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1 Preliminaries

Here is an account of logical consequence inspired by Bolzano and Tarski. Logical validity is a property

of arguments. An argument is a pair of a set of interpreted sentences (the premises) and an interpreted

sentence (the conclusion). Whether an argument is logically valid depends only on its logical form.

The logical form of an argument is fixed by the syntax of its constituent sentences, the meanings of

their logical constituents and the syntactic differences between their non-logical constituents, treated as

variables. A constituent of a sentence is logical just if it is formal in meaning, in the sense roughly that

its application is invariant under permutations of individuals.1 Thus ‘=’ is a logical constant because

no permutation maps two individuals to one or one to two; ‘∈’ is not a logical constant because some

permutations interchange the null set and its singleton. Truth functions, the usual quantifiers and bound

variables also count as logical constants. An argument is logically valid if and only if the conclusion is

true under every assignment of semantic values to variables (including all non-logical expressions) under

which all its premises are true. A sentence is logically true if and only if the argument with no premises

of which it is the conclusion is logically valid, that is, if and only if the sentence is true under every

assignment of semantic values to variables. An interpretation assigns values to all variables.

For the case of first-order languages,2 interpretations are standardly cashed out in terms of what

might be called model-theoretic interpretations (or MT-interpretations). An MT-interpretation for a

first-order language L is an ordered pair 〈D, F 〉. The domain D is a non-empty set, and is intended to

specify the range of the variables in L. The interpretation function F is intended to specify semantic

values for the variables of L (including non-logical expressions). The semantic value of an n-place

predicate-letter is a set of n-tuples of individuals in D,3 and the semantic value of a first-order variable

is an individual in D.

Truth on an MT-interpretation can then be characterized as follows:

[MT-=] pvi = vjq is true on 〈D,F 〉 iff F (pviq) = F (pvjq),
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[MT-P ] pPn
i (vj1 , . . . , vjn

)q is true on 〈D, F 〉 iff 〈F (pvj1q), . . . , F (pvj1q)〉 ∈ F (pPn
i q),

[MT-¬] p¬ψq is true on 〈D, F 〉 iff pψq is not true on 〈D,F 〉,

[MT-∧] pψ ∧ θq is true on 〈D, F 〉 iff pψq and pθq are both true on 〈D,F 〉,

[MT-∃] p∃vi(ψ)q is true on 〈D,F 〉 iff there is some d ∈ D such that pψq is true on 〈D, F [pviq/d]〉,

where F [v/d] is the function that is just like F except that it assigns d to v.

If Γ is a set of formulas, we say that Γ is true on 〈D, F 〉 just in case each formula in Γ is true on

〈D,F 〉. Finally, an argument is said to be MT-valid just in case every MT-interpretation on which the

set of premises is true is also an MT-interpretation on which the conclusion is true, and a formula is said

to be MT-valid just in case the argument with no premises of which it is the conclusion is MT-valid.

The variables of a first-order language are sometimes intended to range over absolutely everything

whatsoever (henceforth, we will use ‘everything’ and similar phrases such as ‘all individuals’ in that

sense).4 For instance, the variables of the first-order language in which the theory of MT-interpretations

is couched must range over everything, on pain of excluding some individuals from the semantic values

of non-logical terms. But, according to standard conceptions of set-theory such as ZFU (i.e. Zermelo-

Fraenkel set theory with urelements), there is no set of all individuals. And, in the absence of such a set,

there is no MT-interpretation that specifies a domain consisting of everything. So, when the variables

of a first-order language L are intended to range over everything, no MT-interpretation captures the

intended interpretation of L.

Clearly, matters cannot be improved by appealing to proper classes: no proper class can play the

role of a universal domain because no proper class is a member of itself. But one might be tempted to

address the problem by adopting a set theory which allows for a universal set—Quine’s New Foundations,

the Church and Mitchell systems and positive set-theory all satisfy this requirement.5 Unfortunately,

set theories that allow for a universal set must impose restrictions on the axiom of separation to avoid

paradox. So, as long as an MT-interpretation assigns a subset of its domain as the interpretation of a

monadic predicate, some intuitive interpretations for monadic predicates will not be realized by any MT-

interpretation. (Throughout the rest of the paper we will be working with ZFU plus choice principles,

rather than a set theory which allows for a universal set.)

The problems we have discussed are instances of a more general difficulty. Regardless of the set theory

one chooses to work with, trouble will arise from the fact that an MT-interpretation is an individual.

For, whatever it is to G, there are legitimate assignments of semantic values to variables according to
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which the predicate-letter P applies to something if and only it Gs. So, if every legitimate assignment of

semantic values to variables is to be captured by some MT-interpretation, we must have the following:

(1) For every individual x, MG is an MT-interpretation according to which P applies to x if and only

if x Gs.

But, since MT-interpretations are individuals, we may define a verb ‘R’ as follows:

(2) For each individual x, x Rs if and only if x is not an MT-interpretation according to which P

applies to x.

Putting ‘R’ for ‘G’ in (1) and applying (2) yields:

(3) For every individual x, MR is an MT-interpretation according to which P applies to x if and only

if x is not an MT-interpretation according to which P applies to x.

In particular, we can let x be MR itself; so (3) implies:

(4) MR is an MT-interpretation according to which P applies to MR if and only if MR is not an

MT-interpretation according to which P applies to MR.

And (4) is a contradiction. It follows that there are legitimate assignments of semantic values to variables

that cannot be captured by any MT-interpretation. (It is worth noting that, although the argument is

structurally similar to standard derivations of Russell’s Paradox, it does not rest on any assumptions

about sets. As long as the variables in the metalanguage range over everything, all we need to get the

problem going is the observation that MT-interpretations are individuals, and the claim that, whatever

it is to G, there are legitimate assignments of semantic values to variables according to which the

predicate-letter P applies to something if and only it Gs.)

It is best to use a semantics which is not based on MT-interpretations. Here we will work with the

notion of a second-order interpretation (or SO-interpretation), set forth in Rayo and Uzquiano (1999).

Informally, the idea is this: rather than taking an SO-interpretation to be an individual, like an MT-

interpretation, we regard it as given by the individuals which a monadic second-order variable I is true

of. The ‘domain’ of I is the collection of individuals x such that I is true of 〈‘∀’, x〉. The ‘semantic

value’ which I assigns to an n-place predicate-letter pPiq is the collection of n-tuples 〈x1, . . . , xn〉 such

that I is true of 〈pPiq, 〈x1, . . . , xn〉〉; and the semantic value which I assigns to a first-order variable

pviq is the unique individual x such that I is true of 〈pviq, x〉 (for the sake of brevity, we sometimes use

‘I(pviq)’ to refer to the unique x such that I 〈pviq, x〉). Such informal explanations are a kind of useful
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nonsense, a ladder to be thrown away once climbed, because they use the second-order (predicate)

variable ‘I’ in first-order (name) positions in sentences of natural language; nevertheless, they draw

attention to helpful analogies between SO-interpretations and MT-interpretations. Formally, when ‘I’

is a second-order variable, we take ‘I is an SO-interpretation’ to abbreviate the following second-order

formula:6

∃x(I 〈‘∀’, x〉) ∧ ∀x(FOV(x) → ∃!yI 〈x, y〉)

where ‘FOV(x)’ is interpreted as ‘x is a first-order variable’.

Unlike MT-interpretations, SO-interpretations are well-suited to cover the case in which the variables

of L range over everything. For, whenever I 〈‘∀’, x〉 holds for every x, the ‘domain’ of I will consist of

everything.

