
Found Phys (2012) 42:760–777
DOI 10.1007/s10701-011-9569-9

Neutron Matter Wave Quantum Optics

Helmut Rauch

Received: 14 February 2011 / Accepted: 8 May 2011 / Published online: 25 May 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Neutron matter-wave optics provides the basis for new quantum experi-
ments and a step towards applications of quantum phenomena. Most experiments
have been performed with a perfect crystal neutron interferometer where widely sep-
arated coherent beams can be manipulated individually. Various geometric phases
have been measured and their robustness against fluctuation effects has been proven,
which may become a useful property for advanced quantum communication. Quan-
tum contextuality for single particle systems shows that quantum correlations are to
some extent more demanding than classical ones. In this case entanglement between
external and internal degrees of freedom offers new insights into basic laws of quan-
tum physics. Non-contextuality hidden variable theories can be rejected by arguments
based on the Kochen-Specker theorem.

Keywords Neutron interferometry · Neutron optics · Quantum experiments ·
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1 Introduction

Quantum physics describes nature by means of the Schrödinger equation

ih
∂|ψ〉
∂t

= H |ψ〉, (1)

where H denotes the interaction Hamiltonian between physical entities, e.g. particle-
like neutrons, with the nuclei of a target. For elastic scattering processes at low ener-
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gies a solution of this equation can be given in the form [1]:

ψ = eikz − b
eikr

r
, (2)

where the scattering length b is a constant related to the phase shift δ0 between the in-
cident plane and reflected spherical wave, b = lim

k→0
−(sin δ0/k) ∼= −δ0/k. Since there

is yet no complete theory of strong interaction the phase shifts have to be taken as pa-
rameters describing the individual interaction. Isotropic scattering can be described
within the first Born approximation by the scattering from a point-like potential in
form of a Fermi δ-potential

V (
⇀
r ) = 2πh2

m
bδ(

⇀
r ). (3)

In a more general sense the incident wave has to be described by a wave packet
which is the general solution of (1) for the interaction free region

ψ(
⇀
r , t) = (2π)−3/2

∫
a(

⇀

k ,ω)ei(
⇀

k
⇀
r −ωt)d3 ⇀

k dω. (4)

It represents the coherent superposition of plane waves and, in terms of quan-
tum optics, a multimode coherent state that can be seen as a quasi-classical state.
|a(k,ω)|2 = g(k,ω) denotes the density of states.

The auto-correlation function of the wave function gives the coherence func-

tion [2] (
⇀

�=⇀
r − ⇀

r
′
, τ = t − t ′)


(1)(�, τ) = 〈ψ∗(⇀
r , t)ψ(

⇀
r

′
, t ′)〉

=
∫

g(k,ω)ei(
⇀

k
⇀
�−ωkτ)d3kdω. (5)

For a stationary beam this relation simplifies to (Cittert-Zernike theorem)


(1)(
⇀

�) =
∫

g(
⇀

k )ei
⇀

k
⇀
�d

⇀

k . (6)

The characteristic dimension of this function defines the coherence length

�2
c =

∫
�2|
(1)(�)|d�∫ |
(1)(�)|d�

. (7)

Since the wavelength, λ, and especially the coherence length of the wave packets
are considerably larger than the interatomic distances in condensed matter a simul-
taneous interaction with many nuclei takes place. This justifies the definition of a
coherent bc and an incoherent bi scattering length which are related to a mean phase
shift 〈δ0〉 and to its variance 〈δ2

0〉 − 〈δ0〉2.

bc
∼= −〈δ0〉

k
, (8)
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b2
i
∼= −〈δ2

0〉 − 〈δ0〉2

k2
. (9)

Incoherence can be caused by spin-dependent interaction, by isotopic mixtures. Since
the neutron wave interacts with many nuclei a mean interaction potential can be de-
fined (optical potential, i.e. [3])

V̄ =
∫

2πh2

m
bcδ(

⇀
r )dr = 2πh2

m
bcN, (10)

where N denotes the number of target atoms within the unit volume. Thus, for a
stationary situation the time-independent Schrödinger equation has to be solved for a
step potential

