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Accurate decoding of facial expressions is critical for human communication,
particularly during infancy, before formal language has developed. Different facial
emotions elicit distinct neural responses within the first months of life. However,
there are broad individual differences in such responses, so that the same emotional
expression can elicit different brain responses in different infants. In this study,
we sought to investigate such differences in the processing of emotional faces
by analyzing infants’ cortical metabolic responses to face stimuli and examining
whether individual differences in these responses might vary as a function of
infant temperament. Seven-month-old infants (N = 24) were shown photographs
of women portraying happy expressions, and neural activity was recorded using
functional near-infrared spectroscopy (fNIRS). Temperament data were collected using
the Revised Infant Behavior Questionnaire Short Form, which assesses the broad
temperament factors of Surgency/Extraversion (S/E), Negative Emotionality (NE), and
Orienting/Regulation (O/R). We observed that oxyhemoglobin (oxyHb) responses to
happy face stimuli were negatively correlated with infant temperament factors in
channels over the left prefrontal cortex (uncorrected for multiple comparisons). To
investigate the brain activity underlying this association, and to explore the use of
fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with
respect to temperament groups. Results showed preferential activation of the left
hemisphere in low-NE infants in response to smiling faces. These results suggest that
individual differences in temperament are associated with differential prefrontal oxyHb
responses to faces. Overall, these analyses contribute to our current understanding of

Abbreviations: deoxyHb, deoxyhemoglobin; EEG, electroencephalography; ERP, event-related potential; FFA, fusiform
face area; fMRI, functional magnetic resonance imaging; fNIRS, functional near-infrared spectroscopy; lPFC, lateral
prefrontal cortex; mPFC, medial prefrontal cortex; NE, negative emotionality; OFA, occipital face area; OFC, orbitofrontal
cortex; oxyHb, oxyhemoglobin; PFC, prefrontal cortex; R-IBQsf, Revised Infant Behavior Questionnaire Short Form; RM-
ANOVA, repeated measures analysis of variance; S/E, Surgency/Extraversion; STS, superior temporal sulcus; totalHb, total
hemoglobin.
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face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal
asymmetry, and illuminate the neural correlates of face processing as modulated by
temperament.

Keywords: functional near-infrared spectroscopy, infancy, temperament, negative emotionality, emotion, face
processing, prefrontal cortex

Introduction

Much of human communication is unspoken. When we are
angry or fearful or happy, those emotions are often reflected
in our faces, and we observe others’ facial expressions in
order to gather information about our social environment
(Adolphs, 2002; Blair, 2003). Emotion processing is studied in
infants in order to better understand where, when, and how
this specialized ability develops. At the level of individuals,
there are differences in the strength and sensitivity of neural
responses to emotional faces (Etkin et al., 2004; Jessen and
Grossmann, 2015). The present study examines the relation
between infants’ temperaments and their neural responses to
happy face stimuli.

Research on face processing in infants has frequently focused
on responses to fearful faces, and there are several compelling
reasons why that is the case. The fear circuit is one of the
clearest and best-documented brain circuits, and it develops
at an early age in humans (LeDoux, 2000; Leppänen and
Nelson, 2012). Between 5 and 7 months, infants develop a
proclivity to respond preferentially to fearful faces; for example,
7-month-old infants spend more time scanning fearful faces than
neutral or happy faces, and they show greater brain activity
in certain face processing areas when looking at fearful faces
(Nelson and Dolgin, 1985; Leppänen et al., 2007; Hoehl et al.,
2008; Vanderwert and Nelson, 2014). As early as 7 months
of age, infants’ brain responses to fearful faces versus happy
faces are distinct, with greater attention allocated to fearful
faces, even when the infants do not consciously perceive the
faces (Jessen and Grossmann, 2015). Research suggests that
further developmental changes in emotional face processing
occur between 7 and 12 months. ERP analysis shows that
7-month-old infants allocate greater attention to happy faces
versus angry faces, whereas 12-month-old infants show the
opposite preference (Grossmann et al., 2007). Further study is
required to understand how the neural architecture underlying
emotional face processing develops over the first year of
life.

In the present study, we analyze infants’ neural responses
to happy faces. A happy face is likely the first expression that
an infant sees in the world, and the facial expression most
commonly experienced from a very early age. Despite this
relevance to early life experience, little is known about the
development of the neural architecture involved in processing
happy faces.

Over the past several decades, researchers have developed
a number of tools to study the developing brain and draw
inferences about the neural bases of perceptual and cognitive
functions. An emergent technique, fNIRS, is a non-invasive
and infant-friendly methodology that measures changes in

hemoglobin concentrations as an indicator of localized brain
activity. As with fMRI, the fNIRS methodology assumes
that increased oxyHb concentration and decreased deoxyHb
concentration correspond to increased local brain activity (Lloyd-
Fox et al., 2010). The fNIRS hardware is relatively inexpensive
and portable, and the optodes (i.e., emitters and detectors) are
arranged in a wearable cap, which is much more tolerable for
infants and relatively more robust to movement artifact than
is the fMRI scanner. Moreover, because fNIRS data can be
collected in awake, behaving infants, this method allows for
more ecologically valid experimental tasks (Figure 1A). fNIRS
has better spatial resolution than EEG techniques, and better
temporal resolution than fMRI. It is important to note, however,
that because the brain topography is less well mapped for infants
than for adults, it is difficult to know which brain regions underlie
specific channels in the fNIRS probe, although recent modeling
work has begun to address this issue (Lloyd-Fox et al., 2014).
One drawback to fNIRS, in comparison with fMRI, is that
it is limited to interrogating the cortical surface. However, as
fNIRS methodology continues to evolve, increasingly complex

FIGURE 1 | Functional near-infrared spectroscopy probe design.
(A) Proper placement of fNIRS cap on infant. (B) fNIRS probe, top view.
(C) Prefrontal panel of fNIRS probe, consisting of 22 channels
(emitter-detector pairs), and the approximate locations of channels on the
infant forehead.

