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Abstract

Social network structure has been argued to shape the structure of languages, as well as affect

the spread of innovations and the formation of conventions in the community. Specifically, theoreti-

cal and computational models of language change predict that sparsely connected communities

develop more systematic languages, while tightly knit communities can maintain high levels of lin-

guistic complexity and variability. However, the role of social network structure in the cultural evo-

lution of languages has never been tested experimentally. Here, we present results from a behavioral

group communication study, in which we examined the formation of new languages created in the

lab by micro-societies that varied in their network structure. We contrasted three types of social net-

works: fully connected, small-world, and scale-free. We examined the artificial languages created by

these different networks with respect to their linguistic structure, communicative success, stability,

and convergence. Results did not reveal any effect of network structure for any measure, with all

languages becoming similarly more systematic, more accurate, more stable, and more shared over

time. At the same time, small-world networks showed the greatest variation in their convergence,

stabilization, and emerging structure patterns, indicating that network structure can influence the

community’s susceptibility to random linguistic changes (i.e., drift).
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1. Introduction

Why are languages so different from each other? One possible explanation is that

selective pressures associated with social dynamics and language use can influence the

emergence and distribution of different linguistic properties—making language typology

a mirror of the social environment (Lupyan & Dale, 2016). According to this hypothesis,

often referred to as the Linguistic Niche Hypothesis, the structure of languages is shaped

by the structure of the community in which they evolved. Research in the past decades

supports this theory by showing that different types of languages tend to develop in dif-

ferent types of societies (Bentz & Winter, 2013; Lupyan & Dale, 2010; Meir, Israel, San-

dler, Padden, & Aronoff, 2012; Nettle, 1999, 2012; Raviv, Meyer, & Lev-Ari, 2019b;

Reali, Chater, & Christiansen, 2018).

1.1. Esoteric versus exoteric languages

Theoretical models of language change typically draw a distinction between two types

of social environments—esoteric communities and exoteric communities—and argue that

there are substantial differences in the grammatical structure and overall uniformity of

the languages used in such environments (Meir et al., 2012; Milroy & Milroy, 1985;

Roberts & Winters, 2012; Trudgill, 1992, 2002, 2009; Wray & Grace, 2007). Specifically,

esoteric communities are generally small and tightly knit societies with little contact with

outsiders, and therefore have few if any non-native speakers. In contrast, exoteric commu-

nities tend to be much bigger and sparser societies, in which there is a higher degree of

language contact and more interaction with strangers and, consequently, also a higher

proportion of non-native speakers.

Importantly, computational models, typological studies, and empirical work on the for-

mation of new sign languages all suggest that esoteric and exoteric settings promote the

emergence of different linguistic structures. For example, languages spoken in esoteric

environments are claimed to be morphologically more complex, and have higher chances

of developing rich and non-transparent systems of case marking and grammatical cate-

gories (Lupyan & Dale, 2010). Exoteric languages tend to have fewer and less elaborate

morphological paradigms, and they are more likely to express various grammatical rela-

tions (e.g., negation, future tense) by using lexical forms (individual words) rather than

inflections (affixes). That is, there seems to be a greater pressure for creating simpler and

more systematic languages in exoteric compared to esoteric settings (Nettle, 2012; Trudg-

ill, 2009; Wray & Grace, 2007). This is presumably because (a) members of exoteric

communities are more likely to interact with strangers, resulting in a communicative pres-

sure in favor of generalization and transparency, and (b) there is a relatively high propor-

tion of adult second language learners in exoteric communities, who often struggle with

learning complex and opaque morphologies.

Exoteric and esoteric languages are also claimed to show different rates of conver-

gence. Members of esoteric communities are highly familiar with each other and share

much common ground, which often entails more alignment and stronger conservation of
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existing linguistic norms (Milroy & Milroy, 1985; Trudgill, 2002). Yet this high degree

of familiarity between members of esoteric communities can preserve variation and

reduce the pressure to establish new norms in the early stages of language development,

as was found in the case of emerging sign languages (Meir et al., 2012). Specifically,

new sign languages that develop in esoteric contexts tend to exhibit more variability

across speakers, more irregularities, and overall greater context dependence in comparison

to sign languages developed in exoteric contexts. In other words, because members of

exoteric communities are far less connected to one another and typically share less com-

mon ground with each other, such settings can increase the need for conventions and con-

formity in the early stages of language emergence, but hinder its preservation later on.

1.2. Teasing apart conflating social factors

The distinction between exoteric and esoteric communities relies on several parame-

ters, namely, community size (small vs. big), network structure (highly connected vs.

sparsely connected), and the proportion of adult non-native speakers in the community

(low vs. high). These social parameters are naturally confounded in real-world environ-

ments (e.g., smaller groups also tend to be highly connected), making it hard to evaluate

the unique contribution of each of these factors to the observed pattern of results (i.e.,

that languages used in exoteric contexts have simpler and more systematic morphologies;

Lupyan & Dale, 2010). That is, we currently know very little about how each of these

properties affects the structure of languages independently, and whether all features are

equally influential in shaping linguistic patterns. Disentangling these social features from

one another is important for understanding how exactly languages adapt to fit their social

environments, and for assessing the individual role of each factor.

Several computational models have attempted to isolate a specific parameter associated

with the difference between esoteric and exoteric communities, and to manipulate it sepa-

rately from the others in order to examine its effects on various linguistic outcomes (Dale

& Lupyan, 2012; Fagyal, Swarup, Escobar, Gasser, & Lakkaraju, 2010; Gong, Baronch-

elli, Puglisi, & Loreto, 2012; Lou-Magnuson & Onnis, 2018; Spike, 2017; Vogt, 2007,

2009; Wichmann, Stauffer, Schulze, & Holman, 2008). Such models generally suggest

that different properties of esoteric and exoteric societies are associated with different

pressures, yet often report conflicting results due to differences in model setup and

parameter selection. For example, similar computational simulations examining the effect

of community size can yield opposite results if agents’ learning strategies are defined dif-

ferently (Wichmann et al., 2008); when agents are assumed to copy globally (i.e., from

all other agents in their network), larger groups seem to show slower rates of language

change, yet when agents are assumed to copy more locally (i.e., from their closest neigh-

bors), community size has no effect. Therefore, while computational models are valuable

for teasing apart different social features, they should be tested against experimental data.

Recently, a behavioral study focused on the role of community size, one of the features

differentiating between esoteric and exoteric communities, and tested its individual effect

on language emergence by contrasting languages created in the lab by big and small
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communities, while keeping all other social properties equal (Raviv et al., 2019b). Results

showed that groups of eight interacting participants created more systematic languages,

and did so faster and more consistently than groups of four interacting participants. The

languages developed in the larger groups were more structured (i.e., more compositional)

compared to those developed in smaller groups. This finding was explained by the fact

that larger groups faced a greater communicative challenge (due to more input variabil-

ity). These results are in line with the cross-linguistic observations and the theoretical

models reported above, and suggest that at least some of the linguistic differences

between exoteric and esoteric languages can indeed be attributed to differences in com-

munity size. As such, the study provided the first experimental evidence that community

size has a unique and causal role in shaping linguistic patterns.

1.3. The postulated role of network structure

What about the other social features that differentiate between esoteric and exoteric

communities? Does network structure also have a unique effect, above and beyond com-

munity size? An important feature of esoteric societies is their dense nature, in which

members are typically connected via strong ties (i.e., family, close friends), and most if

not all members of the community are familiar with one another. In contrast, exoteric

societies are much sparser, and typically include many weak ties (i.e., acquaintances) and

many members that never interact (i.e., strangers). This difference in network connectiv-

ity means that members of exoteric societies generally have fewer opportunities to

develop common ground and globally align with each other (given that many of them

will rarely or never meet), potentially resulting in more variability in the entire network.

