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I have two main objectives. The first is to get a better understanding of what is at

issue between friends and foes of higher-order quantification, and of what it would mean

to extend a Boolos-style treatment of second-order quantification to third- and higher-

order quantification. The second objective is to argue that in the presence of absolutely

general quantification, proper semantic theorizing is essentially unstable: it is impossible

to provide a suitably general semantics for a given language in a language of the same

logical type. I claim that this leads to a trilemma: one must choose between giving up

absolutely general quantification, settling for the view that adequate semantic theorizing

about certain languages is essentially beyond our reach, and countenancing an open-ended

hierarchy of languages of ever ascending logical type. I conclude by suggesting that the

hierarchy may be the least unattractive of the options on the table.

1 Preliminaries

1.1 Categorial Semantics

Throughout this paper I shall assume the following:

Categorial Semantics

Every meaningful sentence has a semantic structure,1 which may be represented
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as a certain kind of tree.2 Each node in the tree falls under a particular se-

mantic category (e.g. ‘sentence’, ‘quantifier’, ‘sentential connective’), and has

an intension that is appropriate for that category. The semantic category and

intension of each non-terminal node in the tree is determined by the semantic

categories and intensions of nodes below it.

Although I won’t attempt to defend Categorial Semantics here,3 two points are worth

emphasizing. First, the claim that meaningful sentences are endowed with some sort of

semantic structure is not optional. It is forced upon us by considerations of compositionally.

(It is hard to understand how a sentence could have different semantic ‘constituents’ in the

absence of some kind of semantic structure.) Second, the notions of semantic structure and

semantic category should be distinguished from the notions of grammatical structure and

grammatical category. Whereas the former are chiefly constrained by a theory that assigns

truth-conditions to sentences, the latter are chiefly constrained by a theory that delivers a

criterion of grammaticality for strings of symbols. (The two sets of notions are nonetheless

interrelated, since we would like to have a transformational grammar that specifies a class

of legitimate transformations linking the two.)

1.2 An example

Let L0 be an (interpreted) propositional language. It consists of the following symbols:

the sentential-letters ‘p’, ‘q’, and ‘r’; the one-place connective-symbol ‘¬’; the two-place

connective-symbols ‘∨’ and ‘∧’; and the auxiliary symbols ‘(’ and ‘)’. Well-formed formulas

are defined in the usual way.

Here is an example of a categorial semantics for L0. There are three semantic categories:

‘sentence’, ‘one-place connective’ and ‘two-place connective’. To each of these categories

corresponds a different kind of intension: the intension of a sentence is a set of possible
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worlds, the intension of a one-place connective is a function that takes each set of possible

worlds to a set of possible worlds, and the intension of a two-place predicate is a function

that takes each pair of sets of possible worlds to a set of possible worlds. We let the basic

semantic lexicon of L0 consist of ‘p’, ‘q’, ‘r’, ‘¬’, ‘∨’ and ‘∧’. The lexical items ‘p’, ‘q’ and

‘r’ fall under the ‘sentence’ category and have the following intensions:

I(‘p’) = {w : snow is white according to w}

I(‘q’) = {w : roses are red according to w}

I(‘r’) = {w : violets are blue according to w}

The lexical item ‘¬’ falls under the ‘one-place connective’ category and has the following

intension:

I(‘¬’) = the function taking W to its set-theoretic complement W

The lexical items ‘∨’ and ‘∧’ fall under the ‘two-place connective’ category and have the

following intensions:

I(‘∨’) = the function taking each pair 〈W,V 〉 to W ∪ V

I(‘∧’) = the function taking each pair 〈W,V 〉 to W ∩ V

The semantic structure a formula of L0 mirrors its syntax. For instance, the semantic

structure of ‘(p ∧ q) ∨ ¬r’ (or, in Polish notation, ‘∨ ∧ p q ¬r’) is given by the following

tree:
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(‘S’, ‘C1’ and ‘C2’ stand for ‘sentence’, ‘one-place connective’ and ‘two-place connective’,

respectively.) Each terminal node in the tree is assigned the intension and semantic cat-

egory of the lexical item displayed underneath. The intensions and semantic categories

of non-terminal nodes are determined by the intensions and semantic categories of nodes

below them, in the obvious way (e.g. the intension of base node is (I(‘p’)∩ I(‘q’))∪ I(‘r’)).

Since the intensions of sentences are taken to be sets of possible worlds, the semantics

immediately delivers a characterization of truth for sentences in L0: sentence S is true in

world w if and only if w is a member of the intension assigned to the base node of S’s

semantic structure.

1.3 Legitimacy

I shall say that a semantic category C is legitimate just in case it is in principle possible to

make sense of a language whose semantic properties are accurately described by a categorial

semantics employing C.

One can certainly make sense of a propositional language. So ‘sentence’, ‘1-place con-

nective’ and ‘2-place connective’ are all legitimate semantic categories. One can also make

sense of a first-order language. So ‘name’, ‘n-place predicate’ and ‘first-order quantifier’

(with suitable intensions), are also legitimate semantic categories. But where do the limits

lie? Might a purported semantic category be ruled out by the very nature of language?
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An example might bring the matter into sharper focus. Let L1 be an (interpreted)

first-order language, and suppose it is agreed on all sides that the individual constant ‘c’

of L1 falls under the semantic category ‘name’, and that the predicate ‘P (. . .)’ of L1 falls

under the semantic category ‘one-place predicate’.4 To fix ideas, think of the intension

of a name as a function that takes each world to an individual in that world, and of the

intension of a one-place predicate as a function that takes each world to a set of individuals

in that world. Now suppose we tried to enrich L1 with the new item ‘ξ’, in such a way

that ‘ξ(c)’ and ‘P (ξ)’ are both sentences. It is tempting to think that there is no way of

carrying out the extension without lapsing into nonsense. If this is right, then ‘ξ’ could

not fall under a legitimate semantic category.

This is something of an extreme case, since the possibility of a semantic category cor-

responding to ‘ξ’ is ruled out by the category-formation rules of standard implementations

of categorial semantics.5 But the philosophy of logic is peppered with cases that are more

difficult to adjudicate. Consider, for example, the debate that is sometimes labeled ‘Is

second-order logic really logic?’.6 Quine has famously argued that the only way of mak-

ing sense of second-order quantifiers is by understanding them as first-order quantifiers

ranging over set-like entities. If this is right, second-order quantifiers cannot fall under a

legitimate semantic category, at least not insofar as it is insisted that they not be thought

of as first-order quantifiers.

Contrary claims are made by Quine’s rivals. Boolos (1984) argues that it is possible to

make sense of the Geach-Kaplan Sentence:

Some critics admire only one another.

even though it is “a sentence whose quantificational structure cannot be captured by first

order logic”. If this is right, plural quantifiers fall under semantic category that is both

legitimate and distinct from that of (singular) first-order quantifiers.
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Boolos’s work on plural quantification is an important contribution to the debate on

second-order logic not because it shows that second-order quantifiers are plausibly under-

stood as plural quantifiers. (Although plural quantifiers can be used to play the same

role as second-order quantifiers for certain purposes, they should not be identified with

second-order quantifiers because plural terms such as ‘they’ and ‘them’ do not take pred-

icate positions.7) Rather, it is important because it makes a convincing case for the view

that quantifiers other than the standard (singular) first-order quantifiers can fall under a

legitimate semantic category, and this opens the door for thinking that it might be possible

to understand second-order quantifiers in such a way that they too belong to a semantic

category that is both legitimate and distinct from that of singular (first-order) quantifiers.

Needless to say, the concession that second-order quantifiers fall under a legitimate

and sui generis semantic category would leave a number of important issues unresolved.

The logicality of second-order quantifiers would not automatically be settled, since a single

semantic category might include both logical and non-logical items (e.g. ‘. . . = . . . ’ and

‘. . . is a parent of . . . ’). The ontological commitments of second-order quantifiers would not

automatically be settled, since the standard criterion of ontological commitment—Quine’s

criterion—applies only to first-order languages.8 And the determinacy of second-order

quantifiers would not automatically be settled, since an expression can be indeterminate

even if its semantic category is fixed.9

2 Beyond Plurals

In this section I will introduce an infinite hierarchy of predicates, terms and quantifiers.

I will claim without argument that each element in the hierarchy falls under a legitimate

semantic category. Later in the paper I will try to motivate this claim.
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2.1 First-level predicates

A first-level predicate is a predicate that takes a singular term in each of its argument

places. It is tempting to think that the semantic value of the monadic first-level predicate

‘. . . is an elephant’ is the set of elephants. More generally, it is tempting to think that the

semantic value of the monadic first-level predicate ‘P 1(. . .)’ is the set of individuals ‘P 1(. . .)’

is true of. But now assume—as I will throughout the remainder of the paper—that it is

possible to quantify over absolutely everything.10 Then the thought is unsustainable. For

it leads to the unwelcome conclusion that predicates such as ‘. . . is self-identical’ or ‘. . . is

a set’ lack a semantic value.

(The problem cannot be solved by appealing to a non-standard set theory, or by em-

ploying entities other than sets. Suppose, for example, that one takes the semantic value

of a monadic first-level predicate to be a set∗ rather than a set. It follows from a general-

ization of Cantor’s Theorem that at least one of the following must be the case:11 either

(a) there are some things—the Fs—such that there is no set∗ consisting of all and only the

Fs, or (b) there are some things—the Fs—and some things—the Gs—such that the Fs are

not the Gs but the set∗ of the Fs is identical to the set∗ of the Gs. So we are left with the

unsettling conclusion that either there are some things such that a predicate true of just

those things would lack a semantic value, or there might be two predicates that share a

semantic value but are not true of the same things.)

Rather than taking ‘. . . is an elephant’ to stand for the set of elephants, I would like to

suggest that one should take it to stand for the elephants themselves. It is grammatically

infelicitous to say that the semantic value of ‘. . . is an elephant’ is the elephants. So I shall

say state the view by saying that ‘. . . is an elephant’ refers to the elephants. Formally,

∃xx(∀y(y ≺1,2 xx↔ Elephant1(y)) ∧Ref1,2(‘. . . is an elephant’, xx))
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which is read:

There are some things—the xxs—such that: (a) for every y, y is one of the xxs

if and only if y is an elephant, and (b) ‘. . . is an elephant’ refers to the xxs.

Double variables are used for plural terms and quantifiers,12 and superscripts indicate the

type of variable that the relevant predicate takes in each of its argument places. Predicates

are interpreted in the obvious way: ‘y ≺1,2 xx’ means ‘y is one of the xxs’ (or ‘ity is one

of themxx’), ‘Elephant1(y)’ means ‘y is an elephant’ and ‘Ref1,2(y, xx)’ means ‘y refers

to the xxs’ (or ‘ity refers to themxx’). The proposal therefore makes use of second-level

predicates. (A second-level predicate is a predicate that takes a plural term in one of its

argument places, and either a singular term or a plural term in the rest; more will be said

about second-level predicates below.)