Frontiers in Psychology | www.frontiersin.org 2 July 2015 | Volume 6 | Article 922

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Ravicz et al. Temperament-dependent infant face processing

experimental paradigms will provide critical insights into the
functions of the developing brain.

Recently, fNIRS studies have examined the hemodynamic
response to face stimuli, confirming that a distinct brain response
to faces can be measured with this methodology (Blasi et al.,
2007; Lloyd-Fox et al., 2009; Vanderwert and Nelson, 2014).
Nakato et al. (2011) recorded fNIRS responses over the temporal
regions, demonstrating that infant hemodynamic responses to
distinct types of facial stimuli (happy and angry) are significantly
different. They found that the left temporal area overlying
the STS was significantly activated when infants viewed happy
faces, and the right temporal area was significantly activated for
angry faces. These results suggest that emotions are processed
differentially over regions associated with face processing in the
temporal cortices; however, this study did not examine evaluative
processing of emotional faces in the PFC.

Another infant fNIRS study provides evidence that the OFC
is involved with face processing and emotional arousal, and that
these brain functions are measurable with fNIRS methodology by
12 months of age (Minagawa-Kawai et al., 2009). In this study,
infants were shown videos of their mothers and of an unfamiliar
woman, posing with neutral and smiling expressions. The results
found that, in a channel in the medial PFC, there was a significant
difference in oxyHb activation in the smiling condition versus the
neutral condition when the infant watched the video of his/her
own mother. The same effect was found for the smiling versus
neutral unfamiliar woman stimuli, with marginal significance.
These data indicate that there is a detectable response to smiling
faces in the medial OFC.

More recently, an fNIRS study of 6- and 7-month-old infants
at high and low risk for autism provides further insight into how
infants process smiling versus neutral faces (Fox et al., 2013).
The study examined oxy- and deoxyHb responses to videos of
female faces changing from a neutral expression to a smiling
one. In three channels over the right frontal cortex, there was a
main effect of emotion, in which the oxyHb response to smiling
faces was greater than the response to the neutral expression.
In three channels over the left frontal cortex, infants showed
greater (that is, more negative) deoxyHb responses to smiling
versus neutral faces. Taken together, these studies demonstrate
that fNIRS methodology can detect stimulus-driven responses to
happy faces in distinct channels over the frontal cortex.

In the research conducted to date, infants’ data were pooled
and examined at the group level, with little attention paid to
individual differences. Thus, in the current study we sought
to add an individual difference dimension — specifically, to
examine whether differences in infants’ temperament might be
associated with differences in infants’ hemodynamic response.
Temperament refers to a biologically determined disposition
toward certain behaviors or feelings. A person’s temperament,
observable during infancy and relatively stable over the lifetime
(Fox et al., 2001), affects susceptibility to certain emotional
states, intensity of emotion, and the ability to regulate
emotional responses. Evidence suggests that temperamental
biases are determined by genes influencing neurochemistry and
neuroanatomy, and by the prenatal environment (Kagan and
Snidman, 2004).

Childhood environment and early experiences, as well as
genetic expression that is modified throughout development, will
determine how a child’s temperament manifests as personality
traits, and whether those traits will change over time as the
individual develops from infancy to childhood to adolescence
and eventually into adulthood (Kandler et al., 2013). Infant
temperament has been shown to be moderately predictive of
temperament in toddlerhood and early childhood, with strong
longitudinal correlations for the factor levels of S/E and Negative
Affect (Fox et al., 2001; Putnam et al., 2008). Furthermore,
a large longitudinal study showed that temperament groups
at age 3 — specifically the dimensions of undercontrolled,
inhibited, and well-adjusted — predict personality style at age
18, and that temperament at age 3 predicts the quality of
interpersonal relationships and social support, as well as the
incidence of unemployment, psychiatric disorders, and criminal
behavior, at age 21 (Caspi, 2000). Though the effect size for
each of these connections was only small to medium, Caspi
(2000) argues that the association between temperament during
toddlerhood and multiple independent measures of psychosocial
functioning in young adulthood provides important evidence for
the developmental continuity of temperament.

Previous investigations have found that infant temperament
is associated with individual differences in emotional face
processing, specifically in the amplitude and latency of the Nc, an
ERP component associated with allocation of attention. Martinos
et al. (2012) found that, from 3 to 13 months, infants with higher
NE allocated greater attention (as indexed by the Nc) to happy
faces than to fearful faces. This pattern of findings has not always
been consistent, however; de Haan et al. (2004) found that more
fearful infants showed a larger Nc in response to fearful faces than
to happy faces. Martinos et al. (2012) attributed this discrepancy
tomethodological differences in temperament assessment or ERP
measurement, or to the different age ranges of the subjects.

Temperament has been robustly associated with differences
in EEG activity observed over the left and right frontal scalp
(known as ‘frontal EEG asymmetry’). According to Davidson’s
(1993) ‘motivational model’ of EEG asymmetry, relatively greater
activity over the left (versus right) frontal lobe is associated with
‘approach’ orientation or behavior. Relatively greater right (versus
left) frontal activation is associated with ‘withdrawal’ orientation
or behavior. Infants who demonstrate withdrawal behavior are
reticent and distressed when presented with unknown people or
novel objects; infants demonstrating approach behavior readily
approach new people and toys, and remain unperturbed in
stressful situations. Studies have examined both state-dependent
effects (for example, smiling can increase relative left frontal
activation) and trait-dependent effects (Ekman and Davidson,
1993; Coan and Allen, 2003). The trait-dependent effects are
relatively stable measures of individual temperament, with
high internal consistency and acceptable test–retest stability
(Tomarken et al., 1992; Fox et al., 2001). The measurement of
frontal asymmetry can provide insight into the biological basis
of temperament.