− h2

2m
∇2ψ(r) + V̄ (r)ψ(r) = Eψ, (11)

where E denotes the energy-eigenvalue of the motion which has a continuous spec-
trum when a wave packet is considered E = h2k2/2m. Inside the material the wave
number becomes K2 = 2m[E − V̄ (r)]/h2 and, therefore, an index of refraction can
be defined

n = K

k
=

√
1 − V̄

E
∼= 1 − V̄

2E
= 1 − λ2 Nbc

2π
, (12)

where the second part of this equation follows from V̄ 	 E. From this a phase shift,
χ , between a wave transmitted through a material of thickness D and a free traveling
wave can be derived

χ =⇀

� · ⇀

k = (k − K)D = k(1 − n)D = −NbcλD. (13)

In a rather general sense the phase shift can be calculated by a path integral along a
loop [4]

χ =
∮

kds, (14)

where k denotes the canonical momentum of the neutron.
Similarly a phase shift due to static magnetic interaction V̄mag = − ⇀

μn

⇀

B (
⇀
r ) can

be defined which reads for a homogeneous field B as, e.g. [5]

χm = ±2πλmμBD/h2, (15)

and which is just half of the Larmor precession angle indicating its connection to
spinor properties (see Sect. 3.1).

Gravitational and Coriolis interaction also cause a phase shift due to the related

interactions; V̄grav = m
⇀
g

⇀
r , where

⇀
g denotes the gravitational acceleration and

V cor = −h
(
⇀
r × ⇀

k ), where 
 is the Earth rotation frequency. The related phase
shifts between the two beams in an interferometer read as: (e.g. [6])

χgrav = −2πλm2gA0 sinα/h2 + 4πm
A0 cos�L cosα/h. (16)
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Fig. 1 Various types of silicon
perfect crystal neutron
interferometers

A0 denotes the area encircled by the beams, α is the angle of this area against hori-
zontality, and �L is the colatitude angle where the experiment is carried out.

2 Neutron Interferometry

Perfect crystal neutron interferometry [5, 7] allows application of different interac-
tions to the widely separated coherent beams and, therefore, the realization of many
basic quantum experiments where quantum phases and quantum topology can be
studied in detail. Figure 1 shows different perfect crystal neutron interferometers used
in the course of our experiments. The perfect arrangement of the atoms within a per-
fect silicon crystal allows the calculation of wave functions behind the individual
plates and behind the whole interferometer. This calculation is based on the dynami-
cal diffraction theory first developed for X-rays and electrons and later on adapted to
neutrons [3, 8]. The related wave functions have quite a complicated structure due to
the mutual interferences of internal wave fields, but for the use of such interferome-
ters for quantum measurements the following relations can explain the action of such
a device. The wave function behind the interferometer in the forward (0) direction is
composed of wave functions arising from beam paths I and II

I ∝ |ψI + ψII|2, (17)

where beam path I is transmitted-reflected-reflected and beam path II is reflected-
reflected-transmitted, respectively. Due to symmetry relations both wave functions
have to be equal concerning amplitude and phase, ψI = ψII. When a phase shift, χ ,
is applied to one beam one gets

I ∝ |ψI|2(1 + cosχ). (18)

Small deviations from the perfectness of such a system are unavoidable; small
variations of the lattice constant, small rotations of the lattice planes, small tempera-
ture gradients, and small vibrations.
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Fig. 2 Arrangement of phase shifters within the interferometer and observed interference pattern

Therefore, the observed interference pattern has to be written as

I = A + B cos(χ + χ0), (19)

where A,B and χ0 are internal parameters of the individual set-up. Figure 2 shows
that a nearly ideal situation can be achieved when the adjustment procedure is done
properly. Differently shaped crystals permit interferometers with rather long beam
paths (20 cm), large beam separations (8 cm) and double loop interferometer set-ups
(Fig. 1).