A snappy way of stating my claim is by saying that the reference of a monadic first-

level predicate is a plurality. (One could say, for instance, that the reference of ‘. . . is an

elephant’ is the plurality of elephants.) But it is important to be clear that apparently

singular quantification over ‘pluralities’ is a syntactic abbreviation for plural quantification

over individuals; and that plural quantification is not the standard sort of (first-order)

quantification over a new kind of ‘item’ (‘plurality’); it is a new kind of quantification over

individuals, which are the only kind of ‘item’ there is.

2.2 First-level terms

Let us now turn our attention to plural terms (or first-level terms, as I shall call them).13

I argued above that it implausible to think that the first-level predicate ‘. . . is an elephant’

refers to the set of elephants. It is similarly implausible to think that the first-level term

‘the elephants’ refers to the set of elephants, since the general view that ‘the Fs’ refers to

the set of Fs leads to the unwelcome result that first-level terms such as ‘the self-identical

8



things’ or ‘the sets’ are without reference. (And, for the same reasons as before, the

problem cannot be avoided by appealing to a non-standard set-theory, or by employing

entities other than sets.)

I would like to suggest that first-level terms—like monadic first-level predicates—refer

to pluralities. Thus, ‘the elephants’ refers, not to the set of elephants, but to the elephants

themselves. Formally,

∃xx(∀y(y ≺1,2 xx↔ Elephant1(y)) ∧Ref1,2(‘the elephants’, xx))

which is read:

There are some things—the xxs—such that: (a) for every y, y is one of the xxs

if and only if y is an elephant, and (b) ‘the elephants’ refers to the xxs.

2.3 The saturation operator

Let the saturation operator ‘σ’ be such that, given any monadic first-level predicate

‘P 1(. . .)’, ‘σ[P 1(. . .)]’ is a first-level term for which the following holds:

∀xx(Ref1,2(‘P 1(. . .)’, xx)↔ Ref1,2(‘σ[P 1(. . .)]’, xx))

The term ‘σ[P 1(. . .)]’ may therefore be thought of as something along the lines of the plural

definite description ‘the P 1s’. (See, however, section 3.4.)

There are interesting similarities between our saturation operator and the abstraction

operator ‘λ’. But, of course, they are distinct. Whereas the saturation operator transforms

predicates into terms, the abstraction operator transforms sentences into predicates.

One may wish to insist that it is inappropriate to use a single reference relation for

predicates and terms. One might think that, strictly speaking, there are two different kinds
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of reference: predicate-reference and term-reference. Nothing I shall say is incompatible

with such a view. If one wanted, one could characterize the saturation-operator as follows:

∀xx(P-Ref1,2(‘P 1(. . .)’, xx)↔ T-Ref1,2(‘σ[P 1(. . .)]’, xx))

But the real difference between ‘. . . is an elephant’ and ‘the elephants’ is that they fall under

distinct semantic categories. And, since that is a difference that is already reflected in the

syntax, I won’t bother distinguishing between predicate-reference and term-reference.

2.4 Second-level predicates

There is a case to be made for the view that English predicates such as ‘. . . are scattered on

the table’ in ‘The seashells are scattered on the table’ or ‘. . . are surrounding the building’

in ‘the students are surrounding the building’ are best understood as genuine second-level

predicates.14 Suppose such a view is correct. One might then be tempted to think that the

reference of ‘. . . are scattered on the table’ is the set of all and only sets whose members

are scattered on the table (or, alternatively, the plurality consisting of all and only sets

whose members are scattered on the table). More generally, one might be tempted to

think that the second-level predicate ‘. . . are P’ refers to the set of all and only sets whose

members are collectively P (or, alternatively, to the plurality consisting of all and only sets

whose members are collectively P). But one would then be forced to withhold reference

from, e.g. a second-level predicate true of all and only pluralities whose members are too

many to form a set. (And, as before, the problem cannot be avoided by appealing to a

non-standard set-theory, or by employing entities other than sets.)

I propose instead that the reference of ‘. . . are scattered on the table’ should be char-
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acterized as follows:

∃xxx(∀yy(yy ≺2,3 xxx↔ Scattered2(yy)) ∧Ref1,3(‘. . . are scattered’, xxx))

where treble variables are used for super-plural terms and quantifiers. There are, of course,

no super-plural terms or quantifiers in English, but I would like to suggest the relevant

semantic category is nonetheless legitimate: super-plural quantifiers are to third-order

quantifiers what plural quantifiers are to second-order quantifiers.

Since I cannot use English to state my proposal, I shall state it by saying that the

reference of a monadic second-level predicate is a super-plurality. The reference of ‘. . . are

scattered on the table’, for example, is the super-plurality to which all and only pluralities

scattered on the table belong. But it is important to be clear that apparently singular quan-

tification over ‘super-pluralities’ is a syntactic abbreviation for super-plural quantification

over individuals. Super-plural quantification is not singular (first-order) quantification over

a new kind of ‘item’ (‘super-plurality’), nor is it plural quantification over a new kind of

‘item’ (‘plurality’). Super-plural quantification is a new kind of quantification altogether.

And like its singular and plural counterparts, it is quantification over individuals, which

are the only kind of ‘item’ there is.

I would like to insist that thinking of super-plural quantification as an iterated form

of plural quantification—plural quantification over pluralities—would be a serious mis-

take. Plural quantification over pluralities can only make sense if pluralities are taken

to be ‘items’ of some kind or other. And a plurality is not an ‘item’: apparently singu-

lar quantification over pluralities is a syntactic abbreviation for plural quantification over

individuals.

It is one thing to have a general understanding of the sort of role super-plural quantifiers

are supposed to play. But acquiring a genuine grasp of super-plural quantification—making
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sense of a language containing super-plural quantifiers—is a very different matter. The

remarks in this section are intended to help with the former, but certainly not the latter.

The best way of attaining a genuine grasp of super-plural quantification is presumably by

mastering the use of super-plural quantifiers. (A suitable deductive system is discussed in

section 4.2.)

2.5 Second-level terms

Debatable examples such as ‘the couples’ or ‘the collections’ aside, English appears to con-

tain no second-level terms. But I submit that the relevant semantic category is nonetheless

legitimate.15 One can use the saturation operator, ‘σ’, to form second-level terms by stip-

ulating that, for any monadic second-level predicate ‘P 2(. . .)’, ‘σ[P 2(. . .)]’ is a second-level

term for which the following holds:

∀xxx(Ref1,3(‘P 2(. . .)’, xxx)↔ Ref1,3(‘σ[P 2(. . .)]’, xxx))

Thus, ‘σ[Scattered2(. . .)]’ is to ‘. . . are scattered’ what ‘σ[Elephant1(. . .)]’ is to ‘. . . is

an elephant’. In each case, there is a difference in semantic category without a difference

in reference.

2.6 Beyond

A third-level predicate is a predicate that takes a second-level term in one of its argument

places, and either a second-level term, a first-level term or singular term in the rest. It

seems clear that English contains no third-level predicates. But I submit that the relevant

semantic category is nonetheless legitimate. In analogy with the above, the reference of a
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monadic third-level predicate ‘P 3(. . .)’ may be characterized as follows:

∃xxxx(∀yyy(yyy ≺3,4 xxxx↔ P3(yyy)) ∧Ref1,4(‘P 3(. . .)’, xxxx))

where quadruple variables are used for super-duper-plural terms and quantifiers. There are,

of course, no super-duper-plural terms or quantifiers in English, but, again, I submit that

the relevant semantic category is nonetheless legitimate: super-duper-plural quantifiers are

to fourth-order quantifiers what super-plural quantifiers are to third-order quantifiers and

plural quantifiers are to second-order quantifiers.

And, of course, one can use the saturation operator, ‘σ’, to form third-level terms by

stipulating that, for any monadic third-level predicate ‘P 3(. . .)’, ‘σ[P 3(. . .)]’ is a third-level

term for which the following holds:

∀xxxx(Ref1,4(‘P 3(. . .)’, xxxx)↔ Ref1,4(‘σ[P 3(. . .)]’, xxxx))

A similar story can be told about n-th level terms and predicates for any finite n.

3 Fine-tuning

3.1 Improving the notation

Consider the first-level predicate ‘. . . is an ancestor of Clyde’. The first level-term

σ[. . . is an ancestor of Clyde]

might be read ‘the ancestors of Clyde’ (or, more idiomatically, ‘Clyde’s ancestors’). We

can therefore write

(1) VeryNumerous2(σ[. . . is an ancestor of Clyde]),
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(read: ‘Clyde’s ancestors are very numerous’).

Now consider the result of deleting ‘Clyde’ from (1). Since ‘Clyde’ is a singular term

and (1) is a sentence, what we should get is a first-level predicate, true of all and only

individuals whose ancestors are very numerous. But it is be infelicitous to write

VeryNumerous2(σ[. . . is an ancestor of . . . ]),

because it is unclear which of the two empty argument places in ‘. . . is an ancestor of . . . ’

the saturation operator is germane to. We need to improve our notation. One possibility

is to add indices to ‘σ’ and each of the empty argument places in ‘. . . is an ancestor of . . . ’.

This allows us to distinguish between

VeryNumerous2(σ1[. . . 1 is an ancestor of . . . 2])

and

VeryNumerous2(σ2[. . . 1 is an ancestor of . . . 2]).

Both are first-level predicates. The first is true of all and only individuals whose ancestors

are very numerous; the second is true of all and only individuals whose descendants are

very numerous. Accordingly, one can construct the following sentences:

(2) FormClub2(σ2[VeryNumerous2(σ1[. . . 1 is an ancestor of . . . 2])]),

(roughly: the individuals whose ancestors are very numerous form a club);

and

(3) FormClub2(σ1[VeryNumerous2(σ2[. . . 1 is an ancestor of . . . 2])]),

(roughly: the individuals whose descendants are very numerous form a club).
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Maintaining the dotted-line notation turns out to be somewhat inconvenient, however. I

shall therefore forego the use of ‘. . .i’ in favor of ‘vn
i ’ (where n is the level of terms taking

the place of ‘. . .i’). Thus, (2) and (3) become (2′) and (3′), respectively:

(2′) FormClub2(σ0
2[VeryNumerous2(σ0

1[v0
1 is an ancestor of v0

2])])

(3′) FormClub2(σ0
1[VeryNumerous2(σ0

2[v0
1 is an ancestor of v0

2])])

3.2 The reference of polyadic predicates

I offered a proposal about the reference of monadic nth level predicates in section 2.

But nothing has been said so far about the reference of polyadic predicates, such as

‘Ancestor1,1(. . . , . . .)’, or ‘. . . ≺1,2 . . .’.