Many studies of frontal asymmetry have investigated the
cortical response to emotional faces (Davidson and Fox, 1982;
reviewed in Davidson, 1993). A meta-analysis of fMRI research
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analyzing adult brain responses to photos of emotional faces
found that there were significant hemispheric interactions
between the category of facial expression (approach- versus
avoidance-inducing) and activity in the PFC (Fusar-Poli et al.,
2009). Frontal asymmetry in response to emotional faces
provides information about how the PFC is involved in emotion
perception and how the response is modulated by individual
temperament.

Preliminary work suggests that state- and trait-related
asymmetry can also be studied using fNIRS. In a study by
Tuscan et al. (2013), young adult subjects were asked to
complete three tasks while fNIRS activity over the PFC was
recorded during the different task manipulations: conversing
with strangers, planning a 5-minute speech, and delivering this
speech. Subjects reported their subjective anxiety levels after each
of the three tasks, and each subject’s trait anxiety was evaluated
using the Social Phobia andAnxiety Inventory (SPAI). During the
anticipation and speech phases, subjects experienced relatively
greater blood volume and oxyHb concentrations in the right
relative to the left hemisphere. Further, the participants who
were identified as higher in anxiety showed a trend toward
greater right frontal activation relative to low-anxious subjects
(Tuscan et al., 2013). This observed effect is analogous to right
frontal EEG asymmetry, which is associated with withdrawal
behavior and would be predicted in tasks designed to induce
social stress.

We selected channels overlying the PFC as the region of
interest. The PFC is involved in distinguishing facial emotions
(Leppänen and Nelson, 2009) and in emotional regulation (for
example, Tranel et al., 2002), roles that are likely modulated
by reciprocal connections with subcortical structures involved
in emotion perception, particularly the amygdala and superior
colliculus (Leppänen and Nelson, 2009). We were not able to
collect data from the OFA or FFA because these primary face
processing areas lie too deep below the cortical surface to detect
with fNIRS (Otsuka et al., 2007), and because the fNIRS probe
used in this study lies over the infant’s temporal and prefrontal
cortices. Some fNIRS studies of infant face processing have
examined the area overlying the STS, another face processing area
(Lloyd-Fox et al., 2009; Nakato et al., 2011). However, because
we were interested in measuring frontal asymmetry in response
to facial stimuli, we chose to focus on the PFC. Furthermore,
Minagawa-Kawai et al. (2009) showed significant activity in a
region of the PFC for infants’ response to smiling faces.

We hypothesized that there would be channels in the
prefrontal panel in which hemoglobin activity would be
correlated with temperament. Specifically, we hypothesized that
the temperament factors of S/E and O/R would be positively
correlated with brain activation, that NE would be negatively
correlated with brain activation. Furthermore, to explore the
capacity of fNIRS methodology to record relative asymmetry
in oxyHb activity between left and right hemispheres, we
analyzed the interactions of temperament and hemisphere. We
hypothesized that infants with higher S/E scores would show
relatively greater left frontal activity, and infants with higher
NE scores would show relatively greater right frontal activity.
These analyses contribute to our current understanding of

face processing during infancy, investigate the use of fNIRS
in measuring prefrontal asymmetry, and examine the neural
correlates of face processing as modulated by temperament.

Materials and Methods

Participants
Twenty-four 7-month-old infants were included in the study
(mean age 212 ± 1.0 days, range 205–221 days; 11 females).
Twenty additional infants were tested but were excluded from
the study for incorrect optode placement (n = 7), for more
than 25% of channels in the prefrontal panel rejected for artifact
(n = 6), for equipment failure (n = 5), or for movement artifact
(n = 2). The 45% attrition rate is comparable to the rate in other
infant fNIRS studies (Lloyd-Fox et al., 2010). Infants who were
included or excluded from the study did not differ in measures
of S/E, t(42) = 1.16, p = 0.252, NE, t(42) = −1.02, p = 0.314,
or O/R, t(42) = 0.196, p = 0.846. Infants were recruited from
a registry of local births set up by the Laboratories of Cognitive
Neuroscience. Infants were excluded from recruitment if they
were born more than 3 weeks before their due date, or if they
had any neurological disorders, including neurological trauma,
developmental delay, uncorrected vision difficulty, or birth-
related complications. Written informed consent was obtained
from each infant’s parent or primary caregiver prior to the start
of the experiment, and the experimental protocol was approved
by the Boston Children’s Hospital Institutional Review Board.
Written informed consent was also obtained from the parent for
use of the photo in Figure 1A.

Infant Behavior Questionnaire
We used the R-IBQsf (Putnam et al., 2013), a parent-report
measure of temperament that was completed by the mother
or primary caregiver of each subject prior to the visit. The
tool is validated for 3- to 12-month-old infants and has
showed adequate internal consistency, inter-rater reliability
between mothers and fathers, and convergence with laboratory
observational assessments (Gartstein and Rothbart, 2003; Parade
and Leerkes, 2008; Putnam et al., 2013).

The R-IBQsf consists of 14 subscales that load onto three
broad temperament factors, as derived from principle factor
analysis (Gartstein and Rothbart, 2003). The S/E factor includes
temperament subscales of activity level, vocal reactivity, smiling
and laughing, high intensity pleasure, perceptual sensitivity, and
approach. The NE factor includes questions about fear, distress
to limitations, sadness, and (loading negatively) falling reactivity.
The third factor, O/R, includes the subscales of soothability,
duration of orienting, cuddliness, and low intensity pleasure.
Gartstein and Rothbart (2003) found low bivariate correlations
between the factors.