Most of the experiments have been performed with thermal neutrons having an
energy of about 0.025 eV, a wavelength of about 1.8 Å, and an energy spread of
δE/E ∼= 0.01. Fission neutrons are slowed down within a moderator of a reactor and
a thermal beam is extracted and monochromatized afterwards. All the experiments
are done in the single particle regime since the phase space density of any neutron
sources is rather small (10−15), which means that only one neutron at a time is within
the apparatus and the next one is still in the uranium nucleus of the reactor fuel. Even
so, the results indicate that each neutron behind the interferometer has information
about the physical situation in both widely separated beam paths. The arrangement
clearly demonstrates wave-particle duality since the neutron after fission and during
moderation behaves as particle, inside the interferometer as a wave and behind it, in
the detector, as a particle again. This makes such experiments to a playground for the
wave-particle dualism debate (e.g. [9]).

3 Classical Results

3.1 Spinor Symmetry: Neutrons in a Magnetic Field

The interaction Hamiltonian can be written as

Hmag = − ⇀
μn

⇀

B (
⇀
r , t), (20)
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Fig. 3 Schematic view of the
4π -symmetry

which for a static and homogeneous field simplifies to

Hmag = − ⇀
μn

⇀

B σz, (21)

and the neutron wave function evolves as

|ψ(t)〉 = e−iH t/h|ψ(0)〉
= e−μnBσz/h|ψ(0)〉 = e−iσzα/2|ψ(0)〉 = |ψ(α)〉, (22)

where α denotes the Larmor precession angle

α = 2μnBt

h
= 2μnBL

hv
, (23)

where L is the length of the interaction region and v is the velocity of the neutrons.
From relation (28) follows

|ψ(2π)〉 = −|ψ(0)〉,
|ψ(4π)〉 = |ψ(0)〉, (24)

showing the 4π -symmetry of spinor wave functions (Fig. 3).
This feature becomes measurable with the neutron interferometer as predicted by

Aharonov and Susskind [10] and by Bernstein [11]

I0 ∝ ||ψ0(0)〉 + |ψ0(α)〉|2 ∝ 1 + cos
α

2
. (25)

The related experiments have been done nearly simultaneously by our group [12] and
by a U.S. one [13] and demonstrated this basic feature (Fig. 4). It shows the exper-
imental set-up and the first results giving α = (715.9 ± 3.8)◦. It has been measured
with unpolarized and with polarized neutrons which demonstrates the intrinsic fea-
ture of this phenomenon. Depending on the axis of quantization chosen the effect can
be described by the index of refraction or a rotation around the magnetic field. Since
the effect depends on the strength of the field the related phase shift has to be seen as
a dynamical one in comparison with a geometric phase as discussed in Sect. 4.1.
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Fig. 4 Experimental set-up and results of the first verification experiment of 4π -symmetry of spinor wave
functions [12]

Fig. 5 Sketch of quantum and
classical spin-superposition

3.2 Spin Superposition

In a famous article on the theory of measurement Wigner [14] brought attention to the
curious situation of a superposition of a spin-up and a spin-down state since quantum
mechanics predicts a state perpendicular to both initial states with an angle depending
on the relative phase of those states, whereas classical physics predicts a mixture
(Fig. 5).

When one uses polarized incident neutrons and rotates the direction of polarization
in one beam path by π the related wave function reads

|ψ ′(χ,π)〉 = eiχe−iσyπ/2|z〉 = eiχ |−z〉, (26)

and the final polarization after superposition becomes (ψ = ψ ′ + ψ ′′)

⇀

P= 〈ψ | ⇀
σ |ψ〉

〈ψ |ψ〉 =
⎛
⎝cosχ

sinχ

0

⎞
⎠ . (27)

It shows that an initially pure state in the |z〉-direction is transferred to a pure state
in the x, y-plane indicating again that information from both beam parts are needed
to explain these phenomena. The scheme and the results of such an experiment are
shown in Fig. 6 [15]. The spin rotation in this case achieved with by Larmor preces-
sion coils [16].

