not entail that network-like empirical phenomena constitute a natural kind. This is one
reason that I have stressed the epistemic, rather than ontological contribution of network
science. In areas such as molecular biology, neuroscience, and perhaps even ecology, it is rea-
sonable to treat networks as real representation-independent features of the empirical world.
In many other areas, however, including those discussed in this article, it is far from clear
that this realist attitude is appropriate. In any case, arguments for such a view would require
premises that are not clearly supported by the present discussion.
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the individual components of a complex system is no guarantee that we have an
explanation of the system itself, mechanistic or otherwise. To show that a mech-
anistic explanation at the systems level is available, more evidence is needed.
Moreover, if by “mechanism” we have in mind the understanding of mechanism
discussed in the literature on mechanistic explanation in biology, that additional
evidence will have to point to the existence of an intermediate level of organi-
zation at which independent component subsystems can be identified. As was
argued in Section 5.2, however, there are cases in which no such intermediate
level exists. In those cases, mechanistic explanation is just impossible.

Although the argument offered here on behalf of the committed mechanist
turns out not to be compelling, it does hint at the fact that in many cases,
some mechanistic understanding of the components in a complex system is ex-
tremely valuable. It is worth reflecting on why this is so. Perhaps mechanistic
approaches are particularly useful when the elements that compose a system
are not yet well understood. If we attempt to apply network representations in
cases where our understanding of the individual components is very poor, we
are likely to misrepresent the system, and draw bad inferences as a result. But
in traffic science, epidemiology, computer science, microeconomics, and other
areas, we have quite a lot of mechanistic knowledge about individual interac-
tions either because they are straightforwardly observable (paying for milk at
the grocery store is a paradigmatic economic exchange) or because they are con-
structed by us (we construct the circuit boards that execute computations). But
partly because that kind of knowledge is relatively unproblematic in comparison
with other scientific concerns, we may relegate it to the background. There is a
sense in which we can legitimately take such mechanistic knowledge for granted
because it does not need to be explicitly represented when we construct new ex-
planations, even if those explanations implicitly depend on the fact that certain
mechanistic details are part of the fabric of our background knowledge. Perhaps
it is in part because we already have an intimate mechanistic understanding of
certain kinds of interaction in a complex system that we are in position to know
that certain details can be left out (for certain purposes). In such cases, we
stand to gain additional understanding by focusing on the unique pattern of
interaction among a system’s many elements.
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