Indeed, recent work on the cultural evolution of technology found that an increase in

sparse connections from a state of high density (perhaps due to more geographical

spread) leads to more innovations and to more diversity in the community (Derex &

Boyd, 2016). In this study, well-connected populations were less likely to produce com-

plex technological solutions because of the ability to learn from all members and quickly

converge on a local optimum, reducing exploration and cultural diversity in the popula-

tion. In contrast, individuals in partially connected populations were more likely to pro-

gress along different paths of technological accumulation, leading to larger and more

diverse technological repertoires and eventually to more complex solutions. These find-

ings complement a long line of work on the prevalence and spread of innovations in

social networks, which suggest that sparser ties generally promote more innovations and

more variability. Specifically, work on social network structure shows that weak ties in

sparser networks provide individuals with access to information, beliefs, and behaviors

beyond their own social circle, making the presence and prevalence of weak ties impor-

tant for cultural innovation, technological accumulation, and the transmission and spread

of ideas, behaviors, and norms (Bahlmann, 2014; Granovetter, 1983; Liu, Madhavan, &

Sudharshan, 2005).

Additionally, weak ties between members of sparser communities can affect the pro-

cess of conventionalization, as they may entail less language stability, more variability,
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and more potential for changes. In contrast, strong ties between members of dense commu-

nities can inhibit language change and increase linguistic conformity: tight-knit connections

often function as a conservative force, preserving and amplifying existing norms and resist-

ing external pressures to change (Granovetter, 1983; Milroy & Milroy, 1985; Trudgill,

2002, 2009). That is, denser communities may exhibit stricter maintenance of group conven-

tions and therefore more preservation of linguistic norms, even when these norms are rela-

tively complex and irregular (Trudgill, 2002, 2009). However, even though dense networks

are postulated to show more stability, once a change does occur it is more likely to quickly

spread to the entire community. This is because individuals are more likely to copy the

behavior of strong than weak ties (Centola, 2010) and the propagation of variants is typi-

cally faster in dense networks than in sparser networks (Centola, 2010; Milroy & Milroy,

1985; Trudgill, 2009). Importantly, sparser networks’ difficulty to converge can trigger a

stronger need for generalizations and regularizations, which may eventually lead to the cre-

ation of more systematic languages (Raviv et al., 2019b; Wray & Grace, 2007).

Although network structure is postulated to have an important effect in shaping lin-

guistic patterns, to date there is no experimental evidence demonstrating its causal role in

language complexity. As such, the theoretical claims described above remain hypothetical

or anecdotal, and it is still unclear whether and how languages actually change in popula-

tions with different types of network structures. The goal of the current study was to fill

in this gap in the literature and experimentally test the effect of social network structure

on the emergence of new languages using a similar paradigm to that used in Raviv,

Meyer, and Lev-Ari (2019a) for demonstrating community size effects.

1.4. Computational evidence for network structure effects in language change

While experimental data are currently lacking, several computational models have

examined the effect of social network structure using agent-based simulations. These

models typically examine populations of communicating agents in three different types of

networks: (a) dense, fully connected networks, in which all agents are connected to each

other; (b) small-world networks, which are sparser in comparison to fully connected net-

works (i.e., there are fewer connections between agents), but in which most “strangers”

are indirectly linked by a short chain of shared connections (Watts & Strogatz, 1998);

and (c) scale-free networks, which are also characterized by sparsity and short paths but

whose distribution of connections follows a power law (i.e., most agents have few con-

nections, yet some agents, the “hubs,” have many; Barab�asi & Albert, 1999).

A typical interaction in such models consists of two agents, who are randomly selected

depending on the networks’ available connections and their likelihood. Then, one agent (the

producer) produces a linguistic variant (e.g., a vowel, word, or phrase) based on their inven-

tory at the time of the interaction, and the other agent (the receiver) updates their own inven-

tory based on that production and whether it is novel or familiar. This simple type of

communication and learning (i.e., updating agent’s representations) is repeated for many

iterations, allowing researchers to observe how variants spread and change over time in a

given network. Importantly, the vast majority of these models do not examine the
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complexity or the systematicity of communication systems themselves, but rather focus only

on the formation of linguistic conventions. This is done either by examining the time it takes

for a population of agents to converge on a single linguistic variant or a shared lexicon, or

by examining the degree of global alignment in the population after a fixed amount of time.

In most cases, computational models support the claim that differences in the structural

properties of networks can lead to differences in convergence rates and in the spread of

variants in the population. Specifically, multiple models report that denser networks show

more successful diffusion of innovations compared to sparser networks, and that extra-

dense networks (e.g., fully connected) typically converge most rapidly (Fagyal et al.,

2010; Gong et al., 2012; Ke, Gong, & Wang, 2008). In addition, the existence of “hubs”

(i.e., highly connected agents) in scale-free networks was shown to improve convergence

and uniformity by advancing the spread of innovations to all agents in the community

(Fagyal et al., 2010; Zubek et al., 2017). However, one model suggested that, as long as

networks have small-world properties (i.e., as long as “strangers” are indirectly linked by

a short chain of shared connections), the network’s specific configuration plays a minor

role in the formation of conventions (Spike, 2017).

Interestingly, two models did examine the structure of languages themselves, and they

both report that network structure affected linguistic structure in some way. One model

looked at the origin and evolution of linguistic categorization of color terms and found

that scale-free networks were the fastest to develop color categories, and that those cate-

gories were more structured and more efficient compared to those developed in other

types of networks (Gong et al., 2012). The second model introduced comprehensive, real-

world mechanisms of social learning and language change, and looked at the creation and

maintenance of complex morphology (Lou-Magnuson & Onnis, 2018). The results of this

model showed that more transitive networks (i.e., with a higher degree of “intimate” con-

nections) were more likely to develop languages with complex morphological structures.

Moreover, fully connected networks showed the highest levels of complexity, regardless

of community size.

Together, computational models generally support the hypothesis that network structure

can affect linguistic outcomes. They show that sparser networks tend to exhibit more struc-

tured languages but overall less convergence compared to dense networks, and they suggest

that the existence of “hubs” can further promote systemization and alignment. However,

such computational models need to be further tested against empirical data obtained from

human participants, seeing as they often lack ecological validity in terms of agents’ cogni-

tive capacities (e.g., agents have an unlimited memory capacity) or their behavior (e.g.,

agents update their inventories after every interaction by overriding all previous variants).

As such, the causal role of network structure warrants further experimental validation.

2. The current study

Here, we experimentally tested the individual effect of network structure using a group

communication paradigm (Raviv, Meyer, & Lev-Ari, 2019a, 2019b). We examined the
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formation of new languages that were developed by different micro-societies that varied

in their network structure. Community size was kept constant across conditions, such that

all networks were comprised of eight participants, yet differed in their degree of connec-

tivity (i.e., how many people each participant interacted with) and homogeneity (i.e.,

whether all participants were equally connected). Specifically, we contrasted three differ-

ent types of networks, which are typically used in computational models (Fig. 1; see Sec-

tion 3.4 for more details):

1. Fully connected network (Fig. 1A): This network is maximally dense, such that all

possible connections are realized (i.e., all participants in the group get to interact

with each other). It is also homogenous, as every participant has the same number

of connections (i.e., seven people). This type of network resembles early human

societies, hunter-gatherer communities, and some villages, yet it is overall rare

nowadays (Coward, 2010; Johnson & Earle, 2000).

2. Small-world network (Fig. 1B): This network is also relatively homogenous such

that everyone has approximately the same number of connections (i.e., either three

or four other participants), yet it is much sparser than the fully connected network

and realizes only half of the possible connections. Importantly, this network has the

small-world property of “strangers” being indirectly linked by a short chain of indi-

viduals (Watts & Strogatz, 1998). For example, participants G and H never directly

interact , but they are indirectly connected via participants B, D, and F, so that inno-

vations can still spread across the group and conventions can be formed.

3. Scale-free network (Fig. 1C): This network is equally sparse as the small-world

network, and it has the same number of possible connections overall. However, it is

not homogenous: not everyone has the same number of connections. While some

agents are highly connected, others are more isolated. The distribution of connec-

tions in this network roughly follows a power-law distribution (Barab�asi & Albert,

1999), with few participants having many connections, and a tail of participants hav-

ing very few connections. For example, participant A is the “hub” and interacts with

almost everyone in the group, while participants D and E are more isolated.