Let us now characterize the predicate ‘φ is true on I’, where φ is a formula of L and I is an SO-

interpretation for L. It is important to note that our satisfaction predicate is a second-level predicate

(i.e. a predicate taking a second-order variable in one of its argument-places), since ‘I’ is a second-order

variable.7

[SO-=] pvi = vjq is true on I iff I(pviq) = I(pvjq),

[SO-P ] pPn
i (vj1 , . . . , vjn)q is true on I iff I 〈pPn

i q, 〈I(pvj1q), . . . , I(pvj1q)〉〉,

[SO-¬] p¬ψq is true on I iff pψq is not true on I,

[SO-∧] pψ ∧ θq is true on I iff pψq and pθq are both true on I,

[SO-∃] p∃vi(ψ)q is true on I iff there is some d such that I 〈‘∀’, d〉 and pψq is true on I[pviq/d],

where I[v/d] is just like I except that I(v) = d.

If Γ is a set of formulas, we say that Γ is true on I just in case each formula in Γ is true on I. Finally,

an argument is said to be SO-valid just in case every SO-interpretation on which the set of premises is

true is also an SO-interpretation on which the conclusion is true, and a formula is said to be SO-valid

just in case the argument with no premises of which it is the conclusion is SO-valid.

A famous argument of Kreisel’s can be used to show that a first-order argument 〈Γ, φ〉 is SO-valid if

and only if it is MT-valid.8 [Proof sketch: Suppose 〈Γ, φ〉 is MT-valid. Then, by the completeness of MT-

validity, φ is derivable from Γ. But the SO-validity of derivable inferences follows from a straightforward

induction on the length of proofs. So φ is true on every SO-interpretation which makes Γ true. 〈Γ, φ〉 is

therefore SO-valid. Conversely, suppose 〈Γ, φ〉 is not MT-valid. Then there is some MT-interpretation
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on which every member of Γ is true and φ is not true. But, since every MT-interpretation has the same

domain and delivers the same assignments of semantic value as some SO-interpretation, there is some

SO-interpretation on which every member of Γ is true and φ is not true. So 〈Γ, φ〉 is not SO-valid.]

Kreisel’s result guarantees that standard first-order deductive systems are sound and complete with

respect to SO-interpretations. It also shows that, if the only purpose of a formal semantics is to charac-

terize the set of standard first-order validities, then SO-interpretations are unnecessary, since they deliver

the same result as MT-interpretations. But a formal semantics might have a broader objective than that

of characterizing the set of standard first-order validities. For instance, one may wish to consider the

result of enriching a first-order language with a quantifier ‘∃AI ’, as in McGee (1992). On its intended

interpretation, a sentence ‘∃AIv(φ(v))’ is true just in case the individuals satisfying ‘φ(v)’ are too many

to form a set. Accordingly, when the quantifiers range over everything, ‘∃AIv(v = v)’ is true, since there

are too many individuals to form a set. Within an SO-semantics, we can specify the truth-conditions of

‘∃AI ’ as follows:

[SO-∃AI ] p∃AIvi(φ)q is true on I iff no set contains every d such that I 〈‘∀’, d〉 and pφq is true on

I[pviq/d].

This yields the intended result. For instance, [SO-∃AI ] ensures that ‘∃AIv(v = v)’ is true on any SO-

interpretation I such that, for every x, I 〈‘∀’, x〉. On the other hand, we run into trouble when we try to

specify the truth-conditions of ‘∃AI ’ within MT-semantics. For, suppose we attempt to mirror [SO-∃AI ]

by way of the following clause:

[MT-∃AI ] p∃AIvi(φ)q is true on 〈D,F 〉 iff no set contains every d ∈ D such that pφq is true on

〈D,F [pviq/d]〉.

It follows from [MT-∃AI ] that no MT-interpretation can make a sentence of the form p∃AIvi(φ)q true.

So ‘¬∃AIv(v = v)’ is an MT-validity, even though ‘∃AIv(v = v)’ is true on the intended interpretation.

2 Unrestricted Quantification

Throughout our discussion of ‘∃’ and ‘∃AI ’ we have made the following standard assumption:

[Domain Assumption] What individuals the truth-value of a quantified sentence depends on

is not a logical matter; it varies between interpretations.
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The presence of the Domain Assumption is evidenced by [MT-∃], [SO-∃], [MT-∃AI ] and [SO-∃AI ], which

explicitly impose an (interpretation-relative) domain restriction on the individuals that the truth-value

of quantified sentences depends on.

Williamson (1999) argues that, even if the Domain Assumption is appropriate in the case of ‘∃’ and

‘∃AI ’, there is no reason to think that it is appropriate in general. Specifically, we might set forth an

unrestricted quantifier ‘∃U ’ such that a sentence ‘∃Uv(φ(v))’ is true if and only if ‘φ(v)’ is true of some

individual, whether or not the individual is part of some domain or other. If there is such a quantifier,

its application is insensitive to permutations of individuals. So, on the Bolzano-Tarski picture of logical

consequence described above, it should count as a logical expression, and its semantic value should not

vary between interpretations.

Within an SO-semantics, we have the resources to characterize ‘∃U ’. All we need to do is add the

following clause to our definition of ‘truth on I’:

[SO-∃U ] p∃Uvi(φ)q is true on I iff some d is such that pφq is true on I[pviq/d].

Extending our object-language with ‘∃U ’ and our formal semantics with [SO-∃U ] does not mean that we

must jettison ‘∃’ or ‘∃AI ’. Arguments in the original language that were SO-valid before the extension

will remain SO-valid, and arguments in the original language that were SO-invalid before the extension

will remain SO-invalid. On the other hand, we get a number of new SO-validities from arguments in

the extended language. For instance, the inference from ‘∃v(φ)’ to ‘∃Uv(φ)’ is SO-valid. The sentence

‘∃Uv(v = v)’ is also SO-valid. Finally, let p∃U
n v(φ(v))q (read ‘there are at least n vs such that φ(v)’) be

defined as follows:

• ∃U
1 v(φ(v)) ≡df ∃Uv(φ(v))

• ∃U
2 v(φ(v)) ≡df ∃Uv∃Uu(φ(v) ∧ φ(u) ∧ v 6= u)

• etc.

Since the world contains infinitely many individuals (such as {}, {{}}, {{{}}}, . . .), the sentence p∃U
n v(v = v)q,

for any n, is true on every SO-interpretation. So, for any n, p∃U
n v(v = v)q is SO-valid.

It is worth noting that the standard (domain-restricted) quantifier ‘∃’ can be defined in terms of ‘∃U ’.

All we need to do is introduce a monadic predicate ‘D’, to play the role of specifying a domain and take

‘∃v(φ(v))’ to abbreviate ‘∃Uv(D(v) ∧ φ(v))’. By taking ‘∃Uv(D(v))’ as a premise, we can then recover

the usual validity for ‘∃’. If the language includes a predicate ‘∈’ expressing set-theoretic membership,

then McGee’s quantifier ‘∃AI ’ can also be defined in terms of ‘∃U ’, since we can take ‘∃AIv(φ(v))’ to
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abbreviate ‘¬∃Uv∀Uv′(v′ ∈ v ↔ φ(v′))’.9 When ‘∃U ’ is regarded as the only primitive quantifier in the

language, the notion of an SO-interpretation can be simplified. We can take ‘I is an SO-interpretation’

to abbreviate ‘∀x(FOV(x) → ∃!yI 〈x, y〉)’.
It is worth noting, moreover, that MT-semantics does not provide an appropriate framework for the

introduction of ‘∃U ’. Although we could certainly set forth a clause analogous to [SO-∃U ],

[MT-∃U ] p∃Uvi(φ)q is true on 〈D,F 〉 iff some d is such that pφq is true on 〈D, F [pviq/d]〉,

it wouldn’t deliver the intended result. The problem is that an MT-interpretation assigns a set as the

semantic value of a predicate. Since no set contains every individual, this means that, for any pPjq,

p∃Uvi(¬Pj(vi))q is true on every 〈D, F 〉. So p∃Uvi(¬Pj(vi))q is MT-valid, even though its negation may

be true on the intended interpretation of pPjq (for example, as meaning self-identity).