One possibility is to take the reference of ‘Ancestor1,1(. . . , . . .)’ to be a plurality of

ordered-pairs. Alternatively, one can take it to be a super-duper-plurality. (Specifically:

the super-duper-plurality consisting of all and only super-pluralities that consist of two

pluralities, one of them consisting of an individual and her ancestor and the other consisting

of the ancestor alone.16) Such proposals generalize naturally to polyadic predicates of any

arity and any finite level. A generalization of the first proposal is supplied in the appendix.

3.3 Intensions

Section 2 focused on the notion of reference. But the proposal can easily be generalized to

provide a characterization of the intensions of nth-level predicates and terms.

Consider the monadic first-level predicate ‘Elephant1(. . .)’ as an example. One pos-

sibility is to take its intension to be the plurality of ordered-pairs 〈w, x〉 such that w is

a possible world and x is an elephant in w. Alternatively, one can take the intension of

‘Elephant1(. . .)’ to be a super-duper-plurality. (Specifically: the super-duper plurality
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consisting of all and only super-pluralities that consist of two pluralities, one of them con-

sisting of an possible world and an elephant in that world and the other consisting of the

world alone.17) Such proposals generalize naturally to polyadic predicates of any arity and

any finite level.

To keep things simple, I will focus on reference rather than intension throughout the

remainder of the paper. But the view can be extended to accommodate intensions if need

be.

3.4 Empty predicates

The second-order sentence

(4) ∃X∀y¬(Xy)

is true, since it can be derived from the true sentence ‘∀y¬(Unicorn1(y))’ by existential

generalization. By contrast, the structurally analogous plural sentence

(5) ∃xx∀y¬(y ≺1,2 xx)

is false, since it is to be interpreted as ‘there are some things such that nothing is one

of them’.18 In some respects, the difference in truth-value between (4) and (5) is of little

importance: Boolos (1984) has shown that there is a systematic way of paraphrasing

second-order sentences as sentences a first-level language enriched with plural quantifiers

(and no second-level predicates other than ‘≺1,2’). We will see, however, that the falsity of

(5) is not without implications in the present context.

One cannot say of the predicate ‘Unicorn1(. . .)’, which is satisfied by no object, that

it has a reference—not if the reference of a monadic first-level predicate is to be a plurality.

For saying of ‘Unicorn1(. . .)’ that it refers to an ‘empty’ plurality amounts to saying:

(6) ∃xx(Ref1,2(‘Unicorn1(. . .)’, xx) ∧ ∀y¬(y ≺1,2 xx));
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and the falsity of (6) is an immediate consequence of the falsity of (5). Happily, the claim

that ‘Unicorn1(. . .)’ has no reference is distinct from the claim that it is meaningless.19

To characterize the compositional behavior of empty predicates, let us begin by stipu-

lating that an atomic predication based on an empty predicate is always false. Thus, for

the case of ‘Unicorn1(. . .)’, we have:

(7) ¬True1(pUnicorn1(t0)q),

for pt0q an arbitrary singular term. This does not, however, settle the question of how to

deal with ‘Unicorn1(. . .)’ when it occurs within the scope of the saturation operator, as

in ‘σ0
1[Unicorn1(v0

1)]’. We know from section 2.3 that:

∀xx(Ref1,2(‘Unicorn1(. . .)’, xx)↔ Ref1,2(‘σ0
1[Unicorn(v0

1)]’, xx)).

Since ‘Unicorn1(. . .)’ is referenceless, it follows that ‘σ0
1[Unicorn1(v0

1)]’ must be refer-

enceless as well. So the question we face is that of characterizing the compositional behavior

of empty terms. For instance, under what circumstances should one say that the following

sentence is true?

P2(σ0
1[Unicorn1(v0

1)]).

Think of the matter like this. An atomic first-level predicate pP1(. . .)q is used to say of an

individual that it is thus-and-so. Thus, when pt0q is an empty singular term, such as ‘Zeus’,

pP1(t0)q is false; for one cannot truthfully say of nothing that it is thus-and-so. Similarly,

an atomic second-level predicate pP2(. . .)q is used to say of some individuals that they

are thus-and-so. Thus, when pt1q is an empty singular term, such as ‘σ0
1[Unicorn1(v0

1)]’,

‘pP2(t1)q’ is false; for one cannot truthfully say of no things that they are thus-and-so.20

Let us therefore stipulate that an atomic predication that applies to an empty term is

always false. For the case of ‘σ0
1[Unicorn1(v0

1)]’, we have:
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(8) ¬True(pP 2(σ0
1[Unicorn1(v0

1)])q),

for pP 2(. . .)q an an arbitrary atomic monadic second-level predicate. (The polyadic case

is analogous). A semantics based on (7) and (8) is developed in the appendix.

3.5 Collapse

Say that Socrates is the one and only Socratizer. It would still be incorrect to the say the

following:

(∗) Socrates is the same individual as the Socratizers

But this is not because (∗) is false. The problem with (∗) is that it is ungrammatical. It is

ungrammatical in just the way that each of the following is ungrammatical:

The Socratizers is the same individual as Socrates ∗

Socrates are the same individuals as the Socratizers ∗

It is important to be clear, however, that this is a point about grammar, not metaphysics.

Just because mixed identity statements are ungrammatical, it doesn’t follow that the world

contains additional items—the ‘pluralities’—over and above individuals. Individuals are

the only ‘items’ there are.

One could, if one wished, extend the formation rules of one’s language so as to admit

mixed identities as well-formed, and extend the semantics for one’s language to assign

mixed identities suitable truth conditions. More generally, one could, if one wanted, allow

nth-level predicates to take mth-level terms as arguments for any m < n. The most natural

way of doing so is by identifying the truth-conditions of pPn(vk
l )q (k + 1 < n) with those

of

∃vk+1
i ∀vk

j ((vk
j ≺k+1,k+2 vk+1

i ↔ vk
j =k+1,k+1 vk

l ) ∧Pn(vk+1
i ));
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where pvn
i =n+1,n+1 vn

j q (0 < n) is a syntactic abbreviation of

∀vn−1
s (vn−1

s ≺n,n+1 vn
i ↔ vn−1

s ≺n,n+1 vn
j );

(and similarly for polyadic predicates). With the extended conception of grammaticality

in place, (∗) can be formalized as something which is both well-formed and true.

This revised conception of grammaticality will be ignored in what follows. But as

long as one is prepared to resist the temptation of drawing metaphysical conclusions from

terminological maneuvering, I can see no objections to adopting it.

3.6 Higher-order predicates

A monadic (n + 1)th-level predicate should be distinguished from a monadic (n + 1)th-

order predicate: whereas the former takes an nth-level term in its argument-place, the

latter takes a nth-level predicate in its argument-place.

On its most natural interpretation, the hierarchy of higher-order predicates is not struc-

turally analogous to the hierarchy of higher-level predicates we have considered here. One

important difference was emphasized in the preceding section. If ‘E1(. . .)’ is a first-order

predicate satisfied by nothing, the standard semantics for higher-order languages allows

for the atomic second-order predication ‘P 2
x (E1(x))’ to be either true or false. But, on the

semantics sketched above, the atomic second-level predication ‘P2(σ0
i [E1(v0

i )])’ is always

false.

In this paper I give no reason for favoring a hierarchy of higher and higher level pred-

icates over a hierarchy of higher and higher order predicates. I have chosen to focus on

the former because it seems to me that second-level predicates deliver a more natural regi-

mentation English predicates with collective readings than their second-order counterparts.

But either hierarchy will do, as far as the purposes of this paper are concerned.21
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4 Higher-level languages

4.1 Limitω languages

Let a limitω language consist of the following symbols:

1. The logical connectives ‘∧’ and ‘¬’;

(‘∨’, ‘⊃’ and ‘↔’ are characterized in terms of ‘¬’ and ‘∧’ in the usual way);

2. for n ≥ 0 and i ≥ 1, the placeholder pvn
i q;

3. for i ≥ 1, the individual constant symbol pc0i q;

(in practice, we will sometimes write, e.g. ‘Clyde’ or ‘c’ in place of pc0i q);

4. for s a finite sequence of positive integers and i ≥ 1, the non-logical predicate-letter

pP s
i q;

(in practice, we will sometimes write, e.g. ‘Ancestor1,1’ and ‘Scattered2’ in place

of pP 1,1
i q and pP 2

j q);

5. for n ≥ 2, the logical predicate-letters ‘=1,1’, p≺n−1,nq and pExnq;

(in practice, we will sometimes write ‘=’ in place of ‘=1,1’, and ‘≺’ in place of

p≺n−1,nq);

6. for n ≥ 0 and i ≥ 1, an instance of the saturation-symbol pσn
i q;

7. the auxiliaries ‘(’, ‘)’, ‘[’ and ‘]’.

Terms and formulas are characterized simultaneously, as follows:

1. pc0i q is a term of level 0;

2. pvn
i q is a term of level n;
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3. if s is the sequence n1, . . . , nm and pt1q, . . . , ptmq are terms of level n1−1, . . . , nm−1

(respectively), then pP s
i (t1, . . . , tm)q is a formula;

4. if pt1q and pt2q are terms of level 0, then pt1 = t2q is a formula;

5. if, for n ≥ 2, pt1q and pt2q are terms of level n − 2 and n − 1 (respectively), then

pt1 ≺n−1,n t2q is a formula;

6. if, for n ≥ 2, ptq is a term of level n− 1, then pExn(t)q is a formula;

7. if ϕ is a formula, then pσn
i [ϕ]q is a term of level n+1;

8. if ϕ and ψ are formulas, p¬ϕq and p(ϕ ∧ ψ)q are formulas;

9. nothing else is a term or a formula.

Finally, we say that formula ϕ is a sentence if every occurrence of a placeholder pvn
i q in ϕ

is within a subformula of the form pσn
i [ψ]q.

It is worth emphasizing that limitω languages contain no primitive quantifier-symbols.

Instead, we introduce the following syntactic abbreviations:

∃vn
i (ϕ) ≡df Exn+2(σn

i [ϕ])

∀vn
i (ϕ) ≡df ¬∃vn

i (¬ϕ)

On the intended interpretation of pExnq, this has the result that ‘∃v0
i ’ may be used to

play the role of singular quantifiers, ‘∃v1
i ’ may be used to play the role of plural quanti-

fiers, ‘∃v2
i ’ may be used to play the role of super-plural quantifiers, and so forth. Thus,

‘∃v0
1(Elephant1(v0

1))’, which abbreviates

Ex2(σ0
1[Elephant1(v0

1)])

(roughly: the plurality of elephants exists),
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may be paraphrased as

∃x(Elephant1(x))

(there is something that is an elephant);

and ‘∃v1
1∃v0

1(v0
1 ≺ v1

1)’, which abbreviates

Ex3(σ1
1[Ex2(σ0

1[v0
1 ≺ v1

1])])

(roughly: the super-plurality xxx exists, where xxx consists of all and only

pluralities xx such that the plurality yy exists, where yy consists of all and

only individuals y such that y is one of the xx),

may be paraphrased as

∃xx∃y(y ≺ xx)

(there are some things such that something is one of them).