NIRS Recording
Hemodynamic responses were recorded using a multichannel
optical topography NIRS instrument (ETG-4000, Hitachi
Medical Corporation, Tokyo, Japan). Near-infrared light at 695
and 830 nm was conveyed to the emitting optodes via optical
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fibers and shined onto the scalp. The light that passed back
through the scalp was then conveyed from the detecting optodes
via optical fibers to photodetectors that measured the intensity
of the attenuated light. The inter-optode distance was fixed at
3.0 cm. Data were sampled every 100 ms (10 Hz). The fNIRS
probe was mounted inside a flexible cap, which was placed on
the infant’s head and worn for the duration of the experiment
(Figure 1A). The probe was customized for this experiment and
included 46 channels, each consisting of an emitter and detector
combination, that were positioned over the frontal, temporal,
and parietal cortices (Figure 1B). In this study the area of interest
was the PFC, underlying channels 25 through 46 (Figure 1C).

To ensure precise and consistent spatial resolution in the
fNIRS data, we adhered to stringent criteria for hat placement.
During each session, photos were taken of the cap placement
(frontal and lateral views), and the photos were reviewed by
multiple experimenters. Subjects were excluded for incorrect hat
placement if the cap was shifted by more than 1 cm in any
direction (left, right, up, or down).

Task and Stimuli
Infants completed the task while sitting on their parent’s lap.
Parents were asked not to speak to the infant during the
experiment, and they wore a visor to prevent any parental
response to the visual stimuli from influencing the infant’s
reaction. The infant was seated approximately 60 cm from a 17-
inch computer monitor. The stimuli were 16.5 cm high (visual
angle: 14.3◦) and 14 cm wide (visual angle: 12.2◦). The testing
room was soundproof and the lights were dimmed during the
experiment to a standardized brightness. An experimenter sat
next to the infant and parent and redirected the infant’s attention
to the screen before the start of each trial. In order to minimize
data attrition, parents were asked to select a time for the visit
when the infant was typically alert and content, and the infant
was allowed to take breaks during the session as needed.

The stimuli were images of female models displaying happy,
fearful, and angry facial expressions (Figure 2A), selected from
the NimStim Face Stimulus Set (Tottenham et al., 2009).
The stimuli were presented using the E-Prime Application
Suite for Psychology (E-Prime 2.0, Psychology Software Tools,
Sharpsburg, PA, USA).

The experiment consisted of a maximum of 30 trials, each
of which included five images. The five images in a single trial

were of the same emotional category (happy, fearful, or angry),
portrayed by different models. Each image was shown for 1 s,
with a randomly generated 200–400ms inter-stimulus time. After
the set of five images, a video of non-face shapes was shown
for 10 s, resulting in a total trial length of 16 s (Figure 2B).
There were 10 trials of each of the three emotional categories,
for a total of 30 trials. The session ended when a participant
viewed all 30 trials, or if the participant grew restless or upset.
The order of stimulus presentation was counterbalanced across
subjects.

Data Processing
Oxy- and deoxyHb data from ‘happy’ trials were included in
this analysis. Subjects viewed a maximum number of 10 ‘happy’
trials; they viewed fewer than 10 trials if they refused to complete
the entire task, or if they looked away from the stimulus
during a given trial. For each subject, a video recording of the
experimental proceedings was coded offline using SuperCoder
software (SuperCoder 1.7.1, Purdue University, West Lafayette,
IN, USA) by observers who were blind to the emotional category.
Inter-rater reliability was maintained at 0.90 with 15% coding
overlap. Trials in which the infant was not looking at the stimulus
for at least 50% of the time the stimulus was on the screen were
excluded. Trials were not excluded for failure to look during the
inter-trial video. Infants completed an average of 8 ± 0.3 ‘happy’
trials (N = 24), and the range of valid trials was 5–10. We used an
a priori threshold of three ‘happy’ trials for inclusion in the final
sample, based on a previous study of face processing in infants
(Lloyd-Fox et al., 2013).

Functional near-infrared spectroscopy data were processed
using HOMER2 (MGH-Martinos Center for Biomedical
Imaging, Boston, MA, USA), a MATLAB (The MathWorks,
Inc., Natick, MA, USA) software package. The attenuated light
intensities measured by the detecting optode at each channel
were converted to optical density units, and then filtered using a
band pass filter with a passband from 0.050–0.80 Hz. They were
also processed using wavelet motion correction as implemented
in HOMER2 with an interquartile range of 0.5 (Cooper et al.,
2012; Molavi and Dumont, 2012). The filtered data were used
to calculate the change in concentration of each hemoglobin
chromophore according to the modified Beer–Lambert Law
(Delpy et al., 1988), assuming a pathlength factor of 5 (Duncan
et al., 1995). Chromophore concentrations were baseline

FIGURE 2 | Experimental design. (A) Example ‘happy’ stimulus. Each trial
consists of five images like this one, with different female models portraying a
happy expression. (B) Each trial includes five images, each presented for 1 s
with a 200–400 ms inter-stimulus time. The five images in a trial represent a

single emotional category (fearful, happy, or angry), with five different female
models portraying the emotional expression. After the fifth image, a 10 s
inter-trial video is shown, for a total trial time of about 16 s. The experiment
consists of 30 total trials, with 10 trials of each emotional category.
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corrected using the 2 s prior to stimulus presentation, as in
previous fNIRS studies (for example, Watanabe et al., 2008).

In the data processing stream, channels in the fNIRS probe
were excluded for artifact if the magnitude of the signal was
greater than 98% or less than 2% of the total range for longer
than 5 s during the recording. Subjects with more than 25% of
channels in the region of interest marked unusable were excluded
from further analysis. For this experimental probe design, there
were 22 channels in the prefrontal panel, and subjects with more
than five channels marked unusable were excluded.