Across conditions, the participants’ goal was to communicate successfully with each

other using only an artificial language they created during the experiment. Participants in

the same group interacted in alternating pairs according to the structural properties of

their allocated network condition (see Section 3.4). In each communication round, paired

partners took turns in describing novel scenes of moving shapes, such that one participant

produced a label to describe a target scene, and their partner guessed which scene they

meant from a larger set of scenes (see Section 3.3; Fig. 2).

Over the course of the experiment, we analyzed the emerging languages using several

measurements (see Section 3.5): (a) communicative success, reflecting guessing accuracy;

(b) convergence, reflecting the degree of global alignment in the network; (c) stability,

reflecting the degree of change over time; and (d) linguistic structure, reflecting the degree

of compositional label-to-meaning mappings in participants’ languages. These measures are

all related to real-world properties of natural languages: Our measure of convergence
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reflects language uniformity (i.e., the number of dialects in the community and how much

people’s lexicons differ from one another); our measure of communicative success is related

to mutual understanding; our measure of stability can be taken to reflect languages’ rate of

change (i.e., how fast innovations spread in the network); and our measure of linguistic

structure can capture various grammatical properties, such as the systematicity of inflec-

tional paradigms and the number of irregulars in a given language. Looking at these four

measures enabled us to characterize the emerging languages and to consider how various

linguistic properties change over time depending on network structure.

Our predictions with regard to each measure are summarized in Table 1. Our main

prediction was that sparser networks would develop more compositional languages, as a

Fig. 1. Network structure conditions. We tested groups of eight participants who were connected to each

other in three different setups: a fully connected network (A), a small-world network (B), and a scale-free

network (C).

Fig. 2. Example of the computer interfaces in a single interaction during the communication phase. The pro-

ducer saw the target scene on their screen (A), while the guesser was presented with a grid of eight different

scenes on their screen (the target and seven distractors; B). The producer typed a description for the target

scene using the artificial language, and the guesser pressed the number associated with the scene they thought

their partner was referring to. Paired participants alternated between the roles of producer and guesser. Note

that scenes were dynamic events that included a moving shape. The arrows represent the direction of motion.
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result of higher levels of input variability and diversity in such networks, which increase

the pressure for generalization and systematization (Lou-Magnuson & Onnis, 2018; Raviv

et al., 2019b; Wray & Grace, 2007). We also predicted that scale-free networks would

show higher compositionality levels compared to small-world networks, since the exis-

tence of “hubs” in scale-free networks can further increase the chances of a compositional

innovation spreading to the entire population (Fagyal et al., 2010; Gong et al., 2012;

Zubek et al., 2017). That is, we predicted that scale-free networks would show the high-

est degree of linguistic structure (thanks to the “hub”), followed by small-world networks,

and then by fully connected networks. We also expected the difference in linguistic struc-

ture to be linked to the degree of input variability in dense versus sparse networks: Scale-

free and small-world networks should show higher levels of input variability compared to

fully connected networks, but the “hub” in scale-free networks may help reduce variabil-

ity compared to small-world networks by increasing convergence.

Based on the results of Raviv et al. (2019b), we hypothesized that the emergence of

more structured languages in sparser networks would promote convergence in such net-

works (i.e., it should be easier to converge on more systematic variants). That is, while

computational models suggest that sparser networks show less convergence in comparison

to fully connected networks (given that some participants never interact with each other),

we hypothesized that the creation of more structured languages in such networks would

facilitate global alignment and lead to similar levels of convergence across networks.

Moreover, scale-free networks may exhibit even better global alignment thanks to the

existence of a “hub.” In other words, if our prediction about linguistic structure is correct

and sparser networks create more systematic languages, then convergence levels should

be the same across dense and sparse networks. Otherwise, there should be relatively less

convergence in sparser networks.

As for stability, we predicted that sparser networks would be less stable than dense

networks, given that there is a higher chance of innovations occurring in sparser networks

and more variability overall (Derex & Boyd, 2016), and that changes take longer to stabi-

lize in sparser networks (Ke et al., 2008). As such, we expected to see a difference in the

rates of stabilization across conditions, with fully connected networks showing faster sta-

bilization (i.e., less changes over rounds) compared to small-world and scale-free net-

works. Nevertheless, we expected similar levels of communicative success across all

conditions, with all interacting members being equally good at understanding each other.

3. Methods

3.1. Participants

We collected data from 168 adults (mean age = 24.6 years, SD = 8.1 years; 132

women), comprising 21 groups of eight members (seven groups in each of the three con-

ditions). Participants were paid 40€ or more depending on the time they spent in the lab

(between 270 and 315 min, including a 30-min break). All participants were native Dutch
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speakers. Ethical approval was granted by the Faculty of Social Sciences of the Radboud

University Nijmegen.

3.2. Materials

The materials used in this experiment were identical to those used in our earlier studies

(Raviv et al., 2019a, 2019b). Specifically, we created 23 visual scenes that varied along

three semantic dimensions: shape, angle of motion, and fill pattern. Each scene included

one of four novel unfamiliar shapes, which moved repeatedly in a straight line from the

center of the frame in a given direction (i.e., in an angle chosen from a range of possible

angles). The shapes were created to be novel and ambiguous in order to prevent easy

labeling with existing words. While the dimension of shape included four distinct cate-

gories, angle of motion was a continuous feature that could be parsed and categorized by

participants in various ways. Additionally, the shape in each scene had a unique blue-

hued fill pattern, giving scenes an idiosyncratic feature. Therefore, the meaning space

promoted categorization and structure along the dimensions of shape and motion, while

still allowing participants to adopt a holistic, unstructured strategy where scenes are indi-

vidualized according to their fill pattern.

3.3. Procedure

The procedure employed in this experiment was identical to that of Raviv et al.

(2019b), except for the fact that all groups were comprised of eight participants, and were

split up into pairs at the beginning of each communication round depending on their allo-

cated network structure (see Section 3.4; Appendix A). Below we summarize the relevant

details.

Participants were told they were about to create a new fantasy language (“Fantasietaal”

in Dutch) in the lab and use it in order to communicate with each other about different novel

scenes. Participants were not allowed to talk, gesture, point, or communicate in any other

explicit way besides the fantasy language and their assigned laptop. Participants’ letter

inventory was restricted and included a hyphen, five vowel characters (a, e, i, o, u), and 10

consonant characters (w, t, p, s, f, g, h, k, n, m), which participants could combine freely.

The experiment had 16 rounds, and it included three phases: a group naming phase

(round 0), a communication phase (rounds 1–7; rounds 9–15), and a test phase (round 8;

round 16).

In the initial naming phase (round 0), participants came up with novel nonsense words

to describe eight initial scenes, so that the group had a few shared descriptions to start

with. For each of the eight initial scenes, one of the participants was asked to use their

creativity and describe it using one or more nonsense words. Participants took turns in

describing the scenes, so that the first scene was described by participant A, the second

scene was described by participant B, and so on. Importantly, no use of Dutch or any

other language was allowed, and participants were instructed to come up with novel non-

sense labels. In order to establish mutual knowledge, we presented the scene-description

pairings to all participants three times in a random order.
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Following the naming phase, participants played a communication game (the commu-

nication phase; Fig. 2): The goal was to be communicative and earn as many points as

possible as a group, with a point awarded for every successful interaction. The experi-

menter stressed that this was not a memory game, and that participants were free to use

the labels produced during the group naming phase, or create new ones. In each commu-

nication round, paired participants interacted with each other 23 times, with participants

alternating between the roles of producer and guesser. In a given interaction, the producer

saw the target scene on their screen (Fig. 2A) and produced a description for it. Then,

they rotated their screen and showed the description (without the target scene) to their

partner, the guesser. The guesser was presented with a grid of eight scenes on their screen

(the target and seven distractors; Fig. 2B), and had to select the scene they thought their

partner referred to. Both participants then received feedback on whether their interaction

was successful or not, including the target scene and the selected scene. The number of

different target scenes increased gradually over the first six rounds (from eight initial sce-

nes to a total of 23 scenes, with three new scenes introduced at each round), such that

participants needed to refer to more and more new scenes as rounds progressed (Raviv

et al., 2019a).