Here we will not attempt to assess the legitimacy of ‘∃U ’; that project is developed in Williamson (1999).

Our present task is to identify a sound and complete deductive system for first-order languages involving

‘∃U ’. For simplicity, we will set ‘∃’ and ‘∃AI ’ aside. Thus, we let our object-language, LU , be the result

of substituting ‘∃U ’ for ‘∃’ in a standard first-order language. In addition, we let ∆ be the result of

substituting ‘∃U ’ for ‘∃’ in any standard first-order deductive system.

Not every SO-valid sentence of LU is deducible in ∆. To see this note that, although p∃U
n v(v = v)q

is not derivable in ∆ for n ≥ 2, p∃U
n v(v = v)q is SO-valid for any n. It follows immediately that no

deductive system weaker than ∆∞—the result of enriching ∆ with an axiom p∃U
n v(v = v)q for every

n—can be complete with respect to SO-validity. As it turns out, ∆∞ itself is sound and complete with

respect to SO-validity.10 Williamson (1999) outlines an argument for this result. Here we will provide a

formal proof.

The soundness of ∆∞ with respect to SO-validity is immediate, since a straightforward induction

on the length of proofs reveals that, if φ is a sentence of LU and Γ is a set of sentences of LU , then φ

is derivable from Γ in ∆∞ only if 〈Γ, φ〉 is a valid SO-argument. To show the completeness of ∆∞, we

prove the following:

Completeness Theorem for Unrestricted First-Order Languages

Let pφq be a sentence of LU and Γ a set of sentences of LU . Then 〈Γ, pφq〉 is a valid

SO-argument only if pφq is derivable from Γ in ∆∞.

First some preliminary remarks. We work within second-order ZFC with urelements, and assume that

everything can be put in one-one correspondence with the ordinals. An immediate consequence of our
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assumption is that the members of any set S can be put in one-one correspondence with the ordinals

less than a given ordinal α. As usual, we let |S| be the smallest such α.

In the course of the proof we will make use of several standard model-theoretic results. In order

to retain their availability, we will make use of MT-interpretations, alongside SO-interpretations, with

the important proviso that MT-interpretations are to treat ‘∃U ’ like a standard (domain-restricted)

quantifier, rather than an unrestricted one. Thus, instead of using [MT-∃U ] as the truth-clause for ‘∃U ’

within MT-semantics, we use the following analogue of [MT-∃],

[MT-∃U+] p∃Uvi(φ)q is true on 〈D,F 〉 iff some d ∈ D is such that pφq is true on 〈D, F [pviq/d]〉.

On the other hand, we retain [SO-∃U ] as the truth-clause for ‘∃U ’ within SO-semantics.

Two of the model-theoretic results we make use of are from Tarski and Vaught (1957). The first is

a strengthened version of the Upward Löwenheim-Skolem Theorem:

Tarski-Vaught 1

If 〈D,F 〉 is an MT-interpretation for a language L, D is infinite, and κ is a cardinal such

that κ ≥ |D| and κ ≥ |L|, then there is an elementary extension 〈D∗, F ∗〉 of 〈D,F 〉 such that

|D∗| = κ.

As usual, we say that an MT-interpretation 〈D′, F ′〉 is an elementary extension of 〈D, F 〉 just in case: (i)

D ⊆ D′, and (ii) for any formula ψ with free variables among pv1q, . . . , pvnq, and for any a1, . . . , an ∈ D,

ψ is true on 〈D,F [−→vn/−→an]〉 if and only if ψ is true on 〈D′, F ′[−→vn/−→an]〉, where G[−→vn/−→an] is the function

that is just like G except that it assigns a1 to pv1q, a2 to pv2q, . . . , and an to pvnq.

The second model-theoretic result from Tarski and Vaught (1957) is the following:

Tarski-Vaught 2

Let K be a non-empty family of MT-interpretations such that, for any MT-interpretations

M, M ′ ∈ K, some MT-interpretation in K is an elementary extension of M and an elementary

extension of M ′. Let DK be the union of the Dβ for 〈Dβ , Fβ〉 ∈ K; let FK(pviq) = F0(pviq)

for some 〈D0, F0〉 ∈ K; and let FK(pPn
α q) be the union of the Fβ(pPn

α q) for 〈Dβ , Fβ〉 ∈ K.

Then
〈
DK , FK

〉
is an MT-interpretation and, for any MT-interpretation M ∈ K,

〈
DK , FK

〉

is an elementary extension of M .

So much for preliminary remarks; we now turn to the proof. We assume that pφq is not derivable from

Γ in ∆∞, and show that Γ ∪ {p¬φq} is true on some SO-interpretation. We proceed by proving each of

the following three propositions in turn:
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Proposition 1 For each ordinal α there is an MT-interpretation 〈Dα, Fα〉 such that: (a)

Γ ∪ {p¬φq} is true on 〈D0, F0〉; (b) for any α, |Dα| ≥ ℵα; and (c) for α ≤ γ, 〈Dγ , Fγ〉 is an

elementary extension of 〈Dα, Fα〉.

Proposition 2 For each ordinal α there is an MT-interpretation 〈D∗
α, F ∗α〉 such that: (a)

for any sentence ψ of LU , ψ is true on 〈D∗
0 , F ∗0 〉 if and only if ψ is true on 〈D0, F0〉; (b) for

any α, |D∗
α| ≥ ℵα; (c) for α ≤ γ,

〈
D∗

γ , F ∗γ
〉

is an elementary extension of 〈D∗
α, F ∗α〉; and (d)

every individual is in some D∗
α.

Proposition 3 There is an SO-interpretation I∗ such that Γ ∪ {p¬φq} is true on I∗.

It is worth noting that the use of second-order resources will be confined to propositions 2 and 3.

Proof of Proposition 1.

Since pφq is not derivable from Γ in ∆∞, it follows from the standard Completeness Theorem for first-

order languages that Γ ∪ {p¬φq} ∪ N∞ is true on some MT-interpretation 〈D0, F0〉, where N∞ is the

set of sentences p∃U
n v1(v1 = v1)q for n ∈ ω. Since every sentence in N∞ is true on 〈D0, F0〉, D0 must be

infinite. For α > 0, define 〈Dα, Fα〉 as follows:

[D1] Assume α = β + 1, and suppose that 〈Dβ , Fβ〉 has been defined. By [Tarski-Vaught 1 ],

there is an elementary extension 〈D, F 〉 of 〈Dβ , Fβ〉 with |D| ≥ ℵα. By our assumption

that everything can be put in one-one correspondence with the ordinals, there is a least such

elementary extension. Let that elementary extension be 〈Dα, Fα〉.

[D2] Assume that α is a limit ordinal, and suppose that 〈Dβ , Fβ〉 has been defined for every β < α.

Let Dα =
⋃

β<α Dβ , and define Fα as follows:

Fα(pviq) = F0(pviq);

Fα(pPn
γ q) =

⋃

β<α

Fβ(pPn
γ q).