Statistical Analyses
Statistical tests were conducted using IBM SPSS Statistics 21.0
(IBM Corporation, Armonk, NY, USA). One-sample t-tests were
conducted to determine if the maximum changes in oxyHb
or deoxyHb concentration in the channels of interest were
significantly different from baseline levels. A time window
of interest was selected between 0 and 10 s, with t = 0 s
corresponding to the time of stimulus onset. Baseline values were
measured between −2 and 0 s, as in previous fNIRS studies (for
example, Watanabe et al., 2008).

Bivariate Pearson correlations were conducted between
the three temperament factors (S/E, NE, and O/R). Pearson
correlations were then calculated for channels in the region of
interest to test for a relation between temperament and oxyHb
and deoxyHb activity (maximum amplitude). Due to a significant
correlation between S/E and O/R (see below), partial correlations
were also conducted to test the independent relations between
temperament and Hb activity. In order to fully explore the
connection between happy faces and temperament, only the
responses to happy face stimuli were included in these analyses.

Repeated measures analysis of variance was used to test for
a hemispheric effect of temperament on oxyHb activity, with
hemisphere (left versus right) as the within-subjects factor and
the temperament group (low versus high) as the between-subjects
factor. Activity in the left and right hemispheres was calculated
as the mean value of the maximum change in oxyHb amplitude
for two channels in the left hemisphere (36 and 41) and for two
channels in the right hemisphere (35 and 39). A median split was
used to divide subjects into low and high temperament groups for

each factor (S/E, NE), as in previous studies (for example, Baehr
et al., 1998; Hagemann et al., 1999; Hagemann, 2004).

Results

Prefrontal Activation in Response to Happy
Face Stimuli
We plotted the grand averaged time courses of the changes in
concentration of oxy-, deoxy-, and totalHb for the channels in
the prefrontal panel. The responses for channels 25 and 46 are
shown in Figure 3. Based on these responses, we selected a time
range of 0–10 s for analysis.

To test whether channels overlying the PFC were significantly
activated by happy face stimuli, we conducted one-sample t-tests
for the maximum change in oxyHb and deoxyHb concentrations
in these channels. The changes in Hb concentration were
calculated relative to the baseline value at t = −2 to 0 s. Across
subjects, there was a significant decrease in oxyHb concentration
in channel 25, t(20) = −2.767, p = 0.012, and in channel 46,
t(23) = −2.387, p = 0.026. There was a significant increase in
deoxyHb concentration in channel 34, t(23) = 2.959, p = 0.007.

Differential Brain Responses According to
Temperament
In our sample, we found no significant correlation between NE
and S/E or O/R, which is consistent with previous findings
(Gartstein and Rothbart, 2003). We did find a significant
correlation between S/E and O/R, r(22) = 0.674, p < 0.001.

We conducted Pearson correlations to test whether oxyHb
and deoxyHb activity (calculated as maximum change in
concentration from baseline) were correlated with temperament
in the prefrontal channels. The results are shown in Table 1.
A total ofN = 24 subjects were tested, but because some channels
did not have reliable data from all subjects, the number of
subjects (n) tested for each channel is shown in the table. The
temperament factor S/E was negatively correlated with oxyHb
activity in channel 26, r(21)= −0.521, p= 0.011, and channel 32,
r(21) = −0.457, p = 0.028; in these channels, infants with lower
S/E scores showed greater activation in response to happy faces.

FIGURE 3 | Functional near-infrared spectroscopy activation in response to happy face stimuli in channels 25 and 46. Grand averaged time courses of
the changes in concentration of oxy- (red), deoxy- (blue), and totalHb (green) in (A) channel 25 and (B) channel 46.
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TABLE 1 | Summary of channels in which maximum change in
concentrations of oxyHb or deoxyHb are significantly correlated with the
temperament factors.

oxyHb deoxyHb

Channel n S/E NE O/R S/E NE O/R

26 23 −0.521∗

27 21 −0.525∗ −0.500∗

28 21 −0.685∗∗ −0.525∗

32 23 −0.457∗ −0.423∗

33 23 −0.585∗∗

36 24 −0.414∗

41 24 −0.476∗

42 23 −0.423∗

43 24 0.411∗

45 24 0.430∗

Values are Pearson correlations. S/E, Surgency/Extraversion; NE, Negative
Emotionality; O/R, Orienting/Regulation. ∗p < 0.05; ∗∗p < 0.01.

Similarly, NE was negatively correlated with oxyHb in channel
36, r(22) = −0.414, p = 0.044, channel 41, r(22) = −0.476,
p = 0.019, and channel 42, r(21) = −0.423, p = 0.044. O/R
was negatively correlated with oxyHb activity in channel 27,
r(19) = −0.525, p = 0.015, channel 28, r(19) = −0.685,
p = 0.001, channel 32, r(21) = −0.423, p = 0.044, and channel
33, r(21) = −0.585, p = 0.003. Infants with lower NE scores
and lower O/R scores, respectively, showed greater activation in
response to happy faces than did infants with higher NE and
O/R scores. In one channel (32), oxyHb activity was correlated
with both S/E and O/R. DeoxyHb activity was correlated with S/E
in channel 27, r(19) = −0.500, p = 0.021; with NE in channel
43, r(22) = 0.411, p = 0.046, and channel 45, r(22) = −0.430,
p = 0.036; and with O/R in channel 28, r(19) = −0.525,
p = 0.014.

The approximate locations of the correlated channels
are shown in Figure 4. None of the correlations between
temperament and concentration was significant at the level
required to correct for multiple comparisons (p < 0.0008).
However, the correlated channels are clustered by temperament
group, suggesting a consistent pattern of activation. The four
channels in which oxyHb activity is correlated with O/R are
adjacent to one another, as are the three channels in which oxyHb
is correlated with NE, as shown in Figure 4A. The two channels
with significant correlations between S/E and oxyHb are nearly
adjacent.