A similar experiment has been done with a resonance Rabi-flipper [17]. In this
case, the spin reversal is caused by a time-dependent interaction and is associated with
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Fig. 6 Experimental arrangement and results of the static spin-superposition experiment [15]

Fig. 7 Experimental arrangement and results of the dynamic spin-superposition experiment indicating the
stroboscopic measuring technique [20]

an energy change of hωr = 2|μ|B0 [18, 19]. Therefore, the wave function changes
as:

ψ ′′(χ,ωr) = eiχ e−i(ω−ωr)t |−z〉, (28)

and the final polarization rotates within the x,y-phase as

⇀

P=
⎛
⎝cos(χ − ωrt)

sin(χ − ωrt)

0

⎞
⎠ . (29)

which has been verified experimentally (Fig. 7 [20]). Since one photon is exchanged
between the neutron and the resonator, the question arises whether this can be used
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Fig. 8 Double coil experiment verifying the magnetic Josephson effect [25]

for beam path detection in the sense of Feynman’s discussion of the double slit ex-
periment [21].

It can be concluded “no” because phase information, ϕ, of the classical reso-
nance field is needed to perform the stroboscopic registration of neutrons and then
it follows from the particle number-phase uncertainty relation in its simplest form
�N�ϕ ≥ 1/2 (e.g. [22]) that a single exchange photon cannot be registered. For a
more profound discussion see [23, 24].

3.3 Magnetic Josephson Effect

When two resonance flippers are inserted, one in each beam, and operated at a slightly
different frequencies the wave function becomes

ψ = ψ I
0 + ψ II

0 = e−i(ω−ωr1)t |−z〉 + eiχ ei(ω−ωr2)t |−z〉, (30)

which yields an intensity modulation as

I0 ∝ 1 + cos[χ + (ωr1 − ωr2)t]. (31)

Thus the intensity oscillates between the forward (0) and the diffracted beam (H)
being driven by an extremely small frequency difference which relates in the case of
our measurements to a small energy difference, �E = 8.6 × 10−17 eV (Fig. 8) [25].
A similar experiment has also been done by means of a neutron polarimeter set-up
by a Japanese group [26].

One can formulate the different energy transfer as a time-dependent phase shift

� = �1 − �2 = (ωr1 − ωr2)t = 2μn�B0

h
t, (32)

which compares to the analog equation for the electric Josephson effect

φ = φ2 − φ1 = 2eV

h
t, (33)

where the rapidly oscillating tunneling current (Is = IMax sinφ) is driven by the elec-
tric potential between the tunnel junction [27].
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When an off-resonance field is applied multi-photon exchange occurs which is
related to dressed neutron phenomena. This behavior has been tested in a dedicated
experiment [28].

4 Recent Experiments

4.1 Geometric Phases

The solution of the Schrödinger equation (1) for an adiabatic evolution can be written
in the form

|ψ(t)〉 = eiφ(t)|n(
⇀

R (t))〉, (34)

where |n(
⇀

R (t))〉 denotes the eigenstate of the instantaneous Hamiltonian

H(
⇀

R (t))|n(
⇀

R (t))〉 = En(t)|n(
⇀

R (t))〉 and φ(t) a generalized phase. Inserting
this equation into (1) and integrating over a closed path C in parameter space

|ψ(
⇀

R (T ))〉 = |ψ(
⇀

R (0))〉 one gets a separation into a dynamical phase (φd) ac-
cumulating the energy (momentum) change along the loop and a geometric phase
(φg) which is independent from energy [29]. For a constant magnetic field in one
direction only a dynamical phase exists, as shown in the previous chapters.