It follows immediately from [Tarski-Vaught 2 ] that 〈Dα, Fα〉 is an MT-interpretation and

that, for every β < α, 〈Dα, Fα〉 is an elementary extension of 〈Dβ , Fβ〉. Moreover, since

|Dβ | ≥ ℵβ for β < α, we get the result that |Dα| ≥ ℵα. ¤
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Proof of Proposition 2

Since |Dα| ≥ ℵα, our assumption that everything can be put in one-one correspondence with the ordinals

guarantees that there is an R∗ such that

∀x(∃α(x ∈ Dα) → ∃!y(R∗(x, y))) ∧ ∀y∃!x(∃α(x ∈ Dα) ∧R∗(x, y)).

For each α, let rα be the one-one function with domain Dα such that rα(x) is the unique y for which

R∗(x, y). We may now define 〈D∗
α, F ∗α〉 from 〈Dα, Fα〉 as follows:

D∗
α = {rα(x) : x ∈ Dα}

F ∗α(pviq) = rα(Fα(pviq))

F ∗α(pPn
β q) = {〈rα(x1), . . . , rα(xn)〉 : 〈x1, . . . , xn〉 ∈ Fα(pPn

β q)}

Clause (a) of Proposition 2 can be verified by a routine induction on the complexity of formulas. Since

rα is a one-one function with domain Dα and since |Dα| ≥ ℵα, the definition of D∗
α guarantees that

clause (b) is satisfied. Clause (c) can be verified by a routine induction on the complexity of formulas.

Finally, in virtue of the construction of the rα from R∗, the definition of the D∗
α guarantees that clause

(d) is satisfied. ¤

Proof of Proposition 3

Let I∗ be any SO-interpretation with the following property:

I∗
〈
pPn

β q, 〈x1, . . . , xn〉
〉 ↔ ∃α(〈x1, . . . , xn〉 ∈ F ∗α(pPn

β q)).

We show the following:

Let ψ be a formula of LU with free variables among v1, . . . , vn. For any ordinal α, if

〈a1, . . . , an〉 is a sequence of individuals in D∗
α, then ψ is true on 〈D∗

α, F ∗α[−→vn/−→an]〉 if and

only if ψ is true on I∗[−→vn/−→an],

where I∗[−→vn/−→an] is just like I∗ except that, for k ≤ n, ak is the unique x such that I∗[−→vn/−→an] 〈pvkq, x〉.
The proof is by induction on the complexity of ψ. Clauses corresponding to ‘=’, ‘¬’ and ‘∧’ are trivial.

• Suppose ψ is pPm
β (vj1 , . . . , vjm)q (for j1, . . . , jm ≤ n). Then, by [MT-P], ψ is true on 〈D∗

α, F ∗α[−→vn/−→an]〉
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iff 〈aj1 , . . . , ajm
〉 ∈ F ∗α(pPm

β q). Similarly, by [SO-P], ψ is true on I∗[−→vn/−→an] iff I∗
〈
pPm

β q, 〈aj1 , . . . , ajm
〉
〉
.

So it suffices to show that 〈aj1 , . . . , ajm
〉 ∈ F ∗α(pPm

β q) iff I∗
〈
pPm

β q, 〈aj1 , . . . , ajm
〉
〉
. The defini-

tion of I∗ guarantees that 〈aj1 , . . . , ajm〉 ∈ F ∗α(pPiq) only if I∗
〈
pPm

β q, 〈aj1 , . . . , ajm〉
〉
. For the

converse, suppose that I∗
〈
pPm

β q, 〈aj1 , . . . , ajm
〉
〉
. By the definition of I∗, there is a δ such that

〈aj1 , . . . , ajm
〉 ∈ F ∗δ (pPm

β q). If α ≤ δ, then 〈D∗
δ , F ∗δ 〉 is an elementary extension of 〈D∗

α, F ∗α〉; if δ <

α, then 〈D∗
α, F ∗α〉 is an elementary extension of 〈D∗

δ , F ∗δ 〉. In either case aj1 , . . . , ajm ∈ F ∗α(pPm
β q).

• Suppose ψ is p∃Uvi(ξ)q (for i ≤ n). Then, by [MT-∃U+], ψ is true on 〈D∗
α, F ∗α[−→vn/−→an]〉 iff there is

some d ∈ D∗
α such that pξq is true on 〈D∗

α, F ∗α[−→vn/−→an][pviq/d]〉. Similarly, by [SO-∃U ], ψ is true on

I∗[−→vn/−→an] iff there is some d such that pξq is true on I∗[−→vn/−→an][pviq/d].

Suppose e ∈ D∗
α is such that pξq is true on 〈D∗

α, F ∗α[−→vn/−→an][pviq/e]〉. Let ei = e; and, for j ≤ n

and j 6= i, let ej = aj . It follows that pξq is true on 〈D∗
α, F ∗α[−→vn/−→en]〉. Since ek ∈ D∗

α for k ≤ n,

it follows by inductive hypothesis that pξq is true on I∗[−→vn/−→en]. This means that there is some d

such that pξq is true on I∗[−→vn/−→an][pviq/d].

Conversely, suppose that there is an e such that pξq is true on I∗[−→vn/−→an][pviq/e]. As before, let

ei = e; and, for j ≤ n and j 6= i, let ej = aj . It follows that pξq is true on I∗[−→vn/−→en]. Since

every individual is in some D∗
η, e ∈ Dδ for some δ ≥ α. By inductive hypothesis, pξq is true on

〈D∗
δ , F ∗δ [−→vn/−→en]〉. Accordingly, there is some d ∈ D∗

δ such that pξq is true on 〈D∗
δ , F ∗δ [−→vn/−→an][pviq/d]〉

and, by [MT-∃U+], p∃Uvi(ξ)q is true on 〈D∗
δ , F ∗δ [−→vn/−→an]〉. But, since α ≤ δ, 〈D∗

δ , F ∗δ 〉 is an el-

ementary extension of 〈D∗
α, F ∗α〉. So, given that ak ∈ D∗

α (for k ≤ n), p∃Uvi(ξ)q is true on

〈D∗
α, F ∗α[−→vn/−→an]〉.

It follows immediately that a sentence of LU is true on I∗ if and only if it is true on 〈D∗
0 , F ∗0 〉. But,

by Proposition 2, a sentence of LU is true on 〈D∗
0 , F ∗0 〉 if and only if it is true on 〈D0, F0〉. And, by

Proposition 1, Γ ∪ {¬φ} is true on 〈D0, F0〉. So Γ ∪ {¬φ} is true on I∗. This completes the proof. ¤

3 Corollaries

The soundness and completeness results for unrestricted first-order languages have two immediate con-

sequences. (As before, we use [MT-∃U+] rather than [MT-∃U ] as the truth-clause for ‘∃U ’ within MT-

semantics.)

Corollary 1 (Compactness) Let Γ be a set of sentences of LU . If, for every finite subset Γ∗

of Γ, there is some SO-interpretation on which Γ∗ is true, then there is some SO-interpretation

11



on which Γ is true.

The proof is immediate.

Corollary 2 If 〈D,F 〉 is an MT-interpretation with D infinite, then there is some SO-

interpretation I such that, for every sentence φ of LU , φ is true on 〈D, F 〉 if and only if φ is

true on I.

Proof: We make use of the fact that ∆∞ is sound with respect to the class of MT-interpretations

with infinite domains. Let 〈D,F 〉 be an MT-interpretation with D infinite, and let Γ be the set of

sentences of LU which are true on 〈D, F 〉. By the soundness of ∆∞ with respect to the class of MT-

interpretations with infinite domains, Γ is consistent in ∆∞. So, by the completeness of ∆∞ with

respect to SO-interpretations, Γ is true on some SO-interpretation (and no sentence outside Γ is, since

Γ is negation-complete). ¤

Conversely, we have the following:

Observation For any SO-interpretation I, there is some MT-interpretation 〈D, F 〉 with D

infinite such that, for every sentence φ of LU , φ is true on I if and only if φ is true on 〈D, F 〉.