At the end of the seventh communication round, participants completed an individual

test phase (round 8), in which they were presented with all scenes one by one in a ran-

dom order, and had to type their descriptions for them using the fantasy language. After

the test, participants received a 30-min break and then reconvened to complete seven

additional communication rounds (rounds 9–15) and a test round (round 16). At the end

of the experiment, all participants filled out a questionnaire about their performance and

were debriefed by the experimenter.

3.4. Network properties

We created three different network structures: a fully connected network, a small-

world network, and a scale-free network. Each network was comprised of eight individu-

als (also referred to as nodes or agents), but differed in how these individuals were con-

nected to one another. Fig. 1 shows the configuration of each network. Appendix A

includes a detailed description of the order of interactions among pairs in each network

condition. These networks can be described using formal measures that are typically used

in graph theory. Below we characterize the three networks used in this study in detail

and compare them based on the following three measures (see Tables 2 and 3).

Table 2

Comparison of networks’ density and global clustering coefficients

Fully Connected Small-World Scale-Free

Number of realized connections 28/28 14/28 14/28

Network density (%) 100 50 50

Global clustering coefficient 1 0.1667 0.4167
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3.4.1. Network density
This measure reflects the proportion of possible ties which are actualized among the

members of a given network. It is measured as the ratio between the number of actual

connections in the network and the number of all possible connections (Granovetter,

1976). A possible connection is one that could potentially exist between every two nodes.

In a network with n individuals, the number of possible connections is n*(n � 1)/2. By

contrast, an actual connection is one that really exists in the given network. In a fully

connected network where all possible connections are realized, density equals 1 (i.e.,

100% connectivity). In a totally isolated network, in which there are no connections

between nodes, density equals 0 (i.e., 0% connectivity). All other networks have density

values between 0 and 1 (e.g., 0.5, or 50% connectivity, in our experiment).

3.4.2. Global clustering coefficient
This measure, also referred to as transitivity, reflects the degree to which nodes in the

network tend to cluster together. In social networks, this measure indicates whether an indi-

vidual’s connections also tend to be connected to each other. In other words, it is the proba-

bility that two of one’s friends are friends themselves. The global clustering coefficient

equals 1 in a fully connected network where everyone knows everyone else, but has typical

values in the range of 0.1–0.5 in many real-world networks (Girvan & Newman, 2002).

For a given network, this measure is calculated in the following way: For a given node i,
the local clustering coefficient is the ratio between the number of realized connections in

the neighborhood of node i and the number of all possible connections in that neighbor-

hood if it was fully connected. The average of all nodes’ local clustering coefficients yields

the global clustering coefficient of the entire network (Watts & Strogatz, 1998).

3.4.3. Betweenness centrality
This measure reflects a node’s centrality, that is, how necessary a specific node is for

the communication between all the other nodes in the network. In social networks, this

measure identifies the most important or influential individuals in the network. That is,

Table 3

Comparison of nodes’ betweenness centrality across networks

Fully Connected Small-World Scale-Free

Node

Number of

Connections

Betweenness

Centrality

Number of

Connections

Betweenness

Centrality

Number of

Connections

Betweenness

Centrality

A 7 0 3 0.0476 6 0.3254

B 7 0 4 0.1190 4 0.1111

C 7 0 3 0.0476 3 0.0635

D 7 0 4 0.1190 3 0.0397

E 7 0 4 0.1190 3 0.0238

F 7 0 3 0.0476 3 0.0238

G 7 0 3 0.0476 3 0.0159

H 7 0 4 0.1190 3 0.0635
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having a high betweenness centrality value suggests that the node is necessary for mediat-

ing connections between otherwise unconnected nodes. It is calculated in the following

way: For a given node i, betweenness centrality is the number of times node i acts as a

bridge along the shortest path between two other nodes (i.e., the number of shortest paths

that pass through node i).

3.4.4. Condition 1: Fully connected network
In this condition, depicted in Fig. 1A, all individuals in the network get to interact

with one another. As such, all possible connections in the network are realized, and the

network is maximally dense and maximally clustered (i.e., density and the clustering

coefficient both equal 1). Since all individuals are directly connected to all others, the

number of connections per node is identical (i.e., seven), and the betweenness centrality

of each node equals 0—no individual is necessary for the others to interact. In our experi-

mental paradigm, it takes seven communication rounds for all pairs in the network to

interact (see also Appendix A).

3.4.5. Condition 2: Small-world network
In this condition, depicted in Fig. 1B, only half of the possible connections are realized.

As such, this network is much sparser than the fully connected one, and its density is only

0.5 or 50%. In addition, all nodes in the network have a similar number of connections, with

each individual being connected to either three or four other individuals. An important fea-

ture of small-world networks, which is crucially present in our chosen network, is that the

neighbors of any given node are also likely to be neighbors of each other (Watts & Strogatz,

1998). Therefore, unconnected nodes (“strangers”) are still linked by short chains of shared

acquaintances. Indeed, every pair of individuals in our small-world network is linked by just

one other individual, and typically there is more than one possible mediating individual (re-

sulting in fairly similar and relatively low betweenness centrality values for all nodes, i.e.,

0.047 and 0.119). For example, while participants G and H are not connected directly, they

are nonetheless indirectly connected via participants F, D, and B. In our experimental para-

digm, it takes four communication rounds for all pairs in the network to interact (see also

Appendix A).

3.4.6. Condition 3: Scale-free network
In this condition, depicted in Fig. 1C, only half of the possible connections are real-

ized, such that the network’s density is identical to that of the small-world network in

condition 2 (i.e., 50% connectivity). Scale-free networks are characterized by the same

properties as small-world networks, with an additional important property: The distribu-

tion of node degree (i.e., the number of connections the node has to other nodes) follows

a power-law (Barab�asi & Albert, 1999). That is, there are many low-degree nodes (indi-

viduals with fewer connections) and a few high-degree nodes (individuals with many con-

nections). The less-connected individuals are often indirectly connected via the highly

connected agents, who are often referred to as “hubs.” In our selected network, most par-

ticipants (i.e., six out of eight) have only three connections, one participant has four
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connections, and one participant (“A,” the hub) is connected to almost everyone else in

the group. Accordingly, this participant has a very high betweenness centrality score com-

pared to all other participants (i.e., 0.32 vs. 0.11, 0.06, 0.03, 0.02, and 0.01), indicating

that they are central for the network’s connectivity, and are necessary for connecting the

other participants. In our experimental paradigm, it takes six communication rounds for

all pairs in the network to interact (see also Appendix A).

3.5. Measures

3.5.1. Communicative success
Communicative success was measured as the binary response accuracy in a given

interaction during the communication phase, reflecting comprehension.

3.5.2. Convergence
Convergence was measured as the similarities between all the labels produced by par-

ticipants in the same group for the same scene in a given round: For each scene in round

n, convergence was calculated by averaging over the normalized Levenshtein distances

between all labels produced for that scene in that round (Levenshtein, 1966). The normal-

ized Levenshtein distance between two strings is the minimal number of insertions, sub-

stitutions, and deletions of a single character that is required for turning one string into

the other, divided by the number of characters in the longer string. This distance was sub-

tracted from 1 to represent string similarity, reflecting the degree of shared lexicon and

alignment in the group.

3.5.3. Stability
Stability was measured as the similarities between the labels created by participants for

the same scenes on two consecutive rounds: For each scene in round n, stability was cal-

culated by averaging over the normalized Levenshtein distances between all labels pro-

duced for that scene in round n and round n + 1. This distance was subtracted from 1 to

represent string similarity, reflecting the degree of consistency in the groups’ languages.

3.5.4. Linguistic structure
Linguistic structure was measured as the correlation between all pair-wise string dis-

tances and semantic distances in each participant’s language in a given round. This corre-

lation reflects the degree to which similar meanings are expressed using similar strings

(Kirby, Cornish, & Smith, 2008; Kirby, Tamariz, Cornish, & Smith, 2015). First, scenes

had a semantic difference score of 1 if they differed in shape, and 0 otherwise. Second,

we calculated the absolute difference between scenes’ angles, and divided it by the maxi-

mal distance between angles (180 degrees) to yield a continuous normalized score

between 0 and 1. Then, the difference scores for shape and angle were added, yielding a

range of semantic distances between 0.18 and 2. Finally, the labels’ string distances were

calculated using the normalized Levenshtein distances between all possible pairs of labels
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produced by participant p for all scenes in round n. For each participant, the two sets of

pair-wise distances (i.e., string distances and meaning distances) were correlated using

the Pearson product-moment correlation, yielding a measure of systematic structure

(Raviv et al., 2019a, 2019b).