φ(T ) = arg〈ψ(T )|ψ(0)〉 = − 1

h

∫ T

0
En(

⇀

R (t))dt

+ i

∮
d

⇀

R 〈n(
⇀

R)| ⇀∇R |n(
⇀

R)〉 = φd + φg. (35)

In the case of a slow change of the Hamiltonian (magnetic field) which corre-
sponds to an adiabatic evolution the neutron spin will be pinned to the direction of
the magnetic field

⇀

B (t) = B
⇀
n (t) = B

⎛
⎝cosφ(t) sin�(t)

sinφ(t) sin�(t)

cos�(t)

⎞
⎠ , (36)

with the eigenvectors

|ψ↑(�,φ)〉 =
(

cos �(t)
2

eiφ(t) sin �(t)
2

)
, (37)

|ψ↓(�,φ)〉 =
(

sin �(t)
2

−eiφ(t) cos �(t)
2

)
, (38)

which yields

〈ψ↑| ∂

∂φ
|ψ↑〉 = i

2
(1 − cos�(t)), (39)
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Fig. 9 Sketch of a
non-adiabatic (left) and a
non-adiabatic and non-cyclic
evolution (right) of a quantum
system and indication of the
related geometric phases

and when we move along a circle of latitude (� = constant) we obtain the well-known
Berry phase

φg = i

∫ 2π

0

i

2
(1 − cos�(t))dφ = −π(1 − cos�) = −
/2, (40)

i.e., the geometric phase is just half of the solid angle 
 enclosed by the path. A re-
lated neutron interferometric experiment has been performed by Wagh et al. [30]
with Larmor precession coils rotated in an opposite sense in both coherent beams.
Complete agreement between theory and experiment has been achieved.

Aharonov and Anandan [31] generalized this approach to any cyclic evolution of
a quantum system (e.g. [32]). They found that any excursion curve in Hilbert space
(C) having the same projections onto P have the same geometric phase modular 2π

(Fig. 9)

φg = 2πn + i

∫ T

0
〈ψ(t)| d

dt
|ψ(t)〉dt. (41)

Later on Samuel and Bhandari [33] generalized this formalism to non-cyclic and
non-adiabatic evolutions. This formalism is strongly based on the centennial work of
Pancharatnam [34]. In this case, a geodesic connection between |ψ(0)〉 and |ψ(t)〉
has to be drawn (Fig. 9). This means that the shortest possible path has to be chosen
to define the enclosed area. When the initial and final states are orthogonal to each
other a special treatment is necessary [35, 37].

A related experiment has been performed with a double loop interferometer where
two phase shifters (PS) and an absorber (A) permit quite peculiar state excursions
(Fig. 10) [36].

The upper beam |ψ0
t 〉 of the first loop is used as a reference beam with adjustable

phase η and as the incident wave for loop 2 where the transmitted beam, |p〉, becomes
attenuated (T = exp(−σtND)) and phase shifted (χ2) and the orthogonal beam, |p⊥〉
which becomes phase shifted by χ1. This gives an overlap of the reference beam
|ψref 〉 and the loop 2 beam |ψ2〉

|ψref 〉 ∝ (|p〉 + |p⊥〉) = |q〉, (42)

|ψ2〉 ∝ (eiχ1 + √
T eiχ2)|q〉, (43)

φd = arg〈ψref |ψ2〉 = χ1 + χ2

2
arctg

[
χ2 − χ1

2

(
1 − √

T

1 + √
T

)]
. (44)
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Fig. 10 Sketch of a two-loop interferometer (above) and two examples of quantum evolutions to measure
the geometric phase (left) and a non-cyclic phase (right) [36]

Since the dynamical phase can be written as

φd = χ1 + T χ2

1 + T
, (45)

which becomes a constant when

χ1 + T χ2 = const. (46)

A proper manipulation of phase shifters and the absorbers permit cyclic and non-
cyclic evolutions on the Bloch sphere where the north pole and the south pole cor-
respond to well defined paths along the upper, |p⊥〉, and the lower beam paths |p〉
. within the second interferometer loop. The absorber determines the latitude where
the evolution driven by the phase shifter PS2 takes place. This allows us to write the
absorption in the form

T = tan2 �

2
. (47)

The geometric phase can be measured when closed cycles at different latitudes are
chosen. Non-cyclic evolutions occur when such a rotation is stopped before a cycle
is complete and then this endpoint has to be connected by a geodesis line to the
equator. Figure 11 shows the results of such measurements [36]. They clearly define
the geometric phase and the non-cyclic phase for situations shown in Fig. 10 (right).