The channels in which deoxyHb concentration is correlated
with temperament are shown in Figure 4B. The channels
where deoxyHb activity is correlated with S/E and O/R
overlap with regions where oxyHb activity is correlated with
temperament, as would be expected. The channels in which NE
is positively correlated with deoxyHb activity are located along
the brow.

The three higher-order temperament factors (S/E, NE, and
O/R) are, in theory, orthogonal and uncorrelated (Gartstein
and Rothbart, 2003). However, because S/E and O/R were
correlated for our data, we conducted partial correlations to

FIGURE 4 | Placement of channels in which temperament is correlated
with hemoglobin activity. (A) Channels in which the maximum change in
amplitude from baseline of [oxyHb] is significantly correlated with S/E, NE, and
O/R are indicated in light gray, patterned, and dark gray, respectively. Positive
correlations are indicated with a square marker, and negative correlations are
indicated with a circular marker. (B) Channels in which maximum change in
amplitude from baseline of [deoxyHb] is significantly correlated with
temperament factors.

examine the independent contributions of each factor. We
found that, when controlling for S/E, oxyHb was significantly
correlated with O/R in channel 28, r(18) = −0.607, p = 0.005,
and channel 33, r(20) = −0.532, p = 0.011. The correlation
approached significance in channel 44, r(21) = −0.403,
p = 0.056. DeoxyHb was significantly correlated with O/R in
channel 28, r(18) = −0.506, p = 0.023. When controlling for
O/R, neither oxyHb nor deoxyHb was significantly correlated
with S/E.

Frontal Asymmetry Measured by fNIRS
We hypothesized that fNIRS imaging could detect an asymmetry
effect in the prefrontal response to happy face stimuli. Individuals
with a greater proclivity for ‘approach’ behaviors show relatively
greater left frontal activation, while individuals who tend to
display ‘withdrawal’ behaviors show relatively greater right
frontal activation. Based on these established findings in both
infants and adults (Davidson and Fox, 1982; Davidson, 1993; Fox
et al., 2001; Coan and Allen, 2003), we hypothesized that subjects
with higher S/E temperament scores would show greater relative
left frontal activation. Subjects with higher NE scores would show
greater relative right frontal activation.

Negative Emotionality
We first tested for a hemispheric effect between the high and
low NE groups. We conducted an RM-ANOVA with the two
hemispheres (left and right) as the within-subjects factor, and the
temperament group (high or low NE) as the between-subjects
factor. To calculate the oxyHb activation in each hemisphere,
we averaged the activity in two channels on the left side (36
and 41) and two channels on the right side (35 and 39) of the
prefrontal panel of the fNIRS probe. These channels were selected
because they were located in symmetrical positions on the medial
region of the prefrontal probe, an area commonly analyzed for
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hemispheric comparisons using fNIRS and EEG (Tuscan et al.,
2013). Activity in channels 36 and 41 was significantly correlated
with NE, so we expected to see an effect of temperament in this
analysis.

There was a significant main effect of NE group,
F(1,22) = 4.80, p = 0.039. The low-NE group had greater
overall activation to happy faces (M = 0.070, SD = 0.137)
compared to the high-NE group (M = −0.061, SD = 0.154) in
the four channels of interest. This suggests that infants with less
negative temperament are more responsive to images of happy
faces than are infants with more negative temperament. There
was no significant main effect of hemisphere, F(1,22) = 1.11,
p > 0.05; the overall activation was not significantly different
between the left hemisphere and the right hemisphere.

The main effect of group was modified by a
Group × Hemisphere interaction, F(1,22) = 4.75, p = 0.040.

A priori pairwise comparisons testing hemispheric differences
between the two temperament groups found that the low NE
group and high NE group did not differ in right hemisphere
activation, t(22) = 0.487, p = 0.631, but the two groups did
differ significantly in left hemisphere activation, t(22) = 3.614,
p = 0.002. Low-NE infants showed preferential activation in
response to happy faces in the left hemisphere, while high-NE
infants showed less overall activation in both hemispheres. The
asymmetry effect is shown in Figure 5.

Surgency/Extraversion
We also conducted an RM-ANOVA with S/E group as the
between-subjects factor. There were no significant main effects
of S/E group, F(1,22) = 0.354, p = 0.56, or of hemisphere,
F(1,22)= 1.03, p= 0.32, and no significant Group×Hemisphere
interaction, F(1,22) = 2.69, p = 0.12.

FIGURE 5 | Frontal fNIRS asymmetry in low NE and high NE groups. For the low NE group, the left hemisphere (channels 36, 41) showed significantly greater
activation relative to the right hemisphere (channels 35, 39). The low NE group showed significantly greater activation overall than the high NE group. Asterisks
indicate significance at the level of p < 0.05.

Frontiers in Psychology | www.frontiersin.org 8 July 2015 | Volume 6 | Article 922

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Ravicz et al. Temperament-dependent infant face processing

Discussion

Key Findings
The objectives of the present study were to characterize the
prefrontal hemodynamic response of 7-month-old infants to
happy face stimuli, to analyze the relation between infants’
temperament and their brain responses to happy face stimuli,
and to examine the capabilities of fNIRS methodology to provide
information about frontal asymmetry. We showed that happy
face stimuli elicited significant changes relative to baseline in
oxyHb and deoxyHb concentrations in three channels (25, 34,
and 46). Based on the time course of these responses, we selected
a time range of interest of t = 0–10 s, with t = 0 s corresponding
to the start of stimulus presentation. Through correlational
analyses, we showed that the maximum change in both oxyHb
and deoxyHb concentrations in response to happy faces was
significantly correlated with S/E, NE, and O/R temperaments in
channels overlying the left PFC. However, when controlling for
the O/R factor, S/E is not correlated with oxy- or deoxyHb activity
in any of the channels.