To improve readability, I shall sometimes write, e.g. p∃xnq and p∃ymq in place of p∃vn
i q

and p∃vm
j q.

4.2 A deductive system

I this section I will specify a deductive system for limitω languages.22 It is sound with

respect to the semantics supplied in the appendix. But Gödel’s Incompleteness Theorem

implies that one cannot hope for completeness.

We begin with a standard deductive system for the propositional calculus:

(P1) ϕ ⊃ (ψ ⊃ ϕ)

(P2) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
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(P3) (¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)

(MP) Modus Ponens

ϕ, ϕ ⊃ ψ

ψ

Next, we introduce an axiom-schema governing the identity-sign:

(I) t0i = t0j ⊃ (ϕ(t0i ) ⊃ ϕ(t0j))

(where t0j is free for t0i in ϕ)23

A universally quantified version of reflexivity, ‘∀v0
1(v0

1 = v0
1)’, is an immediate consequence

of (UI1) below. But our deductive system does not include the reflexivity axiom-schema

‘t0 = t0’. This is because we wish to allow for empty singular terms. When ‘t0’ is empty,

the semantics sketched in section 3.4 makes any sentence of the form pP 1(t0)q false (and

its negation true), for pP 1q atomic. It makes, for instance, ‘Zeus = Zeus’ false (and its

negation true)—though, of course, if the language includes an atomic non-identity-symbol

‘ 6=’, then ‘Zeus 6= Zeus’ will be false (and its negation true).

The next step is to introduce axioms and rules governing quantification. But care must

be taken. For, whereas a limitω language may involve empty terms of any level, there is no

such thing as an ‘empty’ individual, or an ‘empty’ plurality, or an ‘empty’ super-plurality

(and so forth). So each of the axioms and rules includes a provision disallowing empty

terms:

(EI1) Existential Introduction – first-level version

t0 = t0 ⊃ (ϕ(t0) ⊃ ∃v0
i (ϕ(v0

i )))

(where t0 is free for v0
i in ϕ)
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(EE1) Existential Elimination – first-level version

Γ

c = c ⊃ (ϕ(c) ⊃ ψ)
→ Γ

∃v0
i (ϕ(v0

i )) ⊃ ψ

(where c does not occur in Γ or ψ)

(EIH) Existential Introduction – higher-level version

∃vn
j (ψ(vn

j )) ⊃ (ϕ(σn
j [ψ(vn

j )]) ⊃ ∃vn+1
i (ϕ(vn+1

i )))

(where σn
j [ψ(vn

j )] is free for vn+1
i in ϕ)

(EEH) Existential Elimination – higher-level version

Γ

∃vn
j (P n+1

k (vn
j )) ⊃ (ϕ(σn

j [P n+1
k (vn

j )]) ⊃ ψ)
→ Γ

∃vn+1
i (ϕ(vn+1

i )) ⊃ ψ

(where P n+1
k does not occur in Γ or ψ)

Finally, we include an axiom-schema that simultaneously governs the behavior of ‘≺’ and

the behavior of the saturation-operator:

(S) ∀vn
i (vn

i ≺ σn
j [ϕ(vn

j )]↔ ϕ(vn
i ))

And one could, if one wished, add some version or other of the Axiom of Choice.

On the basis of these axioms and rules, it is straightforward to prove a suitable version

of the Deduction Theorem. One can also derive an axiom-schema of comprehension and

principles governing universal quantification:

(C) Comprehension

∃vn
i (ϕ(vn

i )) ⊃ ∃vn+1
i ∀vn

j (vn
j ≺ vn+1

i ↔ ϕ(vn
j ))
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(where vn+1
i does not occur in ϕ)

(UE1) Universal Elimination – first-level version

t0 = t0 ⊃ (∀v0
i (ϕ(v0

i )) ⊃ ϕ(t0))

(where t0 is free for v0
i in ϕ)

(UI1) Universal Introduction – first-level version

Γ

c = c ⊃ (ψ ⊃ ϕ(c))
→ Γ

ψ ⊃ ∀v0
i (ϕ(v0

i ))

(where c does not occur in Γ or ψ)

(UEH) Universal Elimination – higher-level version

∃vn
j (ψ(vn

j )) ⊃ (∀vn+1
i (ϕ(vn+1

i )) ⊃ ϕ(σn
j [ψ(vn

j )]))

(where σn
j [ψ(vn

j )] is free for vn+1
i in ϕ)

(UIH) Universal Introduction – higher-level version

Γ

∃vn
j (P n+1

k (vn
j )) ⊃ (ψ ⊃ ϕ(σn

j [P n+1
k (vn

j )]))
→ Γ

ψ ⊃ ∀vn+1
i (ϕ(vn+1

i ))

(where P n+1
k does not occur in Γ or ψ)

4.3 nth-level languages

Some additional notation will be useful in what follows:
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• A basic first-level language is what one might recognize as a first-order language

with no non-logical vocabulary. It is the fragment of a limitω language containing no

placeholders other than those of the form pv0
i q, no non-logical predicates, no logical

predicates other than ‘=’ and ‘Ex2’, and no occurrences of the saturation-symbol

other than those of the form pσ0
i q.

• A full first-level language is the result of enriching a basic first-level language with

non-logical first-level predicates.

• A first-level language is a full or basic first-level language.

And correspondingly for finite levels greater than 1:

• A basic (n + 1)th-level language is the result of enriching a full nth-level language

with placeholders of the form pvn
i q, the logical predicates ‘≺n,n+1’ and ‘Exn+2’, and

occurrences of the saturation-symbol of the form pσn
i q.

• A full (n+1)th-level language is the result of enriching a basic (n+1)th-level language

with non-logical (n+ 1)th-level predicates.

• An (n+ 1)th-level language is a full or basic (n+ 1)th-level language.

5 Motivating the hierarchy

5.1 Preliminaries

Let me begin with a warm-up case. Consider a skeptic who doubts that the standard

first-level quantifiers fall under a legitimate semantic category. How might one respond to

such skepticism?

The first thing to note is that the skeptic’s doubts might take two different forms.

A radical skeptic would deny that there is any sense to be made of sentences involving
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quantifier-symbols (as used by logicians). A moderate skeptic, on the other hand, would

concede that the sentences make sense but contend that their semantic properties are

best described by semantic categories other than ‘first-level quantifier’ (or, more generally,

‘second-level predicate’). Each type of skepticism calls for a different kind of response.

Let us consider the more radical position first. In responding to the radical skeptic, ap-

peals to introspection are unlikely to be very effective. One might claim, for instance, that

one gets a certain ‘feeling of understanding’ when one considers, e.g. ‘∃x Elephant(x)’.

But it is open to the skeptic to counter by arguing that speakers are not always reliable

judges of what they do and do not understand.

An alternative approach is to set forth a theory of what linguistic understanding consists

in, and respond to the skeptic by arguing that the relevant speakers satisfy the constraints

of the theory when it comes to the relevant sentences. But even this more sophisticated

strategy is likely to be of limited effectiveness. Suppose one held the view that to un-

derstand a sentence is, at least in part, to know its truth conditions. It would be useless

to respond to the skeptic by claiming that speakers know that ‘∃x Elephant(x)’ is true

just in case there is an individual such that it is an elephant. For rather than conceding

that there is sense to be made of ‘∃x Elephant(x)’, the skeptic would protest that one

has begged the question by attributing to speakers knowledge whose intelligibility is under

dispute.

A more promising strategy would be to bracket the question of what linguistic under-

standing consists in and attempt to come to an agreement with the skeptic about the sorts

of things that would count as evidence of linguistic understanding. Here are some natural

candidates:

1. that speakers have the ability to use assertions of sentences containing the disputed

vocabulary to update their beliefs about the world;
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2. that speakers have the ability to use their beliefs about the world to regulate their

assertions of sentences containing the disputed vocabulary;

3. that speakers have the ability to use sentences involving the disputed vocabulary as

part of a robust and consistent inferential practice.

One can then go on to produce a non-question-begging argument for the intelligibility of

sentences involving quantifier-symbols by showing that the relevant constraints are met.

As long as something along the lines of 1–3 is admitted as evidence of linguistic under-

standing, there will be a route for silencing the radical skeptic. But nothing has been done

so far to address the moderate skeptic’s concerns. The moderate skeptic can agree that

1–3 provide evidence for the view that speakers understand ‘∃x Elephant(x)’, and go on

to insist that the semantic properties of such sentences are best described by appeal to

semantic categories other than ‘first-level quantifier’. She might insist, for example, that

the semantic structure of ‘∃x Elephant(x)’ is best described as the infinite disjunction

Elephant(n1) ∨Elephant(n2) ∨Elephant(n3) ∨ . . .

where the pniq are the singular terms in the language. How might the issue be resolved?

As before, linguistic introspection is unlikely to help. For in response to the claim

that one’s intuitions suggest that ‘first-level quantifier’ is the right semantic category, the

skeptic can claim that her intuitions suggest otherwise (and add that she is as competent a

logician and English speaker as you). And, as before, one shouldn’t expect much progress

from the suggestion that a speaker’s understanding of ‘∃x Elephant(x)’ consists, at least

in part, of knowing that that ‘∃x Elephant(x)’ is true just in case there is an individual

such that it is an elephant. For the skeptic will immediately grant the point, and go on

to claim that the semantic properties of ‘there is an individual such that . . . ’ are best

described by appeal to semantic categories other than ‘first-level quantifier’.
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It seems to me that the best way of addressing the moderate skeptic’s concern is to

argue that relevant mental and linguistic phenomena are best explained by a semantic

theory that makes use of ‘first-level quantifier’ (or ‘second-level predicate’) as a semantic

category. Here are some examples of considerations that might be set forth on behalf of

the standard semantics:

• on the skeptical semantics, but not the standard semantics, the semantic structure

of quantified sentences has infinitely many semantic constituents;

• on the skeptical semantics, but not the standard semantics, the meaning of ‘∃x F (x)’

is in constant flux, as some singular terms are introduced to the language and others

are dropped;

• on the skeptical semantics, but not the standard semantics, there is a risk of being

left with the result that speakers cannot fully grasp ‘∃x F (x)’ until they learn every

singular term in the language.

If, as one might expect, it turns out that the best semantic theory (all things considered)

is the standard semantic theory, one will be in a position to answer the moderate skeptic.