Proof: We make use of the fact that ∆∞ is complete with respect to the class of MT-interpretations with

infinite domains. Let I be an SO-interpretation and let Γ be the set of sentences of LU which are true on

I. By the soundness of ∆∞ with respect to SO-semantics, Γ is consistent in ∆∞. So, by the completeness

of ∆∞ with respect to MT-interpretations, Γ is true with respect to some MT-interpretation (and no

sentence outside Γ is, since Γ is negation-complete). ¤

4 Choice Principles

Our proof of the Completeness Theorem for unrestricted first-order languages makes use of a strong

choice principle. It assumes that everything can be put in one-one correspondence with the ordinals.11

This assumption is equivalent to the existence of a well-ordering of the universe together with the

existence of a one-one correspondence between everything and the sets, and it follows from (but does

not imply) the existence of a well-ordering of the sets together with the existence of a set containing all

non-sets.

As it turns out, the use of choice principles in our proof is unavoidable. The easiest way to see this is

by noting that the Completeness Theorem implies, in second-order ZF, that the universe can be linearly
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ordered. [Proof: For an arbitrary two-place predicate R, let φ be a sentence of LU stating that R is a

linear ordering. Clearly, φ is true on any MT-interpretation 〈N, F 〉 where F (R) is the usual ordering of

the natural numbers. So, by Corollary 2, φ is true on some SO-interpretation I. But then ≺ linearly

orders the universe, where x ≺ y ↔ I 〈R, 〈x, y〉〉.] A sentence stating that the universe can be linearly

ordered is a choice principle because it is provable in second-order ZF plus the Axiom of Global Choice,

but not in second-order ZF (if second-order ZF is consistent); it does not, however, imply the Axiom of

Global Choice in second-order ZF (if second-order ZF is consistent).12

A result of Harvey Friedman’s shows that, for the special case where LU contains countably many

non-logical primitives, the Completeness Theorem for unrestricted first-order languages is equivalent,

within second-order ZF, to the claim that the universe can be linearly ordered.13 However, this result is

unlikely to extend to the general case, where arbitrary non-countable sets of non-logical primitives are

allowed. In addition to implying that the universe can be linearly ordered, the Completeness Theorem

implies, within second-order ZF, the Prime Ideal Theorem (which states that any Boolean Algebra has

a prime ideal).14 The Prime Ideal Theorem is a choice principle because it is provable in ZFC, but not

in ZF (if ZF is consistent); it does not, however, imply the Axiom of Choice in ZF (if ZF is consistent).15

Ascertaining the exact strength of our Completeness Theorem with respect to different choice principles

is an interesting matter, which we do not address here.

The Completeness Theorem for unrestricted first-order languages is not alone in its reliance on choice

principles. A choice principle is needed to prove the Generalized Completeness Theorem for standard

first-order languages (which states that, when arbitrary non-countable sets of non-logical primitives are

allowed, a first-order argument 〈Γ, φ〉 is valid only if φ is derivable from Γ in some standard first-order

deductive system). Specifically, the Generalized Completeness Theorem can be shown within ZF to be

equivalent to the Prime Ideal Theorem.16 Choice principles are also needed to prove [Tarski-Vaught 1 ],

and the Downward Löwenheim-Skolem Theorem (which states that a formula of L which is true on some

MT-interpretation with domain of cardinality κ is also true on some MT-interpretation with domain

of cardinality µ, if max(ℵ0, |L|) ≤ µ ≤ κ). They are both provably equivalent to the Axiom of Choice

within ZF.17

A distinctive feature of the Completeness Theorem for unrestricted first-order languages is its reliance

on a global choice principle. But non-global choice principles are largely an artefact of the use of first-

order languages. When one gives purely second-order formulations of choice principles, one naturally

gets the global forms.18

No choice principles are needed to prove certain special cases of the results we have considered.

13



For instance, no choice principles are needed to prove the special case of the Generalized Completeness

Theorem when the set of non-logical primitives has cardinality ℵα for some α (since any set of cardinality

ℵα for some α can be well-ordered, and the well-ordering can be extended to finite sequences of its

members).19 In the case of the Completeness Theorem for unrestricted first-order languages, no choice

principles are required when there are only finitely many monadic predicates and no polyadic predicates

other than ‘=’, or when the language does not contain identity and the set of non-logical primitives has

cardinality ℵα for some α. More specifically, the following propositions are provable within second-order

ZF with urelements:20

Special Case 1

Assume that LU contains only finitely many monadic predicates and no polyadic predicates

other than ‘=’. Let pφq be a sentence of LU and Γ a set of sentences of LU . Then 〈Γ, pφq〉
is a valid SO-argument only if pφq is derivable from Γ in ∆∞.

Proof Sketch: Suppose Γ∪{p¬φq} is consistent with respect to ∆∞. Then, by the standard Completeness

Theorem for first-order languages, there is an MT-interpretation 〈D, F 〉, with D infinite, on which

Γ ∪ {p¬φq} is true. Since there are only finitely many monadic predicates and no polyadic predicates

other than ‘=’, it is easy to verify that there is some infinite subset D∗ of D with the following property:

Let ∗ be a one-one function from D into D such that a∗ = a if a∈/D∗, and a∗ ∈ D∗

otherwise. Then, for any objects a1, . . . , an ∈ D and any formula φ with free variables

among pv1q, . . . , pvnq, φ is true on 〈D, F [−→vn/−→an]〉 just in case φ is true on
〈
D, F [−→vn/

−→
a∗n]

〉
.

In particular, this means that, for a, b ∈ D∗, a ∈ F (pP 1
αq) ↔ b ∈ F (pP 1

αq). For d ∈ D∗, let I be any

SO-interpretation such that

I
〈
pP 1

αq, a
〉 ↔ a ∈ F (pP 1

αq) for a ∈ D

I
〈
pP 1

αq, a
〉 ↔ d ∈ F (pP 1

αq) for a∈/D

An induction on the complexity of formulas shows that, for any a1, . . . , an, if φ is a formula with free

variables among pv1q, . . . , pvnq, and if ◦ is a function from D ∪ {a1, . . . an} into D such that: (1) a◦ = a

if a ∈ D, and a◦ ∈ D∗ otherwise, and (2) ai 6= aj → a◦i 6= a◦j (for 1 ≤ i ≤ j ≤ n), then φ is true on

I[−→vn/−→an] just in case φ is true on
〈
D, F [−→vn/

−→
a◦n]

〉
. It follows that Γ ∪ {p¬φq} is true on I. ¤

Special Case 2

Assume that LU does not contain ‘=’ and that the set of non-logical primitives in LU has
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cardinality ℵα for some α.21 Let pφq be a sentence of LU and Γ a set of sentences of LU .

Then 〈Γ, pφq〉 is a valid SO-argument only if pφq is derivable from Γ in a standard first-order

system without identity.