The results indicate that geometric phases are well-defined and well-measurable
quantities which may become even more important in future since they seem to be
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Fig. 11 Results of the
non-cyclic phase experiment
according to non-cyclic
excursion in Fig. 10 in
comparison with calculated
values [36]

Fig. 12 Experimental set-up to
measure geometric phases with
ultra-cold neutrons by means of
a spin-echo method to balance
the dynamical phase [39]

less sensitive to any fluctuation of external parameters [38]. A related experiment
with bottled ultra-cold neutrons has been performed recently [39] (Fig. 12).

Polarized ultra-cold neutrons rotate, guided by a magnetic field, around the axis
of a Bloch sphere on the northern hemisphere, then they are flipped by π and rotate
in the opposite direction on the southern hemisphere. This eliminates the dynamical
phase and provides direct access to the geometric phase. This is measured without and
with additional noisy fields which change slightly the direction but not the strength.
This gave results as shown in Fig. 13 [39]. This clearly indicates that the geometric
phase becomes better defined when the neutron spends longer time within the noisy
field, an effect opposite to the behavior of the dynamical phase.



Found Phys (2012) 42:760–777 773

Fig. 13 Experimental situation (left), results for the measurement of the geometric phase (middle), and its
stability against magnetic fluctuations (right) [39]

4.2 Contextuality and Kochen-Specker Phenomenon

Entanglement of pairs of photons or material particles is a well-known phe-
nomenon [40–43], but entanglement means in a more general sense entanglement
of different degrees of freedom. Therefore, entanglement can also exist between dif-
ferent degrees of freedom of a single particle system which yields to quantum con-
textuality [44, 45]. Contextuality implies that the outcome of a measurement depends
on the experimental context, i.e. the outcome of a previous or simultaneous experi-
ment of another observable [46]. In this respect it is a more stringent demand than
non-locality. In a related neutron experiment [47, 48] the commuting observables of
the spin (s) and the beam path (p) through the interferometer act as two independent
degrees of freedom. Both represent a two-level system and can be described by Pauli
spin matrices with the commutation relations

[σ s
j , σ

p
k ] = 0 for {j, k} = {x, y}, (48)

[σ s
x σ

p
y , σ s

y σ
p
x ] = 0. (49)

and, applied to a Bell-like state (57), one obtains the eigenvalue equations

σ s
i σ

p
i |ψ〉 = −|ψ〉, i = x, y, (50)

(σ s
x σ

p
y )(σ s

y σ
p
x )|ψ〉 = −|ψ〉. (51)

The related Bell-state can be produced within the interferometer when a polarized
incident beam is split coherently into two beam paths (I and II) and the spin in one
beam path is rotated by Larmor precession in the y and in the other beam path to the
+y direction (Fig. 14).

The entangled Bell-states read as

|ψ〉 = | →〉 ⊗ |I〉 ± | ←〉 ⊗ |II〉, (52)

and the other three can be formulated similarly. In a full quantum tomographic anal-
ysis these Bell-like states have been measured [49]. This shows spin-path entangle-
ment in spin-path joint measurements. In all these cases Bell-like inequalities can be
formulated to demarcate a quantum world from a classical one.
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Fig. 14 Experimental arrangement to produce and to analyze spin-path entangled neutron states [45]

The phase shift χ between the beams and the spin rotation angle α are used as
path and spin parameters [47]

−2 ≤ S ≤ 2 (classic), (53)

−2
√

2 ≤ S ≤ 2
√

2 (quantum), (54)

S = E(α2, χ2) + E(α1, χ2) − E(α2, χ1) + E(α2, χ2), (55)

E(α,χ) = N(α,χ) + N(α + π,χ + π) − N(α,χ + π) − N(α + π,χ)

N(α,χ) + N(α + π,χ + π) + N(α,χ + π) + N(α + π,χ)
. (56)

The maximal violation towards the quantum mechanical description happens for
the following parameters: α = 0, α2 = π/2, χ2 = π/4, and χ2 = −π/4. Typical re-
sults are shown in Fig. 15.