3.5.5. Input variability
Input variability was measured as the minimal sum of differences between all the

labels produced for the same scene in a given round (Raviv et al., 2019b). For each scene

in round n, we made a list of all label variants for that scene. For each label variant, we

summed over the normalized Levenshtein distances between that variant and all other

variants in the list. We then selected the variant that was associated with the lowest sum

of differences (i.e., the “typical” label) and used that sum as the input variability score

for that scene, capturing the number of different variants and their relative difference

from each other. Finally, we averaged over the input variability scores of different scenes

to yield the mean variability in that round.

3.6. Analyses

We used mixed-effects regression models to test the effect of network condition on all

measures using the lme4 package (Bates, 2016) in R (R Core Team, 2016). The reported

p-values were generated using the Kenward–Roger Approximation via the pbkrtest pack-

age (Halekoh & Højsgaard, 2014), which gives conservative p-values for models based

on small numbers of observations. All models had the maximal random effects structure

justified by the data that would converge, and they are included in full in Appendix B.

The data and the scripts for generating the models can be found at https://osf.io/utjsb/.

We examined communicative succeess, stability, convergence, and linguistic structure

using three types of models: (I) models that predict changes in the dependent variable

with respect to time and network condition, (II) models that compare the different net-

works’ final levels of the dependent variable at the end of the experiment, and (III) mod-

els that predict the variance of the dependent variable with respect to time and network

condition. In all models, NETWORK CONDITION was a three-level categorical factor that was

simple coded (i.e., similar to dummy coding except that the intercepts correspond to the

grand mean), with fully connected groups as the reference level. That is, we separately

contrasted the small-world networks and the scale-free networks with the fully connected

networks. This type of contrast coding reflected the fact that most theoretical models of

language change predict a difference between dense networks and sparse networks in

general. Accordingly, our main prediction regarding the effect of network structure was

that the two sparsely connected networks would differ from the fully connected network,

which is most accurately captured in the selected coding scheme. Importantly, none of

the results reported below changed when using a different coding scheme with a different

reference level (e.g., when one of the sparser networks was used as baseline instead).

Models of type (I) predicted changes in the dependent variable over time as a function

of network structure. Models for communicative success included data from
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communication rounds only (excluding the two test rounds). In models for communica-

tive success, convergence, and stability, the fixed effects were NETWORK CONDITION, ROUND

NUMBER (centered), ITEM CURRENT AGE (centered), and the interaction terms NETWORK CONDI-

TION 9 ITEM CURRENT AGE and NETWORK CONDITION 9 ROUND NUMBER. ITEM CURRENT AGE

codes the number of rounds each scene was presented until that point in time and mea-

sures the effect of familiarity with a specific scene on performance. ROUND NUMBER mea-

sures the effect of time passed in the experiment and overall language proficiency. The

random effects structure of models for communicative success, convergence, and stability

included by-scenes and by-groups random intercepts and random slopes for the effect of

ROUND NUMBER. As linguistic structure score was calculated for each producer over all sce-

nes in a given round, the model for linguistic structure included fixed effects for NETWORK

CONDITION, ROUND NUMBER (quadratic1, centered), and the interaction term NETWORK CONDI-

TION 9 ROUND NUMBER, as well as random intercepts and random slopes for the effect of

ROUND NUMBER with respect to different producers nested in different groups.

Models of type (II) compared the mean values of the final languages in the last two

relevant rounds of the experiment with respect to NETWORK CONDITION. The models for

communicative success, stability, and convergence included random intercepts for differ-

ent groups, and the model for linguistic structure included random intercepts for different

producers nested in different groups.

Models of type (III) predicted changes over time in the variance of each measure (i.e., the

degree to which different groups differ from each other) as a function of network structure.

For linguistic structure, variance was calculated as the square standard deviation in partici-

pants’ average structure scores across all groups in a given round. For communicative suc-

cess, convergence, and stability, variance was calculated as the square standard deviation in

the dependent variable on each scene across all groups in a given round. All models

included fixed effects for NETWORK CONDITION, ROUND NUMBER (centered), and the interaction

between them. Models for communicative success, convergence, and stability also included

by-scenes random intercepts and random slopes for the effect of ROUND NUMBER.

Following Raviv et al. (2019b), we also examined changes in input variability as a

function of time and network structure. This model included fixed effects for NETWORK

CONDITION, ROUND NUMBER (quadratic, centered), and the interaction between them, and by-

group random intercepts and random slopes with respect to ROUND NUMBER. Finally, we

examined changes in linguistic structure over consecutive rounds as a function of input

variability. The dependent variable was the difference in structure scores between rounds

n and n + 1, the fixed effect was MEAN INPUT VARIABILITY at round n (centered), and there

were random intercepts for different producers nested in different groups.

4. Results

Below we report the results for each of the four linguistic measures separately. All

analyses are reported in full in Appendix B using numbered models, which we refer to

here. Fig. 3 summarizes the average performance of different network conditions over the
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course of the experiment, and Table 4 summarizes the main findings with respect to our

predictions.

4.1. Communicative success

Communicative success increased over time (Model 1: b = 0.1, SE = 0.01, t = 9.74,

p < .0001; Fig. 3A), indicating that participants became better at understanding each

Fig. 3. Changes in (A) communicative success, (B) convergence, (C) stability, and (D) linguistic structure over

time as a function of network structure. Thin lines represent average values for each group in a given round.

Thick lines represent the models’ estimates, and their shadings represent the models’ standard errors.
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other as rounds progressed. All networks shows similar levels of accuracy overall (Model

1: Scale-free vs. fully connected: b = 0.08, SE = 0.27, t = 0.3, p = .76; Small-world vs.

fully connected: b = �0.007, SE = 0.27, t = �0.03, p = .98), and the increase in accu-

racy over time was not significantly modulated by network structure (Model 1: Scale-free

vs. fully connected: b = 0.01, SE = 0.27, t = 0.55, p = .58; Small-world vs. fully con-

nected: b = �0.01, SE = 0.27, t = �0.49, p = .62). Indeed, all networks reached similar

levels of accuracy in the final communication rounds (Model 2: Scale-free vs. fully con-

nected: b = 0.26, SE = 0.55, t = 0.47, p = .64; Small-world vs. fully connected:

b = 0.03, SE = 0.55, t = 0.05, p = .96). No other effect was significant.

As for variance in communicative success, there was no significant difference across

network structure conditions (Model 3: Scale-free vs. fully connected: b = 0.001,

SE = 0.002, t = 0.45, p = .66; Small-world vs. fully connected: b = 0.003, SE = 0.002,

t = 1.06, p = .3). Variance in accuracy generally increased over rounds (Model 3:

b = 0.001, SE = 0.0004, t = 2.97, p = .006), but not in scale-free networks (Model 3:

b = �0.001, SE = 0.0006, t = �2.4, p = .02). Together, these results indicate that while

groups differed from each other in their accuracy more and more as the experiment pro-

gressed (and especially those in the fully connected condition), the difference across

groups in the scale-free condition did not change over the course of the experiment.