It is worth noting, in particular, that there is a certain kind of argument that it would

be illegitimate for the skeptic to employ. She should not defend her position by arguing

that until one has independent evidence for the view that first-level quantifiers fall under

a legitimate semantic category, the relevant linguistic practice cannot be accounted for

by a categorial semantics that mentions first-level quantifiers. That would be to put the

cart before the course. The best evidence one could have for the legitimacy of a semantic

category is its presence in our best—simplest, most fruitful, best integrated—semantic

theorizing.
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5.2 The argument

In preceding sections I claimed without argument that, for any finite n, nth-level predicates

and terms belong to legitimate semantic categories. (I also claimed that plural quantifiers,

super-plural quantifiers and beyond fall under legitimate semantic categories, but we saw

in section 4.1 that the such quantifiers needn’t be taken as primitive once one has higher-

level predicates and terms.) In this section I will try to supply the missing justification.

My argument will be similar in form to that of the warm-up example, but this time

proponents of the view that nth-level predicates and terms do not fall under legitimate

semantic categories will take the place of the skeptic. The argument will not be conclusive,

but I hope it is enough to show that the legitimacy of higher-level predicates and terms

can be taken seriously.

I begin with the following observation:

No Paraphrase

When an all-encompassing domain of discourse is allowed, it is not generally

possible to paraphrase a basic second-level language as a first-order language.

(We say that a basic second-level language L2 can be paraphrased as a first-order language

just in case there is a range of individuals—the ‘classes’, say—such that, for any sentence

in L2, the following transformation preserves truth-value:

• (∃v0
i (ϕ))Tr � ∃xi(ϕ

Tr)

• (∃v1
i (ϕ))Tr � ∃αi(ϕ

Tr)

• (v0
i ≺ v1

j )Tr � xi ∈ αj

• (v0
i = v0

j )Tr � xi = xj

• (P (v0
i1
, . . . , v0

in))Tr � P (xi1 , . . . , xin)
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• (ϕ ∧ ψ)Tr � ϕTr ∧ ψTr

• (¬ϕ)Tr � ¬(ϕTr)

where pxiq ranges over the individuals in the domain of discourse of L2, pαiq ranges

over (non-empty) ‘classes’ of these individuals, and ‘∈’ expresses a ‘membership’ relation

appropriate for ‘classes’.)

To see that No Paraphrase holds, assume for reductio that it is generally possible to

paraphrase a second-level language as a first-order language. Let the domain of discourse

of L2 consist of absolutely everything, and let L2 contain a predicate, ‘Member’, which is

true of x and y just in case x is a ‘member’ of ‘class’ y. Then the following must be true:

(9) ∀v1
1∃v0

1∀v0
2(v0

2 ≺ v1
1 ↔Member(v0

2, v
0
1)),

since the result of applying Tr to (9) is:

(10) ∀α1∃x1∀x2(x2 ∈ x1 ↔Member(x2, α1)),

(which is true because ‘Member’ and ‘∈’ must be coextensive in light of the fact that the

domain of discourse of L2 is absolutely unrestricted). But, on the assumption that there

are at least two objects, (9) entails a contradiction. To see this, note that one can derive

the following from (9) by applying (UEH) and (S):

(11) ∃v0
2(¬Member(v0

2, v
0
2)) ⊃ ∃v0

1∀v0
2(¬Member(v0

2, v
0
2)↔Member(v0

2, v
0
1)).

A tedious but straightforward proof shows that the antecedent of (11) can be derived from

(9) (together with the assumption that there are at least two objects). So we are left with:

∃v0
1∀v0

2(¬Member(v0
2, v

0
2)↔Member(v0

2, v
0
1)),
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from which one can derive a contradiction by applying (EE1) and (UE1). This concludes

the reductio.

I would like to suggest that No Paraphrase provides some evidence for the view that

second-level predicates and first-level terms fall under legitimate semantic categories. The

argument runs as follows.

Consider a community of speakers that sets out to speak a second-level language. They

let their syntax be governed by (suitable restrictions of) the rules in section 4.1, and let their

deductions be constrained by (suitable restrictions of) the axioms and rules in section 4.2.

The new conventions eventually take hold, and speakers come to engage in a successful

linguistic practice. In particular, conditions 1–3 from section 5.1 are all satisfied.

As long as it is conceded that such a scenario is possible, one will be in a position to

counter radical skepticism: one will be in a position to argue that members of the commu-

nity succeed in speaking some language or other and, accordingly, that there is sense to

be made of the relevant sentences. But this is not yet to concede that second-level pred-

icates and first-level terms fall under legitimate semantic categories. A moderate skeptic

would concede that there is sense to be made of the relevant sentences but doubt that the

language is best described by a semantic theory employing the semantic categories ‘second-

level predicate’ and ‘first-level term’. In particular, the moderate skeptic might endorse

a firstorderist view whereby members of the community speak the first-order language

induced by Tr, and supply a semantics accordingly.

The lesson of No Paraphrase is that when an all-encompassing domain of discourse

is allowed, proponents of the firstorderist position must make a concession. They must

concede that some of the rules and axioms that speakers take their inferences to be con-

strained by are not, in fact, logically valid. For the proof of No Paraphrase entails that

the following is a theorem of the deductive system in section 4.2:

(12) ∃v0
1∃v0

2(¬(v0
1 = v0

2))→ ¬∀v1
1∃v0

1∀v0
2(v0

2 ≺ v1
1 ↔ P1,1

1 (v0
2, v

0
1))
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But from the perspective of a firstorderist, (12) must be false when ‘P1,1
1 ’ expresses the

‘membership’ relation appropriate for ‘classes’ and the domain of discourse is absolutely

unrestricted.

This puts the firstorderist position under some pressure. Suppose, for example, that

speakers resolve to enrich their language with the first level predicate ‘Member’, which,

as before, is to be true of x and y just in case x is a ‘member’ of ‘class’ y (and that

speakers continue to take their syntax to be governed by the rules in section 4.1, and

their deductions be constrained by the axioms and rules in section 4.2). Firstorderists will

then face an awkward decision. On the one hand, they might concede that some of the

community’s fundamental axioms are not merely not logically valid but outright false (or

that some of the community’s fundamental rules are not merely not logically valid but have

a true premise and a false conclusion). For firstorderists must regard the result of replacing

‘P1,1
1 ’ with ‘Member’ in (12) as false, even though it is a deductive consequence of the

community’s fundamental rules and axioms. Alternatively, firstorderists might claim that

enriching the language with ‘Member’ leads to a change in the way quantification works:

whereas in the original language the pαiq range over ‘classes’, in the enriched language

they range over ‘classes*’, which are such that (12) is true. This would certainly forestall

any breaches in charity, but at the cost of complicating one’s semantic theory, since the

semantic behavior of the quantifiers will have to depend on what predicates the language

happens to contain. And there would appear to be little independent motivation for the

additional complexity.

Of course, the firstorderist position might still be vindicated at the end of the day. For

all I have argued here, it might be possible to make a case for the view that, e.g. the gain in

parsimony that is achieved by limiting one’s stock of legitimate semantic categories is signif-

icant enough to outweigh firstorderism’s less palatable consequences. But, as in the warm

up case considered earlier, it is important to keep in mind that the there is a certain kind of
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argument that it is important to resist. One should not argue for the firstorderist position

by claiming that, unless one has independent evidence for the view that higher-level pred-

icates and terms fall under legitimate semantic categories, the relevant linguistic practice

cannot be accounted for by a categorial semantics that mentions higher-level predicates

and terms. The best evidence one could have for the legitimacy of a semantic category is

its presence in our best—simplest, most fruitful, best integrated—semantic theorizing. By

insisting that higher-level predicates and terms remain unavailable to semantic theorizing

until the relevant semantic categories have been shown to be legitimate on independent

grounds, firstorderists would be begging the question against their opponents.

In sum, my argument is this. Should it turn out that a community’s linguistic practice is

best accounted for by a semantic theory that makes use of the categories ‘second-level predi-

cate’ and ‘first-level term’, we would be justified in thinking that second-level predicates and

first-level terms fall under legitimate semantic categories. But when an all-encompassing

domain of discourse is allowed, No Paraphrase suggests that firstorderism—the most

salient alternative—will be subject to certain kinds of difficulties. So, when an all-encompassing

domain of discourse is allowed, we have some preliminary evidence for the view that second-

level predicates and first-level terms fall under legitimate semantic categories.

I have focused on second-level languages for expository purposes, but the argument is

quite general. For each finite n, one can prove a version of No Paraphrase for (n+1)th-

level languages:24

When an all-encompassing domain of discourse is allowed, it is not generally

possible to paraphrase a basic (n+1)th-level language as an nth-level language.

If one then considers a community of speakers who have set out to speak an (n+ 1)th-level

language, one can replicate the argument above to make a preliminary case for the view that

the relevant linguistic practice is best accounted for by a semantic theory that mentions
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(n+2)th level predicates and (n+1)th level terms, and therefore a preliminary case for the

view that (n+ 2)th-level predicates and (n+ 1)-level terms fall under legitimate semantic

categories. All of this on the assumption that an all-encompassing domain of discourse is

allowed.25

6 Model-theory

A model-theory for a language L is strictly adequate just in case it agrees with one’s

categorial semantics for L in the following sense: any reference a (non-logical) predicate

might take by the lights of one’s categorial semantics corresponds to the semantic value

the predicate gets assigned by some model of one’s model-theory. Thus, given a categorial

semantics whereby the reference of a first-level predicate is a plurality, a model-theory for

the relevant language can only be strictly adequate if, for any plurality, there is a model

on which a given first-level predicate is assigned a semantic value corresponding to that

plurality.

When quantification over absolutely everything is allowed, it is easy to show that there

must be ‘more’ pluralities than there are individuals.26 So, on the assumption that the

reference of a monadic first-level predicate is a plurality, there must be ‘more’ ways of

assigning reference to a monadic first-level predicate than there are individuals. It follows

that a model-theory for a full first-level language can only be strictly adequate if it appeals

to ‘more’ models than there are individuals.

An immediate consequence of this result is that no model-theory according to which a

model is a set can be strictly adequate. More generally, one cannot give a strictly adequate

model-theory for a full first-level language in a first-level language, since a model-theory

requires quantification over models, and the only kind of quantification available in a first-

level language is singular quantification over individuals. Fortunately, this does not mean
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that it is impossible to give a strictly adequate model-theory for full first-level languages.

By taking a model to be a plurality, one can give a strictly adequate model-theory for

first-level languages in a basic second-level language.27 (To fix ideas, think of a model

m1 as a plurality consisting of ordered-pairs of the form 〈‘∀’, x0〉 and ordered-pairs of the

form 〈‘P 1
i ’, x0〉, for ‘P 1

i ’ a predicate in the language. Intuitively, 〈‘∀’, x0〉 ≺ m1 just in

case x0 is in the ‘domain’ of m1, and 〈‘P 1
i ’, x0〉 ≺ m1 just in case x0 is in the reference

of ‘P 1
i ’ according to m1.) For reasons relating to Tarski’s Theorem, it is impossible to

give a strictly adequate model-theory for a basic second-level language in another basic

second-level language.28 But one can give a strictly adequate model-theory for a basic

second-level language in a full second-level language.29

These results can be generalized for n ≥ 1.30 Thus:

Semantic Ascent

(a) It is impossible to give a strictly adequate model-theory for a full nth-level

language in an nth level language.