Further, we demonstrated that fNIRS can be used to study
frontal asymmetry, a direction of analysis that is well-established
in EEG literature but relatively unexplored in NIRS. We showed
that there was a main effect of NE temperament group (low
and high) modified by a Group × Hemisphere interaction. The
low-NE infants preferentially activated the left hemisphere in
response to happy faces. High-NE infants did not show this
lateralization effect, and the overall activation for low-NE infants
was higher than for high-NE infants. We had hypothesized
that high-S/E infants would show relatively greater left frontal
activation, but there were no notable effects of S/E group and
hemisphere.

Hemodynamic Differences from Baseline
The typical NIRS response in adults shows an increase in oxyHb,
and a corresponding decrease in deoxyHb that is relatively
smaller in magnitude. This response at a given channel is thought
to indicate an increase in brain activation in the cortical region
underlying the channel. The activation in channels 25, 34, and
46 did not follow this pattern of typical activation; channels 25
and 46 showed a significant decrease in oxyHb concentration,
and channel 34 showed a significant increase in deoxyHb
concentration. Atypical hemodynamic patterns in infant brains
(such as simultaneous increases in all three chromophores)
have been described previously, but they are believed to be the
result of immature neurovascular coupling (Lloyd-Fox et al.,
2010). It has also been proposed that a decrease in oxyHb
and corresponding increase in deoxyHb would indicate local
decreased neural activity as compared to baseline, just as a
decrease in fMRI BOLD signal is considered to represent brain
deactivation (Fransson et al., 1999; Sakatani et al., 2006), or
that this inverse pattern indicates activation in an adjacent brain
region (“focal activation/surround deactivation”; Pfurtscheller
et al., 2010).

Because channels 25, 34, and 46 are not adjacent to one
another, it is difficult to draw conclusions about the implications
of these activations. It is noteworthy, however, that channels 25

and 46 are located on the edges of the region in which oxyHb
activity is correlated with temperament factors (channels 26, 27,
28, 32, 33, 36, 41, and 42). This suggests that the broad region
could be involved with emotional face processing, with some
areas activated across all subjects and other areas differentially
activated as a result of individual differences — in this case, infant
temperament.

It is unclear whether the observed responses were specific
to happy face stimuli. Future research will compare the
hemodynamic responses to happy face stimuli with the responses
to other emotional expressions (fearful, angry, and neutral).

Previous studies in fNIRS have found a significant neural
response to facial stimuli in the medial prefrontal region. In one
fNIRS study that analyzed the oxyHb response to happy face
stimuli, there was significant activation relative to neutral stimuli
in a single channel overlying the medial PFC, demonstrating
that there is a measurable response to happy face stimuli in
this region (Minagawa-Kawai et al., 2009). Similarly, a second
study showed a greater response to smiling faces than to neutral
faces in six frontal channels, with three channels over the right
frontal cortex showing a greater oxyHb response to happy
faces, and three channels over the left frontal cortex showing
a greater (more negative) deoxyHb response to happy faces
(Fox et al., 2013). Based on these previous findings, we were
surprised that we did not observe greater prefrontal activation
to happy face stimuli. However, because we chose to analyze
the response to facial stimuli relative to a non-face baseline,
rather than to a neutral face baseline, the results are not directly
comparable.

Temperament Correlated with OxyHb and
DeoxyHb Activity
As hypothesized, temperament was correlated with
hemodynamic activity in regions of the PFC. We chose not
to correct these correlational results for multiple comparisons,
given the exploratory nature of this analysis. However, the
finding that local hemoglobin activation in these channels
correlates with temperament is particularly compelling due to
the clustering of channels by temperament group. The correlated
activity is found in contiguous regions, rather than in scattered
or isolated channels.

We would expect that activation to happy faces would be
negatively correlated with NE. This study shows that, in these
channels, infants with greater negative affect show less activation
to happy face stimuli, while infants with less negative affect
show greater neural activation. These results suggest that low-NE
infants tend to be more responsive to happy faces.

It is more surprising that S/E was also negatively correlated
with the oxyHb response to happy faces. We hypothesized that
infants with higher S/E scores — infants who are more approach
oriented — would show greater activation to happy faces. When
we assumed that the three temperament factors were independent
(Gartstein and Rothbart, 2003), this hypothesis was unconfirmed.
However, when we controlled for O/R, there were no channels
where S/E was correlated with oxyHb or deoxyHb activity. This
suggests that the observed negative correlation between S/E and
temperament was primarily driven by the O/R factor.
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We noted that the channels in which NE was correlated
with oxyHb activity were medial relative to the channels in
which O/R was correlated with oxyHb activity. Previous work
using fNIRS, fMRI, and other brain imaging technologies has
shown a functional division in the infant PFC between the
mPFC and lPFC. The mPFC has reciprocal connections with
the amygdala, hippocampus, and temporal cortex — regions
implicated in emotion, memory, and sensory processing — while
the lPFC has reciprocal connections with motor regions, the
cingulate cortex, and the parietal cortex. Broadly, the mPFC is
involved with emotional processes, and the lPFC is involved with
cognitive processes (Grossmann, 2013). The present findings
are consistent with this distinction. The temperament factor
of NE measures infants’ emotional proclivities (including fear
and sadness), and the channels where NE is correlated with
brain activity are relatively medial. The O/R factor measures
attentional and regulatory tendencies, which would be consistent
with cognitive processing in the left lateral PFC, and the channels
where O/R is correlated with oxyHb activity are relatively
lateral.

All of the channels except one (channel 26, correlated
with S/E) are located in the left hemisphere. As described in
the introduction, activation of the left hemisphere has been
associated with motivation to approach (versus withdraw).
We would expect that non-threatening face stimuli, such as
the images used in this study, would elicit an ‘approach’
response in some individuals. It makes sense, then, that the
subjects’ temperamental biases in their responses to happy
face stimuli appeared to be driven by activation in the left
hemisphere.