Proof Sketch: Suppose Γ ∪ {p¬φq} is consistent with respect to a standard first-order system without

identity. Then, by the standard Completeness Theorem for first-order languages, there is an MT-

interpretation 〈D, F 〉 on which Γ ∪ {p¬φq} is true. For an arbitrary d ∈ D, let a◦ = a if a ∈ D, and let

a◦ = d otherwise. Let I be any SO-interpretation such that

I 〈pPn
α q, 〈a1, . . . , an〉〉 ↔ 〈a◦1, . . . , a◦n〉 ∈ F (pPn

α q)

An induction on the complexity of formulas shows that, for any a1, . . . , an, if φ is a formula with free

variables among pv1q, . . . , pvnq, then φ is true on I[−→vn/−→an] just in case φ is true on
〈
D, F [−→vn/

−→
a◦n]

〉
. It

follows that Γ ∪ {p¬φq} is true on I. ¤

5 Additional Assumptions

The assumption that everything can be put in one-one correspondence with the ordinals implies that

the universe can be well-ordered. But it also imposes restrictions on the universe which are independent

of choice principles. In particular, since the ordinals are pure sets, it implies that there can’t be more

urelements than pure sets. It is important to note that this sort of restriction is inessential. The proof in

section 2 makes non-choice assumptions in order to minimize the use of second-order resources. But, by

making heavier use of second-order resources, the Completeness Theorem can be proved within second

ZFC plus urelements from the assumption that the universe can be well-ordered.

Proof Sketch: Say that < is a well-ordering of the universe, and let Γ be a set of sentences of LU

which is consistent with respect to ∆∞. We show that there is an SO-interpretation on which every

sentence in Γ is true.

We begin with some notation. Let LU
+ be the result of enriching LU with a constant-letter pcaq for

every individual a. [This is possible because we may assume, with no loss of generality, that none of the

primitives in LU is identical to 〈x, 0〉 for some x, and go on to identify pcaq with 〈a, 0〉 for every a.] In

addition, let G0 be such that G0(x) ↔ (x ∈ Γ ∨ x = pca 6= cbq) for a 6= b.

The consistency of G0 with respect to ∆∞ follows from the consistency of Γ with respect to ∆∞.

We wish to produce a consistent extension of G0 which contains ‘witnesses’ for all existential sentences.

Since < is a well-ordering of the universe, we may say that, for any individual a, pφa(xia)q is the a-th
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formula of LU
+ with one free variable pxia

q. Similarly, for some subcollection D of the constant-letters

in LU
+, we may say that, for any individual a, pdaq is the a-th constant-letter in D. With no loss of

generality, we may assume that, for each individual a, the a-th formula of LU
+ with one free variable

does not contain the a-th constant-letter in D. Let G1 be the result of adding to G0, for each individual

a, the formula p∃xia(φa(xia)) → φa(da)q. It is easy to verify that the consistency of G1 with respect to

∆∞ follows from the consistency of G0 with respect to ∆∞.

The next step is to produce an extension of G1 which is negation-complete in LU
+ and consistent with

respect to ∆∞. For each individual a, we define Pa as follows:

• P0(x) ↔ G1(x), where 0 is the <-smallest individual.

• For a such that 0 < a, let φ be the <-smallest sentence of LU
+ which is <-greater than or equal to

a, and let X be such that ∀x(X(x) ↔ ∃b < a(Pb(x))). Then Pa(x) ↔ (X(x) ∨ x = φ) if the result

of adding φ to the formulas in X is consistent with respect to ∆∞, and Pa(x) ↔ X(x) otherwise.

If no sentence of LU
+ is <-greater than or equal to a, then Pa(x) ↔ X(x).

Let G2 be such that G2(x) ↔ ∃a(Pa(x)). It is straightforward to show that G2 is an extension of G1

which is negation-complete in LU
+ and which is consistent with respect to ∆∞.

Finally, we provide an SO-interpretation on which every sentence in G2 is true. Let G3 be the result

of substituting ‘∃’ for ‘∃U ’ throughout G2. Expand the definition of SO-interpretations so as to allow

for individual constants (in the obvious way), and let I be an SO-interpretation meeting the following

conditions:

• I 〈‘∀’, x〉 iff there is a constant paq such that x = paq and, for some constant pcq, paq is the

<-smallest constant such that G3(pa = cq).

• if pcq is a constant, then I 〈pcq, x〉 iff there is a constant paq such that x = paq and paq is the

<-smallest constant such that G3(pa = cq);

• if pPq is an n-place predicate, then I 〈pPq, 〈x1, . . . , xn〉〉 iff there are constants pa1q, . . . , panq such

that x1 = pa1q, . . . , xn = panq and G3(pP (a1, . . . , an)q).

An induction on the complexity of formulas shows that a sentence φ is true on I just in case G3(φ). But,

since LU
+ contains a constant pcaq for each individual a, and since G3(pca 6= cbq) whenever a 6= b, the

individuals in the domain of I can be put in one-one correspondence with everything. This allows us to

define an SO-interpretation on which every sentence in G2 is true and, hence, an SO-interpretation on

which every sentence in Γ is true. ¤
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6 Second-order Languages

So far our object-language has always been a first-order language, but SO-interpretations can also be

used to provide a semantics for second-order languages.22

Formally, we continue to regard ‘I is an SO-interpretation’ as an abbreviation for ‘∃x(I 〈‘∀’, x〉) ∧
∀x(FOV(x) → ∃!yI 〈x, y〉)’ (or as an abbreviation for ‘∀x(FOV(x) → ∃!yI 〈x, y〉)’ if only unrestricted

quantifiers are taken into account). But we add the following clauses to our characterization of ‘φ is true

on I’:

[SO-V ] pV n
i (vj1 , . . . , vjn)q is true on I iff I 〈pV n

i q, 〈I(pvj1q), . . . , I(pvj1q)〉〉,

[SO-2∃] p∃V n
i (ψ)q is true on I iff ∃X(∀x(X(x) → I 〈‘∀’, x〉) ∧ pψq is true on I[pV n

i q/X]),

[SO-2∃U ] p∃UV n
i (ψ)q is true on I iff ∃X(pψq is true on I[pV n

i q/X]).

where I[pV n
i q/X] is just like I except that, for all x, I 〈pV n

i q, x〉 ↔ X(x). SO-validity is characterized

as before.

Intuitively, the ‘semantic value’ which an SO-interpretation I assigns to an n-place second-order

variable pV nq is the collection of n-tuples 〈x1, . . . , xn〉 such that I is true of 〈pV nq, 〈x1, . . . , xn〉〉. Clause

[SO-2∃] ensures that every collection of individuals in the ‘domain’ of I is within the ‘range’ of the stan-

dard (domain-dependent) second-order quantifier ‘∃’, and clause [SO-2∃U ] ensures that every collection

of individuals is within the ‘range’ of the unrestricted second-order quantifier ‘∃U ’.

As in the first-order case, there are second-order sentences containing unrestricted quantifiers which

are SO-valid even though their domain-relative counterparts are not. For instance, the infinity of the uni-

verse ensures that the following sentence—which states that there is a one-one function from everything

onto less than everything—is SO-valid:

∃UR[∀Ux∀Uy∀Uz(R(x, y) ∧R(x, z) → y = z)∧

∀Ux∀Uy∀Uz(R(x, z) ∧R(y, z) → x = y)∧

∀Ux∃Uy(R(x, y)) ∧ ∃Uy∀Ux(¬R(x, y))];

even though its domain-relative counterpart is not, since there are SO-interpretations with finite ‘do-

mains’. Similarly, the existence of inaccessibly many sets ensures that the following sentence—which

implies that there are inaccessibly many individuals—is SO-valid:
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∃UR(ZFC2)

where ‘ZFC2’ is the result of substituting the unused second-order variable ‘R’ for every

occurrence of ‘∈’ in (an unrestricted version of) the conjunction of the axioms of second-

order ZFC.

even though its domain-relative counterpart is not, since there are SO-interpretations with ‘domains’

which do not contain inaccessibly many objects.