(b) It is possible to give a strictly adequate model-theory for full nth-level

languages in a basic (n+ 1)th-level language.

(c) It is impossible to give a strictly adequate model-theory for a basic (n +

1)th-level language in a basic (n+ 1)th level language.

(d) It is possible to give a strictly adequate model-theory for basic (n+ 1)th-

level languages in a full (n+ 1)-th level language.

(A strictly adequate model-theory for nth-level languages is developed in the appendix.)

A famous argument of Kreisel’s can be used to show that any first-level sentence that is

true according to some model of a strictly adequate model-theory is also true according to

some model of a standard model-theory (in which models are sets rather than pluralities).31
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This result—which I shall refer to as Kreisel’s Principle—guarantees that an extensionally

adequate characterization of logical consequence for a first-level language can be given

within another first-level language. In light of Kreisel’s Principle, it is tempting to conclude

that a thorough understanding of first-level languages can be attained by appeal to a model-

theory that is not strictly adequate, and hence that the requirement of strict adequacy is

unnecessarily strong.

The temptation should be resisted. For there is more to model-theory than a character-

ization of logical consequence. Conspicuously, model-theory might be thought to deliver a

generalized notion of reference, which is concerned not just with the assignment of reference

an expression actually takes, but with any possible assignment of reference the expression

might take. Suppose, for example, that one wished to record the fact that, by the lights of

ones categorial semantics, a monadic first-level predicate could be assigned a reference that

consists of too many objects to form a set. A strictly adequate model-theory immediately

delivers the resources to do so:

∃mm∃xx[Model2(mm) ∧Ref2,1,2(mm, ‘P 1(. . .)’, xx) ∧ ¬∃y∀z(z ∈ y ↔ z ≺1,2 xx)]

(where ‘Model2(mm)’ is a second-level formula stating that the mms form a model, and

‘Ref2,1,2(mm, ‘P 1(. . .)’, xx)’ is a second-level formula stating that the reference assigned

by the mms to ‘P 1(. . .)’ is the plurality consisting of all and only the xxs). But it is hard to

see how one could make a similar statement within the confines of a standard model-theory.

This limitation of standard model-theory also affects its ability to produce extension-

ally adequate characterizations of logical consequence in certain special cases. Consider,

for instance, the result of enriching a first-level language with a quantifier ‘∃AI ’, as in

McGee (1992). The sentence ‘∃AIx(φ(x))’ is to be true just in case the individuals satisfy-

ing ‘φ(x)’ are too many to form a set. So ‘∃AIx(x = x)’ is true (and therefore consistent).
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But it would be deemed false by any model of a standard model-theory. The lesson is

clear. Kreisel’s Principle shows that strictly adequate model-theories can be supplanted by

standard model theories for the purposes of one particular application, but not that they

can be supplanted in general.

Two further points are worth emphasizing. First, the benefits of Kreisel’s Principle

can only be claimed by those who have already ventured beyond first-level languages.

For although the principle is often stated informally, it cannot be formulated properly

within a first-level language. Within a second-level language, on the other hand, it has a

straightforward formulation.

Second, the status of higher-level versions of Kreisel’s Principle is increasingly prob-

lematic. A version of Kreisel’s Principle for a basic second-level language, for instance,

is provably independent of the standard axioms of set theory (if consistent with them).32

So friends of plural quantification cannot make use of Kreisel’s Principle to avoid giving a

strictly adequate model-theory without making substantial set-theoretic presuppositions.

7 An open-ended hierarchy

Since a limitω language contains an nth-level language as a part for each finite n, the

following is a consequence of Semantic Ascent (a) and (c):33

Semantic Ascent

(e) It is impossible to give a strictly-adequate model-theory for a limitω lan-

guage in a limitω language.

I would like to consider two different ways of dealing with this result. The first strategy is

to settle for what I shall call semantic pessimism: the view that it is impossible to provide

a strictly adequate model-theory for some language built up from legitimate semantic
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categories. Philosophers have grown accustomed the fact that any given language must

suffer from important expressive limitations. The Liar Paradox, for instance, has taught

us that (on appropriate assumptions) the truth predicate for a given language cannot be

expressed in the language itself, even though it can be expressed in a different language

of the same logical type. But semantic pessimism is pessimism of a much more radical

kind. For one is forced to countenance the view that a language might have features whose

investigation is ruled out by the nature of language itself.34

The second strategy is to try to avoid semantic pessimism by claiming that the legitimate

languages—the languages it is in principle possible to make sense of—form an open-ended

hierarchy such that any language in the hierarchy can be given a strictly adequate model-

theory in some other language higher-up in the hierarchy. So there is no legitimate language

with respect to which semantic pessimism would threaten. The simplest way of setting

forth such a hierarchy is by claiming that nth-level languages are legitimate for any finite n

but denying that languages of transfinite level (including limitω languages) are legitimate.

An alternative is to take the hierarchy into the transfinite by treating limitω languages as

legitimate and postulating the legitimacy of a language L? of transfinite-level in which a

strictly adequate model-theory for limitω languages can be given, postulating the legitimacy

of a language L?? in which a strictly adequate model-theory for L? can be given, and so

forth.35 Whatever the details of the hierarchy, what is crucial is that there be no such

thing as an absolute-level language: a language combining the resources of all legitimate

languages. For a suitable generalization of Semantic Ascent would imply that it is

impossible to give a strictly adequate model-theory for an absolute-level language. So the

result of making room for an absolute-level language is that one would be left with semantic

pessimism after all.

A potential difficulty for the postulation of such hierarchies emerges from the observa-

tion that the legitimacy of absolute-level languages follows from two seemingly plausible
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principles: the first is a Principle of Union according to which the result of combining the

resources of legitimate languages is itself a legitimate language; the second is a principle

to the effect that it make sense to talk about all languages in the hierarchy. For, by the

first principle, the hierarchy must be closed under unions, and, by the second, one of the

unions must be maximal.

Denying the second of these principles seems especially problematic in the present

context. For we began our investigation by assuming that one can quantify over absolutely

everything and used this assumption to argue for the view that higher-level predicates

and terms fall under legitimate semantic categories. But now, in an attempt to study the

semantic properties of higher-level resources, we are under pressure to countenance the idea

that one cannot talk about all legitimate languages. Is this not a reductio of the original

assumption? If it is possible to quantify over absolutely everything, and if ‘F(. . . )’ is a

predicate in good standing, shouldn’t it be possible to quantify over all Fs?

It is not clear, however, that ‘. . . is a language’ is a predicate in good standing in the

relevant respect. To see the problem, observe that there are at least as many (interpreted)

first-level languages as there are assignments of reference to a first-level predicate. Since the

reference of a first-level predicate is a plurality, and since there are ‘more’ pluralities than

there are objects, this means that there are ‘more’ first-level languages than individuals,

and therefore that a first-level language cannot, in general, be an individual. It is best to

think of a first-level language as a certain kind of plurality. For analogous reasons, it is best

to think of a second-level language as a certain kind of super-plurality, and best to think of

a third-level language as a super-duper-plurality, and so forth. Accordingly, the predicate

‘. . . is an nth-level language’ must be (at least) of level n+1. And one can expect a similar

result to hold for languages of infinite level: the predicate ‘. . . is an αth-level language’

must be (at least) of level α + 1. So what type of predicate could ‘. . . is a language’ be?

Any predicate falling under a legitimate semantic category must be of some level or other.
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But ‘. . . is a language’ cannot be an αth-level predicate, lest one be left with the unintended

result that α-level languages are not languages. The lesson, I would like to suggest, is that

‘. . . is a language’ is best understood as ambiguous between various legitimate predicates

of the form ‘. . . is a language of at most level α’. And if this is right, one cannot go from

quantification over absolutely everything to quantification over all languages.

(Parenthetical remark: The preceding remarks suggest a novel way of making

sense of the idea that the classes form an indefinitely extensible totality.36 For

if one thinks of a class, not as an individual of a certain kind, but as the

reference of a predicate in some language, then the predicate ‘. . . is a class’ will

have a status similar to that of ‘. . . is a language’. The reference of a first-level

predicate is a plurality; the reference of a second-level predicate is a super-

plurality; the reference of a third-level predicate is a super-duper-plurality; and

so forth. So what type of predicate could ‘. . . is a class’ be? Any predicate falling

under a legitimate semantic category must be of some level or other. But ‘. . . is

a class’ cannot be an αth-level predicate, lest one be left with the unintended

result that the reference of an α-level predicate is not a class. Accordingly, ‘. . . is

a class’ is best understood as ambiguous between various legitimate predicates

of the form ‘. . . is a class of at most level α’.)

The postulation of an open-ended hierarchy of languages faces a familiar difficulty: it leads

to the result that statements of the form ‘the hierarchy is so-and-so’ are, strictly speaking,

nonsense.37 (This does not, of course, imply that the state of affairs under discussion fails

to obtain; what it shows is that there are important limits in the sorts of statements that

can be made about it.)

In spite of its problems, the postulation of an open-ended hierarchy of languages may

turn out to be the least unattractive of the options on the table. It may very well be part
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of the nature of language and thought that matters cannot be improved upon. Note, for

example, that there is a striking parallel between the open-ended hierarchy of ideology that

we have considered here and the open-ended hierarchy of ontology that defenders of the

view that it is impossible to quantify over absolutely everything have sometimes set forth.38

(This is not to say, of course, that the two pictures are equivalent: whereas proponents

of the ideological hierarchy consider only a fragment of their logical resources at a time,

and are thereby able to supply a strictly adequate model-theory for the language under

consideration, proponents of the ontological hierarchy consider only a fragment of their

ontology at a time, and are thereby unable to supply a strictly adequate model-theory for

any language complex enough to be interesting.) From the present perspective, one might

think of the ontological hierarchy as the first-order ‘projection’ of the ideological hierarchy

that results from objectifying pluralities, super-pluralities and beyond.39
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Appendix

I provide a model-theory for a full nth-level language L (n > 1) in a basic (n+ 1)th-level

language.

The first step is to characterize a generalized notion of n-tuple membership:

• z0 �1,1
i,n x

0 ≡df ∃y0
1 . . . ∃y0

i . . . ∃0
n(x0 = 〈y0

1, . . . , y
0
i , . . . , y

0
n〉 ∧ z0 = y0

i )

(z0 is the ith member of zeroth-level n-tuple x0)

• z1 �2,2
i,n x

1 ≡df ∀w0(w0 ≺ z1 ↔ ∃y0(y0 ≺ x1 ∧ w0 �1,1
i,n y

0))

(z1 is the ith member of first-level n-tuple x1)

...