4.2. Convergence

Convergence increased significantly over rounds (Model 4: b = 0.008, SE = 0.001,

t = 5.42, p < .0001; Fig. 3B), with participants aligning, that is, using more similar labels

over time. All networks show similar levels of convergence overall (Model 4: Scale-free

vs. fully connected: b = �0.018, SE = 0.05, t = �0.4, p = .7; Small-world vs. fully con-

nected: b = �0.006, SE = 0.05, t = �0.14, p = .89), and the increase in convergence

over time was not significantly modulated by network structure (Model 4: scale-free vs.

fully connected: b = �0.002, SE = 0.003, t = �0.61, p = .55; small-world vs. fully con-

nected: b = �0.002, SE = 0.003, t = �0.55, p = .58). Indeed, all networks reached simi-

lar levels of convergence by the end of the experiment (Model 5: scale-free vs. fully

connected: b = �0.06, SE = 0.06, t = �1.02, p = .32; Small-world vs. fully connected:

b = �0.05, SE = 0.06, t = �0.92, p = .37). Although there was no significant main effect

of item age (Model 4: b = 0.001, SE = 0.0008, t = 1.43, p = .17), the interaction

between network structure and item age was significant, indicating that only fully con-

nected networks showed greater convergence with item age compared to both sparse net-

works (Model 4: scale-free vs. fully connected: b = �0.004, SE = 0.002, t = �2.2,

p = .04; small-world vs. fully connected: b = �0.005, SE = 0.002, t = �2.83, p = .01).

Network conditions significantly differed in their degree of variance overall, with

scale-free networks showing the lowest variance, and small-world networks showing the

highest variance (Model 6: scale-free vs. fully connected: b = �0.007, SE = 0.001,

t = �5.91, p < .0001; small-world vs. fully connected: b = 0.006, SE = 0.001, t = 5.07,

p < .0001). Variance in convergence increased over rounds (Model 6: b = 0.0008,

SE = 0.0002, t = 4.84, p < .0001), but a significant interaction between round and
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network indicated that this was not the case for scale-free networks (Model 6:

b = �0.001, SE = 0.0003, t = �4.28, p = .0001). Together, these results suggest that

scale-free networks were most consistent in their convergence behavior, while small-

world networks were least consistent and varied from each other in their convergence pat-

terns. That is, while some small-world and fully connected networks reached high levels

of convergence, others maintained a high level of divergence throughout the experiment,

with participants using their own unique labels. In contrast, scale-free networks behaved

fairly similar to each other, and reached relatively similar convergence levels. This pat-

tern is also evident in Fig. 3B, where the blue lines corresponding to individual small-

world groups show more spread. Thus, throughout the experiment, small-world groups

display both very high and very low convergence values.

4.3. Stability

Stability increased significantly over rounds (Model 7: b = 0.009, SE = 0.001,

t = 6.71, p < .0001; Fig. 3C), with participants using labels more consistently as rounds

progressed. All networks show similar levels of stability overall (Model 7: Scale-free vs.

fully connected: b = �0.008, SE = 0.04, t = �0.19, p = .85; Small-world vs. fully con-

nected: b = �0.002, SE = 0.04, t = �0.06, p = .96), and network structure did not modu-

late the increase in stability over rounds (Model 7: Scale-free vs. fully connected:

b = �0.002, SE = 0.003, t = �0.67, p = .51; Small-world vs. fully connected:

b = �0.001, SE = 0.003, t = �0.36, p = .73). Indeed, all networks reached similar levels

of stability by the end of the experiment (Model 8: Scale-free vs. fully connected:

b = �0.05, SE = 0.06, t = �0.82, p = .42; Small-world vs. fully connected: b = �0.05,

SE = 0.06, t = �0.85, p = .4). Although there was no significant main effect of item age

(Model 7: b = 0.002, SE = 0.0008, t = 2.07, p = .0516), the interaction between network

structure and item age was significant, indicating that only fully connected networks

showed more stability with item age (Model 7: Small-world vs. fully connected:

b = �0.005, SE = 0.002, t = �3.06, p = .006).

Additionally, and as in the case of convergence, network conditions significantly dif-

fered in their degree of variance overall, with scale-free networks showing the lowest

variance, and small-world networks showing the highest variance (Model 9: Scale-free

vs. fully connected: b = �0.006, SE = 0.001, t = �6.35, p < .0001; Small-world vs. fully

connected: b = 0.005, SE = 0.001, t = 5.65, p < .0001). Even though there was no signif-

icant increase in variance in stability over rounds (Model 9: b = 0.003, SE = 0.0002,

t = 1.64, p = .11), a significant interaction between Round number and Network condi-

tion indicated that variance increased less over time in scale-free networks (Model 9:

b = �0.0006, SE = 0.0002, t = �2.77, p = .009). In other words, while scale-free net-

works were most consistent in their behavior, and even more so as the experiment pro-

gressed, small-world networks varied most from each other in their stabilization patterns.

This pattern is also visually evident in Fig. 3C, where the blue lines corresponding to

individual small-world groups show more spread; that is, throughout the experiment,

small-world groups display both very high and very low stability values.
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4.4. Linguistic structure

Linguistic structure significantly increased over rounds (Model 10: b = 6.39,

SE = 0.36, t = 17.51, p < .0001; Fig 3D), with participants’ languages becoming more

systematic over time. The increase in structure over time was nonlinear and leveled off in

later rounds (Model 10: b = �2.92, SE = 0.25, t = �11.76, p < .0001). All networks

shows similar levels of linguistic structure overall (Model 10: Scale-free vs. fully con-

nected: b = �0.03, SE = 0.04, t = �0.82, p = .42; Small-world vs. fully connected:

b = �0.02, SE = 0.04, t = �0.48, p = .64), and the increase in structure over time was

not significantly modulated by network structure (Model 10: Scale-free vs. fully con-

nected: b = �1.23, SE = 0.89, t = �1.38, p = .18; Small-world vs. fully connected:

b = �0.93, SE = 0.89, t = �1.04, p = .31). Indeed, all networks reached similar levels of

structure by the end of the experiment (Model 11: Scale-free vs. fully connected:

b = �0.08, SE = 0.04, t = �2.05, p = .055; Small-world vs. fully connected: b = �0.05,

SE = 0.04, t = �1.27, p = .22). These findings suggest that networks developed lan-

guages with systematic and compositional grammars, and did so to similar extents. To

formally test this, we compared the level of structure in the final round of the experiment

to chance using the Mantel test with respect to 1,000 random permutations (for a similar

procedure, see Kirby et al., 2008). Results indicated that the level of structure in all net-

work conditions was significantly above chance (Fully connected networks: mean struc-

ture score = 0.72, mean z-score = 11.45, p < .0001; Small-world networks: mean

structure score = 0.7, mean z-score = 11.43, p < .0001; Scale-free networks: mean struc-

ture score = 0.67, mean z-score = 10.98, p < .0001). In these systematic languages, par-

ticipants used complex labels for describing the scenes, with one part typically indicating

the shape, and another part typically indicating motion (see Appendix C for multiple

examples of final languages created by different groups).

Variance in structure significantly decreased over time (Model 12: b = �0.002,

SE = 0.003, t = �6.13, p < .0001). Additionally, small-world networks were significantly

more varied overall in terms of how structured their languages were (Model 12: Small-

world vs. fully connected: b = 0.02, SE = 0.003, t = 5.29, p < .0001). This pattern is also

visually evident in Fig. 3D, where the blue lines corresponding to individual small-world

groups show more spread; that is, throughout the experiment, small-world groups display

both very high and very low structure scores. Given their greater variance to begin with,

small-world networks also showed a faster decrease in variance over rounds (Model 12:

Small-world vs. fully connected: b = �0.002, SE = 0.0007, t = �2.86, p = .006). These

results suggest that even though small-world networks initially varied most in their level

of structure, by the end of the experiment, all networks showed similar and relatively lit-

tle variability in their level of structure.