Finally, consider the following two sentences, both of which are free from non-logical vocabulary:

[CH] ∀UX(Aleph-1(X) ↔ Continuum(X))

[NCH] ∀UX(Aleph-1(X) → ¬Continuum(X))

where ‘Aleph-1(X)’ is (the unrestricted version of) a formula of pure second-order logic to

the effect that there are precisely ℵ1-many objects falling under ‘X’, and ‘Continuum(X)’

is (the unrestricted version of) a formula of pure second-order logic to the effect that there

are precisely continuum-many objects falling under ‘X’ (see Shapiro (1991), section 5.1).

Suppose that the continuum hypothesis is true. Then [CH] is SO-valid, and so is its domain-relative

counterpart. But the existence of ℵ1-many individuals ensures that the negation of [NCH] is SO-

valid, even though its domain-relative counterpart is not (since it is false on any SO-interpretation with

a ‘domain’ consisting of less-than-ℵ1-many individuals). On the other hand, suppose the continuum

hypothesis is false. Then [NCH] is SO-valid, and so is its domain-relative counterpart. But the existence

of ℵ1-many individuals ensures that the negation of [CH] is SO-valid, even though its domain-relative

counterpart is not (since it is false on any SO-interpretation with a ‘domain’ consisting of less-than-ℵ1-

many individuals). So, whether or not the continuum hypothesis is true, [CH] or its negation is SO-valid,

and [NCH] or its negation is SO-valid. But the same cannot be said of their domain-relative counterparts.

(A similar example can be constructed for the case of the Generalized Continuum Hypothesis.)

Our examples illustrate a general feature of unrestricted second-order sentences, which sets them

apart from their domain-relative counterparts: every true second-order sentence containing no non-

logical vocabulary or domain-relative quantifiers is SO-valid.

Unfortunately, we cannot hope to obtain a completeness result for second-order languages (whether

the quantifiers be unrestricted or domain-relative). It is a consequence of Gödel’s Incompleteness Theo-

rem that, if D is any effective second-order deductive system which is sound with respect to SO-validity,

then there is a second-order sentence which is SO-valid but is not a theorem of D.23
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7 Higher-order Languages

We have seen that SO-interpretations can be used to provide a semantics for second-order languages.

Could SO-interpretations also be used to provide a semantics for a language containing second-level

predicates, such as our metalinguistic predicate ‘φ is true on I’ (where ‘I’ is a second-order variable)?

There is an important sense in which they cannot. Say that a semantics based on Υ-interpretations

is strictly adequate for a language L only if every semantic value which a non-logical expression in

L might take is captured by some Υ-interpretation. Then a semantics based on SO-interpretations

cannot be strictly adequate for a language containing second-level predicates. Informally, the problem is

this: the semantic value of a second-level predicate might consist of any ‘supercollection’ of collections

of individuals. But a (third-order) generalization of Cantor’s Theorem shows that there are ‘more’

supercollections of collections of individuals than there are collections of individuals. Since each SO-

interpretation is given by the collection of individuals a second-order variable is true of, this means that

there are ‘more’ semantic values a second-level predicate might take than SO-interpretations. So there

are semantic values a second-level predicate might take which are not captured by any SO-interpretation.

Again, this informal explanation is strictly nonsense, since ‘is a collection’ and ‘is a supercollection’ take

the position of first-level predicates in sentences of natural language, even though they are intended

to capture higher-order notions; nonetheless, it draws attention to a helpful analogy between first- and

higher-order notions. The result can be stated formally and proved within a third-order language.

In order to provide a strictly adequate semantics for languages containing second-level predicates one

needs at least a third-order metalanguage enriched with a third-level predicate (i.e. a predicate taking

third-order variables in some of its argument-places). And, of course, the situation generalizes. In order

to provide a strictly adequate semantics for languages containing nth-level predicates one needs at least

an (n + 1)th-order metalanguage enriched with an (n + 1)th-level predicate.

8 Concluding Remarks

We conclude with a historical note. The formal system which Frege set forth in the Begriffsschrift was

meant to be a universal language: it was intended as a vehicle for formalizing all deductive reasoning.

Accordingly, Frege took the first-order variables of his system to range over all individuals. So much is

beyond dispute. However, some interpreters have recently contended that Frege’s conception of logic as

a universal language prevented him from engaging in substantive metatheoretical investigation.24 The

problem, they argue, is that there can be no external perspective within a universal logical system from
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which to assess the system itself. With this we disagree.25

The metatheoretical results in the present paper show that absolutely unrestricted quantification is

not an obstacle to substantial metatheoretical investigation. Accordingly, our results show that metathe-

oretical investigation is possible for systems which do not allow for an ontologically external perspective.

We did, of course, make use of an ideologically external perspective, since (for instance) we appealed to

a higher-order metalanguage in our study of first-order object-languages. But this does not affect the

claim that a universal language can be used to perform a substantial metatheoretical investigation of a

fragment of itself, even when the fragment contains unrestricted quantifiers.26
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Notes

1Tarski (1986) (text of a lecture delivered in 1966) suggests invariance under permutations of the

universe as a criterion for a logical constant. Sher (1991) develops this approach in an extensional way

(see also McGee (1996); contrast McCarty (1981)). Alternatively, one might require the invariance to

be necessary or a priori. One can also require logical constants to be invariant in extension across

circumstances of evaluation (worlds and times), so that a predicate applicable to everything if Nelson

died at Trafalgar and to nothing otherwise does not qualify as a logical constant, even though we know a

priori that it is necessarily permutation-invariant in extension. Almog (1989) also characterizes logical

truth by permutation invariance, although the underlying conception is quite different. Our aim here is

not fine-tuning the notion of logical consequence.

2We take a first-order language to consist of the following symbols: the logical connectives ‘∧’ and ‘¬’,

the quantifier-expression ‘∃’, variable-symbols pviq for i ∈ ω, the identity-symbol ‘=’, n-place predicate-

letters pPn
α q for n ∈ ω and α in some set S, and the auxiliary symbols ‘(’ and ‘)’. We do not consider

function-letters, since they can be simulated by (n + 1)-place predicates. The formulas of L are defined

in the usual way.

3To simplify our presentation, we make the assumption that, for every x, the 1-tuple of x is identical

with x.

4A powerful defense of unrestricted quantification is set forth in Cartwright (1994), undermining

some of the classic criticisms in Dummett (1981) chapters 14–16. The possibility of quantifying over

everything is also defended in Boolos (1998b), McGee (2000), Williamson (1999), Rayo (2003) and

Williamson (forthcoming).

5See Quine (1937), Church (1974), Mitchell (1976) and Skala (1974). For an extended discussion of

set theories with a universal set, see Forster (1995).

6On this definition, not everything falling under ‘I’ has a role to play in the resulting semantics. If

we wished to stipulate away idle clutter, we could have taken ‘I is an SO-interpretation’ to abbreviate
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the following instead:

∃x(I 〈‘∀’, x〉) ∧ ∀x(FOV(x) → ∃!yI 〈x, y〉)∧

∀x{Ix → [∃y(x = 〈‘∀’, y〉) ∨ ∃y∃z∃n(Pred(y, n) ∧Tuple(z, n) ∧ x = 〈y, z〉)∨

∃y∃z(FOV(y) ∧ x = 〈y, z〉)]}

where the predicates are understood in the obvious way: ‘FOV(x)’ is interpreted as ‘x is a first-order

variable’, ‘Pred(x, n)’ is interpreted as ‘x is an n-place predicate’ and ‘Tuple(x, n)’ is interpreted as

‘x is an n-tuple’.