• zm �m+1,m+1
i,n xm ≡df ∀wm−1(wm−1 ≺ zm ↔ ∃ym−1(ym−1 ≺ xm∧wm−1 �m,m

i,n ym−1))

(zm is the ith member of mth-level n-tuple xm)

...

Next, we characterize a same-level pseudo-identity relation:

• x0 ≈ y0 ≡df x0 = y0

• xn+1 ≈ yn+1 ≡df ∀zn(zn ≺ xn+1 ↔ zn ≺ yn+1)

and a cross-level pseudo-identity relation:

• xn ≈ yn+1 ≡df ∀zn(zn ≺ yn+1 → xn ≈ zn)

• xn ≈ yn+k+1 ≡df ∃zn+1 . . . ∃zn+k(xn ≈ zn+1 ∧ . . . ∧ zn+k ≈ yn+k+1)

By using the pseudo-identity relation we can extend our characterization of generalized

n-tuple membership as follows:
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zr �r+1,m+1
i,n xm ≡df ∃zm(zr ≈ zm ∧ zm �m+1,m+1

i,n xm)

(where r < m)

Some additional pieces of preliminary notation:

xm ≈ 〈yr1
1 , . . . , y

rk
k 〉 ≡df (yr1

1 �
r1+1,m+1
1,k xm ∧ . . . ∧ yrk

k �
rk+1,m+1
k,k xm)

(where ri ≤ m)

〈yr1
1 , . . . , y

rk
k 〉 ≺ xm+1 ≡df ∃zm(zm ≈ 〈yr1

1 , . . . , y
rk
k 〉 ∧ zm ≺ xm+1)

(where ri ≤ m and ‘zm’ is an unused variable)

yr ≺ xm+1 ≡df ∃zm(yr ≈ zm ∧ zm ≺ xm+1)

(where r ≤ m)

We may now characterize the notion of an assignment function. Intuitively, an assignment

function maps an object to each zeroth-level placeholder, a plurality to each first-level

placeholder, a super-plurality to each second-level placeholder, and so forth, for every place-

holder in L. Formally, an nth-level predicate ‘A(xn−1)’ (read ‘xn−1 is an assignment’) may
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be characterized as follows:

A(xn−1) ≡df {∀yn−2(yn−2 ≺ xn−1 →

[∃w0∃z0(w0 is a zeroth-level place-holder ∧ yn−2 ≈
〈
w0, z0

〉
) ∨

∃w0∃z0(w0 is a first-level place-holder ∧ yn−2 ≈
〈
w0, z0

〉
) ∨

∃w0∃z1(w0 is a second-level place-holder ∧ yn−2 ≈
〈
w0, z1

〉
) ∨

...

∃w0∃zn−2(w0 is an (n− 1)th-level place-holder ∧ yn−2 ≈
〈
w0, zn−2

〉
)]) ∧

∀w0(w0 is a place-holder→ ∃zn−2(
〈
w0, zn−2

〉
≺ xn−1)) ∧

∀w0(w0 is a zeroth-level place-holder→

∃z0(
〈
w0, z0

〉
≺ xn−1 ∧ ∀tn−2(

〈
w0, tn−2

〉
≺ xn−1 → z0 ≈ tn−2)))}

When A(xn−1) and v is a place-holder of L, it will sometimes be useful to employ the

following notational abbreviation:

Φ(αxn−1(v)) ≡df ∃yn−1∀zn−2((〈v, zn−2〉 ≺ xn−1 ↔ zn−2 ≺ yn−1) ∧ Φ(yn−1))

were ‘yn−1’ is an unused variable.

(Intuitively, ‘Φ(αxn−1(v))’ says that the value that placeholder v is assigned by assignment

xn−1 is Φ.)

We shall also use the following notation:

• x0 ≺1,2
trans y

1 ≡df x
0 ≺ y1

• x0 ≺1,3
trans y

2 ≡df ∃z1(x0 ≺1,2
trans z

1 ∧ z1 ≺ y2)

...

• x0 ≺1,k+1
trans y

k ≡df ∃zk−1(x0 ≺1,k
trans z

k−1 ∧ zk−1 ≺ yk)
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...

The next step is to characterize the notion of a model. Intuitively, a model might be thought

of as codifying four distinct things. Firstly, it codifies information about a domain (in the

form of a plurality of ordered-pairs 〈‘∀’, x〉); secondly, it a codifies a function mapping an

object (or nothing at all) to each individual constant symbol, a plurality (or nothing at

all) to each non-logical monadic first-level predicate-letter, a super-plurality (or nothing

at all) to each non-logical monadic second-level predicate-letter, and so forth for every

non-logical monadic predicate-letter in L (and similarly for non-logical polyadic predicate-

letters); thirdly, it codifies information about the denotations of terms of L (relative to an

assignment function an−1); finally it codifies information about the satisfaction of formulas

of L (relative to an assignment function an−1). Formally, the notion of a model can be

characterized as follows. (In each clause, I omit initial universal quantifiers for the sake of
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readability.)

M(xn) ≡df

{[c is an individual constant → (
〈
c, an−1, zn−1

〉
≺ xn ↔

∃w0(w0 ≈ zn−1 ∧
〈
c, w0

〉
≺ xn ∧ ∀yn−1(

〈
c, yn−1

〉
≺ xn → w0 ≈ yn−1)))] ∧

(Intuitive gloss: the reference assigned to individual constant c by the model relative

to assignment an−1 is the reference assigned to c by the model.)

[v is a place-holder→ (
〈
v, an−1, zn−1

〉
≺ xn ↔

∃yn−2(yn−2 ≈ zn−1 ∧ yn−2 ≺ αan−1(v)))] ∧
(Intuitive gloss: the reference assigned to placeholder v by the model relative to

assignment an−1 is the reference assigned to v by an−1.)

[pt1 = t2q is a formula→ (
〈
pt1 = t2q, a

n−1
〉
≺ xn ↔

∃z0(
〈
t1, a

n−1, z0
〉
≺ xn ∧

〈
t2, a

n−1, z0
〉
≺ xn))] ∧

(Intuitive gloss: pt1 = t2q is true in the model relative to assignment an−1 just in

case pt1q and pt2q are assigned the same reference by the model relative to an−1)

[pt1 ≺k−1,k t2q is a formula→ (
〈
pt1 ≺k−1,k t2q, a

n−1
〉
≺ xn ↔

∃zn−1(∀wn−2(wn−2 ≺ zn−1 ↔
〈
t1, a

n−1, wn−2
〉
≺ xn) ∧

〈
t2, a

n−1, zn−1
〉
≺ xn))] ∧

(Intuitive gloss: pt1 ≺k−1,k t2q is true in the model relative to assignment an−1 just

in case the reference assigned by the model to pt1q relative to an−1 is ‘among’ the

reference assigned by the model to pt2q relative to an−1.)

[pP r1,...,rk
j (t1, . . . , tk)q is a formula→ (

〈
pP r1,...,rk

j (t1, . . . , tk)q, an−1
〉
≺ xn ↔

(∃yn−1[
〈
pP r1,...,rk

j q, yn−1
〉
≺ xn ∧ for each ptiq (1 ≤ i ≤ k) ∃zn−1(

∀wn−2(wn−2 ≺ zn−1 ↔
〈
ti, a

n−1, wn−2
〉
≺ xn)∧

∃rn−1(
〈
i, k, zn−1, rn−1, yn−1

〉
≺ xn))] ∧

∀zn−1∀rn−1∀yn−1(
〈
1, k, zn−1, rn−1, yn−1

〉
≺ xn ↔ (zn−1 �n,n

1,2 y
n−1 ∧ rn−1 �n,n

2,2 y
n−1)) ∧

∀i(1 ≤ i ≤ k)∀zn−1∀rn−1∀yn−1(
〈
i+ 1, k, zn−1, rn−1, yn−1

〉
≺ xn ↔

∀wn−1∀un−1(
〈
i, k, wn−1, un−1, yn−1

〉
≺ xn → (zn−1 �n,n

1,2 u
n−1 ∧ rn−1 �n,n

2,2 u
n−1)))))] ∧47



(Intuitive gloss: pP r1,...,rk
j (t1, . . . , tk)q is true in the model relative to assignment

an−1 just in case the (generalized) k-tuple consisting of the references assigned by

the model to each of the ptiq relative to assignment an−1 is ‘among’ the reference

assigned by the model to pP r1,...,rkq relative to an−1. The clause is cumbersome

because it makes use of a coding system to attain the effect of quantifying over k-

tuple positions: ‘〈i, k, zn−1, rn−1, yn−1〉 ≺ xn’ might be thought of as enconding the

information that according to the model, zn−1 (which is the reference assigned by the

model to ptiq relative to an−1) is the ith component of yn−1 (which is ‘among’ the

reference assigned by the model to pP r1,...,rkq relative to an−1). The last three lines

of the clause are a specification of how the coding is to work.)

[φ is a formula→ (
〈
pσk

i [φ]q, an−1, zn−1
〉
≺ xn ↔

(∀s0(s0 ≺1,n
trans z

n−1 →
〈
‘∀’, s0

〉
≺ xn) ∧ the assignment ân−1 (which is just like an−1

except that αân−1(pvk
i q) ≈ zn−1) is such that

〈
φ, ân−1

〉
≺ xn)] ∧

(Intuitive gloss: ‘among’ the reference assigned by the model to pσk
i [φ]q relative to

assignment an−1 are all and only those zn−1 such that: (a) the ‘transitive closure’

of zn−1 consists entirely of individuals in the domain, and (b) φ is true in the model

relative to the an−1-variant assigning zn−1 to pvk
j q.)

[pExk(t)q is a formula→ (
〈
pExk(t)q, an−1

〉
≺ xn ↔ ∃zn−1(

〈
t, an−1, zn−1

〉
≺ xn))] ∧

(Intuitive gloss: pExk(t)q is true in the model relative to assignment an−1 just in

case the model assigns a reference to t relative to an−1.)

[φ is a formula→ (
〈
p¬φq, an−1

〉
≺ xn ↔ ¬(

〈
pφq, an−1

〉
≺ xn))] ∧

(Intuitive gloss: p¬φq is true in the model relative to assignment an−1 just in case

φ is not.)