Following Raviv et al. (2019b), we also quantified the degree of input variability in

each network at a given time point by measuring the differences in the variants produced

for different scenes in different rounds. First, we tested whether input variability predicted

changes in linguistic structure over consecutive rounds. Our results were in line with the

findings of Raviv et al. (2019b) and confirmed that more input variability at round n
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induced a greater increase in structure at the following round (Model 13: b = 0.02,

SE = 0.003, t = 6.2, p < .0001). We also found that input variability significantly

decreased with time (Model 14: b = �28.15, SE = 1.82, t = �15.5, p < .0001), but the

rate of decrease slowed down in later rounds (Model 14: b = 26.31, SE = 1.72, t = 15.3,

p < .0001). There was also a significant interaction between the linear term of Round

number and Network condition (Model 14: Scale-free vs. fully connected: b = 5.85,

SE = 2.57, t = 2.27, p = .028; Small-world vs. fully connected: b = 7.54, SE = 2.57,

t = 2.93, p = .005), showing that input variability decreased more slowly in small-world

and scale-free networks than in fully connected networks. Importantly, there was no sig-

nificant main effect of Network condition (Model 14: Scale-free vs. fully connected:

b = 0.07, SE = 0.18, t = 0.37, p = .71; Small-world vs. fully connected: b = 0.05,

SE = 0.18, t = 0.26, p = .8). This result suggests that, in contrast to our prediction (i.e.,

that sparse networks would show more variability), there was no effect of network struc-

ture on input variability, such that all networks had similar levels of input variability

overall. Given the assumed causal relationship between the amount of input variability

and the creation of more linguistic structure, the lack of difference in the degree of input

variability across the different network conditions may explain why there was no effect

of network structure on linguistic structure, as we further discuss below.

5. Discussion

The current study experimentally tested the effect of social network structure on the

formation of new languages using a group communication paradigm. We compared the

behaviors of groups that varied in their network architecture, contrasting three types of

networks: (a) fully connected networks, in which all members interact with each other;

(b) small-world networks, which are much sparser and have many members that never

interact, although these “strangers” are nevertheless linked indirectly via a short chain of

shared connections; and (c) scale-free networks, which are as sparse as small-world net-

works, but whose members’ distribution of connectivity roughly follows a power law

such that one of the participants is highly connected to almost everyone in the network (a

“hub”) and others are much less connected.

Based on theoretical and computational models, we generated several predictions

(Table 1). First, we predicted that there would be more input variability in sparser net-

works, given that in such networks, some of the community members never directly inter-

act (i.e., there are more strangers). We hypothesized that this greater input variability and

difficulty in convergence would induce a stronger pressure for generalization and system-

ization, which would result in the sparser networks creating more systematic languages

compared to fully connected networks. We further predicted that the emergence of more

structured languages in sparser networks would facilitate convergence, allowing members

of sparser networks to align on a shared language more easily and therefore resulting in

similar convergence to that of fully connected networks. Moreover, we predicted that

scale-free networks would develop even more structured languages thanks to the
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existence of the hub, who can potentially promote the spread of conventions and system-

atic innovations. Furthermore, we predicted that sparser networks would stabilize to a les-

ser extent or more slowly compared to fully connected networks, given that changes take

longer to stabilize in sparser networks. Finally, we predicted that all networks would

reach similar levels of communicative success, such that across conditions, members that

interacted with each other would understand each other equally well.

Table 4 summarizes our experimental results and compares them to our research ques-

tions and predictions as presented in Table 1 in the beginning of the paper, and Table 5

summarizes additional results that were obtained in the study but not directly predicted.

We found that over time, all groups developed languages that were highly systematic,

communicatively efficient, stable, and shared across members. However, there were no

significant differences between the three network conditions on any measure with respect

to our original predictions (Table 4): All networks showed the same behavioral patterns,

had similar degrees of input variability, and reached similar levels of linguistic structure,

stability, convergence, and communicative success. While the results for communicative

success and convergence are in line with our predictions (i.e., that all networks would

show similar levels of communicative accuracy and global alignment), the remaining pre-

dictions were not borne out. Below we discuss potential reasons for this.

Although we did not find any significant differences between the three network condi-

tions that were directly relevant to our original predictions (Table 4), we did find several

other differences in the networks’ patterns (Table 5). First, fully connected networks dif-

fered from the two sparser networks (i.e., small-world and scale-free networks) when look-

ing at items’ age, a variable that represents familiarity with specific items. Specifically, we

found that only fully connected networks showed better convergence and better stability for

older items compared to more recently introduced items. Specifically, participants in fully

connected networks, but not in the sparser networks, were more aligned on items that were

introduced in earlier rounds (and therefore repeated more often), and changed their labels

for older items to a lesser extent. This result suggests that network structure might influence

patterns of convergence and stability. However, since there was no overall difference

between network conditions with respect to Round Number (a variable that represents the

overall time passed in the experiment and participants’ general experience with the lan-

guage), these results do not represent strong evidence in favor of a network effect.

One consistent pattern that emerged from all our additional analyses was that small-world

networks showed the most variance in their observed behaviors (Table 5), with different

small-world networks behaving very differently from one another (not to be confused with the

similar levels of input variability within each network). Fully connected networks and scale-

free networks were generally similar to other fully connected networks and other scale-free

networks, respectively, in terms of their convergence, stability, and linguistic structure levels.

However, small-world networks showed a great deal of variance, with different groups in the

same condition showing very different levels of these three measures (also evident in Fig. 3,

which shows a high degree of dispersity for small-world networks). These results suggest that

small-world networks may be more sensitive to random events (i.e., drift). Specifically, fre-

quent interactions among small subgroups can preserve random behaviors more easily,
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resulting in small-world networks being more likely to fixate on local (and possibly costly)

strategies instead of converging on optimal solutions (Bahlmann, 2014; Kurvers, Krause,

Croft, Wilson, & Wolf, 2014). Our finding that small-world networks show more variance in

their linguistic behaviors raises several predictions worth investigating. First, it suggests that

changes in community structure across history that required greater geographical spread and

reduced contact may have led to greater diversification in linguistic structure. Second, it might

suggest that community structure can predict how likely communities are to exhibit common

linguistic features compared to more rare ones (e.g., common vs. uncommon word order).

Future research should investigate how community structure can influence the likelihood of a

given language to follow or violate common trajectories of language change.

As mentioned earlier, the results of the study differed from those we had predicted

(Table 4). We predicted that different networks would show similar levels of conver-

gence, but the rationale behind this prediction was not met. We hypothesized that the

similar levels of convergence across networks would be the result of sparser networks ini-

tially showing greater input variability (hindering convergence in comparison to the fully

connected networks), but that this greater variability would eventually lead sparser net-

works to create more systematic languages, which would in turn help them overcome this

disadvantage. That is, our prediction was based on the idea that different networks would

reach a sort of equilibrium between their difficulty to converge and their need to con-

verge. Crucially, this was not the case: All networks showed similar levels of input vari-

ability and systematic structure. This discrepancy fits our findings of equal convergence

Table 5

Additional experimental results

Analyses

Measure Variance in Behavior Additional Results

Input

variability

— Input variability decreased more slowly

in the sparser networks (small-world

and scale-free) compared to the fully

connected networks

Linguistic

structure

Small-world networks were the least consistent

(i.e., showed most variance) in how structured

their languages were, but less so over time

—

Convergence Small-world networks were the least consistent

(i.e., showed most variance) in their

convergence patterns, and scale-free networks

were the most consistent

Only in fully connected networks there

was more convergence on older items

compared to new ones

Stability Small-world networks were the least consistent

(i.e., showed most variance) in their

stabilization patterns, and scale-free networks

were the most consistent

Only in fully connected networks were

labels for older items more stable than

labels for newer items

Communicative

success

All networks showed overall similar levels of

variance in their accuracy

—
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across conditions: Different networks showed the same convergence patterns because

their degree of input variability was the same.

While our results are surprising given the literature reviewed in the Introduction, they

are in line with the computational model described in Spike (2017), who concluded that

network structure plays a relatively small role in the development and maintenance of lin-

guistic complexity and linguistic norms. This model simulated the process of convention-

alization in populations of agents that varied in their community size, network structure,

and learning biases (Spike, 2017). While the learning capacity of agents and the size of

the population influenced the final outcomes of the model, results from multiple simula-

tions showed that network structure had no apparent long-term effects on language

change. Spike (2017) concluded that as long as populations exhibit a small-world prop-

erty, that is, that the average path length between any two people is small (which is the

case in all our three network conditions), the diffusion of variants across the network is

sufficient to ensure similar linguistic trends. As in our experimental manipulation, real-

world social networks are small-world in nature (Watts & Strogatz, 1998). That is, it is

possible that network structure has little to no effect on the formation linguistic trends, at

least in relatively natural networks.