The correlations between temperament factors and deoxyHb
activity are difficult to interpret. Most fNIRS studies of infant
hemodynamic activity report the oxyHb responses because these
data have higher signal-to-noise ratio than either deoxyHb or
totalHb responses, and studies that do report deoxyHb activity
have found inconsistent trends (Lloyd-Fox et al., 2010). However,
a more complete understanding of infant metabolic activity
requires that both oxyHb and deoxyHb activity be reported.
In this study, the deoxyHb activation is reasonably consistent
with the oxyHb activation. The fact that fewer channels show
significant correlations with temperament could be due to the
smaller amplitude of the deoxyHb response; there is less variation
in the maximum amplitude of deoxyHb activity and thus fewer
meaningful correlations.

Overall, these results provide additional evidence that
infant temperament, as measured by the Infant Behavior
Questionnaire, is associated with individual differences in
the neural response to emotional faces. A previous study
showed that NE correlated positively with a greater Nc to
happy faces (Martinos et al., 2012), whereas our results
demonstrate that lower NE scores are associated with greater
activation to the happy face stimuli. Because the present
study did not assess infants’ allocation of attention to the
face stimuli, these results cannot be directly compared to
previous studies (de Haan et al., 2004; Martinos et al., 2012).
However, the accumulating evidence suggests that the association
between infant temperament and individual differences in

emotional face processing is a fruitful topic for further
investigation.

Frontal Asymmetry in fNIRS Response to
Happy Face Stimuli
In analyzing the effects of hemisphere and temperament on
oxyHb activity in these data, we found that there was a frontal
asymmetry effect detectable with fNIRS. There was nomain effect
of hemisphere on oxyHb activation, but there was an interaction
with NE group in the expected direction. The low-NE infants
preferentially activated the left hemisphere, which is consistent
with previous findings that the left hemisphere is preferentially
activated during approach behaviors (Davidson, 1993), but there
was no difference in hemispheric activation for high-NE infants.
In response to happy faces, low-NE infants seem to demonstrate
an asymmetrical approach response, but this lateralization effect
is absent in high-NE infants.

The asymmetry effect measured in the left and right OFC
is likely to be a response elicited by the happy face stimuli
(state-dependent) that is stronger in infants with low-NE
temperament than those with high-NE temperament (trait-
dependent). An investigation of regional specificity in EEG
asymmetry found that the effects in frontopolar recordings were
more transient and were assumed to reflect OFC activity. In
contrast, asymmetries calculated for dorsolateral, temporal, and
parietal areas were more stable over time (Papousek and Schulter,
1998). Previous research confirms that emotional face stimuli
elicit state-dependent frontal EEG asymmetry, even in infants
(Davidson and Fox, 1982; Ekman et al., 1990). It is thought that
asymmetrical cortical activation might be caused by differential
inputs to the two hemispheres of the cortex from subcortical
structures, particularly the amygdala (Kagan and Snidman, 2004).
The OFC is strongly innervated by the amygdala, and it is
reasonable that it would receive transient state-dependent inputs
to each hemisphere.

What neurobiological activity might be driving the
asymmetrical left-hemisphere activation in low-NE infants?
Traditionally, frontal asymmetry is measured using EEG. In
this measure, increased cortical activation is associated with
desynchronization of the neural activity that produces the
alpha wave, resulting in reduced power in the alpha frequency
band (Davidson, 2004; Kagan and Snidman, 2004). Studies
that simultaneously record electrical activity (using EEG) and
metabolic activity (using fMRI or PET) have shown that alpha
power is inversely correlated with high metabolism in several
cortical brain regions, providing justification for using alpha
power and hemodynamic activity as alternative measures of brain
activation (Oakes et al., 2004). In the present study, the increased
oxyHb concentrations in the left prefrontal area, relative to the
right, suggest that left-hemispheric neural activation is relatively
greater. As the neurons fire at a greater rate and consume
greater amounts of oxygen, greater amounts of oxyHb are
delivered to the local cortical area, and are detected by the fNIRS
recording.

This finding provides insight into the development of
hemispheric asymmetry in emotional face processing. Previous
work has shown that adults’ responses to emotional faces
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are lateralized (Davidson, 1993; Fusar-Poli et al., 2009), and
the present experiment provides evidence that this laterality
is present as early as 7 months of age, and that it can be
measured with fNIRS. Because of the spatial resolution of
fNIRS, this technique could prove useful in parsing out the
functional divisions of the PFC, and the development of these
functions over the first years of life. Furthermore, studying the
typical development of hemispheric asymmetry in emotional
face processing will reveal information about the atypical
development of these processes (Davidson, 1993).

Limitations and Future Directions
In the current study, we used a parent report measure of infant
temperament. Gartstein and Rothbart (2003) have discussed
at length the limitations of various temperament assessments:
parent report measures are less controlled than laboratory
observation, but on the other hand, the novel setting of the
laboratory could influence infants’ behavior (Putnam et al.,
2008). Future studies should employ both parent-report survey
data and laboratory observational assessment of temperament.
Furthermore, we examined only the hemodynamic responses
to happy face stimuli. Future analyses of the neural responses
to neutral expressions and to other emotional expressions
would provide additional insight into the interaction between
temperament and prefrontal brain activity. Finally, our analysis
included only one age of participant. The investigation of

whether, when, and how individual temperaments change over
time, from infancy into adulthood, is an important direction of
future study, especially as it informs our understanding of how
anxiety, depression, and social pathologies develop. Measuring
the prefrontal responses to emotional faces in infants of other
ages would provide information about how neural activity
develops over the first year of life and would provide useful
context for the interpretation of our results.
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