[φ and ψ are formulas→ (
〈
pφ ∧ ψq, an−1

〉
≺ xn ↔

(
〈
pφq, an−1

〉
≺ xn ∧

〈
pψq, an−1

〉
≺ xn))]}

(Intuitive gloss: pφ ∧ ψq is true in the model relative to assignment an−1 just in case

φ and ψ are.)
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It is then straightforward to characterize logical consequence for L:

φ is a logical consequence of Γ ≡df

∀xn[M(xn)→

(∀ψ(ψ ∈ Γ→ ∀an−1(A(an−1)→
〈
ψ, an−1

〉
≺ xn))→

∀an−1(A(an−1)→
〈
φ, an−1

〉
≺ xn))]

By using the technique in Rayo and Uzquiano (1999), this explicit characterization of

logical consequence for a full nth-level language in a basic (n+ 1)th-level langauge can be

transformed into an implicit characterization of logical consequence for a basic (n+ 1)th-

level language in a full (n+ 1)th-level language.
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Notes

1If a sentence is ambiguous, it might have more than one semantic structure. I will

henceforth ignore ambiguity of this kind to simplify my presentation. For present purposes,

ambiguity may be thought of as a matter of homophonic but distinct expressions.

2More precisely, as a finite tree with ordered nodes. A finite tree is an ordered-pair

〈N,≤〉, where N is a finite set of ‘nodes’ and ≤ is a binary relation on N with the following

properties: (i)≤ is reflexive, transitive and antisymmetric; (ii) N has a≤-minimal element,

which we call ‘base node’; (iii) every node x in N other than the base node has an

immediate ≤-predecessor (i.e. there is a y in N such that y ≤ x and there is no z in

N such that y ≤ z ≤ x); and (iv) for any x in N there is a unique path back to the base

node (i.e. for any y and z, if y ≤ x and z ≤ x then either y ≤ z or z ≤ y). We say that

x is a terminal node if, for every y, x ≤ y only if x = y. If x ≤ y and x 6= y we say that

y is below x in the tree. If y is below x and no z is such that z is below x and y is below

z, then we say that y is immediately below x. Finally, a finite tree with ordered nodes is a

pair 〈T, F 〉 where T is a finite tree and F is a one-one function from nodes in T to natural

numbers. If y and z are both immediately below x, we say that y is to the left of z just in

case F (y) < F (z).

3For a defence, see Lewis (1970) and Montague (1970).

4Strictly, one should distinguish between the expressions of a first-order language, and

the members of the language’s semantic lexicon. Only the latter can be properly said to

fall under semantic categories. I shall fudge this distinction—here and throughout the

remainder of the paper—for presentational purposes.

5 According to Lewis (1970), for example, the semantic category of a predicate is 〈S/N〉
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and the semantic category of a name is N (or, alternatively, 〈S/(S/N)〉). So, in order

for ‘ξ(c)’ to be a sentence, the semantic category of ‘ξ’ would have to be 〈S/N〉 (or,

alternatively, either 〈S/N〉 or 〈S/(S/(S/N))〉), and in order for ‘P (ξ)’ to be a sentence,

the semantic category of ‘ξ’ would have to be either N or 〈S/(S/N)〉. And it is impossible

to fulfill both of these conditions at once.

6For the Quinean side of the debate see Quine (1986) ch. 5, Resnik (1988), Par-

sons (1990) and Linnebo (2003) (among others). For the Boolosian side of the debate see

Boolos (1984), Boolos (1985a), Boolos (1985b), McGee (1997), Hossack (2000), McGee (2000),

Oliver and Smiley (2001), Rayo and Yablo (2001), Rayo (2002) and Williamson (2003)

(among others).

7See Simons (1997), Rayo and Yablo (2001) and Williamson (2003).

8For an expanded criterion of ontological commitment, see Rayo (2002).

9For discussion of determinacy, see Jané (2003).

10For more on absolutely unrestricted quantification see Parsons (1974b), Dummett (1981)

chapters 14-16, Cartwright (1994), Boolos (1998b), Williamson (1999), McGee (2000), the

postscript to Field (1998) in Field (2001), Rayo (2003), Rayo and Williamson (2003),

Glanzberg (2004), and Williamson (2003).

11See Rayo (2002).

12In using this notation I follow Burgess and Rosen (1997).

13Although a cleaner example of an English first-level term would be ‘they’ in “Some

elephants passed by; they were generally nice to each other”, I treat expressions like ‘the

elephants’ as if they were uncontroversially first-level terms for ease of exposition.
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14See Rayo (2002).

15In this connection, see Black (1970) and Hazen (1997).

16 Formally,

∃xxxx∀yyy[yyy ≺3,4 xxxx↔ ∀zz(zz ≺2,3 yyy ↔

∃w∃u(Ancestor1,1(w, u) ∧ (∀t(t ≺1,2 zz ↔

(t = w ∨ t = u)) ∨ ∀t(t ≺1,2 zz ↔ (t = w)))))∧

Ref1,4(‘Ancestor1,1(v0
i , v

0
j )’, xxxx)].

17 Formally,

∃xxxx∀yyy[yyy ≺3,4 xxxx↔ ∀zz(zz ≺2,3 yyy ↔

∃w∃u(World1(w) ∧ElephantIn1,1(w, u) ∧ (∀t(t ≺1,2 zz ↔

(t = w ∨ t = u)) ∨ ∀t(t ≺1,2 zz ↔ (t = w)))))∧

Int1,4(‘Elephant1(v0
i )’, xxxx)].

18See, however, Schein (forthcoming).

19This way of thinking of empty predicates yields the result that a predicate not-F might

be referenceless even though F is not, and that a predicate F-and-G might be referenceless

even though F and G are not. One must also take special care in dealing with generalized

quantifiers (see Rayo (2002)). Empty predicates may not be the only case of meaningful

but referenceless predicates. Predicates such as ‘is taller than him’ in a context in which

‘him’ hasn’t been assigned a reference might constitute another example. (Thanks here to
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Tim Williamson.)

20Compare with the treatment of empty names in Oliver and Smiley (typescript).

21This subsection and the last have benefited greatly from discussion with Øystein Lin-

nebo.

22With some modifications, I follow the presentation in Shapiro (1991) §3.2.

23The required notion of freedom-for is an exact analogue of the notion of freedom-for

in a standard first-order language: tj is free for ti in ϕ just in case no occurrence of ti in

ϕ lies within a formula of the form pσm
j [ψ]q, where pvm

j q is a placeholder occurring in tj.

Thus, ‘v0
0’ is free for ‘v0

1’ in ‘G2(σ0
1[F1(v0

1)])’ or ‘G2(σ0
2[F1(v0

1)])’ but not in ‘G2(σ0
0[F1(v0

1)])’.

24In analogy with the above, we say that a basic (n+1)th-level language Ln+1 (n ≥ 2) can

be paraphrased as an nth-level Ln language just in case there is a range of individuals—

the ‘classes’—such that, for any sentence in Ln+1, the following transformation into Ln

preserves truth-value (certain clauses are omitted for the sake of brevity):

• for m < (n− 1), (∃vm
i (ϕ))Tr � ∃vm

i (Dm+1(vm
i ) ∧ ϕTr)

• (∃vn−1
i (ϕ))Tr � ∃vn−1

2i−1(D
n(vn−1

2i−1) ∧ ϕTr)

• (∃vn
i (ϕ))Tr � ∃vn−1

2i (Cn(vn−1
2i ) ∧ ϕTr)

• (vn−1
i ≺ vn

j )Tr � vn−1
2i−1 � vn−1

2j

where ‘Dm’, ‘Cm’ and vm
i � vm

j are characterized as follows:

– ‘D1’ is true of all and only individuals in the domain of discourse of Ln+1

– Dk+2(vk+1
s )↔ ∀vk

t (vk
t ≺ vk+1

s ⊃ Dk+1(vk
t ))
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– ‘C1’ is true of all and only (non-empty) ‘classes’ of individuals in the domain of

discourse of Ln+1

– Ck+2(vk+1
s )↔ ∀vk

t (vk
t ≺ vk+1

s ⊃ Ck+1(vk
t ))

– v0
i � v0

j ↔ v0
i ∈ v0

j

– vk+1
i � vk+1

j ↔ ∃vk
s (vk

s ≺ vk+1
j ∧ ∀vk

t (vk
t ≺ vk+1

i ↔ vk
t � vk

s )),

and ‘∈’ expresses a ‘membership’ relation appropriate for ‘classes’.

The higher-level version of No Paraphrase can then be established by focusing on the

following sentence of Ln+1:

∀vn
1∃vn−1

1 ∀vn−1
2 (vn−1

2 ≺ vn
1 ↔Member(vn−1

2 , vn−1
1 ))

where ‘Member’ is characterized just like ‘�’.

25This section benefited greatly from discussion with Gabriel Uzquiano and Crispin

Wright.

26The basic idea is due to Bernays (1942); for a formal statement of the result see

Rayo (2002). The proof is analogous to that of theorem 5.3 of Shapiro (1991).

27See McGee (forthcoming). For present purposes, it is best to think of the dyadic second-

order quantifier in McGee’s construction as a monadic quantifier ranging over ordered-pairs.

28See Rayo and Williamson (2003), footnote 7.

29 See Rayo and Uzquiano (1999).

30One might worry that the my arguments for Semantic Ascent rely on unwarranted

assumptions about predicate-reference. For I used the assumption that, e.g. the reference
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of a monadic first-level predicate is a plurality. But what if one held a view such as the

following?

∀x(Ref1,1(‘. . . is an elephant’, x)↔ Elephant1(x))

In fact, it makes no difference whether one chooses to say that something is a referent of

‘. . . is an elephant’ just in case it is an elephant, rather than saying that the reference of

‘. . . is an elephant’ is the plurality of elephants. The arguments for Semantic Ascent go

through just the same.

31See Kreisel (1967).

32It implies, for example, the existence of inaccessible cardinals. See Shapiro (1991),

§6.3.

33Proof: Suppose for reductio that some formula ϕ in a limitω language captures the

notion of truth-in-a-model. Since ϕ contains finitely many symbols, it is also a formula

in some nth-level language. And this contradicts the conjunction of (a) and (c), since a

limitω language includes nth-level languages as proper parts for any finite n.

34See Williamson (2003).

35The matter of giving a strictly adequate model-theory for languages of transfinite-

level is non-trivial. Andrews (1965) develops a strictly adequate model-theory for limitω

languages by allowing quantification over types.

36For more on indefinite extensibility, see Russell (1906), Dummett (1963), Parsons (1974a),

Parsons (1974b), Dummett (1991) pp. 316-319, Dummett (1993b), Hazen (1993), Williamson (1998),

Glanzberg (2004), Shapiro (2003a) and Shapiro (2003b).

37For a detailed discussion of these matters, see Priest (2003).
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38See, for instance, Parsons’ contribution to this volume. For further discussion of this

point, see Linnebo and Weir’s contributions.

39Many thanks to Kit Fine, Øystein Linnebo, Tom McKay, Charles Parsons, Marcus

Rossberg, Barry Schein, Gabriel Uzquiano, Tim Williamson, Crispin Wright, an anony-

mous referee for this volume, and audiences at MIT’s MATTI Reading Group, La Universi-

dade de Santiago de Compostela and Arché the AHRC Research Centre for the Philosophy

of Logic, Language, Mathematics and Mind.
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