However, we believe this interpretation is unlikely to be correct given the theoretical

and computational models that argue in favor of network structure effects (Fagyal et al.,

2010; Gong et al., 2012; Ke et al., 2008; Lou-Magnuson & Onnis, 2018). We believe it

is more likely that the current study did not sufficiently capture the potential role of net-

work structure. One possibility is that network structure interacts with group size in com-

plex ways (as suggested by Lou-Magnuson & Onnis, 2018), and/or that network structure

effects only manifest themselves once a certain group size threshold has been crossed.

That is, it is possible that our eight-person networks were simply too small, and that run-

ning this experiment with bigger networks (e.g., of 200 people) would yield different

results. Disentangling the relation between group size and network structure experimen-

tally would require further investigation, potentially using online adaptations of this para-

digm, which would allow testing much larger groups of interacting participants.

Another possibility is that, regardless of group size, our network structure manipulation

was not strong enough to create meaningful differences between network types, or was not

representative of real-world differences between dense and sparse networks. For example,

the sparse networks might not have been sparse enough, or the difference between the

small-world and scale-free networks might have been too subtle. Notably, the nature of our

experimental procedure restricted the specific architecture of sparser networks to a great

extent. At any given communication round, each network had to be divided into pairs who

played the game simultaneously, with no participant left out. Given this constraint, our

choice of possible connections between group members was highly limited: Many possible

network configurations did not adhere to this constraint and were therefore inappropriate for

our design. For the sake of illustration, imagine designing a four-person network that is spar-

sely connected, such that only four out of the six possible connections are realized. While

there are 15 hypothetical network configurations that meet this definition, only three of them

satisfy the condition of being able to be divided into two unique pairs at a given time point
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and can therefore be used in our experimental paradigm. In the remaining 12 theoretical net-

works configurations, one participant would need to be included in two pairs at the same

time, or would be without a communication partner. While it is relatively simple to find out

which three networks out of the 15 hypothetical four-person networks would be suitable for

our design, the problem was exponentially worse with the larger networks used in the cur-

rent study: For sparser networks with eight individuals and 14 realized connections, there

are over 40 million possibilities for network configurations, and only a few of them are suit-

able for our design. As such, we cannot rule out that the networks selected for this experi-

ment were not representative of real-world sparser networks, and/or had biased

characteristics that made them too similar to one another. In other words, it is reasonable to

assume that network structure had no effect in the current design because our selected net-

works did not differ sufficiently from each other. This possibility is supported by the lack of

observed differences in input variability across conditions, which stands in sharp contrast

with the general consensus that sparser networks should be more diversified (Bahlmann,

2014; Derex & Boyd, 2016; Liu et al., 2005).

The similar levels of input variability across network conditions may, in fact, explain

the remaining results of this study. Evidently, the prediction that sparse networks would

show more input variability was a key component underlying the predictions for stability

and linguistic structure. Since it turned out to be false, it is perhaps not surprising that

the predictions that were based on it also turned out to be false. In the case of stability,

we hypothesized that more input variability in sparser networks would lead to slower or

less stabilization in such networks. Given that there were no differences in input variabil-

ity between the dense and sparse networks, it is not surprising that they also showed sim-

ilar degrees of stability over time. In the case of linguistic structure, our prediction for

structural differences between network conditions relied on the causal relation between

input variability and systematic structure. This relation, that is, that more input variability

promotes more linguistic structure, was demonstrated in Raviv et al. (2019b) and con-

firmed in the current study. We found that, across conditions and experimental rounds,

more input variability at time point n induced more structure at time point n + 1. There-

fore, if sparse networks indeed show greater input variability, they should consequently

show more linguistic structure. However, if all networks show similar levels of input vari-

ability, they should also show similar levels of linguistic structure—which is what we

found in the current study. Together, these results support the idea that network structure

had no effect in our study because our selected networks did not differ substantially from

each other. Perhaps, a stronger manipulation of network sparsity would have yielded dif-

ferent results. Therefore, more research is required in order to confirm or refute the influ-

ence of network structure on linguistic patterns.

We also predicted that scale-free networks would develop even more structured lan-

guages than small-world and fully connected networks due to the existence of a highly

connected participant (a “hub”), who should potentially promote the spread of systematic

variants to the entire community once they emerge (Fagyal et al., 2010; Zubek et al.,

2017). This prediction was not met, and scale-free networks showed similar levels of lin-

guistic structure to the other two network types. In retrospect, this discrepancy is very
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likely to be the result of the specific properties of our design: Given that all networks in

our experiment received the same amount of time for interaction (14 communication

rounds in total, see Section 3.3) and given that each communication round included

simultaneous communication between pairs, having more connections inevitably resulted

in having less time to interact with each connection. Given these features, a highly con-

nected participant would require more rounds to interact with all their possible connec-

tions, while a less connected participant would in the meantime repeatedly interact with

the same few connections. While such subgroups can be seen as a relevant feature of

sparser networks, this configuration also resulted in the highly connected participants

interacting less with each of their connections. That is, while the highly connected agent

was indeed well connected in the sense that they communicated with almost every person

in the group, they were actually less connected to each person in terms of their frequency

of interactions: The hub interacted approximately twice with each of their connections by

the end of the experiment, while the less connected participants interacted among them-

selves for approximately six times in the meanwhile. From the perspective of the less

connected participants, who repeatedly conversed with the same people and only rarely

interacted with the hub, the hub could have effectively be seen as “an outsider,” that is, a

person they rarely interacted with, and consequently a person who mattered less. That is,

our design may have maintained the structural property of the hub but stripped it of their

commonly associated social meaning, namely, having greater rather than lesser social

importance. If true, it would again suggest that a different design or a different network

selection would have revealed different results.

One way of dealing with the methodological issues described above is to move away

from our current design and introduce more flexible communication conditions, while main-

taining equal experience across all individuals in the group. For example, it is possible to

include individual rounds or semi-communicative rounds, in which a participant is not

assigned a partner, but nevertheless engages in some form of communicative behavior, for

example, with a computer-simulated agent. Alternatively, it is possible to introduce multi-

player rounds, in which three participants are assigned to communicate together so that one

participant produces a word and the other two participants guess the corresponding scene

separately. Such modifications would dramatically improve the flexibility of our paradigm

and expand the pool of suitable networks, while also introducing more varied conversational

settings. Nevertheless, they introduce new challenges: The degree of input variability (and

consequently, the difficulty of convergence) may be reduced if participants can interact with

several group members at the same time, and it is not clear how to simulate a computerized

participant in a way that mimics human participants’ behavior and produces the same com-

municative challenges faced by people interacting with a real participants.

Finally, it is worth mentioning that our network structures were fixed and did not

change over time. Therefore, our sparse networks differed from real-world sparse net-

works in the sense that pairs of participants who were not directly connected to each

other would in fact never interact, and probably figured this out. Some researchers have

argued that an important feature of real-world sparse communities is the increased possi-

bility of interacting with strangers, and they treat interaction with strangers as a crucial
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mechanism driving morphological simplification (Wray & Grace, 2007). The idea behind

this argument is that increasing the chances of interacting with unfamiliar people (with

whom you have no shared history) introduces a stronger pressure for creating languages

with simpler, transparent, and regular structure (Granito, Tehrani, Kendal, & Scott-Phil-

lips, 2019). In other words, the potential of encountering a new member of one’s commu-

nity may be relevant for explaining cross-linguistic differences. One way of testing this

hypothesis is by introducing a more dynamic, open-ended network design, for example,

by assigning an unexpected connection every few rounds, so that individuals who are not

directly connected may nevertheless encounter each other randomly from time to time.

6. Conclusions

The current study attempted to experimentally test the influence of social network

structure on emerging languages using a group communication paradigm. We found no

effect of network structure on any measure, with fully connected, small-world, and scale-

free networks all showing similar patterns of communicative success, convergence, stabil-

ity, and linguistic structure. We argue that these findings could be traced back to the lack

of differences in input variability between network conditions in our design, and that fur-

ther research is needed in order to confirm or refute the role of network structure on lan-

guage evolution and language change. Nevertheless, our results show that network

structure can significantly affect communities’ susceptibility to drift, with small-world

networks being more likely to vary from each other and fixate on local strategies.
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