7For more on second-level predicates see Rayo (2002). Vann McGee has pointed out that, as long

as L is a first-order language, the notion of truth on an SO-interpretation for L can be explicitly

characterized in a second-order language with no atomic second-level predicates (see ‘Universal Universal

Quantification’, in this volume). When L is a second-order language, however, the notion of truth on an

SO-interpretation for L cannot be characterized in a second-order language with no atomic second-level

predicates. [Proof Sketch: Let L and L′ be second-order languages containing no atomic second-level

predicates and let M be the intended SO-interpretation for L′. We suppose, for reductio, that it is

possible to characterize in L′ the notion of truth on an SO-interpretation for L, in other words, we

suppose that there is a formula ‘Sat(x, I)’ of L′ such that the following sentence of L′ is true on M :

(∗) ∀I∀x[(I is an SO-interpretation for L ∧ x is a formula of L) →

([SO-=] ∧ [SO-P ] ∧ [SO-¬] ∧ [SO-∧] ∧ [SO-∃] ∧ [SO-V ] ∧ [SO-2∃])]

where ‘I is an SO-interpretation for L’ and ‘x is a formula of L’ are interpreted in the obvious way, and

‘Sat(x, I)’ is substituted for ‘x is true on I’ in [SO-=], [SO-P ], [SO-¬], [SO-∧], [SO-∃], [SO-V ] and [SO-2∃]

([SO-V ] and [SO-2∃] are defined in section 6). With no loss of generality, we may assume that L′ contains

no non-logical predicate-letters which do not occur in (∗), and hence that L′ contains only finitely many

non-logical primitives (for simplicity, we take second-order languages to contain no function-letters).

Since ‘x is a formula of L’ is true of all and only formulas of L, the domain of M must be infinite; this

means that any arithmetical sentence pφq can be expressed in L′ as the universal closure of the result

of substituting the arithmetical primitives for variables of the appropriate type in pPA → φq, where

PA is the conjunction of the second-order Dedekind-Peano Axioms. It is therefore harmless to assume

that the language of arithmetic can be interpreted in the theory of M . From this it follows that L′
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is able to characterize its own syntax by way of Gödel numbering. Let P1, . . . , Pn be a complete list

of the non-logical predicate-letters in L′, and say that a correspondence function is a one-one function

mapping each of the Pi (1 ≤ i ≤ n) onto a variable of L with the same number of argument-places.

Since L′ is able to characterize the syntax of L in addition to its own, there is a correspondence function

c definable in L′. If φ is a formula of L′, let φc be the result of substituting c(Pi) for every occurrence

of Pi in φ (1 ≤ i ≤ n), and, if necessary, relabelling variables to avoid clashes. For any formula φ

of L′, c(φ) is a formula of pure second-order logic, and therefore a formula of L. Moreover, it follows

from the definability of c in L′ that there is a formula C(x, y) of L′ which holds of x and y just in

case x is the (Gödel number of) a formula φ of L′ and y is c(φ). It is also possible to characterize

in L′ an SO-interpretation IM of L with the following characteristics: (a) IM (〈‘∀’, x〉) if and only if

M(〈‘∀’, x〉) and (b) for each Pi (1 ≤ i ≤ n), if pV m
j q is c(Pi), then IM (

〈
pV m

j q, 〈x1, . . . , xm〉
〉
) if and only

if M(〈pPiq, 〈x1, . . . , xm〉〉). But ‘∀y(C(x, y) → Sat(y, IM ))’ is a truth predicate for L′, contradicting

Tarski’s Theorem.] It is worth noting that the result continues to hold when L contains unrestricted

quantifiers (introduced in sections 2 and 6).

8See Kreisel (1967). Cartwright (1994) uses Kreisel’s argument to argue against the view that the

All-in-One Principle—the principle that to quantify over certain objects is to presuppose that there is

one thing of which those objects are the members—derives support from MT-semantics. In particular,

Cartwright notes that Kreisel’s argument undermines the thought that the MT-validity of a sentence

φ can only be a guarantee of φ’s truth if the intended domain of φ coincides with the domain of some

MT-interpretation.

9As usual, we take ‘∀Uv(φ)’ to abbreviate ‘¬∃Uv¬(φ)’.

10Since any theory compatible with Robinson Arithmetic is recursively undecidable (see, for instance,

Mendelson (1987), proposition 3.48), the recursive undecidability of the set of theorems of ∆∞ is an

immediate consequence of the observation that Robinson Arithmetic can be consistently added to the

axioms of ∆∞.

11For an interesting discussion on the question of whether everything can be put in one-one correspon-

dence with the ordinals, see Shapiro (forthcoming).

12See Rubin and Rubin (1985) p. 286.

13See Friedman (1999), theorem D.4.
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14The proof is analogous to standard proofs that the Generalized Completeness Theorem is equivalent

to the Prime Ideal Theorem within ZF. See, for instance, Jech (1973) p. 17.

15See Jech (1973) §7.1.

16The equivalence of the Prime Ideal Theorem to the Generalized Completeness Theorem is due to

Henkin (1954). For a more recent exposition of the proof, see Mendelson (1987).

17The results are due to Vaught (1956) and Tarski and Vaught (1957). For proofs see Rubin and

Rubin (1985) p. 163.

18Thanks here to Robert Black.

19For a proof, see Mendelson (1987) proposition 2.33.

20 For additional results within a metatheory lacking choice principles see Friedman (1999).

21It is worth noting that the assumption that the set of non-logical primitives in LU has cardinality

ℵα for some α is required in the proof below to ensure that the relevant version of the Completeness

Theorem for domain-relative first-order languages holds. But the assumption is not needed to extend

the completeness result for domain-relative first-order languages to a completeness result for unrestricted

first-order languages.

22See Rayo and Uzquiano (1999).

23For the domain-relative case, see Shapiro (1991), theorem 4.14. When the quantifiers are unre-

stricted, the result can be proved as follows. Let A be the conjunction of a finite, categorical axiomati-

zation of pure second-order arithmetic, formulated in the language of pure second-order arithmetic (for

instance, the system described in Shapiro (1991), section 4.2.). Let L2U be a second-order language with

unrestricted quantifiers containing every non-logical primitive in A. For N an unused monadic predicate

of L2U and φ a sentence of the language of pure second-order arithmetic, let φN be the sentence of

L2U which results from substituting ‘∀U ’ and ‘∃U ’ for ‘∀’ and ‘∃’ in φ (respectively), and relativizing the

resulting quantifiers with N . Let T be the set of sentences φN of L2U such that φN is derivable in D from

AN . Since D is effective, T is recursively enumerable. Say that an SO-interpretation I is arithmetical

just in case AN is true on I. Since D is sound with respect to SO-validity, it follows that every sentence

in T is true on every arithmetical SO-interpretation. But if φ is a sentence of the language of pure

second-order arithmetic and φN is true on every arithmetical SO-interpretation, then φ is true. So any
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sentence φ of the language of pure second-order arithmetic such that φN is a member of T must be true.

By Gödel’s Incompleteness Theorem, the collection of true sentences of the language of pure first-order

arithmetic is not recursively enumerable. Since T is recursively enumerable, it follows that there is a

true sentence of first-order arithmetic ψ such that ψN is not in T . Hence, pAN → ψNq is not derivable

in D. But it follows from the categoricity of A that pAN → ψNq is true on every SO-interpretation.

24Relevant texts include Van Heijenoort (1967), Goldfarb (1979), Goldfarb (1982), Dreben and Van Hei-

jenoort (1986), Ricketts (1986) and Conant (1991).

25We are not alone. See Stanley (1996) and Tappenden (1997).

26Thanks to Vann McGee and Stephen Read for many helpful comments.
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