Careful data analysis gave a value of S = 2.051 ± 0.019, i.e. beyond the classical
prediction. The reason why this value is considerably below 2

√
2 lies in imperfec-

tions of the set-up. The contrast of the interference was about 74% mainly caused
by stray fields of the spin rotator, and the degree of polarization was 95%. Neverthe-
less quantum contextuality has been demonstrated indicating an intrinsic correlation
between the spin and the momentum (path) variables.

A more recent experiment [48] dealt with the Kochen-Specker theorem [44] and
the Mermin inequalities [45], where even stronger violations of classical hidden vari-
able theories can be verified. A related test of the Kochen-Specker theorem was for-
mulated by Simon et al. [50] and realized for photons by Huang et al. [51]. A re-
lated neutron experiment has been performed using a set-up similar to that shown
in Fig. 14 but with the additional feature that the beam paths could be closed al-
ternatively by means of an absorber sheet [48]. The measurement of the product
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Fig. 15 Experimental results of
the contextuality experiment
with spin-path entangled
neutron states [47]

observable (σ s
x σ

p
y )(σ s

y σ
p
x ) was done by measuring (σ s

z σ
p
z ) and using a priori the

non-contextuality relation. The measurable quantity is defined by a sum of product
observables

C = Î − σ s
x σ

p
x − σ s

y σ
p
y − (σ s

x σ
p
y )(σ s

y σ
p
x ). (57)

In any experiment expectation values only can be measured. For non-contextual mod-
els the last term can be separated:

〈(σ s
x σ

p
y )〉〈(σ s

y σ
p
y )〉 = 〈σ s

x 〉〈σp
y 〉〈σ s

y 〉〈σp
x 〉, (58)

which gives

Cnc = ±2, (59)

whereas quantum mechanics predicts

Cqm = 4. (60)

The measured value was

Cexp = 3.138 ± 0.0115, (61)

which is well above the non-contextuality (classical) limit of 2 and provides an all-
versus-nothing-type contradiction. It provides a Peres-Mermin proof of quantum-
mechanics against non-contextual hidden variable theories.
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A debate in literature [50, 52] criticized the a priori use of the non-contextuality
relation (σ s

x σ
p
y ) · (σ s

y σ
p
x ) = (σ s

z σ
p
z ) and in this connection the use of an absorber to

measure this quantity. In a follow-up proposal [53] and subsequent experiment [54]
the previous result (57) has been verified. In this case a quantum erasure has been
used instead of an absorber and, therefore, all quantities required for (57) could be
measured within the same context.

Years ago it has been shown that the Zeeman energy (hω = 2μB0) can be ex-
changed between the neutron and a resonance coil coherently [55]. This provides the
basis for triple entanglement experiments using spin-path-energy as independent de-
grees of freedom [56]. These GHZ-states are a new tool for basic neutron quantum
optics experiments and may be new components of quantum computing elements like
CNOT gates. The energy states have geometric nature and may be rather robust under
dissipative effects as shown in Sect. 4.1.

5 Discussion

Neutron interferometry is a powerful tool to measure quantum phenomena under
new fashion. Single particle interference exhibits all basic features of this funda-
mental theory and multi-particle systems only complete these insights. Here, a re-
view is given of measurements of various topological phases and their robustness
against fluctuations and interactions with the environment. Indeed it appears that ge-
ometric phases are much more robust than the dynamical phase and this may have
consequences for future quantum information systems. It has also been shown that
entanglement between external and internal degrees of freedom in single particle
systems can be achieved which leads to quantum contextuality, another important
feature of quantum physics. Bell-like inequalities can be formulated and tested with
distinct consequences for the understanding of multi-particle entanglement. Non-
contextuality hidden variable theories can be turned down by precise measurements
of Peres-Mermin inequalities which are based on the Kochen-Specker theorem.
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